src/HOL/Tools/meson.ML
author paulson
Thu Jun 15 17:50:47 2006 +0200 (2006-06-15)
changeset 19894 7c7e15b27145
parent 19875 7405ce9d4f25
child 20018 5419a71d0baa
permissions -rw-r--r--
the "all_theorems" option and some fixes
wenzelm@9869
     1
(*  Title:      HOL/Tools/meson.ML
paulson@9840
     2
    ID:         $Id$
paulson@9840
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@9840
     4
    Copyright   1992  University of Cambridge
paulson@9840
     5
wenzelm@9869
     6
The MESON resolution proof procedure for HOL.
paulson@9840
     7
paulson@9840
     8
When making clauses, avoids using the rewriter -- instead uses RS recursively
paulson@9840
     9
paulson@9840
    10
NEED TO SORT LITERALS BY # OF VARS, USING ==>I/E.  ELIMINATES NEED FOR
paulson@9840
    11
FUNCTION nodups -- if done to goal clauses too!
paulson@9840
    12
*)
paulson@9840
    13
paulson@15579
    14
signature BASIC_MESON =
paulson@15579
    15
sig
paulson@15579
    16
  val size_of_subgoals	: thm -> int
paulson@15998
    17
  val make_cnf		: thm list -> thm -> thm list
paulson@15579
    18
  val make_nnf		: thm -> thm
paulson@17849
    19
  val make_nnf1		: thm -> thm
paulson@15579
    20
  val skolemize		: thm -> thm
paulson@15579
    21
  val make_clauses	: thm list -> thm list
paulson@15579
    22
  val make_horns	: thm list -> thm list
paulson@15579
    23
  val best_prolog_tac	: (thm -> int) -> thm list -> tactic
paulson@15579
    24
  val depth_prolog_tac	: thm list -> tactic
paulson@15579
    25
  val gocls		: thm list -> thm list
paulson@15579
    26
  val skolemize_prems_tac	: thm list -> int -> tactic
paulson@15579
    27
  val MESON		: (thm list -> tactic) -> int -> tactic
paulson@15579
    28
  val best_meson_tac	: (thm -> int) -> int -> tactic
paulson@15579
    29
  val safe_best_meson_tac	: int -> tactic
paulson@15579
    30
  val depth_meson_tac	: int -> tactic
paulson@15579
    31
  val prolog_step_tac'	: thm list -> int -> tactic
paulson@15579
    32
  val iter_deepen_prolog_tac	: thm list -> tactic
paulson@16563
    33
  val iter_deepen_meson_tac	: thm list -> int -> tactic
paulson@15579
    34
  val meson_tac		: int -> tactic
paulson@15579
    35
  val negate_head	: thm -> thm
paulson@15579
    36
  val select_literal	: int -> thm -> thm
paulson@15579
    37
  val skolemize_tac	: int -> tactic
paulson@15579
    38
  val make_clauses_tac	: int -> tactic
mengj@18194
    39
  val check_is_fol_term : term -> term
paulson@15579
    40
end
paulson@9840
    41
paulson@9840
    42
paulson@15579
    43
structure Meson =
paulson@15579
    44
struct
paulson@9840
    45
paulson@15579
    46
val not_conjD = thm "meson_not_conjD";
paulson@15579
    47
val not_disjD = thm "meson_not_disjD";
paulson@15579
    48
val not_notD = thm "meson_not_notD";
paulson@15579
    49
val not_allD = thm "meson_not_allD";
paulson@15579
    50
val not_exD = thm "meson_not_exD";
paulson@15579
    51
val imp_to_disjD = thm "meson_imp_to_disjD";
paulson@15579
    52
val not_impD = thm "meson_not_impD";
paulson@15579
    53
val iff_to_disjD = thm "meson_iff_to_disjD";
paulson@15579
    54
val not_iffD = thm "meson_not_iffD";
paulson@15579
    55
val conj_exD1 = thm "meson_conj_exD1";
paulson@15579
    56
val conj_exD2 = thm "meson_conj_exD2";
paulson@15579
    57
val disj_exD = thm "meson_disj_exD";
paulson@15579
    58
val disj_exD1 = thm "meson_disj_exD1";
paulson@15579
    59
val disj_exD2 = thm "meson_disj_exD2";
paulson@15579
    60
val disj_assoc = thm "meson_disj_assoc";
paulson@15579
    61
val disj_comm = thm "meson_disj_comm";
paulson@15579
    62
val disj_FalseD1 = thm "meson_disj_FalseD1";
paulson@15579
    63
val disj_FalseD2 = thm "meson_disj_FalseD2";
paulson@9840
    64
