src/HOL/Real/RealDef.thy
author avigad
Tue Jul 19 17:24:09 2005 +0200 (2005-07-19)
changeset 16888 7cb4bcfa058e
parent 16819 00d8f9300d13
child 16973 b2a894562b8f
permissions -rw-r--r--
added list of theorem changes to NEWS
added real_of_int_abs to RealDef.thy
paulson@5588
     1
(*  Title       : Real/RealDef.thy
paulson@7219
     2
    ID          : $Id$
paulson@5588
     3
    Author      : Jacques D. Fleuriot
paulson@5588
     4
    Copyright   : 1998  University of Cambridge
paulson@14387
     5
    Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4
avigad@16819
     6
    Additional contributions by Jeremy Avigad
paulson@14269
     7
*)
paulson@14269
     8
paulson@14387
     9
header{*Defining the Reals from the Positive Reals*}
paulson@14387
    10
nipkow@15131
    11
theory RealDef
nipkow@15140
    12
imports PReal
haftmann@16417
    13
uses ("real_arith.ML")
nipkow@15131
    14
begin
paulson@5588
    15
paulson@5588
    16
constdefs
paulson@5588
    17
  realrel   ::  "((preal * preal) * (preal * preal)) set"
paulson@14269
    18
  "realrel == {p. \<exists>x1 y1 x2 y2. p = ((x1,y1),(x2,y2)) & x1+y2 = x2+y1}"
paulson@14269
    19
paulson@14484
    20
typedef (Real)  real = "UNIV//realrel"
paulson@14269
    21
  by (auto simp add: quotient_def)
paulson@5588
    22
wenzelm@14691
    23
instance real :: "{ord, zero, one, plus, times, minus, inverse}" ..
paulson@14269
    24
paulson@14484
    25
constdefs
paulson@14484
    26
paulson@14484
    27
  (** these don't use the overloaded "real" function: users don't see them **)
paulson@14484
    28
paulson@14484
    29
  real_of_preal :: "preal => real"
paulson@14484
    30
  "real_of_preal m     ==
paulson@14484
    31
           Abs_Real(realrel``{(m + preal_of_rat 1, preal_of_rat 1)})"
paulson@14484
    32
paulson@14269
    33
consts
paulson@14378
    34
   (*Overloaded constant denoting the Real subset of enclosing
paulson@14269
    35
     types such as hypreal and complex*)
paulson@14269
    36
   Reals :: "'a set"
paulson@14269
    37
paulson@14269
    38
   (*overloaded constant for injecting other types into "real"*)
paulson@14269
    39
   real :: "'a => real"
paulson@5588
    40
wenzelm@14691
    41
syntax (xsymbols)
wenzelm@14691
    42
  Reals     :: "'a set"                   ("\<real>")
wenzelm@14691
    43
paulson@5588
    44
paulson@14269
    45
defs (overloaded)
paulson@5588
    46
paulson@14269
    47
  real_zero_def:
paulson@14484
    48
  "0 == Abs_Real(realrel``{(preal_of_rat 1, preal_of_rat 1)})"
paulson@12018
    49
paulson@14269
    50
  real_one_def:
paulson@14484
    51
  "1 == Abs_Real(realrel``
paulson@14365
    52
               {(preal_of_rat 1 + preal_of_rat 1,
paulson@14365
    53
		 preal_of_rat 1)})"
paulson@5588
    54
paulson@14269
    55
  real_minus_def:
paulson@14484
    56
  "- r ==  contents (\<Union>(x,y) \<in> Rep_Real(r). { Abs_Real(realrel``{(y,x)}) })"
paulson@14484
    57
paulson@14484
    58
  real_add_def:
paulson@14484
    59
   "z + w ==
paulson@14484
    60
       contents (\<Union>(x,y) \<in> Rep_Real(z). \<Union>(u,v) \<in> Rep_Real(w).
paulson@14484
    61
		 { Abs_Real(realrel``{(x+u, y+v)}) })"
bauerg@10606
    62
paulson@14269
    63
  real_diff_def:
paulson@14484
    64
   "r - (s::real) == r + - s"
paulson@14484
    65
paulson@14484
    66
  real_mult_def:
paulson@14484
    67
    "z * w ==
paulson@14484
    68
       contents (\<Union>(x,y) \<in> Rep_Real(z). \<Union>(u,v) \<in> Rep_Real(w).
paulson@14484
    69
		 { Abs_Real(realrel``{(x*u + y*v, x*v + y*u)}) })"
paulson@5588
    70
paulson@14269
    71
  real_inverse_def:
wenzelm@11713
    72
  "inverse (R::real) == (SOME S. (R = 0 & S = 0) | S * R = 1)"
paulson@5588
    73
paulson@14269
    74
  real_divide_def:
bauerg@10606
    75
  "R / (S::real) == R * inverse S"
paulson@14269
    76
paulson@14484
    77
  real_le_def:
paulson@14484
    78
   "z \<le> (w::real) == 
paulson@14484
    79
    \<exists>x y u v. x+v \<le> u+y & (x,y) \<in> Rep_Real z & (u,v) \<in> Rep_Real w"
paulson@5588
    80
paulson@14365
    81
  real_less_def: "(x < (y::real)) == (x \<le> y & x \<noteq> y)"
paulson@14365
    82
paulson@14334
    83
  real_abs_def:  "abs (r::real) == (if 0 \<le> r then r else -r)"
paulson@14334
    84
paulson@14334
    85
paulson@14365
    86
paulson@14329
    87
subsection{*Proving that realrel is an equivalence relation*}
paulson@14269
    88
paulson@14270
    89
lemma preal_trans_lemma:
paulson@14365
    90
  assumes "x + y1 = x1 + y"
paulson@14365
    91
      and "x + y2 = x2 + y"
paulson@14365
    92
  shows "x1 + y2 = x2 + (y1::preal)"
paulson@14365
    93
proof -
paulson@14365
    94
  have "(x1 + y2) + x = (x + y2) + x1" by (simp add: preal_add_ac) 
paulson@14365
    95
  also have "... = (x2 + y) + x1"  by (simp add: prems)
paulson@14365
    96
  also have "... = x2 + (x1 + y)"  by (simp add: preal_add_ac)
paulson@14365
    97
  also have "... = x2 + (x + y1)"  by (simp add: prems)
paulson@14365
    98
  also have "... = (x2 + y1) + x"  by (simp add: preal_add_ac)
paulson@14365
    99
  finally have "(x1 + y2) + x = (x2 + y1) + x" .
