src/Pure/meta_simplifier.ML
author krauss
Tue Apr 21 09:53:27 2009 +0200 (2009-04-21)
changeset 30908 7ccf4a3d764c
parent 30552 58db56278478
child 31298 5e6b2b23701a
permissions -rw-r--r--
replace type cong = {thm : thm, lhs : term} by plain thm -- the other component has been unused for a long time.
berghofe@10413
     1
(*  Title:      Pure/meta_simplifier.ML
wenzelm@29269
     2
    Author:     Tobias Nipkow and Stefan Berghofer, TU Muenchen
berghofe@10413
     3
wenzelm@11672
     4
Meta-level Simplification.
berghofe@10413
     5
*)
berghofe@10413
     6
skalberg@15006
     7
infix 4
wenzelm@15023
     8
  addsimps delsimps addeqcongs deleqcongs addcongs delcongs addsimprocs delsimprocs
nipkow@15199
     9
  setmksimps setmkcong setmksym setmkeqTrue settermless setsubgoaler
wenzelm@17882
    10
  setloop' setloop addloop addloop' delloop setSSolver addSSolver setSolver addSolver;
skalberg@15006
    11
wenzelm@11672
    12
signature BASIC_META_SIMPLIFIER =
wenzelm@11672
    13
sig
wenzelm@15023
    14
  val debug_simp: bool ref
wenzelm@11672
    15
  val trace_simp: bool ref
nipkow@16042
    16
  val trace_simp_depth_limit: int ref
wenzelm@15023
    17
  type rrule
wenzelm@16807
    18
  val eq_rrule: rrule * rrule -> bool
wenzelm@15023
    19
  type simpset
wenzelm@15023
    20
  type proc
wenzelm@17614
    21
  type solver
wenzelm@17614
    22
  val mk_solver': string -> (simpset -> int -> tactic) -> solver
wenzelm@17614
    23
  val mk_solver: string -> (thm list -> int -> tactic) -> solver
wenzelm@15023
    24
  val empty_ss: simpset
wenzelm@15023
    25
  val merge_ss: simpset * simpset -> simpset
wenzelm@30356
    26
  val dest_ss: simpset ->
wenzelm@30356
    27
   {simps: (string * thm) list,
wenzelm@30356
    28
    procs: (string * cterm list) list,
wenzelm@30356
    29
    congs: (string * thm) list,
wenzelm@30356
    30
    weak_congs: string list,
wenzelm@30356
    31
    loopers: string list,
wenzelm@30356
    32
    unsafe_solvers: string list,
wenzelm@30356
    33
    safe_solvers: string list}
wenzelm@15023
    34
  type simproc
wenzelm@22234
    35
  val eq_simproc: simproc * simproc -> bool
wenzelm@22234
    36
  val morph_simproc: morphism -> simproc -> simproc
wenzelm@22234
    37
  val make_simproc: {name: string, lhss: cterm list,
wenzelm@22234
    38
    proc: morphism -> simpset -> cterm -> thm option, identifier: thm list} -> simproc
wenzelm@22008
    39
  val mk_simproc: string -> cterm list -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@15023
    40
  val add_prems: thm list -> simpset -> simpset
wenzelm@15023
    41
  val prems_of_ss: simpset -> thm list
wenzelm@15023
    42
  val addsimps: simpset * thm list -> simpset
wenzelm@15023
    43
  val delsimps: simpset * thm list -> simpset
wenzelm@15023
    44
  val addeqcongs: simpset * thm list -> simpset
wenzelm@15023
    45
  val deleqcongs: simpset * thm list -> simpset
wenzelm@15023
    46
  val addcongs: simpset * thm list -> simpset
wenzelm@15023
    47
  val delcongs: simpset * thm list -> simpset
wenzelm@15023
    48
  val addsimprocs: simpset * simproc list -> simpset
wenzelm@15023
    49
  val delsimprocs: simpset * simproc list -> simpset
wenzelm@30318
    50
  val mksimps: simpset -> thm -> thm list
wenzelm@15023
    51
  val setmksimps: simpset * (thm -> thm list) -> simpset
wenzelm@15023
    52
  val setmkcong: simpset * (thm -> thm) -> simpset
wenzelm@15023
    53
  val setmksym: simpset * (thm -> thm option) -> simpset
wenzelm@15023
    54
  val setmkeqTrue: simpset * (thm -> thm option) -> simpset