paulson@16563
    65
val depth_limit = ref 2000;
paulson@9840
    66
paulson@15579
    67
(**** Operators for forward proof ****)
paulson@15579
    68
paulson@18175
    69
(*Like RS, but raises Option if there are no unifiers and allows multiple unifiers.*)
paulson@18175
    70
fun resolve1 (tha,thb) = Seq.hd (biresolution false [(false,tha)] 1 thb);
paulson@18175
    71
paulson@15579
    72
(*raises exception if no rules apply -- unlike RL*)
paulson@18141
    73
fun tryres (th, rls) = 
paulson@18141
    74
  let fun tryall [] = raise THM("tryres", 0, th::rls)
wenzelm@19875
    75
        | tryall (rl::rls) = (resolve1(th,rl) handle Option.Option => tryall rls)
paulson@18141
    76
  in  tryall rls  end;
paulson@18141
    77
  
paulson@15579
    78
(*Permits forward proof from rules that discharge assumptions*)
paulson@15579
    79
fun forward_res nf st =
paulson@15579
    80
  case Seq.pull (ALLGOALS (METAHYPS (fn [prem] => rtac (nf prem) 1)) st)
paulson@15579
    81
  of SOME(th,_) => th
paulson@15579
    82
   | NONE => raise THM("forward_res", 0, [st]);
paulson@15579
    83
paulson@15579
    84
paulson@15579
    85
(*Are any of the constants in "bs" present in the term?*)
paulson@15579
    86
fun has_consts bs =
wenzelm@19875
    87
  let fun has (Const(a,_)) = member (op =) bs a
paulson@15579
    88
	| has (Const ("Hilbert_Choice.Eps",_) $ _) = false
paulson@15579
    89
		     (*ignore constants within @-terms*)
paulson@15579
    90
	| has (f$u) = has f orelse has u
paulson@15579
    91
	| has (Abs(_,_,t)) = has t
paulson@15579
    92
	| has _ = false
paulson@15579
    93
  in  has  end;
paulson@17716
    94
  
paulson@9840
    95
paulson@15579
    96
(**** Clause handling ****)
paulson@9840
    97
paulson@15579
    98
fun literals (Const("Trueprop",_) $ P) = literals P
paulson@15579
    99
  | literals (Const("op |",_) $ P $ Q) = literals P @ literals Q
paulson@15579
   100
  | literals (Const("Not",_) $ P) = [(false,P)]
paulson@15579
   101
  | literals P = [(true,P)];
paulson@9840
   102
paulson@15579
   103
(*number of literals in a term*)
paulson@15579
   104
val nliterals = length o literals;
paulson@9840
   105
paulson@18389
   106
paulson@18389
   107
(*** Tautology Checking ***)
paulson@18389
   108
paulson@18389
   109
fun signed_lits_aux (Const ("op |", _) $ P $ Q) (poslits, neglits) = 
paulson@18389
   110
      signed_lits_aux Q (signed_lits_aux P (poslits, neglits))
paulson@18389
   111
  | signed_lits_aux (Const("Not",_) $ P) (poslits, neglits) = (poslits, P::neglits)
paulson@18389
   112
  | signed_lits_aux P (poslits, neglits) = (P::poslits, neglits);
paulson@18389
   113
  
paulson@18389
   114
fun signed_lits th = signed_lits_aux (HOLogic.dest_Trueprop (concl_of th)) ([],[]);
paulson@18389
   115
paulson@18389
   116
(*Literals like X=X are tautologous*)
paulson@18389
   117
fun taut_poslit (Const("op =",_) $ t $ u) = t aconv u
paulson@18389
   118
  | taut_poslit (Const("True",_)) = true
paulson@18389
   119
  | taut_poslit _ = false;
paulson@18389
   120
paulson@18389
   121
fun is_taut th =
paulson@18389
   122
  let val (poslits,neglits) = signed_lits th
paulson@18389
   123
  in  exists taut_poslit poslits
paulson@18389
   124
      orelse
paulson@18389
   125
      exists (fn t => mem_term (t, neglits)) (HOLogic.false_const :: poslits)
paulson@19894
   126
  end
paulson@19894
   127
  handle TERM _ => false;	(*probably dest_Trueprop on a weird theorem*)		      
paulson@18389
   128
paulson@18389
   129
paulson@18389
   130
(*** To remove trivial negated equality literals from clauses ***)
paulson@18389
   131
paulson@18389
   132
(*They are typically functional reflexivity axioms and are the converses of
paulson@18389
