src/HOL/Hahn_Banach/Function_Norm.thy
author wenzelm
Sun Sep 11 22:55:26 2011 +0200 (2011-09-11)
changeset 44887 7ca82df6e951
parent 36778 739a9379e29b
child 46867 0883804b67bb
permissions -rw-r--r--
misc tuning and clarification;
wenzelm@31795
     1
(*  Title:      HOL/Hahn_Banach/Function_Norm.thy
wenzelm@7566
     2
    Author:     Gertrud Bauer, TU Munich
wenzelm@7566
     3
*)
wenzelm@7535
     4
wenzelm@9035
     5
header {* The norm of a function *}
wenzelm@7808
     6
wenzelm@31795
     7
theory Function_Norm
wenzelm@31795
     8
imports Normed_Space Function_Order
wenzelm@27612
     9
begin
wenzelm@7535
    10
wenzelm@9035
    11
subsection {* Continuous linear forms*}
wenzelm@7917
    12
wenzelm@10687
    13
text {*
wenzelm@11472
    14
  A linear form @{text f} on a normed vector space @{text "(V, \<parallel>\<cdot>\<parallel>)"}
wenzelm@13515
    15
  is \emph{continuous}, iff it is bounded, i.e.
wenzelm@10687
    16
  \begin{center}
wenzelm@11472
    17
  @{text "\<exists>c \<in> R. \<forall>x \<in> V. \<bar>f x\<bar> \<le> c \<cdot> \<parallel>x\<parallel>"}
wenzelm@10687
    18
  \end{center}
wenzelm@10687
    19
  In our application no other functions than linear forms are
wenzelm@10687
    20
  considered, so we can define continuous linear forms as bounded
wenzelm@10687
    21
  linear forms:
wenzelm@9035
    22
*}
wenzelm@7535
    23
ballarin@29234
    24
locale continuous = var_V + norm_syntax + linearform +
wenzelm@13515
    25
  assumes bounded: "\<exists>c. \<forall>x \<in> V. \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>"
wenzelm@7535
    26
ballarin@14254
    27
declare continuous.intro [intro?] continuous_axioms.intro [intro?]
ballarin@14254
    28
wenzelm@10687
    29
lemma continuousI [intro]:
ballarin@27611
    30
  fixes norm :: "_ \<Rightarrow> real"  ("\<parallel>_\<parallel>")
ballarin@27611
    31
  assumes "linearform V f"
wenzelm@13515
    32
  assumes r: "\<And>x. x \<in> V \<Longrightarrow> \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>"
wenzelm@13515
    33
  shows "continuous V norm f"
wenzelm@13515
    34
proof
wenzelm@23378
    35
  show "linearform V f" by fact
wenzelm@13515
    36
  from r have "\<exists>c. \<forall>x\<in>V. \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" by blast
wenzelm@13515
    37
  then show "continuous_axioms V norm f" ..
wenzelm@13515
    38
qed
wenzelm@7535
    39
wenzelm@11472
    40
wenzelm@13515
    41
subsection {* The norm of a linear form *}
wenzelm@7917
    42
wenzelm@10687
    43
text {*
wenzelm@10687
    44
  The least real number @{text c} for which holds
wenzelm@10687
    45
  \begin{center}
wenzelm@11472
    46
  @{text "\<forall>x \<in> V. \<bar>f x\<bar> \<le> c \<cdot> \<parallel>x\<parallel>"}
wenzelm@10687
    47
  \end{center}
wenzelm@10687
    48
  is called the \emph{norm} of @{text f}.
wenzelm@7917
    49
wenzelm@11472
    50
  For non-trivial vector spaces @{text "V \<noteq> {0}"} the norm can be
wenzelm@10687
    51
  defined as
wenzelm@10687
    52
  \begin{center}
wenzelm@11472
    53
  @{text "\<parallel>f\<parallel> = \<sup>x \<noteq> 0. \<bar>f x\<bar> / \<parallel>x\<parallel>"}
wenzelm@10687
    54
  \end{center}
wenzelm@7917
    55
wenzelm@10687
    56
  For the case @{text "V = {0}"} the supremum would be taken from an
wenzelm@11472
    57
  empty set. Since @{text \<real>} is unbounded, there would be no supremum.