paulson@14365
   100
  thus ?thesis by (simp add: preal_add_right_cancel_iff) 
paulson@14365
   101
qed
paulson@14365
   102
paulson@14269
   103
paulson@14484
   104
lemma realrel_iff [simp]: "(((x1,y1),(x2,y2)) \<in> realrel) = (x1 + y2 = x2 + y1)"
paulson@14484
   105
by (simp add: realrel_def)
paulson@14269
   106
paulson@14269
   107
lemma equiv_realrel: "equiv UNIV realrel"
paulson@14365
   108
apply (auto simp add: equiv_def refl_def sym_def trans_def realrel_def)
paulson@14365
   109
apply (blast dest: preal_trans_lemma) 
paulson@14269
   110
done
paulson@14269
   111
paulson@14497
   112
text{*Reduces equality of equivalence classes to the @{term realrel} relation:
paulson@14497
   113
  @{term "(realrel `` {x} = realrel `` {y}) = ((x,y) \<in> realrel)"} *}
paulson@14269
   114
lemmas equiv_realrel_iff = 
paulson@14269
   115
       eq_equiv_class_iff [OF equiv_realrel UNIV_I UNIV_I]
paulson@14269
   116
paulson@14269
   117
declare equiv_realrel_iff [simp]
paulson@14269
   118
paulson@14497
   119
paulson@14484
   120
lemma realrel_in_real [simp]: "realrel``{(x,y)}: Real"
paulson@14484
   121
by (simp add: Real_def realrel_def quotient_def, blast)
paulson@14269
   122
paulson@14365
   123
paulson@14484
   124
lemma inj_on_Abs_Real: "inj_on Abs_Real Real"
paulson@14269
   125
apply (rule inj_on_inverseI)
paulson@14484
   126
apply (erule Abs_Real_inverse)
paulson@14269
   127
done
paulson@14269
   128
paulson@14484
   129
declare inj_on_Abs_Real [THEN inj_on_iff, simp]
paulson@14484
   130
declare Abs_Real_inverse [simp]
paulson@14269
   131
paulson@14269
   132
paulson@14484
   133
text{*Case analysis on the representation of a real number as an equivalence
paulson@14484
   134
      class of pairs of positive reals.*}
paulson@14484
   135
lemma eq_Abs_Real [case_names Abs_Real, cases type: real]: 
paulson@14484
   136
     "(!!x y. z = Abs_Real(realrel``{(x,y)}) ==> P) ==> P"
paulson@14484
   137
apply (rule Rep_Real [of z, unfolded Real_def, THEN quotientE])
paulson@14484
   138
apply (drule arg_cong [where f=Abs_Real])
paulson@14484
   139
apply (auto simp add: Rep_Real_inverse)
paulson@14269
   140
done
paulson@14269
   141
paulson@14269
   142
paulson@14329
   143
subsection{*Congruence property for addition*}
paulson@14269
   144
paulson@14269
   145
lemma real_add_congruent2_lemma:
paulson@14269
   146
     "[|a + ba = aa + b; ab + bc = ac + bb|]
paulson@14269
   147
      ==> a + ab + (ba + bc) = aa + ac + (b + (bb::preal))"
paulson@14269
   148
apply (simp add: preal_add_assoc) 
paulson@14269
   149
apply (rule preal_add_left_commute [of ab, THEN ssubst])
paulson@14269
   150
apply (simp add: preal_add_assoc [symmetric])
paulson@14269
   151
apply (simp add: preal_add_ac)
paulson@14269
   152
done
paulson@14269
   153
paulson@14269
   154
lemma real_add:
paulson@14497
   155
     "Abs_Real (realrel``{(x,y)}) + Abs_Real (realrel``{(u,v)}) =
paulson@14497
   156
      Abs_Real (realrel``{(x+u, y+v)})"
paulson@14497
   157
proof -
paulson@15169
   158
  have "(\<lambda>z w. (\<lambda>(x,y). (\<lambda>(u,v). {Abs_Real (realrel `` {(x+u, y+v)})}) w) z)
paulson@15169
   159
        respects2 realrel"
paulson@14497
   160
    by (simp add: congruent2_def, blast intro: real_add_congruent2_lemma) 
paulson@14497
   161
  thus ?thesis
paulson@14497
   162
    by (simp add: real_add_def UN_UN_split_split_eq
paulson@14658
   163
                  UN_equiv_class2 [OF equiv_realrel equiv_realrel])
paulson@14497
   164
qed
paulson@14269
   165
paulson@14269
   166
lemma real_add_commute: "(z::real) + w = w + z"
paulson@14497
   167
by (cases z, cases w, simp add: real_add preal_add_ac)
paulson@14269
   168
paulson@14269
   169
lemma real_add_assoc: "((z1::real) + z2) + z3 = z1 + (z2 + z3)"
paulson@14497
   170
by (cases z1, cases z2, cases z3, simp add: real_add preal_add_assoc)
paulson@14269
   171
paulson@14269
   172
lemma real_add_zero_left: "(0::real) + z = z"
paulson@14497
   173
by (cases z, simp add: real_add real_zero_def preal_add_ac)
paulson@14269
   174
obua@14738
   175
instance real :: comm_monoid_add
paulson@14269
   176
  by (intro_classes,
paulson@14269
   177
      (assumption | 
paulson@14269
   178
       rule real_add_commute real_add_assoc real_add_zero_left)+)
paulson@14269
   179
paulson@14269
   180
paulson@14334
   181
subsection{*Additive Inverse on real*}
paulson@14334
   182
paulson@14484
   183
lemma real_minus: "- Abs_Real(realrel``{(x,y)}) = Abs_Real(realrel `` {(y,x)})"
paulson@14484
   184
proof -
paulson@15169
   185
  have "(\<lambda>(x,y). {Abs_Real (realrel``{(y,x)})}) respects realrel"
paulson@14484
   186
    by (simp add: congruent_def preal_add_commute) 
paulson@14484
   187
  thus ?thesis
paulson@14484
   188
    by (simp add: real_minus_def UN_equiv_class [OF equiv_realrel])
paulson@14484
   189
qed
paulson@14334
   190
paulson@14334
   191
lemma real_add_minus_left: "(-z) + z = (0::real)"
paulson@14497
   192
by (cases z, simp add: real_minus real_add real_zero_def preal_add_commute)
paulson@14269
   193
paulson@14269
   194
paulson@14329
   195
subsection{*Congruence property for multiplication*}
paulson@14269
   196
paulson@14329
   197
lemma real_mult_congruent2_lemma:
paulson@14329
   198
     "!!(x1::preal). [| x1 + y2 = x2 + y1 |] ==>
paulson@14484
   199
          x * x1 + y * y1 + (x * y2 + y * x2) =
paulson@14484
   200
          x * x2 + y * y2 + (x * y1 + y * x1)"
paulson@14484
   201
apply (simp add: preal_add_left_commute preal_add_assoc [symmetric])
paulson@14269
   202
apply (simp add: preal_add_assoc preal_add_mult_distrib2 [symmetric])
paulson@14269
   203
apply (simp add: preal_add_commute)
paulson@14269
   204
done
paulson@14269
   205
paulson@14269
   206
lemma real_mult_congruent2:
paulson@15169
   207
    "(%p1 p2.
paulson@14484
   208
        (%(x1,y1). (%(x2,y2). 
paulson@15169
   209
          { Abs_Real (realrel``{(x1*x2 + y1*y2, x1*y2+y1*x2)}) }) p2) p1)
paulson@15169
   210
     respects2 realrel"
paulson@14658
   211
apply (rule congruent2_commuteI [OF equiv_realrel], clarify)
paulson@14269
   212
apply (simp add: preal_mult_commute preal_add_commute)
paulson@14269
   213
apply (auto simp add: real_mult_congruent2_lemma)
paulson@14269
   214
done
paulson@14269
   215
paulson@14269
   216
lemma real_mult:
paulson@14484
   217
      "Abs_Real((realrel``{(x1,y1)})) * Abs_Real((realrel``{(x2,y2)})) =
paulson@14484
   218
       Abs_Real(realrel `` {(x1*x2+y1*y2,x1*y2+y1*x2)})"
paulson@14484
   219
by (simp add: real_mult_def UN_UN_split_split_eq
paulson@14658
   220
         UN_equiv_class2 [OF equiv_realrel equiv_realrel real_mult_congruent2])
paulson@14269
   221
paulson@14269
   222
lemma real_mult_commute: "(z::real) * w = w * z"
paulson@14497
   223
by (cases z, cases w, simp add: real_mult preal_add_ac preal_mult_ac)
paulson@14269
   224
paulson@14269
   225
lemma real_mult_assoc: "((z1::real) * z2) * z3 = z1 * (z2 * z3)"
paulson@14484
   226
apply (cases z1, cases z2, cases z3)
paulson@14484
   227
apply (simp add: real_mult preal_add_mult_distrib2 preal_add_ac preal_mult_ac)
paulson@14269
   228
done
paulson@14269
   229
paulson@14269
   230
lemma real_mult_1: "(1::real) * z = z"
paulson@14484
   231
apply (cases z)
paulson@14484
   232
apply (simp add: real_mult real_one_def preal_add_mult_distrib2
paulson@14484
   233