   133
  injectivity equivalences*)
paulson@18389
   134
  
paulson@18389
   135
val not_refl_disj_D = thm"meson_not_refl_disj_D";
paulson@18389
   136
paulson@18389
   137
fun refl_clause_aux 0 th = th
paulson@18389
   138
  | refl_clause_aux n th =
paulson@18389
   139
       case HOLogic.dest_Trueprop (concl_of th) of
paulson@18389
   140
	  (Const ("op |", _) $ (Const ("op |", _) $ _ $ _) $ _) => 
paulson@18389
   141
            refl_clause_aux n (th RS disj_assoc)    (*isolate an atom as first disjunct*)
paulson@18389
   142
	| (Const ("op |", _) $ (Const("Not",_) $ (Const("op =",_) $ t $ u)) $ _) => 
paulson@18389
   143
	    if is_Var t orelse is_Var u then (*Var inequation: delete or ignore*)
paulson@18389
   144
		(refl_clause_aux (n-1) (th RS not_refl_disj_D)    (*delete*)
paulson@18389
   145
		 handle THM _ => refl_clause_aux (n-1) (th RS disj_comm))  (*ignore*)
paulson@18389
   146
	    else refl_clause_aux (n-1) (th RS disj_comm)  (*not between Vars: ignore*)
paulson@18389
   147
	| (Const ("op |", _) $ _ $ _) => refl_clause_aux n (th RS disj_comm)
paulson@18752
   148
	| _ => (*not a disjunction*) th;
paulson@18389
   149
paulson@18389
   150
fun notequal_lits_count (Const ("op |", _) $ P $ Q) = 
paulson@18389
   151
      notequal_lits_count P + notequal_lits_count Q
paulson@18389
   152
  | notequal_lits_count (Const("Not",_) $ (Const("op =",_) $ _ $ _)) = 1
paulson@18389
   153
  | notequal_lits_count _ = 0;
paulson@18389
   154
paulson@18389
   155
(*Simplify a clause by applying reflexivity to its negated equality literals*)
paulson@18389
   156
fun refl_clause th = 
paulson@18389
   157
  let val neqs = notequal_lits_count (HOLogic.dest_Trueprop (concl_of th))
paulson@19894
   158
  in  zero_var_indexes (refl_clause_aux neqs th)  end
paulson@19894
   159
  handle TERM _ => th;	(*probably dest_Trueprop on a weird theorem*)		      
paulson@18389
   160
paulson@18389
   161
paulson@18389
   162
(*** The basic CNF transformation ***)
paulson@18389
   163
paulson@19894
   164
(*Estimate the number of clauses in order to detect infeasible theorems*)
paulson@19894
   165
fun nclauses (Const("Trueprop",_) $ t) = nclauses t
paulson@19894
   166
  | nclauses (Const("op &",_) $ t $ u) = nclauses t + nclauses u
paulson@19894
   167
  | nclauses (Const("Ex", _) $ Abs (_,_,t)) = nclauses t
paulson@19894
   168
  | nclauses (Const("All",_) $ Abs (_,_,t)) = nclauses t
paulson@19894
   169
  | nclauses (Const("op |",_) $ t $ u) = nclauses t * nclauses u
paulson@19894
   170
  | nclauses _ = 1; (* literal *)
paulson@19894
   171
paulson@15579
   172
(*Replaces universally quantified variables by FREE variables -- because
paulson@15579
   173
  assumptions may not contain scheme variables.  Later, call "generalize". *)
paulson@15579
   174
fun freeze_spec th =
wenzelm@19728
   175
  let val newname = gensym "A_"
paulson@19154
   176
      val spec' = read_instantiate [("x", newname)] spec
paulson@19154
   177
  in  th RS spec'  end;
paulson@9840
   178
paulson@15998
   179
(*Used with METAHYPS below. There is one assumption, which gets bound to prem
paulson@15998
   180
  and then normalized via function nf. The normal form is given to resolve_tac,
paulson@15998
   181
  presumably to instantiate a Boolean variable.*)
paulson@15579
   182
fun resop nf [prem] = resolve_tac (nf prem) 1;
paulson@9840
   183
paulson@18389
   184
val has_meta_conn = 
paulson@18389
   185
    exists_Const (fn (c,_) => c mem_string ["==", "==>", "all", "prop"]);
paulson@18389
   186
  
paulson@15998
   187
(*Conjunctive normal form, adding clauses from th in front of ths (for foldr).
paulson@15998
   188
  Strips universal quantifiers and breaks up conjunctions.