wenzelm@10687
    58
  To avoid this situation it must be guaranteed that there is an
wenzelm@11472
    59
  element in this set. This element must be @{text "{} \<ge> 0"} so that
wenzelm@13547
    60
  @{text fn_norm} has the norm properties. Furthermore it does not
wenzelm@13547
    61
  have to change the norm in all other cases, so it must be @{text 0},
wenzelm@13547
    62
  as all other elements are @{text "{} \<ge> 0"}.
wenzelm@7917
    63
wenzelm@13515
    64
  Thus we define the set @{text B} where the supremum is taken from as
wenzelm@13515
    65
  follows:
wenzelm@10687
    66
  \begin{center}
wenzelm@11472
    67
  @{text "{0} \<union> {\<bar>f x\<bar> / \<parallel>x\<parallel>. x \<noteq> 0 \<and> x \<in> F}"}
wenzelm@10687
    68
  \end{center}
wenzelm@10687
    69
wenzelm@13547
    70
  @{text fn_norm} is equal to the supremum of @{text B}, if the
wenzelm@13515
    71
  supremum exists (otherwise it is undefined).
wenzelm@9035
    72
*}
wenzelm@7917
    73
wenzelm@13547
    74
locale fn_norm = norm_syntax +
wenzelm@13547
    75
  fixes B defines "B V f \<equiv> {0} \<union> {\<bar>f x\<bar> / \<parallel>x\<parallel> | x. x \<noteq> 0 \<and> x \<in> V}"
wenzelm@13547
    76
  fixes fn_norm ("\<parallel>_\<parallel>\<hyphen>_" [0, 1000] 999)
wenzelm@13515
    77
  defines "\<parallel>f\<parallel>\<hyphen>V \<equiv> \<Squnion>(B V f)"
wenzelm@7535
    78
ballarin@27611
    79
locale normed_vectorspace_with_fn_norm = normed_vectorspace + fn_norm
ballarin@27611
    80
wenzelm@13547
    81
lemma (in fn_norm) B_not_empty [intro]: "0 \<in> B V f"
wenzelm@13547
    82
  by (simp add: B_def)
wenzelm@7917
    83
wenzelm@10687
    84
text {*
wenzelm@10687
    85
  The following lemma states that every continuous linear form on a
wenzelm@11472
    86
  normed space @{text "(V, \<parallel>\<cdot>\<parallel>)"} has a function norm.
wenzelm@10687
    87
*}
wenzelm@10687
    88
ballarin@27611
    89
lemma (in normed_vectorspace_with_fn_norm) fn_norm_works:
ballarin@27611
    90
  assumes "continuous V norm f"
wenzelm@13515
    91
  shows "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
wenzelm@13515
    92
proof -
ballarin@29234
    93
  interpret continuous V norm f by fact
wenzelm@10687
    94
  txt {* The existence of the supremum is shown using the
wenzelm@13515
    95
    completeness of the reals. Completeness means, that every
wenzelm@13515
    96
    non-empty bounded set of reals has a supremum. *}
wenzelm@13515
    97
  have "\<exists>a. lub (B V f) a"
wenzelm@13515
    98
  proof (rule real_complete)
wenzelm@10687
    99
    txt {* First we have to show that @{text B} is non-empty: *}
wenzelm@13515
   100
    have "0 \<in> B V f" ..
wenzelm@27612
   101
    then show "\<exists>x. x \<in> B V f" ..
wenzelm@7535
   102
wenzelm@10687
   103
    txt {* Then we have to show that @{text B} is bounded: *}
wenzelm@13515
   104
    show "\<exists>c. \<forall>y \<in> B V f. y \<le> c"
wenzelm@13515
   105
    proof -
wenzelm@10687
   106
      txt {* We know that @{text f} is bounded by some value @{text c}. *}
wenzelm@13515
   107
      from bounded obtain c where c: "\<forall>x \<in> V. \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" ..