wenzelm@15023
    55
  val settermless: simpset * (term * term -> bool) -> simpset
wenzelm@15023
    56
  val setsubgoaler: simpset * (simpset -> int -> tactic) -> simpset
wenzelm@17882
    57
  val setloop': simpset * (simpset -> int -> tactic) -> simpset
wenzelm@15023
    58
  val setloop: simpset * (int -> tactic) -> simpset
wenzelm@17882
    59
  val addloop': simpset * (string * (simpset -> int -> tactic)) -> simpset
wenzelm@15023
    60
  val addloop: simpset * (string * (int -> tactic)) -> simpset
wenzelm@15023
    61
  val delloop: simpset * string -> simpset
wenzelm@15023
    62
  val setSSolver: simpset * solver -> simpset
wenzelm@15023
    63
  val addSSolver: simpset * solver -> simpset
wenzelm@15023
    64
  val setSolver: simpset * solver -> simpset
wenzelm@15023
    65
  val addSolver: simpset * solver -> simpset
wenzelm@21708
    66
wenzelm@21708
    67
  val rewrite_rule: thm list -> thm -> thm
wenzelm@21708
    68
  val rewrite_goals_rule: thm list -> thm -> thm
wenzelm@21708
    69
  val rewrite_goals_tac: thm list -> tactic
wenzelm@23536
    70
  val rewrite_goal_tac: thm list -> int -> tactic
wenzelm@21708
    71
  val rewtac: thm -> tactic
wenzelm@21708
    72
  val prune_params_tac: tactic
wenzelm@21708
    73
  val fold_rule: thm list -> thm -> thm
wenzelm@21708
    74
  val fold_goals_tac: thm list -> tactic
wenzelm@30552
    75
  val norm_hhf: thm -> thm
wenzelm@30552
    76
  val norm_hhf_protect: thm -> thm
skalberg@15006
    77
end;
skalberg@15006
    78
berghofe@10413
    79
signature META_SIMPLIFIER =
berghofe@10413
    80
sig
wenzelm@11672
    81
  include BASIC_META_SIMPLIFIER
berghofe@10413
    82
  exception SIMPLIFIER of string * thm
wenzelm@30336
    83
  val internal_ss: simpset ->
wenzelm@30336
    84
   {rules: rrule Net.net,
wenzelm@30336
    85
    prems: thm list,
wenzelm@30336
    86
    bounds: int * ((string * typ) * string) list,
wenzelm@30336
    87
    depth: int * bool ref,
wenzelm@30336
    88
    context: Proof.context option} *
krauss@30908
    89
   {congs: (string * thm) list * string list,
wenzelm@30336
    90
    procs: proc Net.net,
wenzelm@30336
    91
    mk_rews:
wenzelm@30336
    92
     {mk: thm -> thm list,
wenzelm@30336
    93
      mk_cong: thm -> thm,
wenzelm@30336
    94
      mk_sym: thm -> thm option,
wenzelm@30336
    95
      mk_eq_True: thm -> thm option,
wenzelm@30336
    96
      reorient: theory -> term list -> term -> term -> bool},
wenzelm@30336
    97
    termless: term * term -> bool,
wenzelm@30336
    98
    subgoal_tac: simpset -> int -> tactic,
wenzelm@30336
    99
    loop_tacs: (string * (simpset -> int -> tactic)) list,
wenzelm@30336
   100
    solvers: solver list * solver list}
haftmann@27558
   101
  val add_simp: thm -> simpset -> simpset
haftmann@27558
   102
  val del_simp: thm -> simpset -> simpset
wenzelm@17966
   103
  val solver: simpset -> solver -> int -> tactic
wenzelm@24124
   104
  val simp_depth_limit_value: Config.value Config.T
wenzelm@24124
   105
  val simp_depth_limit: int Config.T
wenzelm@15023
   106
  val clear_ss: simpset -> simpset
wenzelm@16458
   107
  val simproc_i: theory -> string -> term list
wenzelm@16458
   108
    -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@16458
   109
  val simproc: theory -> string -> string list
wenzelm@16458
   110
    -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@17882
   111
  val inherit_context: simpset -> simpset -> simpset
wenzelm@20289
   112
  val the_context: simpset -> Proof.context
wenzelm@20289
   113