paulson@15998
   189
  Eliminates existential quantifiers using skoths: Skolemization theorems.*)
paulson@15998
   190
fun cnf skoths (th,ths) =
paulson@18389
   191
  let fun cnf_aux (th,ths) =
paulson@19894
   192
  	if has_meta_conn (prop_of th) then ths (*meta-level: ignore*)
paulson@18389
   193
        else if not (has_consts ["All","Ex","op &"] (prop_of th))  
paulson@15998
   194
	then th::ths (*no work to do, terminate*)
paulson@16588
   195
	else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
paulson@16588
   196
	    Const ("op &", _) => (*conjunction*)
paulson@18389
   197
		cnf_aux (th RS conjunct1,
paulson@18389
   198
			      cnf_aux (th RS conjunct2, ths))
paulson@16588
   199
	  | Const ("All", _) => (*universal quantifier*)
paulson@18389
   200
	        cnf_aux (freeze_spec th,  ths)
paulson@16588
   201
	  | Const ("Ex", _) => 
paulson@16588
   202
	      (*existential quantifier: Insert Skolem functions*)
paulson@18389
   203
	      cnf_aux (tryres (th,skoths), ths)
paulson@16588
   204
	  | Const ("op |", _) => (*disjunction*)
paulson@16588
   205
	      let val tac =
paulson@18389
   206
		  (METAHYPS (resop cnf_nil) 1) THEN
paulson@19154
   207
		   (fn st' => st' |> METAHYPS (resop cnf_nil) 1)
paulson@16588
   208
	      in  Seq.list_of (tac (th RS disj_forward)) @ ths  end 
paulson@16588
   209
	  | _ => (*no work to do*) th::ths 
paulson@19154
   210
      and cnf_nil th = cnf_aux (th,[])
paulson@15998
   211
  in 
paulson@19894
   212
    if nclauses (concl_of th) > 20 
paulson@19894
   213
    then (Output.debug ("cnf is ignoring: " ^ string_of_thm th); ths)
paulson@19894
   214
    else cnf_aux (th,ths)
paulson@15998
   215
  end;
paulson@9840
   216
paulson@16012
   217
(*Convert all suitable free variables to schematic variables, 
paulson@16012
   218
  but don't discharge assumptions.*)
paulson@16173
   219
fun generalize th = Thm.varifyT (forall_elim_vars 0 (forall_intr_frees th));
paulson@16012
   220
paulson@18389
   221
fun make_cnf skoths th = 
paulson@18389
   222
  filter (not o is_taut) 
paulson@18389
   223
    (map (refl_clause o generalize) (cnf skoths (th, [])));
paulson@15998
   224
paulson@9840
   225
paulson@15579
   226
(**** Removal of duplicate literals ****)
paulson@9840
   227
paulson@15579
   228
(*Forward proof, passing extra assumptions as theorems to the tactic*)
paulson@15579
   229
fun forward_res2 nf hyps st =
paulson@15579
   230
  case Seq.pull
paulson@15579
   231
	(REPEAT
paulson@15579
   232
	 (METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
paulson@15579
   233
	 st)
paulson@15579
   234
  of SOME(th,_) => th
paulson@15579
   235
   | NONE => raise THM("forward_res2", 0, [st]);
paulson@9840
   236
paulson@15579
   237
(*Remove duplicates in P|Q by assuming ~P in Q
paulson@15579
   238
  rls (initially []) accumulates assumptions of the form P==>False*)
paulson@15579
   239
fun nodups_aux rls th = nodups_aux rls (th RS disj_assoc)
paulson@15579
   240
    handle THM _ => tryres(th,rls)
paulson@15579
   241
    handle THM _ => tryres(forward_res2 nodups_aux rls (th RS disj_forward2),
paulson@15579
   242
			   [disj_FalseD1, disj_FalseD2, asm_rl])
paulson@15579
   243
    handle THM _ => th;
paulson@9840
   244
paulson@15579
   245
(*Remove duplicate literals, if there are any*)
paulson@15579
   246
fun nodups th =
paulson@15579
   247
    if null(findrep(literals(prop_of th))) then th
paulson@15579
   248
    else nodups_aux [] th;
paulson@9840
   249
paulson@9840
   250
paulson@15579
   251
(**** Generation of contrapositives ****)
paulson@9840
   252
paulson@15579
   253
(*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
paulson@15579
   254
fun assoc_right th = assoc_right (th RS disj_assoc)
paulson@15579
   255
	handle THM _ => th;
paulson@9840
   256
paulson@15579
   257
(*Must check for negative literal first!*)
paulson@15579
   258
val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
paulson@9840
   259
paulson@15579
   260
(*For ordinary resolution. *)
paulson@15579
   261
val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
paulson@9840
   262
paulson@15579
   263
(*Create a goal or support clause, conclusing False*)
paulson@15579
   264
fun make_goal th =   (*Must check for negative literal first!*)
paulson@15579
   265
    make_goal (tryres(th, clause_rules))
paulson@15579
   266
  handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
paulson@9840
   267
paulson@15579
   268
(*Sort clauses by number of literals*)
paulson@15579
   269
fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
paulson@9840
   270
paulson@18389
   271
fun sort_clauses ths = sort (make_ord fewerlits) ths;