                 preal_mult_1_right preal_mult_ac preal_add_ac)
paulson@14269
   234
done
paulson@14269
   235
paulson@14269
   236
lemma real_add_mult_distrib: "((z1::real) + z2) * w = (z1 * w) + (z2 * w)"
paulson@14484
   237
apply (cases z1, cases z2, cases w)
paulson@14484
   238
apply (simp add: real_add real_mult preal_add_mult_distrib2 
paulson@14484
   239
                 preal_add_ac preal_mult_ac)
paulson@14269
   240
done
paulson@14269
   241
paulson@14329
   242
text{*one and zero are distinct*}
paulson@14365
   243
lemma real_zero_not_eq_one: "0 \<noteq> (1::real)"
paulson@14484
   244
proof -
paulson@14484
   245
  have "preal_of_rat 1 < preal_of_rat 1 + preal_of_rat 1"
paulson@14484
   246
    by (simp add: preal_self_less_add_left) 
paulson@14484
   247
  thus ?thesis
paulson@14484
   248
    by (simp add: real_zero_def real_one_def preal_add_right_cancel_iff)
paulson@14484
   249
qed
paulson@14269
   250
paulson@14329
   251
subsection{*existence of inverse*}
paulson@14365
   252
paulson@14484
   253
lemma real_zero_iff: "Abs_Real (realrel `` {(x, x)}) = 0"
paulson@14497
   254
by (simp add: real_zero_def preal_add_commute)
paulson@14269
   255
paulson@14365
   256
text{*Instead of using an existential quantifier and constructing the inverse
paulson@14365
   257
within the proof, we could define the inverse explicitly.*}
paulson@14365
   258
paulson@14365
   259
lemma real_mult_inverse_left_ex: "x \<noteq> 0 ==> \<exists>y. y*x = (1::real)"
paulson@14484
   260
apply (simp add: real_zero_def real_one_def, cases x)
paulson@14269
   261
apply (cut_tac x = xa and y = y in linorder_less_linear)
paulson@14365
   262
apply (auto dest!: less_add_left_Ex simp add: real_zero_iff)
paulson@14334
   263
apply (rule_tac
paulson@14484
   264
        x = "Abs_Real (realrel `` { (preal_of_rat 1, 
paulson@14365
   265
                            inverse (D) + preal_of_rat 1)}) " 
paulson@14334
   266
       in exI)
paulson@14334
   267
apply (rule_tac [2]
paulson@14484
   268
        x = "Abs_Real (realrel `` { (inverse (D) + preal_of_rat 1,
paulson@14365
   269
                   preal_of_rat 1)})" 
paulson@14334
   270
       in exI)
paulson@14365
   271
apply (auto simp add: real_mult preal_mult_1_right
paulson@14329
   272
              preal_add_mult_distrib2 preal_add_mult_distrib preal_mult_1
paulson@14365
   273
              preal_mult_inverse_right preal_add_ac preal_mult_ac)
paulson@14269
   274
done
paulson@14269
   275
paulson@14365
   276
lemma real_mult_inverse_left: "x \<noteq> 0 ==> inverse(x)*x = (1::real)"
paulson@14484
   277
apply (simp add: real_inverse_def)
paulson@14365
   278
apply (frule real_mult_inverse_left_ex, safe)
paulson@14269
   279
apply (rule someI2, auto)
paulson@14269
   280
done
paulson@14334
   281
paulson@14341
   282
paulson@14341
   283
subsection{*The Real Numbers form a Field*}
paulson@14341
   284
paulson@14334
   285
instance real :: field
paulson@14334
   286
proof
paulson@14334
   287
  fix x y z :: real
paulson@14334
   288
  show "- x + x = 0" by (rule real_add_minus_left)
paulson@14334
   289
  show "x - y = x + (-y)" by (simp add: real_diff_def)
paulson@14334
   290
  show "(x * y) * z = x * (y * z)" by (rule real_mult_assoc)
paulson@14334
   291
  show "x * y = y * x" by (rule real_mult_commute)
paulson@14334
   292
  show "1 * x = x" by (rule real_mult_1)
paulson@14334
   293
  show "(x + y) * z = x * z + y * z" by (simp add: real_add_mult_distrib)
paulson@14334
   294
  show "0 \<noteq> (1::real)" by (rule real_zero_not_eq_one)
paulson@14365
   295
  show "x \<noteq> 0 ==> inverse x * x = 1" by (rule real_mult_inverse_left)
paulson@14430
   296
  show "x / y = x * inverse y" by (simp add: real_divide_def)
paulson@14334
   297
qed
paulson@14334
   298
paulson@14334
   299
paulson@14341
   300
text{*Inverse of zero!  Useful to simplify certain equations*}
paulson@14269
   301
paulson@14334
   302
lemma INVERSE_ZERO: "inverse 0 = (0::real)"
paulson@14484
   303
by (simp add: real_inverse_def)
paulson@14334
   304
paulson@14334
   305
instance real :: division_by_zero
paulson@14334
   306
proof
paulson@14334
   307
  show "inverse 0 = (0::real)" by (rule INVERSE_ZERO)
paulson@14334
   308
qed
paulson@14334
   309
paulson@14334
   310
paulson@14334
   311
(*Pull negations out*)
paulson@14334
   312
declare minus_mult_right [symmetric, simp] 
paulson@14334
   313
        minus_mult_left [symmetric, simp]
paulson@14334
   314
paulson@14334
   315
lemma real_mult_1_right: "z * (1::real) = z"
obua@14738
   316
  by (rule OrderedGroup.mult_1_right)
paulson@14269
   317
paulson@14269
   318
paulson@14365
   319
subsection{*The @{text "\<le>"} Ordering*}
paulson@14269
   320
paulson@14365
   321
lemma real_le_refl: "w \<le> (w::real)"
paulson@14484
   322
by (cases w, force simp add: real_le_def)
paulson@14269
   323
paulson@14378
   324
text{*The arithmetic decision procedure is not set up for type preal.
paulson@14378
   325
  This lemma is currently unused, but it could simplify the proofs of the
paulson@14378
   326
  following two lemmas.*}
paulson@14378
   327
lemma preal_eq_le_imp_le:
paulson@14378
   328
  assumes eq: "a+b = c+d" and le: "c \<le> a"
paulson@14378
   329
  shows "b \<le> (d::preal)"
paulson@14378
   330
proof -
paulson@14378
   331
  have "c+d \<le> a+d" by (simp add: prems preal_cancels)
paulson@14378
   332
  hence "a+b \<le> a+d" by (simp add: prems)
paulson@14378
   333
  thus "b \<le> d" by (simp add: preal_cancels)
paulson@14378
   334
qed
paulson@14378
   335
paulson@14378
   336
lemma real_le_lemma:
paulson@14378
   337
  assumes l: "u1 + v2 \<le> u2 + v1"
paulson@14378
   338
      and "x1 + v1 = u1 + y1"
paulson@14378
   339
      and "x2 + v2 = u2 + y2"
paulson@14378
   340
  shows "x1 + y2 \<le> x2 + (y1::preal)"
paulson@14365
   341
proof -
paulson@14378
   342
  have "(x1+v1) + (u2+y2) = (u1+y1) + (x2+v2)" by (simp add: prems)
paulson@14378
   343
  hence "(x1+y2) + (u2+v1) = (x2+y1) + (u1+v2)" by (simp add: preal_add_ac)
paulson@14378
   344
  also have "... \<le> (x2+y1) + (u2+v1)"
paulson@14365
   345
         by (simp add: prems preal_add_le_cancel_left)
paulson@14378
   346
  finally show ?thesis by (simp add: preal_add_le_cancel_right)
paulson@14378
   347
qed						 
paulson@14378
   348
paulson@14378
   349
lemma real_le: 
paulson@14484
   350
     "(Abs_Real(realrel``{(x1,y1)}) \<le> Abs_Real(realrel``{(x2,y2)})) =  
paulson@14484
   351
      (x1 + y2 \<le> x2 + y1)"
paulson@14378
   352
apply (simp add: real_le_def) 
paulson@14387
   353
apply (auto intro: real_le_lemma)
paulson@14378
   354
done
paulson@14378
   355
paulson@14378
   356
lemma real_le_anti_sym: "[| z \<le> w; w \<le> z |] ==> z = (w::real)"
nipkow@15542
   357
by (cases z, cases w, simp add: real_le)
paulson@14378
   358
paulson@14378
   359
lemma real_trans_lemma:
paulson@14378
   360
  assumes "x + v \<le> u + y"
paulson@14378
   361
      and "u + v' \<le> u' + v"
paulson@14378
   362
      and "x2 + v2 = u2 + y2"
paulson@14378
   363
  shows "x + v' \<le> u' + (y::preal)"
paulson@14378
   364
proof -
paulson@14378
   365
  have "(x+v') + (u+v) = (x+v) + (u+v')" by (simp add: preal_add_ac)
paulson@14378
   366
  also have "... \<le> (u+y) + (u+v')" 
paulson@14378
   367
    by (simp add: preal_add_le_cancel_right prems) 
paulson@14378
   368