  val context: Proof.context -> simpset -> simpset
wenzelm@17897
   114
  val theory_context: theory  -> simpset -> simpset
wenzelm@17723
   115
  val debug_bounds: bool ref
wenzelm@18208
   116
  val set_reorient: (theory -> term list -> term -> term -> bool) -> simpset -> simpset
wenzelm@17966
   117
  val set_solvers: solver list -> simpset -> simpset
wenzelm@23598
   118
  val rewrite_cterm: bool * bool * bool -> (simpset -> thm -> thm option) -> simpset -> conv
wenzelm@16458
   119
  val rewrite_term: theory -> thm list -> (term -> term option) list -> term -> term
wenzelm@15023
   120
  val rewrite_thm: bool * bool * bool ->
wenzelm@15023
   121
    (simpset -> thm -> thm option) -> simpset -> thm -> thm
wenzelm@15023
   122
  val rewrite_goal_rule: bool * bool * bool ->
wenzelm@15023
   123
    (simpset -> thm -> thm option) -> simpset -> int -> thm -> thm
wenzelm@23536
   124
  val asm_rewrite_goal_tac: bool * bool * bool ->
wenzelm@23536
   125
    (simpset -> tactic) -> simpset -> int -> tactic
wenzelm@23598
   126
  val rewrite: bool -> thm list -> conv
wenzelm@21708
   127
  val simplify: bool -> thm list -> thm -> thm
berghofe@10413
   128
end;
berghofe@10413
   129
wenzelm@15023
   130
structure MetaSimplifier: META_SIMPLIFIER =
berghofe@10413
   131
struct
berghofe@10413
   132
wenzelm@15023
   133
(** datatype simpset **)
wenzelm@15023
   134
wenzelm@15023
   135
(* rewrite rules *)
berghofe@10413
   136
wenzelm@20546
   137
type rrule =
wenzelm@20546
   138
 {thm: thm,         (*the rewrite rule*)
wenzelm@20546
   139
  name: string,     (*name of theorem from which rewrite rule was extracted*)
wenzelm@20546
   140
  lhs: term,        (*the left-hand side*)
wenzelm@20546
   141
  elhs: cterm,      (*the etac-contracted lhs*)
wenzelm@20546
   142
  extra: bool,      (*extra variables outside of elhs*)
wenzelm@20546
   143
  fo: bool,         (*use first-order matching*)
wenzelm@20546
   144
  perm: bool};      (*the rewrite rule is permutative*)
wenzelm@15023
   145
wenzelm@20546
   146
(*
wenzelm@12603
   147
Remarks:
berghofe@10413
   148
  - elhs is used for matching,
wenzelm@15023
   149
    lhs only for preservation of bound variable names;
berghofe@10413
   150
  - fo is set iff
berghofe@10413
   151
    either elhs is first-order (no Var is applied),
wenzelm@15023
   152
      in which case fo-matching is complete,
berghofe@10413
   153
    or elhs is not a pattern,
wenzelm@20546
   154
      in which case there is nothing better to do;
wenzelm@20546
   155
*)
berghofe@10413
   156
berghofe@10413
   157
fun eq_rrule ({thm = thm1, ...}: rrule, {thm = thm2, ...}: rrule) =
wenzelm@22360
   158
  Thm.eq_thm_prop (thm1, thm2);
wenzelm@15023
   159
wenzelm@15023
   160
wenzelm@15023
   161
(* congruences *)
wenzelm@15023
   162
krauss@30908
   163
val eq_cong = Thm.eq_thm_prop
berghofe@10413
   164
berghofe@10413
   165
wenzelm@17614
   166
(* simplification sets, procedures, and solvers *)
wenzelm@15023
   167
wenzelm@15023
   168
(*A simpset contains data required during conversion:
berghofe@10413
   169
    rules: discrimination net of rewrite rules;
wenzelm@15023
   170
    prems: current premises;
berghofe@15249
   171
    bounds: maximal index of bound variables already used
wenzelm@15023
   172
      (for generating new names when rewriting under lambda abstractions);
wenzelm@22892
   173
    depth: simp_depth and exceeded flag;
berghofe@10413
   174
    congs: association list of congruence rules and
berghofe@10413
   175
           a list of `weak' congruence constants.