paulson@9840
   272
paulson@15581
   273
(*True if the given type contains bool anywhere*)
paulson@15581
   274
fun has_bool (Type("bool",_)) = true
paulson@15581
   275
  | has_bool (Type(_, Ts)) = exists has_bool Ts
paulson@15581
   276
  | has_bool _ = false;
paulson@15581
   277
  
paulson@15613
   278
(*Is the string the name of a connective? It doesn't matter if this list is
paulson@15613
   279
  incomplete, since when actually called, the only connectives likely to
paulson@15613
   280
  remain are & | Not.*)  
wenzelm@19875
   281
val is_conn = member (op =)
paulson@17404
   282
    ["Trueprop", "HOL.tag", "op &", "op |", "op -->", "op =", "Not", 
paulson@15613
   283
     "All", "Ex", "Ball", "Bex"];
paulson@15613
   284
paulson@15613
   285
(*True if the term contains a function where the type of any argument contains
paulson@15613
   286
  bool.*)
paulson@15613
   287
val has_bool_arg_const = 
paulson@15613
   288
    exists_Const
paulson@15613
   289
      (fn (c,T) => not(is_conn c) andalso exists (has_bool) (binder_types T));
paulson@15908
   290
      
paulson@16588
   291
(*Raises an exception if any Vars in the theorem mention type bool; they
paulson@16588
   292
  could cause make_horn to loop! Also rejects functions whose arguments are 
paulson@16588
   293
  Booleans or other functions.*)
paulson@19204
   294
fun is_fol_term t =
paulson@19204
   295
    not (exists (has_bool o fastype_of) (term_vars t)  orelse
paulson@19204
   296
	 not (Term.is_first_order ["all","All","Ex"] t) orelse
paulson@19204
   297
	 has_bool_arg_const t  orelse  
paulson@19204
   298
	 has_meta_conn t);
paulson@19204
   299
paulson@19204
   300
(*FIXME: replace this by the boolean-valued version above!*)
paulson@19204
   301
fun check_is_fol_term t =
paulson@19204
   302
    if is_fol_term t then t else raise TERM("check_is_fol_term",[t]);
mengj@18194
   303
paulson@18508
   304
fun check_is_fol th = (check_is_fol_term (prop_of th); th);
paulson@18508
   305
mengj@18194
   306
paulson@15579
   307
(*Create a meta-level Horn clause*)
paulson@15579
   308
fun make_horn crules th = make_horn crules (tryres(th,crules))
paulson@15579
   309
			  handle THM _ => th;
paulson@9840
   310
paulson@16563
   311
(*Generate Horn clauses for all contrapositives of a clause. The input, th,
paulson@16563
   312
  is a HOL disjunction.*)
paulson@15579
   313
fun add_contras crules (th,hcs) =
paulson@15579
   314
  let fun rots (0,th) = hcs
paulson@15579
   315
	| rots (k,th) = zero_var_indexes (make_horn crules th) ::
paulson@15579
   316
			rots(k-1, assoc_right (th RS disj_comm))
paulson@15862
   317
  in case nliterals(prop_of th) of
paulson@15579
   318
	1 => th::hcs
paulson@15579
   319
      | n => rots(n, assoc_right th)
paulson@15579
   320
  end;
paulson@9840
   321
paulson@15579
   322
(*Use "theorem naming" to label the clauses*)
paulson@15579
   323
fun name_thms label =
paulson@15579
   324
    let fun name1 (th, (k,ths)) =
paulson@15579
   325
	  (k-1, Thm.name_thm (label ^ string_of_int k, th) :: ths)
paulson@9840
   326
paulson@15579
   327
    in  fn ths => #2 (foldr name1 (length ths, []) ths)  end;
paulson@9840
   328
paulson@16563
   329
(*Is the given disjunction an all-negative support clause?*)
paulson@15579
   330
fun is_negative th = forall (not o #1) (literals (prop_of th));
paulson@9840
   331
paulson@15579
   332
val neg_clauses = List.filter is_negative;
paulson@9840
   333
paulson@9840
   334
paulson@15579
   335
(***** MESON PROOF PROCEDURE *****)
paulson@9840
   336
paulson@15579
   337
fun rhyps (Const("==>",_) $ (Const("Trueprop",_) $ A) $ phi,
paulson@15579
   338
	   As) = rhyps(phi, A::As)
paulson@15579
   339
  | rhyps (_, As) = As;
paulson@9840
   340
paulson@15579
   341
(** Detecting repeated assumptions in a subgoal **)
paulson@9840
   342
paulson@15579
   343
(*The stringtree detects repeated assumptions.*)
wenzelm@16801
   344
fun ins_term (net,t) = Net.insert_term (op aconv) (t,t) net;
paulson@9840
   345
paulson@15579
   346
(*detects repetitions in a list of terms*)
paulson@15579
   347
fun has_reps [] = false
paulson@15579
   348
  | has_reps [_] = false
paulson@15579
   349
  | has_reps [t,u] = (t aconv u)
paulson@15579
   350
  | has_reps ts = (Library.foldl ins_term (Net.empty, ts);  false)
wenzelm@19875
   351
		  handle Net.INSERT => true;
paulson@9840
   352
paulson@15579
   353
(*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
paulson@18508
   354
fun TRYING_eq_assume_tac 0 st = Seq.single st
paulson@18508
   355
  | TRYING_eq_assume_tac i st =
paulson@18508
   356
       TRYING_eq_assume_tac (i-1) (eq_assumption i st)
paulson@18508
   357