wenzelm@7535
   108
wenzelm@13515
   109
      txt {* To prove the thesis, we have to show that there is some
wenzelm@13515
   110
        @{text b}, such that @{text "y \<le> b"} for all @{text "y \<in>
wenzelm@13515
   111
        B"}. Due to the definition of @{text B} there are two cases. *}
wenzelm@7917
   112
wenzelm@13515
   113
      def b \<equiv> "max c 0"
wenzelm@13515
   114
      have "\<forall>y \<in> B V f. y \<le> b"
wenzelm@13515
   115
      proof
wenzelm@13515
   116
        fix y assume y: "y \<in> B V f"
wenzelm@13515
   117
        show "y \<le> b"
wenzelm@13515
   118
        proof cases
wenzelm@13515
   119
          assume "y = 0"
wenzelm@27612
   120
          then show ?thesis unfolding b_def by arith
wenzelm@13515
   121
        next
wenzelm@13515
   122
          txt {* The second case is @{text "y = \<bar>f x\<bar> / \<parallel>x\<parallel>"} for some
wenzelm@13515
   123
            @{text "x \<in> V"} with @{text "x \<noteq> 0"}. *}
wenzelm@13515
   124
          assume "y \<noteq> 0"
wenzelm@13515
   125
          with y obtain x where y_rep: "y = \<bar>f x\<bar> * inverse \<parallel>x\<parallel>"
wenzelm@13515
   126
              and x: "x \<in> V" and neq: "x \<noteq> 0"
huffman@36778
   127
            by (auto simp add: B_def divide_inverse)
wenzelm@13515
   128
          from x neq have gt: "0 < \<parallel>x\<parallel>" ..
wenzelm@7917
   129
wenzelm@13515
   130
          txt {* The thesis follows by a short calculation using the
wenzelm@13515
   131
            fact that @{text f} is bounded. *}
wenzelm@13515
   132
wenzelm@13515
   133
          note y_rep
wenzelm@13515
   134
          also have "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<le> (c * \<parallel>x\<parallel>) * inverse \<parallel>x\<parallel>"
paulson@14334
   135
          proof (rule mult_right_mono)
wenzelm@23378
   136
            from c x show "\<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" ..
paulson@14334
   137
            from gt have "0 < inverse \<parallel>x\<parallel>" 
paulson@14334
   138
              by (rule positive_imp_inverse_positive)
wenzelm@27612
   139
            then show "0 \<le> inverse \<parallel>x\<parallel>" by (rule order_less_imp_le)
wenzelm@13515
   140
          qed
wenzelm@13515
   141
          also have "\<dots> = c * (\<parallel>x\<parallel> * inverse \<parallel>x\<parallel>)"
huffman@36778
   142
            by (rule Groups.mult_assoc)
wenzelm@13515
   143
          also
wenzelm@13515
   144
          from gt have "\<parallel>x\<parallel> \<noteq> 0" by simp
wenzelm@27612
   145
          then have "\<parallel>x\<parallel> * inverse \<parallel>x\<parallel> = 1" by simp 
wenzelm@44887
   146
          also have "c * 1 \<le> b" by (simp add: b_def)
wenzelm@13515
   147
          finally show "y \<le> b" .
wenzelm@9035
   148
        qed
wenzelm@13515
   149
      qed
wenzelm@27612
   150
      then show ?thesis ..
wenzelm@9035
   151
    qed
wenzelm@9035
   152
  qed
wenzelm@27612
   153
  then show ?thesis unfolding fn_norm_def by (rule the_lubI_ex)
wenzelm@13515
   154
qed
wenzelm@13515
   155
ballarin@27611
   156
lemma (in normed_vectorspace_with_fn_norm) fn_norm_ub [iff?]:
ballarin@27611
   157
  assumes "continuous V norm f"
wenzelm@13515
   158
  assumes b: "b \<in> B V f"
wenzelm@13515
   159
  shows "b \<le> \<parallel>f\<parallel>\<hyphen>V"
wenzelm@13515
   160
proof -
ballarin@29234
   161
  interpret continuous V norm f by fact
wenzelm@13547
   162
  have "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
wenzelm@23378
   163
    using `continuous V norm f` by (rule fn_norm_works)
wenzelm@13515
   164
  from this and b show ?thesis ..