berghofe@10413
   176
           A congruence is `weak' if it avoids normalization of some argument.
berghofe@10413
   177
    procs: discrimination net of simplification procedures
berghofe@10413
   178
      (functions that prove rewrite rules on the fly);
wenzelm@15023
   179
    mk_rews:
wenzelm@15023
   180
      mk: turn simplification thms into rewrite rules;
wenzelm@15023
   181
      mk_cong: prepare congruence rules;
wenzelm@15023
   182
      mk_sym: turn == around;
wenzelm@15023
   183
      mk_eq_True: turn P into P == True;
wenzelm@15023
   184
    termless: relation for ordered rewriting;*)
skalberg@15011
   185
wenzelm@15023
   186
type mk_rews =
wenzelm@15023
   187
 {mk: thm -> thm list,
wenzelm@15023
   188
  mk_cong: thm -> thm,
wenzelm@15023
   189
  mk_sym: thm -> thm option,
wenzelm@18208
   190
  mk_eq_True: thm -> thm option,
wenzelm@18208
   191
  reorient: theory -> term list -> term -> term -> bool};
wenzelm@15023
   192
wenzelm@15023
   193
datatype simpset =
wenzelm@15023
   194
  Simpset of
wenzelm@15023
   195
   {rules: rrule Net.net,
berghofe@10413
   196
    prems: thm list,
wenzelm@17882
   197
    bounds: int * ((string * typ) * string) list,
wenzelm@23938
   198
    depth: int * bool ref,
wenzelm@20289
   199
    context: Proof.context option} *
krauss@30908
   200
   {congs: (string * thm) list * string list,
wenzelm@15023
   201
    procs: proc Net.net,
wenzelm@15023
   202
    mk_rews: mk_rews,
nipkow@11504
   203
    termless: term * term -> bool,
skalberg@15011
   204
    subgoal_tac: simpset -> int -> tactic,
wenzelm@17882
   205
    loop_tacs: (string * (simpset -> int -> tactic)) list,
wenzelm@15023
   206
    solvers: solver list * solver list}
wenzelm@15023
   207
and proc =
wenzelm@15023
   208
  Proc of
wenzelm@15023
   209
   {name: string,
wenzelm@15023
   210
    lhs: cterm,
wenzelm@22008
   211
    proc: simpset -> cterm -> thm option,
wenzelm@22234
   212
    id: stamp * thm list}
wenzelm@17614
   213
and solver =
wenzelm@17614
   214
  Solver of
wenzelm@17614
   215
   {name: string,
wenzelm@17614
   216
    solver: simpset -> int -> tactic,
wenzelm@15023
   217
    id: stamp};
wenzelm@15023
   218
wenzelm@15023
   219
wenzelm@30336
   220
fun internal_ss (Simpset args) = args;
berghofe@10413
   221
wenzelm@22892
   222
fun make_ss1 (rules, prems, bounds, depth, context) =
wenzelm@22892
   223
  {rules = rules, prems = prems, bounds = bounds, depth = depth, context = context};
wenzelm@15023
   224
wenzelm@22892
   225
fun map_ss1 f {rules, prems, bounds, depth, context} =
wenzelm@22892
   226
  make_ss1 (f (rules, prems, bounds, depth, context));
berghofe@10413
   227
wenzelm@15023
   228
fun make_ss2 (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =
wenzelm@15023
   229
  {congs = congs, procs = procs, mk_rews = mk_rews, termless = termless,
wenzelm@15023
   230
    subgoal_tac = subgoal_tac, loop_tacs = loop_tacs, solvers = solvers};
wenzelm@15023
   231
wenzelm@15023
   232
fun map_ss2 f {congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers} =