       handle THM _ => TRYING_eq_assume_tac (i-1) st;
paulson@18508
   358
paulson@18508
   359
fun TRYALL_eq_assume_tac st = TRYING_eq_assume_tac (nprems_of st) st;
paulson@9840
   360
paulson@15579
   361
(*Loop checking: FAIL if trying to prove the same thing twice
paulson@15579
   362
  -- if *ANY* subgoal has repeated literals*)
paulson@15579
   363
fun check_tac st =
paulson@15579
   364
  if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
paulson@15579
   365
  then  Seq.empty  else  Seq.single st;
paulson@9840
   366
paulson@9840
   367
paulson@15579
   368
(* net_resolve_tac actually made it slower... *)
paulson@15579
   369
fun prolog_step_tac horns i =
paulson@15579
   370
    (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
paulson@18508
   371
    TRYALL_eq_assume_tac;
paulson@9840
   372
paulson@9840
   373
(*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
paulson@15579
   374
fun addconcl(prem,sz) = size_of_term(Logic.strip_assums_concl prem) + sz
paulson@15579
   375
paulson@15579
   376
fun size_of_subgoals st = foldr addconcl 0 (prems_of st);
paulson@15579
   377
paulson@9840
   378
paulson@9840
   379
(*Negation Normal Form*)
paulson@9840
   380
val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
wenzelm@9869
   381
               not_impD, not_iffD, not_allD, not_exD, not_notD];
paulson@15581
   382
paulson@15581
   383
fun make_nnf1 th = make_nnf1 (tryres(th, nnf_rls))
wenzelm@9869
   384
    handle THM _ =>
paulson@15581
   385
        forward_res make_nnf1
wenzelm@9869
   386
           (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
paulson@9840
   387
    handle THM _ => th;
paulson@9840
   388
paulson@18405
   389
(*The simplification removes defined quantifiers and occurrences of True and False, 
paulson@18405
   390
  as well as tags applied to True and False. nnf_ss also includes the one-point simprocs,
paulson@18405
   391
  which are needed to avoid the various one-point theorems from generating junk clauses.*)
paulson@17404
   392
val tag_True = thm "tag_True";
paulson@17404
   393
val tag_False = thm "tag_False";
paulson@19894
   394
val nnf_simps =
paulson@19894
   395
     [simp_implies_def, Ex1_def, Ball_def, Bex_def, tag_True, tag_False, if_True, 
paulson@19894
   396
      if_False, if_cancel, if_eq_cancel, cases_simp];
paulson@19894
   397
val nnf_extra_simps =
paulson@19894
   398
      thms"split_ifs" @ ex_simps @ all_simps @ simp_thms;
paulson@18405
   399
paulson@18405
   400
val nnf_ss =
paulson@19894
   401
    HOL_basic_ss addsimps nnf_extra_simps 
paulson@19894
   402
                 addsimprocs [defALL_regroup,defEX_regroup,neq_simproc,let_simproc];
paulson@15872
   403
paulson@19894
   404
fun make_nnf th = th |> rewrite_rule (map safe_mk_meta_eq nnf_simps)
paulson@19894
   405
                     |> simplify nnf_ss  (*But this doesn't simplify premises...*)
mengj@18194
   406
                     |> make_nnf1
paulson@15581
   407
paulson@15965
   408
(*Pull existential quantifiers to front. This accomplishes Skolemization for
paulson@15965
   409
  clauses that arise from a subgoal.*)
wenzelm@9869
   410
fun skolemize th =
paulson@9840
   411
  if not (has_consts ["Ex"] (prop_of th)) then th
quigley@15773
   412
  else (skolemize (tryres(th, [choice, conj_exD1, conj_exD2,
quigley@15679
   413
                              disj_exD, disj_exD1, disj_exD2])))
wenzelm@9869
   414
    handle THM _ =>
wenzelm@9869
   415
        skolemize (forward_res skolemize
wenzelm@9869
   416
                   (tryres (th, [conj_forward, disj_forward, all_forward])))
paulson@9840
   417
    handle THM _ => forward_res skolemize (th RS ex_forward);
paulson@9840
   418
paulson@9840
   419
paulson@9840
   420
(*Make clauses from a list of theorems, previously Skolemized and put into nnf.
paulson@9840
   421
  The resulting clauses are HOL disjunctions.*)
wenzelm@9869
   422
fun make_clauses ths =
paulson@15998
   423
    (sort_clauses (map (generalize o nodups) (foldr (cnf[]) [] ths)));
quigley@15773
   424
paulson@9840
   425
paulson@16563
   426
(*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
wenzelm@9869
   427
fun make_horns ths =
paulson@9840
   428
    name_thms "Horn#"
wenzelm@19046
   429
      (distinct Drule.eq_thm_prop (foldr (add_contras clause_rules) [] ths));
paulson@9840
   430
paulson@9840
   431
(*Could simply use nprems_of, which would count remaining subgoals -- no
paulson@9840
   432
  discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
paulson@9840
   433
wenzelm@9869
   434
fun best_prolog_tac sizef horns =
paulson@9840
   435
    BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