  also have "... \<le> (u+y) + (u'+v)" 
paulson@14378
   369
    by (simp add: preal_add_le_cancel_left prems) 
paulson@14378
   370
  also have "... = (u'+y) + (u+v)"  by (simp add: preal_add_ac)
paulson@14378
   371
  finally show ?thesis by (simp add: preal_add_le_cancel_right)
nipkow@15542
   372
qed
paulson@14269
   373
paulson@14365
   374
lemma real_le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::real)"
paulson@14484
   375
apply (cases i, cases j, cases k)
paulson@14484
   376
apply (simp add: real_le)
paulson@14378
   377
apply (blast intro: real_trans_lemma) 
paulson@14334
   378
done
paulson@14334
   379
paulson@14334
   380
(* Axiom 'order_less_le' of class 'order': *)
paulson@14334
   381
lemma real_less_le: "((w::real) < z) = (w \<le> z & w \<noteq> z)"
paulson@14365
   382
by (simp add: real_less_def)
paulson@14365
   383
paulson@14365
   384
instance real :: order
paulson@14365
   385
proof qed
paulson@14365
   386
 (assumption |
paulson@14365
   387
  rule real_le_refl real_le_trans real_le_anti_sym real_less_le)+
paulson@14365
   388
paulson@14378
   389
(* Axiom 'linorder_linear' of class 'linorder': *)
paulson@14378
   390
lemma real_le_linear: "(z::real) \<le> w | w \<le> z"
paulson@14484
   391
apply (cases z, cases w) 
paulson@14378
   392
apply (auto simp add: real_le real_zero_def preal_add_ac preal_cancels)
paulson@14334
   393
done
paulson@14334
   394
paulson@14334
   395
paulson@14334
   396
instance real :: linorder
paulson@14334
   397
  by (intro_classes, rule real_le_linear)
paulson@14334
   398
paulson@14334
   399
paulson@14378
   400
lemma real_le_eq_diff: "(x \<le> y) = (x-y \<le> (0::real))"
paulson@14484
   401
apply (cases x, cases y) 
paulson@14378
   402
apply (auto simp add: real_le real_zero_def real_diff_def real_add real_minus
paulson@14378
   403
                      preal_add_ac)
paulson@14378
   404
apply (simp_all add: preal_add_assoc [symmetric] preal_cancels)
nipkow@15542
   405
done
paulson@14378
   406
paulson@14484
   407
lemma real_add_left_mono: 
paulson@14484
   408
  assumes le: "x \<le> y" shows "z + x \<le> z + (y::real)"
paulson@14484
   409
proof -
paulson@14484
   410
  have "z + x - (z + y) = (z + -z) + (x - y)"
paulson@14484
   411
    by (simp add: diff_minus add_ac) 
paulson@14484
   412
  with le show ?thesis 
obua@14754
   413
    by (simp add: real_le_eq_diff[of x] real_le_eq_diff[of "z+x"] diff_minus)
paulson@14484
   414
qed
paulson@14334
   415
paulson@14365
   416
lemma real_sum_gt_zero_less: "(0 < S + (-W::real)) ==> (W < S)"
paulson@14365
   417
by (simp add: linorder_not_le [symmetric] real_le_eq_diff [of S] diff_minus)
paulson@14365
   418
paulson@14365
   419
lemma real_less_sum_gt_zero: "(W < S) ==> (0 < S + (-W::real))"
paulson@14365
   420
by (simp add: linorder_not_le [symmetric] real_le_eq_diff [of S] diff_minus)
paulson@14334
   421
paulson@14334
   422
lemma real_mult_order: "[| 0 < x; 0 < y |] ==> (0::real) < x * y"
paulson@14484
   423
apply (cases x, cases y)
paulson@14378
   424
apply (simp add: linorder_not_le [where 'a = real, symmetric] 
paulson@14378
   425
                 linorder_not_le [where 'a = preal] 
paulson@14378
   426
                  real_zero_def real_le real_mult)
paulson@14365
   427
  --{*Reduce to the (simpler) @{text "\<le>"} relation *}
paulson@14378
   428
apply (auto  dest!: less_add_left_Ex 
paulson@14365
   429
     simp add: preal_add_ac preal_mult_ac 
paulson@14378
   430
          preal_add_mult_distrib2 preal_cancels preal_self_less_add_right)
paulson@14334
   431
done
paulson@14334
   432
paulson@14334
   433
lemma real_mult_less_mono2: "[| (0::real) < z; x < y |] ==> z * x < z * y"
paulson@14334
   434
apply (rule real_sum_gt_zero_less)
paulson@14334
   435
apply (drule real_less_sum_gt_zero [of x y])
paulson@14334
   436
apply (drule real_mult_order, assumption)
paulson@14334
   437
apply (simp add: right_distrib)
paulson@14334
   438
done
paulson@14334
   439
paulson@14365
   440
text{*lemma for proving @{term "0<(1::real)"}*}
paulson@14365
   441
lemma real_zero_le_one: "0 \<le> (1::real)"
paulson@14387
   442
by (simp add: real_zero_def real_one_def real_le 
paulson@14378
   443
                 preal_self_less_add_left order_less_imp_le)
paulson@14334
   444
paulson@14378
   445
paulson@14334
   446
subsection{*The Reals Form an Ordered Field*}
paulson@14334
   447
paulson@14334
   448
instance real :: ordered_field
paulson@14334
   449
proof
paulson@14334
   450
  fix x y z :: real
paulson@14334
   451
  show "x \<le> y ==> z + x \<le> z + y" by (rule real_add_left_mono)
paulson@14334
   452
  show "x < y ==> 0 < z ==> z * x < z * y" by (simp add: real_mult_less_mono2)
paulson@14334
   453
  show "\<bar>x\<bar> = (if x < 0 then -x else x)"
paulson@14334
   454
    by (auto dest: order_le_less_trans simp add: real_abs_def linorder_not_le)
paulson@14334
   455
qed
paulson@14334
   456
paulson@14365
   457
paulson@14365
   458
paulson@14365
   459
text{*The function @{term real_of_preal} requires many proofs, but it seems
paulson@14365
   460
to be essential for proving completeness of the reals from that of the
paulson@14365
   461
positive reals.*}
paulson@14365
   462
paulson@14365
   463
lemma real_of_preal_add:
paulson@14365
   464
     "real_of_preal ((x::preal) + y) = real_of_preal x + real_of_preal y"
paulson@14365
   465
by (simp add: real_of_preal_def real_add preal_add_mult_distrib preal_mult_1 
paulson@14365
   466
              preal_add_ac)
paulson@14365
   467
paulson@14365
   468
lemma real_of_preal_mult:
paulson@14365
   469
     "real_of_preal ((x::preal) * y) = real_of_preal x* real_of_preal y"
paulson@14365
   470
by (simp add: real_of_preal_def real_mult preal_add_mult_distrib2
paulson@14365
   471
              preal_mult_1 preal_mult_1_right preal_add_ac preal_mult_ac)
paulson@14365
   472
paulson@14365
   473
paulson@14365
   474
text{*Gleason prop 9-4.4 p 127*}
paulson@14365
   475
lemma real_of_preal_trichotomy:
paulson@14365
   476
      "\<exists>m. (x::real) = real_of_preal m | x = 0 | x = -(real_of_preal m)"
paulson@14484
   477
apply (simp add: real_of_preal_def real_zero_def, cases x)
paulson@14365
   478
apply (auto simp add: real_minus preal_add_ac)
paulson@14365
   479
apply (cut_tac x = x and y = y in linorder_less_linear)
paulson@14365
   480
apply (auto dest!: less_add_left_Ex simp add: preal_add_assoc [symmetric])
paulson@14365
   481
apply (auto simp add: preal_add_commute)
paulson@14365
   482
done
paulson@14365
   483
paulson@14365
   484
lemma real_of_preal_leD:
paulson@14365
   485
      "real_of_preal m1 \<le> real_of_preal m2 ==> m1 \<le> m2"
paulson@14484
   486
by (simp add: real_of_preal_def real_le preal_cancels)
paulson@14365
   487
paulson@14365
   488
lemma real_of_preal_lessI: "m1 < m2 ==> real_of_preal m1 < real_of_preal m2"
paulson@14365
   489
by (auto simp add: real_of_preal_leD linorder_not_le [symmetric])
paulson@14365
   490
paulson@14365
   491
lemma real_of_preal_lessD:
paulson@14365
   492
      "real_of_preal m1 < real_of_preal m2 ==> m1 < m2"
paulson@14484
   493
by (simp add: real_of_preal_def real_le linorder_not_le [symmetric] 
paulson@14484
   494
              preal_cancels) 
paulson@14484
   495
paulson@14365
   496
paulson@14365
   497
lemma real_of_preal_less_iff [simp]:
paulson@14365
   498