wenzelm@15023
   233
  make_ss2 (f (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
wenzelm@15023
   234
wenzelm@15023
   235
fun make_simpset (args1, args2) = Simpset (make_ss1 args1, make_ss2 args2);
berghofe@10413
   236
wenzelm@22892
   237
fun map_simpset f (Simpset ({rules, prems, bounds, depth, context},
wenzelm@15023
   238
    {congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers})) =
wenzelm@22892
   239
  make_simpset (f ((rules, prems, bounds, depth, context),
wenzelm@15023
   240
    (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers)));
berghofe@10413
   241
wenzelm@15023
   242
fun map_simpset1 f (Simpset (r1, r2)) = Simpset (map_ss1 f r1, r2);
wenzelm@15023
   243
fun map_simpset2 f (Simpset (r1, r2)) = Simpset (r1, map_ss2 f r2);
wenzelm@15023
   244
wenzelm@17614
   245
fun prems_of_ss (Simpset ({prems, ...}, _)) = prems;
wenzelm@17614
   246
wenzelm@22234
   247
fun eq_procid ((s1: stamp, ths1: thm list), (s2, ths2)) =
wenzelm@22360
   248
  s1 = s2 andalso eq_list Thm.eq_thm (ths1, ths2);
wenzelm@22234
   249
fun eq_proc (Proc {id = id1, ...}, Proc {id = id2, ...}) = eq_procid (id1, id2);
wenzelm@17614
   250
wenzelm@17614
   251
fun mk_solver' name solver = Solver {name = name, solver = solver, id = stamp ()};
wenzelm@17614
   252
fun mk_solver name solver = mk_solver' name (solver o prems_of_ss);
wenzelm@17614
   253
wenzelm@17614
   254
fun solver_name (Solver {name, ...}) = name;
wenzelm@17966
   255
fun solver ss (Solver {solver = tac, ...}) = tac ss;
wenzelm@17614
   256
fun eq_solver (Solver {id = id1, ...}, Solver {id = id2, ...}) = (id1 = id2);
wenzelm@17614
   257
wenzelm@15023
   258
wenzelm@22892
   259
(* simp depth *)
wenzelm@22892
   260
wenzelm@24124
   261
val simp_depth_limit_value = Config.declare false "simp_depth_limit" (Config.Int 100);
wenzelm@24124
   262
val simp_depth_limit = Config.int simp_depth_limit_value;
wenzelm@24124
   263
wenzelm@22892
   264
val trace_simp_depth_limit = ref 1;
wenzelm@22892
   265
wenzelm@22892
   266
fun trace_depth (Simpset ({depth = (depth, exceeded), ...}, _)) msg =
wenzelm@23938
   267
  if depth > ! trace_simp_depth_limit then
wenzelm@23938
   268
    if ! exceeded then () else (tracing "trace_simp_depth_limit exceeded!"; exceeded := true)
wenzelm@22892
   269
  else
wenzelm@23938
   270
    (tracing (enclose "[" "]" (string_of_int depth) ^ msg); exceeded := false);
wenzelm@22892
   271
wenzelm@22892
   272
val inc_simp_depth = map_simpset1 (fn (rules, prems, bounds, (depth, exceeded), context) =>
wenzelm@22892
   273
  (rules, prems, bounds,
wenzelm@23938
   274
    (depth + 1, if depth = ! trace_simp_depth_limit then ref false else exceeded), context));
wenzelm@22892
   275
wenzelm@22892
   276
fun simp_depth (Simpset ({depth = (depth, _), ...}, _)) = depth;
wenzelm@22892
   277
wenzelm@22892
   278
wenzelm@16985
   279
(* diagnostics *)
wenzelm@16985
   280
wenzelm@16985
   281
exception SIMPLIFIER of string * thm;
wenzelm@16985
   282
wenzelm@16985
   283
val debug_simp = ref false;