paulson@9840
   436
wenzelm@9869
   437
fun depth_prolog_tac horns =
paulson@9840
   438
    DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
paulson@9840
   439
paulson@9840
   440
(*Return all negative clauses, as possible goal clauses*)
paulson@9840
   441
fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
paulson@9840
   442
paulson@15008
   443
fun skolemize_prems_tac prems =
paulson@9840
   444
    cut_facts_tac (map (skolemize o make_nnf) prems)  THEN'
paulson@9840
   445
    REPEAT o (etac exE);
paulson@9840
   446
paulson@18141
   447
(*Expand all definitions (presumably of Skolem functions) in a proof state.*)
paulson@18141
   448
fun expand_defs_tac st =
paulson@18141
   449
  let val defs = filter (can dest_equals) (#hyps (crep_thm st))
wenzelm@18817
   450
  in  LocalDefs.def_export false defs st  end;
paulson@18141
   451
paulson@16588
   452
(*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions*)
paulson@16588
   453
fun MESON cltac i st = 
paulson@16588
   454
  SELECT_GOAL
paulson@18141
   455
    (EVERY [rtac ccontr 1,
paulson@16588
   456
	    METAHYPS (fn negs =>
paulson@16588
   457
		      EVERY1 [skolemize_prems_tac negs,
paulson@18141
   458
			      METAHYPS (cltac o make_clauses)]) 1,
paulson@18141
   459
            expand_defs_tac]) i st
paulson@18508
   460
  handle TERM _ => no_tac st;	(*probably from check_is_fol*)		      
paulson@9840
   461
paulson@9840
   462
(** Best-first search versions **)
paulson@9840
   463
paulson@16563
   464
(*ths is a list of additional clauses (HOL disjunctions) to use.*)
wenzelm@9869
   465
fun best_meson_tac sizef =
wenzelm@9869
   466
  MESON (fn cls =>
paulson@9840
   467
         THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
paulson@9840
   468
                         (has_fewer_prems 1, sizef)
paulson@9840
   469
                         (prolog_step_tac (make_horns cls) 1));
paulson@9840
   470
paulson@9840
   471
(*First, breaks the goal into independent units*)
paulson@9840
   472
val safe_best_meson_tac =
wenzelm@9869
   473
     SELECT_GOAL (TRY Safe_tac THEN
paulson@9840
   474
                  TRYALL (best_meson_tac size_of_subgoals));
paulson@9840
   475
paulson@9840
   476
(** Depth-first search version **)
paulson@9840
   477
paulson@9840
   478
val depth_meson_tac =
wenzelm@9869
   479
     MESON (fn cls => EVERY [resolve_tac (gocls cls) 1,
paulson@9840
   480
                             depth_prolog_tac (make_horns cls)]);
paulson@9840
   481
paulson@9840
   482
paulson@9840
   483
(** Iterative deepening version **)
paulson@9840
   484
paulson@9840
   485
(*This version does only one inference per call;
paulson@9840
   486
  having only one eq_assume_tac speeds it up!*)
wenzelm@9869
   487
fun prolog_step_tac' horns =
paulson@9840
   488
    let val (horn0s, hornps) = (*0 subgoals vs 1 or more*)
paulson@9840
   489
            take_prefix Thm.no_prems horns
paulson@9840
   490
        val nrtac = net_resolve_tac horns
paulson@9840
   491
    in  fn i => eq_assume_tac i ORELSE
paulson@9840
   492
                match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
paulson@9840
   493
                ((assume_tac i APPEND nrtac i) THEN check_tac)
paulson@9840
   494
    end;
paulson@9840
   495
wenzelm@9869
   496
fun iter_deepen_prolog_tac horns =
paulson@9840
   497
    ITER_DEEPEN (has_fewer_prems 1) (prolog_step_tac' horns);
paulson@9840
   498
paulson@16563
   499
fun iter_deepen_meson_tac ths =
wenzelm@9869
   500
  MESON (fn cls =>
paulson@16563
   501
           case (gocls (cls@ths)) of
paulson@16563
   502
           	[] => no_tac  (*no goal clauses*)
paulson@16563
   503
              | goes => 
paulson@16563
   504
		 (THEN_ITER_DEEPEN (resolve_tac goes 1)
paulson@16563
   505
				   (has_fewer_prems 1)
paulson@16563
   506
				   (prolog_step_tac' (make_horns (cls@ths)))));
paulson@9840
   507
paulson@16563
   508
fun meson_claset_tac ths cs =
paulson@16563
   509
  SELECT_GOAL (TRY (safe_tac cs) THEN TRYALL (iter_deepen_meson_tac ths));
wenzelm@9869
   510
paulson@16563
   511
val meson_tac = CLASET' (meson_claset_tac []);
wenzelm@9869
   512
wenzelm@9869
   513
paulson@14813
   514
(**** Code to support ordinary resolution, rather than Model Elimination ****)
paulson@14744
   515
paulson@15008
   516
(*Convert a list of clauses (disjunctions) to meta-level clauses (==>), 
paulson@15008
   517
  with no contrapositives, for ordinary resolution.*)
paulson@14744
   518
paulson@14744
   519
(*Rules to convert the head literal into a negated assumption. If the head
paulson@14744
   520
  literal is already negated, then using notEfalse instead of notEfalse'