     "(real_of_preal m1 < real_of_preal m2) = (m1 < m2)"
paulson@14365
   499
by (blast intro: real_of_preal_lessI real_of_preal_lessD)
paulson@14365
   500
paulson@14365
   501
lemma real_of_preal_le_iff:
paulson@14365
   502
     "(real_of_preal m1 \<le> real_of_preal m2) = (m1 \<le> m2)"
paulson@14365
   503
by (simp add: linorder_not_less [symmetric]) 
paulson@14365
   504
paulson@14365
   505
lemma real_of_preal_zero_less: "0 < real_of_preal m"
paulson@14365
   506
apply (auto simp add: real_zero_def real_of_preal_def real_less_def real_le_def
paulson@14365
   507
            preal_add_ac preal_cancels)
paulson@14365
   508
apply (simp_all add: preal_add_assoc [symmetric] preal_cancels)
paulson@14365
   509
apply (blast intro: preal_self_less_add_left order_less_imp_le)
paulson@14365
   510
apply (insert preal_not_eq_self [of "preal_of_rat 1" m]) 
paulson@14365
   511
apply (simp add: preal_add_ac) 
paulson@14365
   512
done
paulson@14365
   513
paulson@14365
   514
lemma real_of_preal_minus_less_zero: "- real_of_preal m < 0"
paulson@14365
   515
by (simp add: real_of_preal_zero_less)
paulson@14365
   516
paulson@14365
   517
lemma real_of_preal_not_minus_gt_zero: "~ 0 < - real_of_preal m"
paulson@14484
   518
proof -
paulson@14484
   519
  from real_of_preal_minus_less_zero
paulson@14484
   520
  show ?thesis by (blast dest: order_less_trans)
paulson@14484
   521
qed
paulson@14365
   522
paulson@14365
   523
paulson@14365
   524
subsection{*Theorems About the Ordering*}
paulson@14365
   525
paulson@14365
   526
text{*obsolete but used a lot*}
paulson@14365
   527
paulson@14365
   528
lemma real_not_refl2: "x < y ==> x \<noteq> (y::real)"
paulson@14365
   529
by blast 
paulson@14365
   530
paulson@14365
   531
lemma real_le_imp_less_or_eq: "!!(x::real). x \<le> y ==> x < y | x = y"
paulson@14365
   532
by (simp add: order_le_less)
paulson@14365
   533
paulson@14365
   534
lemma real_gt_zero_preal_Ex: "(0 < x) = (\<exists>y. x = real_of_preal y)"
paulson@14365
   535
apply (auto simp add: real_of_preal_zero_less)
paulson@14365
   536
apply (cut_tac x = x in real_of_preal_trichotomy)
paulson@14365
   537
apply (blast elim!: real_of_preal_not_minus_gt_zero [THEN notE])
paulson@14365
   538
done
paulson@14365
   539
paulson@14365
   540
lemma real_gt_preal_preal_Ex:
paulson@14365
   541
     "real_of_preal z < x ==> \<exists>y. x = real_of_preal y"
paulson@14365
   542
by (blast dest!: real_of_preal_zero_less [THEN order_less_trans]
paulson@14365
   543
             intro: real_gt_zero_preal_Ex [THEN iffD1])
paulson@14365
   544
paulson@14365
   545
lemma real_ge_preal_preal_Ex:
paulson@14365
   546
     "real_of_preal z \<le> x ==> \<exists>y. x = real_of_preal y"
paulson@14365
   547
by (blast dest: order_le_imp_less_or_eq real_gt_preal_preal_Ex)
paulson@14365
   548
paulson@14365
   549
lemma real_less_all_preal: "y \<le> 0 ==> \<forall>x. y < real_of_preal x"
paulson@14365
   550
by (auto elim: order_le_imp_less_or_eq [THEN disjE] 
paulson@14365
   551
            intro: real_of_preal_zero_less [THEN [2] order_less_trans] 
paulson@14365
   552
            simp add: real_of_preal_zero_less)
paulson@14365
   553
paulson@14365
   554
lemma real_less_all_real2: "~ 0 < y ==> \<forall>x. y < real_of_preal x"
paulson@14365
   555
by (blast intro!: real_less_all_preal linorder_not_less [THEN iffD1])
paulson@14365
   556
paulson@14334
   557
lemma real_add_less_le_mono: "[| w'<w; z'\<le>z |] ==> w' + z' < w + (z::real)"
obua@14738
   558
  by (rule OrderedGroup.add_less_le_mono)
paulson@14334
   559
paulson@14334
   560
lemma real_add_le_less_mono:
paulson@14334
   561
     "!!z z'::real. [| w'\<le>w; z'<z |] ==> w' + z' < w + z"
obua@14738
   562
  by (rule OrderedGroup.add_le_less_mono)
paulson@14334
   563
paulson@14334
   564
lemma real_le_square [simp]: "(0::real) \<le> x*x"
paulson@14334
   565
 by (rule Ring_and_Field.zero_le_square)
paulson@14334
   566
paulson@14334
   567
paulson@14334
   568
subsection{*More Lemmas*}
paulson@14334
   569
paulson@14334
   570
lemma real_mult_left_cancel: "(c::real) \<noteq> 0 ==> (c*a=c*b) = (a=b)"
paulson@14334
   571
by auto
paulson@14334
   572
paulson@14334
   573
lemma real_mult_right_cancel: "(c::real) \<noteq> 0 ==> (a*c=b*c) = (a=b)"
paulson@14334
   574
by auto
paulson@14334
   575
paulson@14334
   576
text{*The precondition could be weakened to @{term "0\<le>x"}*}
paulson@14334
   577
lemma real_mult_less_mono:
paulson@14334
   578
     "[| u<v;  x<y;  (0::real) < v;  0 < x |] ==> u*x < v* y"
paulson@14334
   579
 by (simp add: Ring_and_Field.mult_strict_mono order_less_imp_le)
paulson@14334
   580
paulson@14334
   581
lemma real_mult_less_iff1 [simp]: "(0::real) < z ==> (x*z < y*z) = (x < y)"
paulson@14334
   582
  by (force elim: order_less_asym
paulson@14334
   583
            simp add: Ring_and_Field.mult_less_cancel_right)
paulson@14334
   584
paulson@14334
   585
lemma real_mult_le_cancel_iff1 [simp]: "(0::real) < z ==> (x*z \<le> y*z) = (x\<le>y)"
paulson@14365
   586
apply (simp add: mult_le_cancel_right)
paulson@14365
   587
apply (blast intro: elim: order_less_asym) 
paulson@14365
   588
done
paulson@14334
   589
paulson@14334
   590
lemma real_mult_le_cancel_iff2 [simp]: "(0::real) < z ==> (z*x \<le> z*y) = (x\<le>y)"
nipkow@15923
   591
by(simp add:mult_commute)
paulson@14334
   592
paulson@14334
   593
text{*Only two uses?*}
paulson@14334
   594
lemma real_mult_less_mono':
paulson@14334
   595
     "[| x < y;  r1 < r2;  (0::real) \<le> r1;  0 \<le> x|] ==> r1 * x < r2 * y"
paulson@14334
   596
 by (rule Ring_and_Field.mult_strict_mono')
paulson@14334
   597
paulson@14334
   598
text{*FIXME: delete or at least combine the next two lemmas*}
paulson@14334
   599
lemma real_sum_squares_cancel: "x * x + y * y = 0 ==> x = (0::real)"
obua@14738
   600
apply (drule OrderedGroup.equals_zero_I [THEN sym])
paulson@14334
   601
apply (cut_tac x = y in real_le_square) 
paulson@14476
   602
apply (auto, drule order_antisym, auto)
paulson@14334
   603
done
paulson@14334
   604
paulson@14334
   605
lemma real_sum_squares_cancel2: "x * x + y * y = 0 ==> y = (0::real)"
paulson@14334
   606
apply (rule_tac y = x in real_sum_squares_cancel)
paulson@14476
   607
apply (simp add: add_commute)
paulson@14334
   608
done
paulson@14334
   609
paulson@14334
   610
lemma real_add_order: "[| 0 < x; 0 < y |] ==> (0::real) < x + y"
paulson@14365
   611
by (drule add_strict_mono [of concl: 0 0], assumption, simp)
paulson@14334
   612
paulson@14334
   613
lemma real_le_add_order: "[| 0 \<le> x; 0 \<le> y |] ==> (0::real) \<le> x + y"
paulson@14334
   614
apply (drule order_le_imp_less_or_eq)+
paulson@14334
   615
apply (auto intro: real_add_order order_less_imp_le)
paulson@14334
   616
done
paulson@14334
   617
paulson@14365
   618
lemma real_inverse_unique: "x*y = (1::real) ==> y = inverse x"
paulson@14365
   619
apply (case_tac "x \<noteq> 0")
paulson@14365
   620
apply (rule_tac c1 = x in real_mult_left_cancel [THEN iffD1], auto)
paulson@14365
   621
done
paulson@14334
   622
paulson@14365
   623
lemma real_inverse_gt_one: "[| (0::real) < x; x < 1 |] ==> 1 < inverse x"
paulson@14365
   624
by (auto dest: less_imp_inverse_less)
paulson@14334
   625
paulson@14365
   626
lemma real_mult_self_sum_ge_zero: "(0::real) \<le> x*x + y*y"
paulson@14365
   627
proof -
paulson@14365