wenzelm@16985
   284
val trace_simp = ref false;
wenzelm@22892
   285
wenzelm@16985
   286
local
wenzelm@16985
   287
wenzelm@22892
   288
fun prnt ss warn a = if warn then warning a else trace_depth ss a;
wenzelm@16985
   289
wenzelm@16985
   290
fun show_bounds (Simpset ({bounds = (_, bs), ...}, _)) t =
wenzelm@16985
   291
  let
wenzelm@20146
   292
    val names = Term.declare_term_names t Name.context;
wenzelm@20146
   293
    val xs = rev (#1 (Name.variants (rev (map #2 bs)) names));
wenzelm@17614
   294
    fun subst (((b, T), _), x') = (Free (b, T), Syntax.mark_boundT (x', T));
wenzelm@16985
   295
  in Term.subst_atomic (ListPair.map subst (bs, xs)) t end;
wenzelm@16985
   296
wenzelm@17705
   297
in
wenzelm@17705
   298
wenzelm@22892
   299
fun print_term ss warn a thy t = prnt ss warn (a ^ "\n" ^
wenzelm@26939
   300
  Syntax.string_of_term_global thy (if ! debug_simp then t else show_bounds ss t));
wenzelm@16985
   301
wenzelm@22892
   302
fun debug warn a ss = if ! debug_simp then prnt ss warn (a ()) else ();
wenzelm@22892
   303
fun trace warn a ss = if ! trace_simp then prnt ss warn (a ()) else ();
wenzelm@16985
   304
wenzelm@22892
   305
fun debug_term warn a ss thy t = if ! debug_simp then print_term ss warn (a ()) thy t else ();
wenzelm@22892
   306
fun trace_term warn a ss thy t = if ! trace_simp then print_term ss warn (a ()) thy t else ();
wenzelm@16985
   307
wenzelm@16985
   308
fun trace_cterm warn a ss ct =
wenzelm@22892
   309
  if ! trace_simp then print_term ss warn (a ()) (Thm.theory_of_cterm ct) (Thm.term_of ct)
wenzelm@22254
   310
  else ();
wenzelm@16985
   311
wenzelm@16985
   312
fun trace_thm a ss th =
wenzelm@22892
   313
  if ! trace_simp then print_term ss false (a ()) (Thm.theory_of_thm th) (Thm.full_prop_of th)
wenzelm@22254
   314
  else ();
wenzelm@16985
   315
wenzelm@16985
   316
fun trace_named_thm a ss (th, name) =
wenzelm@16985
   317
  if ! trace_simp then
wenzelm@22892
   318
    print_term ss false (if name = "" then a () else a () ^ " " ^ quote name ^ ":")
wenzelm@16985
   319
      (Thm.theory_of_thm th) (Thm.full_prop_of th)
wenzelm@16985
   320
  else ();
wenzelm@16985
   321
wenzelm@22892
   322
fun warn_thm a ss th =
wenzelm@22892
   323
  print_term ss true a (Thm.theory_of_thm th) (Thm.full_prop_of th);
wenzelm@16985
   324
wenzelm@20028
   325
fun cond_warn_thm a (ss as Simpset ({context, ...}, _)) th =
wenzelm@20546
   326
  if is_some context then () else warn_thm a ss th;
wenzelm@20028
   327
wenzelm@16985
   328
end;
wenzelm@16985
   329
wenzelm@16985
   330
berghofe@10413
   331
berghofe@10413
   332
(** simpset operations **)
berghofe@10413
   333
wenzelm@17882
   334
(* context *)
berghofe@10413
   335
wenzelm@17614
   336
fun eq_bound (x: string, (y, _)) = x = y;
wenzelm@17614
   337
wenzelm@22892
   338
fun add_bound bound = map_simpset1 (fn (rules, prems, (count, bounds), depth, context) =>
wenzelm@22892
   339
  (rules, prems, (count + 1, bound :: bounds), depth, context));
wenzelm@17882
   340
wenzelm@22892
   341