wenzelm@13515
   165
qed
wenzelm@13515
   166
ballarin@27611
   167
lemma (in normed_vectorspace_with_fn_norm) fn_norm_leastB:
ballarin@27611
   168
  assumes "continuous V norm f"
wenzelm@13515
   169
  assumes b: "\<And>b. b \<in> B V f \<Longrightarrow> b \<le> y"
wenzelm@13515
   170
  shows "\<parallel>f\<parallel>\<hyphen>V \<le> y"
wenzelm@13515
   171
proof -
ballarin@29234
   172
  interpret continuous V norm f by fact
wenzelm@13547
   173
  have "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
wenzelm@23378
   174
    using `continuous V norm f` by (rule fn_norm_works)
wenzelm@13515
   175
  from this and b show ?thesis ..
wenzelm@9035
   176
qed
wenzelm@7535
   177
wenzelm@11472
   178
text {* The norm of a continuous function is always @{text "\<ge> 0"}. *}
wenzelm@7917
   179
ballarin@27611
   180
lemma (in normed_vectorspace_with_fn_norm) fn_norm_ge_zero [iff]:
ballarin@27611
   181
  assumes "continuous V norm f"
wenzelm@13515
   182
  shows "0 \<le> \<parallel>f\<parallel>\<hyphen>V"
wenzelm@9035
   183
proof -
ballarin@29234
   184
  interpret continuous V norm f by fact
wenzelm@10687
   185
  txt {* The function norm is defined as the supremum of @{text B}.
wenzelm@13515
   186
    So it is @{text "\<ge> 0"} if all elements in @{text B} are @{text "\<ge>
wenzelm@13515
   187
    0"}, provided the supremum exists and @{text B} is not empty. *}
wenzelm@13547
   188
  have "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
wenzelm@23378
   189
    using `continuous V norm f` by (rule fn_norm_works)
wenzelm@13515
   190
  moreover have "0 \<in> B V f" ..
wenzelm@13515
   191
  ultimately show ?thesis ..
wenzelm@9035
   192
qed
wenzelm@10687
   193
wenzelm@10687
   194
text {*
wenzelm@10687
   195
  \medskip The fundamental property of function norms is:
wenzelm@10687
   196
  \begin{center}
wenzelm@11472
   197
  @{text "\<bar>f x\<bar> \<le> \<parallel>f\<parallel> \<cdot> \<parallel>x\<parallel>"}
wenzelm@10687
   198
  \end{center}
wenzelm@9035
   199
*}
wenzelm@7917
   200
ballarin@27611
   201
lemma (in normed_vectorspace_with_fn_norm) fn_norm_le_cong:
ballarin@27611
   202
  assumes "continuous V norm f" "linearform V f"
wenzelm@13515
   203
  assumes x: "x \<in> V"
wenzelm@13515
   204
  shows "\<bar>f x\<bar> \<le> \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>"
ballarin@27611
   205
proof -
ballarin@29234
   206
  interpret continuous V norm f by fact
wenzelm@29291
   207
  interpret linearform V f by fact
wenzelm@27612
   208
  show ?thesis
wenzelm@27612
   209
  proof cases
ballarin@27611
   210
    assume "x = 0"
ballarin@27611
   211
    then have "\<bar>f x\<bar> = \<bar>f 0\<bar>" by simp
ballarin@27611
   212
    also have "f 0 = 0" by rule unfold_locales
ballarin@27611
   213
    also have "\<bar>\<dots>\<bar> = 0" by simp
ballarin@27611
   214
    also have a: "0 \<le> \<parallel>f\<parallel>\<hyphen>V"
ballarin@27611
   215
      using `continuous V norm f` by (rule fn_norm_ge_zero)
ballarin@27611
   216
    from x have "0 \<le> norm x" ..
ballarin@27611
   217
    with a have "0 \<le> \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>" by (simp add: zero_le_mult_iff)
ballarin@27611
   218
    finally show "\<bar>f x\<bar> \<le> \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>" .