   628
  have "0 + 0 \<le> x*x + y*y" by (blast intro: add_mono zero_le_square)
paulson@14365
   629
  thus ?thesis by simp
paulson@14365
   630
qed
paulson@14365
   631
paulson@14334
   632
paulson@14365
   633
subsection{*Embedding the Integers into the Reals*}
paulson@14365
   634
paulson@14378
   635
defs (overloaded)
paulson@14378
   636
  real_of_nat_def: "real z == of_nat z"
paulson@14378
   637
  real_of_int_def: "real z == of_int z"
paulson@14365
   638
avigad@16819
   639
lemma real_eq_of_nat: "real = of_nat"
avigad@16819
   640
  apply (rule ext)
avigad@16819
   641
  apply (unfold real_of_nat_def)
avigad@16819
   642
  apply (rule refl)
avigad@16819
   643
  done
avigad@16819
   644
avigad@16819
   645
lemma real_eq_of_int: "real = of_int"
avigad@16819
   646
  apply (rule ext)
avigad@16819
   647
  apply (unfold real_of_int_def)
avigad@16819
   648
  apply (rule refl)
avigad@16819
   649
  done
avigad@16819
   650
paulson@14365
   651
lemma real_of_int_zero [simp]: "real (0::int) = 0"  
paulson@14378
   652
by (simp add: real_of_int_def) 
paulson@14365
   653
paulson@14365
   654
lemma real_of_one [simp]: "real (1::int) = (1::real)"
paulson@14378
   655
by (simp add: real_of_int_def) 
paulson@14334
   656
avigad@16819
   657
lemma real_of_int_add [simp]: "real(x + y) = real (x::int) + real y"
paulson@14378
   658
by (simp add: real_of_int_def) 
paulson@14365
   659
avigad@16819
   660
lemma real_of_int_minus [simp]: "real(-x) = -real (x::int)"
paulson@14378
   661
by (simp add: real_of_int_def) 
avigad@16819
   662
avigad@16819
   663
lemma real_of_int_diff [simp]: "real(x - y) = real (x::int) - real y"
avigad@16819
   664
by (simp add: real_of_int_def) 
paulson@14365
   665
avigad@16819
   666
lemma real_of_int_mult [simp]: "real(x * y) = real (x::int) * real y"
paulson@14378
   667
by (simp add: real_of_int_def) 
paulson@14334
   668
avigad@16819
   669
lemma real_of_int_setsum [simp]: "real ((SUM x:A. f x)::int) = (SUM x:A. real(f x))"
avigad@16819
   670
  apply (subst real_eq_of_int)+
avigad@16819
   671
  apply (rule of_int_setsum)
avigad@16819
   672
done
avigad@16819
   673
avigad@16819
   674
lemma real_of_int_setprod [simp]: "real ((PROD x:A. f x)::int) = 
avigad@16819
   675
    (PROD x:A. real(f x))"
avigad@16819
   676
  apply (subst real_eq_of_int)+
avigad@16819
   677
  apply (rule of_int_setprod)
avigad@16819
   678
done
paulson@14365
   679
paulson@14365
   680
lemma real_of_int_zero_cancel [simp]: "(real x = 0) = (x = (0::int))"
paulson@14378
   681
by (simp add: real_of_int_def) 
paulson@14365
   682
paulson@14365
   683
lemma real_of_int_inject [iff]: "(real (x::int) = real y) = (x = y)"
paulson@14378
   684
by (simp add: real_of_int_def) 
paulson@14365
   685
paulson@14365
   686
lemma real_of_int_less_iff [iff]: "(real (x::int) < real y) = (x < y)"
paulson@14378
   687
by (simp add: real_of_int_def) 
paulson@14365
   688
paulson@14365
   689
lemma real_of_int_le_iff [simp]: "(real (x::int) \<le> real y) = (x \<le> y)"
paulson@14378
   690
by (simp add: real_of_int_def) 
paulson@14365
   691
avigad@16819
   692
lemma real_of_int_gt_zero_cancel_iff [simp]: "(0 < real (n::int)) = (0 < n)"
avigad@16819
   693
by (simp add: real_of_int_def) 
avigad@16819
   694
avigad@16819
   695
lemma real_of_int_ge_zero_cancel_iff [simp]: "(0 <= real (n::int)) = (0 <= n)"
avigad@16819
   696
by (simp add: real_of_int_def) 
avigad@16819
   697
avigad@16819
   698
lemma real_of_int_lt_zero_cancel_iff [simp]: "(real (n::int) < 0) = (n < 0)"
avigad@16819
   699
by (simp add: real_of_int_def)
avigad@16819
   700
avigad@16819
   701
lemma real_of_int_le_zero_cancel_iff [simp]: "(real (n::int) <= 0) = (n <= 0)"
avigad@16819
   702
by (simp add: real_of_int_def)
avigad@16819
   703
avigad@16888
   704
lemma real_of_int_abs [simp]: "real (abs x) = abs(real (x::int))"
avigad@16888
   705
by (auto simp add: abs_if)
avigad@16888
   706
avigad@16819
   707
lemma int_less_real_le: "((n::int) < m) = (real n + 1 <= real m)"
avigad@16819
   708
  apply (subgoal_tac "real n + 1 = real (n + 1)")
avigad@16819
   709
  apply (simp del: real_of_int_add)
avigad@16819
   710
  apply auto
avigad@16819
   711
done
avigad@16819
   712
avigad@16819
   713
lemma int_le_real_less: "((n::int) <= m) = (real n < real m + 1)"
avigad@16819
   714
  apply (subgoal_tac "real m + 1 = real (m + 1)")
avigad@16819
   715
  apply (simp del: real_of_int_add)
avigad@16819
   716
  apply simp
avigad@16819
   717
done
avigad@16819
   718
avigad@16819
   719
lemma real_of_int_div_aux: "d ~= 0 ==> (real (x::int)) / (real d) = 
avigad@16819
   720
    real (x div d) + (real (x mod d)) / (real d)"
avigad@16819
   721
proof -
avigad@16819
   722
  assume "d ~= 0"
avigad@16819
   723
  have "x = (x div d) * d + x mod d"
avigad@16819
   724
    by auto
avigad@16819
   725
  then have "real x = real (x div d) * real d + real(x mod d)"
avigad@16819
   726
    by (simp only: real_of_int_mult [THEN sym] real_of_int_add [THEN sym])
avigad@16819
   727
  then have "real x / real d = ... / real d"
avigad@16819
   728
    by simp
avigad@16819
   729
  then show ?thesis
avigad@16819
   730
    by (auto simp add: add_divide_distrib ring_eq_simps prems)
avigad@16819
   731
qed
avigad@16819
   732
avigad@16819
   733
lemma real_of_int_div: "(d::int) ~= 0 ==> d dvd n ==>
avigad@16819
   734
    real(n div d) = real n / real d"
avigad@16819
   735
  apply (frule real_of_int_div_aux [of d n])
avigad@16819
   736
  apply simp
avigad@16819
   737
  apply (simp add: zdvd_iff_zmod_eq_0)
avigad@16819
   738
done
avigad@16819
   739
avigad@16819
   740
lemma real_of_int_div2:
avigad@16819
   741
  "0 <= real (n::int) / real (x) - real (n div x)"
avigad@16819
   742
  apply (case_tac "x = 0")
avigad@16819
   743
  apply simp
avigad@16819
   744
  apply (case_tac "0 < x")
avigad@16819
   745
  apply (simp add: compare_rls)
avigad@16819
   746
  apply (subst real_of_int_div_aux)
avigad@16819
   747
  apply simp
avigad@16819
   748
  apply simp
avigad@16819
   749
  apply (subst zero_le_divide_iff)
avigad@16819
   750
  apply auto
avigad@16819
   751
  apply (simp add: compare_rls)
avigad@16819
   752
  apply (subst real_of_int_div_aux)
avigad@16819
   753
  apply simp
avigad@16819
   754
  apply simp
avigad@16819
   755
  apply (subst zero_le_divide_iff)
avigad@16819
   756
  apply auto
avigad@16819
   757
done
avigad@16819
   758
avigad@16819
   759
lemma real_of_int_div3:
avigad@16819
   760
  "real (n::int) / real (x) - real (n div x) <= 1"
avigad@16819
   761
  apply(case_tac "x = 0")
avigad@16819
   762
  apply simp
avigad@16819
   763
  apply (simp add: compare_rls)
avigad@16819
   764
  apply (subst real_of_int_div_aux)
avigad@16819
   765
  apply assumption
avigad@16819
   766
  apply simp
avigad@16819
   767
  apply (subst divide_le_eq)
avigad@16819
   768
  apply clarsimp
avigad@16819
   769
  apply (rule conjI)
avigad@16819
   770
  apply (rule impI)
avigad@16819
   771
  apply (rule order_less_imp_le)
avigad@16819
   772
  apply simp
avigad@16819
   773
  apply (rule impI)
avigad@16819
   774
  apply (rule order_less_imp_le)
avigad@16819
   775
  apply simp
avigad@16819
   776
done
avigad@16819
   777
avigad@16819
   778
lemma real_of_int_div4: "real (n div x) <= real (n::int) / real x" 
avigad@16819
   779
  by (insert real_of_int_div2 [of n x], simp)