fun add_prems ths = map_simpset1 (fn (rules, prems, bounds, depth, context) =>
wenzelm@22892
   342
  (rules, ths @ prems, bounds, depth, context));
wenzelm@17882
   343
wenzelm@22892
   344
fun inherit_context (Simpset ({bounds, depth, context, ...}, _)) =
wenzelm@22892
   345
  map_simpset1 (fn (rules, prems, _, _, _) => (rules, prems, bounds, depth, context));
wenzelm@16985
   346
wenzelm@17882
   347
fun the_context (Simpset ({context = SOME ctxt, ...}, _)) = ctxt
wenzelm@17882
   348
  | the_context _ = raise Fail "Simplifier: no proof context in simpset";
berghofe@10413
   349
wenzelm@17897
   350
fun context ctxt =
wenzelm@22892
   351
  map_simpset1 (fn (rules, prems, bounds, depth, _) => (rules, prems, bounds, depth, SOME ctxt));
wenzelm@17882
   352
wenzelm@21516
   353
val theory_context = context o ProofContext.init;
wenzelm@17897
   354
wenzelm@27312
   355
fun activate_context thy ss =
wenzelm@27312
   356
  let
wenzelm@27312
   357
    val ctxt = the_context ss;
wenzelm@27312
   358
    val ctxt' = Context.transfer_proof (Theory.merge (thy, ProofContext.theory_of ctxt)) ctxt;
wenzelm@27312
   359
  in context ctxt' ss end;
wenzelm@17897
   360
wenzelm@17897
   361
wenzelm@20028
   362
(* maintain simp rules *)
berghofe@10413
   363
wenzelm@20546
   364
(* FIXME: it seems that the conditions on extra variables are too liberal if
wenzelm@20546
   365
prems are nonempty: does solving the prems really guarantee instantiation of
wenzelm@20546
   366
all its Vars? Better: a dynamic check each time a rule is applied.
wenzelm@20546
   367
*)
wenzelm@20546
   368
fun rewrite_rule_extra_vars prems elhs erhs =
wenzelm@20546
   369
  let
wenzelm@20546
   370
    val elhss = elhs :: prems;
wenzelm@20546
   371
    val tvars = fold Term.add_tvars elhss [];
wenzelm@20546
   372
    val vars = fold Term.add_vars elhss [];
wenzelm@20546
   373
  in
wenzelm@20546
   374
    erhs |> Term.exists_type (Term.exists_subtype
wenzelm@20546
   375
      (fn TVar v => not (member (op =) tvars v) | _ => false)) orelse
wenzelm@20546
   376
    erhs |> Term.exists_subterm
wenzelm@20546
   377
      (fn Var v => not (member (op =) vars v) | _ => false)
wenzelm@20546
   378
  end;
wenzelm@20546
   379
wenzelm@20546
   380
fun rrule_extra_vars elhs thm =
wenzelm@20546
   381
  rewrite_rule_extra_vars [] (term_of elhs) (Thm.full_prop_of thm);
wenzelm@20546
   382
wenzelm@15023
   383
fun mk_rrule2 {thm, name, lhs, elhs, perm} =
wenzelm@15023
   384
  let
wenzelm@20546
   385
    val t = term_of elhs;
wenzelm@20546
   386
    val fo = Pattern.first_order t orelse not (Pattern.pattern t);
wenzelm@20546
   387
    val extra = rrule_extra_vars elhs thm;
wenzelm@20546
   388
  in {thm = thm, name = name, lhs = lhs, elhs = elhs, extra = extra, fo = fo, perm = perm} end;
berghofe@10413
   389
wenzelm@20028
   390
fun del_rrule (rrule as {thm, elhs, ...}) ss =
wenzelm@22892
   391
  ss |> map_simpset1 (fn (rules, prems, bounds, depth, context) =>
wenzelm@22892
   392
    (Net.delete_term eq_rrule (term_of elhs, rrule) rules, prems, bounds, depth, context))