ballarin@27611
   219
  next
ballarin@27611
   220
    assume "x \<noteq> 0"
ballarin@27611
   221
    with x have neq: "\<parallel>x\<parallel> \<noteq> 0" by simp
ballarin@27611
   222
    then have "\<bar>f x\<bar> = (\<bar>f x\<bar> * inverse \<parallel>x\<parallel>) * \<parallel>x\<parallel>" by simp
ballarin@27611
   223
    also have "\<dots> \<le>  \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>"
ballarin@27611
   224
    proof (rule mult_right_mono)
ballarin@27611
   225
      from x show "0 \<le> \<parallel>x\<parallel>" ..
ballarin@27611
   226
      from x and neq have "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<in> B V f"
huffman@36778
   227
        by (auto simp add: B_def divide_inverse)
ballarin@27611
   228
      with `continuous V norm f` show "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<le> \<parallel>f\<parallel>\<hyphen>V"
wenzelm@32960
   229
        by (rule fn_norm_ub)
ballarin@27611
   230
    qed
ballarin@27611
   231
    finally show ?thesis .
wenzelm@9035
   232
  qed
wenzelm@9035
   233
qed
wenzelm@7535
   234
wenzelm@10687
   235
text {*
wenzelm@10687
   236
  \medskip The function norm is the least positive real number for
wenzelm@10687
   237
  which the following inequation holds:
wenzelm@10687
   238
  \begin{center}
wenzelm@13515
   239
    @{text "\<bar>f x\<bar> \<le> c \<cdot> \<parallel>x\<parallel>"}
wenzelm@10687
   240
  \end{center}
wenzelm@9035
   241
*}
wenzelm@7917
   242
ballarin@27611
   243
lemma (in normed_vectorspace_with_fn_norm) fn_norm_least [intro?]:
ballarin@27611
   244
  assumes "continuous V norm f"
wenzelm@13515
   245
  assumes ineq: "\<forall>x \<in> V. \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" and ge: "0 \<le> c"
wenzelm@13515
   246
  shows "\<parallel>f\<parallel>\<hyphen>V \<le> c"
ballarin@27611
   247
proof -
ballarin@29234
   248
  interpret continuous V norm f by fact
wenzelm@27612
   249
  show ?thesis
wenzelm@27612
   250
  proof (rule fn_norm_leastB [folded B_def fn_norm_def])
ballarin@27611
   251
    fix b assume b: "b \<in> B V f"
ballarin@27611
   252
    show "b \<le> c"
ballarin@27611
   253
    proof cases
ballarin@27611
   254
      assume "b = 0"
ballarin@27611
   255
      with ge show ?thesis by simp
ballarin@27611
   256
    next
ballarin@27611
   257
      assume "b \<noteq> 0"
ballarin@27611
   258
      with b obtain x where b_rep: "b = \<bar>f x\<bar> * inverse \<parallel>x\<parallel>"
wenzelm@13515
   259
        and x_neq: "x \<noteq> 0" and x: "x \<in> V"
huffman@36778
   260
        by (auto simp add: B_def divide_inverse)
ballarin@27611
   261
      note b_rep
ballarin@27611
   262
      also have "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<le> (c * \<parallel>x\<parallel>) * inverse \<parallel>x\<parallel>"
ballarin@27611
   263
      proof (rule mult_right_mono)
wenzelm@32960
   264
        have "0 < \<parallel>x\<parallel>" using x x_neq ..
wenzelm@32960
   265
        then show "0 \<le> inverse \<parallel>x\<parallel>" by simp
wenzelm@32960
   266
        from ineq and x show "\<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" ..
ballarin@27611
   267
      qed
ballarin@27611
   268
      also have "\<dots> = c"
ballarin@27611
   269
      proof -
wenzelm@32960
   270
        from x_neq and x have "\<parallel>x\<parallel> \<noteq> 0" by simp
wenzelm@32960
   271
        then show ?thesis by simp
ballarin@27611
   272
      qed
ballarin@27611
   273
      finally show ?thesis .
wenzelm@13515
   274
    qed
ballarin@27611
   275
  qed (insert `continuous V norm f`, simp_all add: continuous_def)
ballarin@27611
   276
qed
wenzelm@7535
   277
wenzelm@10687
   278
end