paulson@14365
   780
paulson@14365
   781
subsection{*Embedding the Naturals into the Reals*}
paulson@14365
   782
paulson@14334
   783
lemma real_of_nat_zero [simp]: "real (0::nat) = 0"
paulson@14365
   784
by (simp add: real_of_nat_def)
paulson@14334
   785
paulson@14334
   786
lemma real_of_nat_one [simp]: "real (Suc 0) = (1::real)"
paulson@14365
   787
by (simp add: real_of_nat_def)
paulson@14334
   788
paulson@14365
   789
lemma real_of_nat_add [simp]: "real (m + n) = real (m::nat) + real n"
paulson@14378
   790
by (simp add: real_of_nat_def)
paulson@14334
   791
paulson@14334
   792
(*Not for addsimps: often the LHS is used to represent a positive natural*)
paulson@14334
   793
lemma real_of_nat_Suc: "real (Suc n) = real n + (1::real)"
paulson@14378
   794
by (simp add: real_of_nat_def)
paulson@14334
   795
paulson@14334
   796
lemma real_of_nat_less_iff [iff]: 
paulson@14334
   797
     "(real (n::nat) < real m) = (n < m)"
paulson@14365
   798
by (simp add: real_of_nat_def)
paulson@14334
   799
paulson@14334
   800
lemma real_of_nat_le_iff [iff]: "(real (n::nat) \<le> real m) = (n \<le> m)"
paulson@14378
   801
by (simp add: real_of_nat_def)
paulson@14334
   802
paulson@14334
   803
lemma real_of_nat_ge_zero [iff]: "0 \<le> real (n::nat)"
paulson@14378
   804
by (simp add: real_of_nat_def zero_le_imp_of_nat)
paulson@14334
   805
paulson@14365
   806
lemma real_of_nat_Suc_gt_zero: "0 < real (Suc n)"
paulson@14378
   807
by (simp add: real_of_nat_def del: of_nat_Suc)
paulson@14365
   808
paulson@14334
   809
lemma real_of_nat_mult [simp]: "real (m * n) = real (m::nat) * real n"
paulson@14378
   810
by (simp add: real_of_nat_def)
paulson@14334
   811
avigad@16819
   812
lemma real_of_nat_setsum [simp]: "real ((SUM x:A. f x)::nat) = 
avigad@16819
   813
    (SUM x:A. real(f x))"
avigad@16819
   814
  apply (subst real_eq_of_nat)+
avigad@16819
   815
  apply (rule of_nat_setsum)
avigad@16819
   816
done
avigad@16819
   817
avigad@16819
   818
lemma real_of_nat_setprod [simp]: "real ((PROD x:A. f x)::nat) = 
avigad@16819
   819
    (PROD x:A. real(f x))"
avigad@16819
   820
  apply (subst real_eq_of_nat)+
avigad@16819
   821
  apply (rule of_nat_setprod)
avigad@16819
   822
done
avigad@16819
   823
avigad@16819
   824
lemma real_of_card: "real (card A) = setsum (%x.1) A"
avigad@16819
   825
  apply (subst card_eq_setsum)
avigad@16819
   826
  apply (subst real_of_nat_setsum)
avigad@16819
   827
  apply simp
avigad@16819
   828
done
avigad@16819
   829
paulson@14334
   830
lemma real_of_nat_inject [iff]: "(real (n::nat) = real m) = (n = m)"
paulson@14378
   831
by (simp add: real_of_nat_def)
paulson@14334
   832
paulson@14387
   833
lemma real_of_nat_zero_iff [iff]: "(real (n::nat) = 0) = (n = 0)"
paulson@14378
   834
by (simp add: real_of_nat_def)
paulson@14334
   835
paulson@14365
   836
lemma real_of_nat_diff: "n \<le> m ==> real (m - n) = real (m::nat) - real n"
paulson@14378
   837
by (simp add: add: real_of_nat_def) 
paulson@14334
   838
paulson@14365
   839
lemma real_of_nat_gt_zero_cancel_iff [simp]: "(0 < real (n::nat)) = (0 < n)"
paulson@14378
   840
by (simp add: add: real_of_nat_def) 
paulson@14365
   841
paulson@14365
   842
lemma real_of_nat_le_zero_cancel_iff [simp]: "(real (n::nat) \<le> 0) = (n = 0)"
paulson@14378
   843
by (simp add: add: real_of_nat_def)
paulson@14334
   844
paulson@14365
   845
lemma not_real_of_nat_less_zero [simp]: "~ real (n::nat) < 0"
paulson@14378
   846
by (simp add: add: real_of_nat_def)
paulson@14334
   847
paulson@14365
   848
lemma real_of_nat_ge_zero_cancel_iff [simp]: "(0 \<le> real (n::nat)) = (0 \<le> n)"
paulson@14378
   849
by (simp add: add: real_of_nat_def)
paulson@14334
   850
avigad@16819
   851
lemma nat_less_real_le: "((n::nat) < m) = (real n + 1 <= real m)"
avigad@16819
   852
  apply (subgoal_tac "real n + 1 = real (Suc n)")
avigad@16819
   853
  apply simp
avigad@16819
   854
  apply (auto simp add: real_of_nat_Suc)
avigad@16819
   855
done
avigad@16819
   856
avigad@16819
   857
lemma nat_le_real_less: "((n::nat) <= m) = (real n < real m + 1)"
avigad@16819
   858
  apply (subgoal_tac "real m + 1 = real (Suc m)")
avigad@16819
   859
  apply (simp add: less_Suc_eq_le)
avigad@16819
   860
  apply (simp add: real_of_nat_Suc)
avigad@16819
   861
done
avigad@16819
   862
avigad@16819
   863
lemma real_of_nat_div_aux: "0 < d ==> (real (x::nat)) / (real d) = 
avigad@16819
   864
    real (x div d) + (real (x mod d)) / (real d)"
avigad@16819
   865
proof -
avigad@16819
   866
  assume "0 < d"
avigad@16819
   867
  have "x = (x div d) * d + x mod d"
avigad@16819
   868
    by auto
avigad@16819
   869
  then have "real x = real (x div d) * real d + real(x mod d)"
avigad@16819
   870
    by (simp only: real_of_nat_mult [THEN sym] real_of_nat_add [THEN sym])
avigad@16819
   871
  then have "real x / real d = \<dots> / real d"
avigad@16819
   872
    by simp
avigad@16819
   873
  then show ?thesis
avigad@16819
   874
    by (auto simp add: add_divide_distrib ring_eq_simps prems)
avigad@16819
   875
qed
avigad@16819
   876
avigad@16819
   877
lemma real_of_nat_div: "0 < (d::nat) ==> d dvd n ==>
avigad@16819
   878
    real(n div d) = real n / real d"
avigad@16819
   879
  apply (frule real_of_nat_div_aux [of d n])
avigad@16819
   880
  apply simp
avigad@16819
   881
  apply (subst dvd_eq_mod_eq_0 [THEN sym])
avigad@16819
   882
  apply assumption
avigad@16819
   883
done
avigad@16819
   884
avigad@16819
   885
lemma real_of_nat_div2:
avigad@16819
   886
  "0 <= real (n::nat) / real (x) - real (n div x)"
avigad@16819
   887
  apply(case_tac "x = 0")
avigad@16819
   888
  apply simp
avigad@16819
   889
  apply (simp add: compare_rls)
avigad@16819
   890
  apply (subst real_of_nat_div_aux)
avigad@16819
   891
  apply assumption
avigad@16819
   892
  apply simp
avigad@16819
   893
  apply (subst zero_le_divide_iff)
avigad@16819
   894
  apply simp
avigad@16819
   895
done
avigad@16819
   896
avigad@16819
   897
lemma real_of_nat_div3:
avigad@16819
   898
  "real (n::nat) / real (x) - real (n div x) <= 1"
avigad@16819
   899
  apply(case_tac "x = 0")
avigad@16819
   900
  apply simp
avigad@16819
   901
  apply (simp add: compare_rls)
avigad@16819
   902
  apply (subst real_of_nat_div_aux)
avigad@16819
   903
  apply assumption
avigad@16819
   904
  apply simp
avigad@16819
   905
done
avigad@16819
   906
avigad@16819
   907
lemma real_of_nat_div4: "real (n div x) <= real (n::nat) / real x" 
avigad@16819
   908
  by (insert real_of_nat_div2 [of n x], simp)
avigad@16819
   909
paulson@14365
   910
lemma real_of_int_real_of_nat: "real (int n) = real n"
paulson@14378
   911
by (simp add: real_of_nat_def real_of_int_def int_eq_of_nat)
paulson@14378
   912
paulson@14426
   913
lemma real_of_int_of_nat_eq [simp]: "real (of_nat n :: int) = real n"
paulson@14426
   914
by (simp add: real_of_int_def real_of_nat_def)
paulson@14334
   915
avigad@16819
   916
lemma real_nat_eq_real [simp]: "0 <= x ==> real(nat x) = real x"
avigad@16819
   917
  apply (subgoal_tac "real(int(nat x)) = real(nat x)")
avigad@16819
   918
  apply force
avigad@16819
   919
  apply (simp only: real_of_int_real_of_nat)
avigad@16819
   920
done
paulson@14387
   921
paulson@14387
   922
subsection{*Numerals and Arithmetic*}
paulson@14387
   923
paulson@14387
   924
instance real :: number ..