paulson@14744
   521
  prevents a double negation.*)
paulson@14744
   522
val notEfalse = read_instantiate [("R","False")] notE;
paulson@14744
   523
val notEfalse' = rotate_prems 1 notEfalse;
paulson@14744
   524
paulson@15448
   525
fun negated_asm_of_head th = 
paulson@14744
   526
    th RS notEfalse handle THM _ => th RS notEfalse';
paulson@14744
   527
paulson@14744
   528
(*Converting one clause*)
paulson@15581
   529
fun make_meta_clause th = 
paulson@16588
   530
    negated_asm_of_head (make_horn resolution_clause_rules (check_is_fol th));
paulson@14744
   531
paulson@14744
   532
fun make_meta_clauses ths =
paulson@14744
   533
    name_thms "MClause#"
wenzelm@19046
   534
      (distinct Drule.eq_thm_prop (map make_meta_clause ths));
paulson@14744
   535
paulson@14744
   536
(*Permute a rule's premises to move the i-th premise to the last position.*)
paulson@14744
   537
fun make_last i th =
paulson@14744
   538
  let val n = nprems_of th 
paulson@14744
   539
  in  if 1 <= i andalso i <= n 
paulson@14744
   540
      then Thm.permute_prems (i-1) 1 th
paulson@15118
   541
      else raise THM("select_literal", i, [th])
paulson@14744
   542
  end;
paulson@14744
   543
paulson@14744
   544
(*Maps a rule that ends "... ==> P ==> False" to "... ==> ~P" while suppressing
paulson@14744
   545
  double-negations.*)
paulson@14744
   546
val negate_head = rewrite_rule [atomize_not, not_not RS eq_reflection];
paulson@14744
   547
paulson@14744
   548
(*Maps the clause  [P1,...Pn]==>False to [P1,...,P(i-1),P(i+1),...Pn] ==> ~P*)
paulson@14744
   549
fun select_literal i cl = negate_head (make_last i cl);
paulson@14744
   550
paulson@18508
   551
paulson@14813
   552
(*Top-level Skolemization. Allows part of the conversion to clauses to be
paulson@14813
   553
  expressed as a tactic (or Isar method).  Each assumption of the selected 
paulson@14813
   554
  goal is converted to NNF and then its existential quantifiers are pulled
paulson@14813
   555
  to the front. Finally, all existential quantifiers are eliminated, 
paulson@14813
   556
  leaving !!-quantified variables. Perhaps Safe_tac should follow, but it
paulson@14813
   557
  might generate many subgoals.*)
mengj@18194
   558
paulson@19204
   559
fun skolemize_tac i st = 
paulson@19204
   560
  let val ts = Logic.strip_assums_hyp (List.nth (prems_of st, i-1))
paulson@19204
   561
  in 
paulson@19204
   562
     EVERY' [METAHYPS
quigley@15773
   563
	    (fn hyps => (cut_facts_tac (map (skolemize o make_nnf) hyps) 1
paulson@14813
   564
                         THEN REPEAT (etac exE 1))),
paulson@19204
   565
            REPEAT_DETERM_N (length ts) o (etac thin_rl)] i st
paulson@19204
   566
  end
paulson@19204
   567
  handle Subscript => Seq.empty;
mengj@18194
   568
paulson@15118
   569
(*Top-level conversion to meta-level clauses. Each clause has  
paulson@15118
   570
  leading !!-bound universal variables, to express generality. To get 
paulson@15118
   571
  disjunctions instead of meta-clauses, remove "make_meta_clauses" below.*)
paulson@15008
   572
val make_clauses_tac = 
paulson@15008
   573
  SUBGOAL
paulson@15008
   574
    (fn (prop,_) =>
paulson@15008
   575
     let val ts = Logic.strip_assums_hyp prop
paulson@15008
   576
     in EVERY1 
paulson@15008
   577
	 [METAHYPS
paulson@15008
   578
	    (fn hyps => 
paulson@15151
   579
              (Method.insert_tac
paulson@15118
   580
                (map forall_intr_vars 
paulson@15118
   581
                  (make_meta_clauses (make_clauses hyps))) 1)),
paulson@15008
   582
	  REPEAT_DETERM_N (length ts) o (etac thin_rl)]
paulson@15008
   583
     end);
paulson@16563
   584
     
paulson@16563
   585
     
paulson@16563
   586
(*** setup the special skoklemization methods ***)
wenzelm@9869
   587
paulson@16563
   588
(*No CHANGED_PROP here, since these always appear in the preamble*)
wenzelm@9869
   589
paulson@16563
   590
val skolemize_meth = Method.SIMPLE_METHOD' HEADGOAL skolemize_tac;
paulson@16563
   591
paulson@16563
   592
val make_clauses_meth = Method.SIMPLE_METHOD' HEADGOAL make_clauses_tac;
paulson@14890
   593
paulson@16563
   594
val skolemize_setup =
wenzelm@18708
   595
  Method.add_methods
wenzelm@18708
   596
    [("skolemize", Method.no_args skolemize_meth, 
wenzelm@18708
   597
      "Skolemization into existential quantifiers"),
wenzelm@18708
   598
     ("make_clauses", Method.no_args make_clauses_meth, 
wenzelm@18708
   599
      "Conversion to !!-quantified meta-level clauses")];
paulson@9840
   600
paulson@9840
   601
end;
wenzelm@9869
   602
paulson@15579
   603
structure BasicMeson: BASIC_MESON = Meson;
paulson@15579
   604
open BasicMeson;