paulson@14387
   925
paulson@15013
   926
defs (overloaded)
paulson@15013
   927
  real_number_of_def: "(number_of w :: real) == of_int (Rep_Bin w)"
paulson@15013
   928
    --{*the type constraint is essential!*}
paulson@14387
   929
paulson@14387
   930
instance real :: number_ring
paulson@15013
   931
by (intro_classes, simp add: real_number_of_def) 
paulson@14387
   932
paulson@14387
   933
paulson@14387
   934
text{*Collapse applications of @{term real} to @{term number_of}*}
paulson@14387
   935
lemma real_number_of [simp]: "real (number_of v :: int) = number_of v"
paulson@14387
   936
by (simp add:  real_of_int_def of_int_number_of_eq)
paulson@14387
   937
paulson@14387
   938
lemma real_of_nat_number_of [simp]:
paulson@14387
   939
     "real (number_of v :: nat) =  
paulson@14387
   940
        (if neg (number_of v :: int) then 0  
paulson@14387
   941
         else (number_of v :: real))"
paulson@14387
   942
by (simp add: real_of_int_real_of_nat [symmetric] int_nat_number_of)
paulson@14387
   943
 
paulson@14387
   944
paulson@14387
   945
use "real_arith.ML"
paulson@14387
   946
paulson@14387
   947
setup real_arith_setup
paulson@14387
   948
paulson@14387
   949
subsection{* Simprules combining x+y and 0: ARE THEY NEEDED?*}
paulson@14387
   950
paulson@14387
   951
text{*Needed in this non-standard form by Hyperreal/Transcendental*}
paulson@14387
   952
lemma real_0_le_divide_iff:
paulson@14387
   953
     "((0::real) \<le> x/y) = ((x \<le> 0 | 0 \<le> y) & (0 \<le> x | y \<le> 0))"
paulson@14387
   954
by (simp add: real_divide_def zero_le_mult_iff, auto)
paulson@14387
   955
paulson@14387
   956
lemma real_add_minus_iff [simp]: "(x + - a = (0::real)) = (x=a)" 
paulson@14387
   957
by arith
paulson@14387
   958
paulson@15085
   959
lemma real_add_eq_0_iff: "(x+y = (0::real)) = (y = -x)"
paulson@14387
   960
by auto
paulson@14387
   961
paulson@15085
   962
lemma real_add_less_0_iff: "(x+y < (0::real)) = (y < -x)"
paulson@14387
   963
by auto
paulson@14387
   964
paulson@15085
   965
lemma real_0_less_add_iff: "((0::real) < x+y) = (-x < y)"
paulson@14387
   966
by auto
paulson@14387
   967
paulson@15085
   968
lemma real_add_le_0_iff: "(x+y \<le> (0::real)) = (y \<le> -x)"
paulson@14387
   969
by auto
paulson@14387
   970
paulson@15085
   971
lemma real_0_le_add_iff: "((0::real) \<le> x+y) = (-x \<le> y)"
paulson@14387
   972
by auto
paulson@14387
   973
paulson@14387
   974
paulson@14387
   975
(*
paulson@14387
   976
FIXME: we should have this, as for type int, but many proofs would break.
paulson@14387
   977
It replaces x+-y by x-y.
paulson@15086
   978
declare real_diff_def [symmetric, simp]
paulson@14387
   979
*)
paulson@14387
   980
paulson@14387
   981
paulson@14387
   982
subsubsection{*Density of the Reals*}
paulson@14387
   983
paulson@14387
   984
lemma real_lbound_gt_zero:
paulson@14387
   985
     "[| (0::real) < d1; 0 < d2 |] ==> \<exists>e. 0 < e & e < d1 & e < d2"
paulson@14387
   986
apply (rule_tac x = " (min d1 d2) /2" in exI)
paulson@14387
   987
apply (simp add: min_def)
paulson@14387
   988
done
paulson@14387
   989
paulson@14387
   990
paulson@14387
   991
text{*Similar results are proved in @{text Ring_and_Field}*}
paulson@14387
   992
lemma real_less_half_sum: "x < y ==> x < (x+y) / (2::real)"
paulson@14387
   993
  by auto
paulson@14387
   994
paulson@14387
   995
lemma real_gt_half_sum: "x < y ==> (x+y)/(2::real) < y"
paulson@14387
   996
  by auto
paulson@14387
   997
paulson@14387
   998
paulson@14387
   999
subsection{*Absolute Value Function for the Reals*}
paulson@14387
  1000
paulson@14387
  1001
lemma abs_minus_add_cancel: "abs(x + (-y)) = abs (y + (-(x::real)))"
paulson@15003
  1002
by (simp add: abs_if)
paulson@14387
  1003
paulson@14387
  1004
lemma abs_interval_iff: "(abs x < r) = (-r < x & x < (r::real))"
paulson@14387
  1005
by (force simp add: Ring_and_Field.abs_less_iff)
paulson@14387
  1006
paulson@14387
  1007
lemma abs_le_interval_iff: "(abs x \<le> r) = (-r\<le>x & x\<le>(r::real))"
obua@14738
  1008
by (force simp add: OrderedGroup.abs_le_iff)
paulson@14387
  1009
paulson@14484
  1010
(*FIXME: used only once, in SEQ.ML*)
paulson@14387
  1011
lemma abs_add_one_gt_zero [simp]: "(0::real) < 1 + abs(x)"
paulson@15003
  1012
by (simp add: abs_if)
paulson@14387
  1013
paulson@14387
  1014
lemma abs_real_of_nat_cancel [simp]: "abs (real x) = real (x::nat)"
paulson@15229
  1015
by (simp add: real_of_nat_ge_zero)
paulson@14387
  1016
paulson@14387
  1017
lemma abs_add_one_not_less_self [simp]: "~ abs(x) + (1::real) < x"
paulson@14387
  1018
apply (simp add: linorder_not_less)
paulson@14387
  1019
apply (auto intro: abs_ge_self [THEN order_trans])
paulson@14387
  1020
done
paulson@14387
  1021
 
paulson@14387
  1022
text{*Used only in Hyperreal/Lim.ML*}
paulson@14387
  1023
lemma abs_sum_triangle_ineq: "abs ((x::real) + y + (-l + -m)) \<le> abs(x + -l) + abs(y + -m)"
paulson@14387
  1024
apply (simp add: real_add_assoc)
paulson@14387
  1025
apply (rule_tac a1 = y in add_left_commute [THEN ssubst])
paulson@14387
  1026
apply (rule real_add_assoc [THEN subst])
paulson@14387
  1027
apply (rule abs_triangle_ineq)
paulson@14387
  1028
done
paulson@14387
  1029
paulson@14387
  1030
paulson@14387
  1031
paulson@14334
  1032
ML
paulson@14334
  1033
{*
paulson@14387
  1034
val real_lbound_gt_zero = thm"real_lbound_gt_zero";
paulson@14387
  1035
val real_less_half_sum = thm"real_less_half_sum";
paulson@14387
  1036
val real_gt_half_sum = thm"real_gt_half_sum";
paulson@14341
  1037
paulson@14387
  1038
val abs_interval_iff = thm"abs_interval_iff";
paulson@14387
  1039
val abs_le_interval_iff = thm"abs_le_interval_iff";
paulson@14387
  1040
val abs_add_one_gt_zero = thm"abs_add_one_gt_zero";
paulson@14387
  1041
val abs_add_one_not_less_self = thm"abs_add_one_not_less_self";
paulson@14387
  1042
val abs_sum_triangle_ineq = thm"abs_sum_triangle_ineq";
paulson@14334
  1043
*}
paulson@10752
  1044
paulson@14387
  1045
paulson@5588
  1046
end