wenzelm@20028
   393
  handle Net.DELETE => (cond_warn_thm "Rewrite rule not in simpset:" ss thm; ss);
wenzelm@20028
   394
wenzelm@20546
   395
fun insert_rrule (rrule as {thm, name, elhs, ...}) ss =
wenzelm@22254
   396
 (trace_named_thm (fn () => "Adding rewrite rule") ss (thm, name);
wenzelm@22892
   397
  ss |> map_simpset1 (fn (rules, prems, bounds, depth, context) =>
wenzelm@15023
   398
    let
wenzelm@15023
   399
      val rrule2 as {elhs, ...} = mk_rrule2 rrule;
wenzelm@16807
   400
      val rules' = Net.insert_term eq_rrule (term_of elhs, rrule2) rules;
wenzelm@22892
   401
    in (rules', prems, bounds, depth, context) end)
wenzelm@20028
   402
  handle Net.INSERT => (cond_warn_thm "Ignoring duplicate rewrite rule:" ss thm; ss));
berghofe@10413
   403
berghofe@10413
   404
fun vperm (Var _, Var _) = true
berghofe@10413
   405
  | vperm (Abs (_, _, s), Abs (_, _, t)) = vperm (s, t)
berghofe@10413
   406
  | vperm (t1 $ t2, u1 $ u2) = vperm (t1, u1) andalso vperm (t2, u2)
berghofe@10413
   407
  | vperm (t, u) = (t = u);
berghofe@10413
   408
berghofe@10413
   409
fun var_perm (t, u) =
wenzelm@20197
   410
  vperm (t, u) andalso gen_eq_set (op =) (Term.add_vars t [], Term.add_vars u []);
berghofe@10413
   411
wenzelm@15023
   412
(*simple test for looping rewrite rules and stupid orientations*)
wenzelm@18208
   413
fun default_reorient thy prems lhs rhs =
wenzelm@15023
   414
  rewrite_rule_extra_vars prems lhs rhs
wenzelm@15023
   415
    orelse
wenzelm@15023
   416
  is_Var (head_of lhs)
wenzelm@15023
   417
    orelse
nipkow@16305
   418
(* turns t = x around, which causes a headache if x is a local variable -
nipkow@16305
   419
   usually it is very useful :-(
nipkow@16305
   420
  is_Free rhs andalso not(is_Free lhs) andalso not(Logic.occs(rhs,lhs))
nipkow@16305
   421
  andalso not(exists_subterm is_Var lhs)
nipkow@16305
   422
    orelse
nipkow@16305
   423
*)
wenzelm@16842
   424
  exists (fn t => Logic.occs (lhs, t)) (rhs :: prems)
wenzelm@15023
   425
    orelse
wenzelm@17203
   426
  null prems andalso Pattern.matches thy (lhs, rhs)
berghofe@10413
   427
    (*the condition "null prems" is necessary because conditional rewrites
berghofe@10413
   428
      with extra variables in the conditions may terminate although
wenzelm@15023
   429
      the rhs is an instance of the lhs; example: ?m < ?n ==> f(?n) == f(?m)*)
wenzelm@15023
   430
    orelse
wenzelm@15023
   431
  is_Const lhs andalso not (is_Const rhs);
berghofe@10413
   432
berghofe@10413
   433
fun decomp_simp thm =
wenzelm@15023
   434
  let
wenzelm@26626
   435
    val thy = Thm.theory_of_thm thm;
wenzelm@26626
   436
    val prop = Thm.prop_of thm;
wenzelm@15023
   437
    val prems = Logic.strip_imp_prems prop;
wenzelm@15023
   438
    val concl = Drule.strip_imp_concl (Thm.cprop_of thm);
wenzelm@22902
   439
    val (lhs, rhs) = Thm.dest_equals concl handle TERM _ =>
wenzelm@15023
   440
      raise SIMPLIFIER ("Rewrite rule not a meta-equality", thm);
wenzelm@20579
   441
    val elhs = Thm.dest_arg (Thm.cprop_of (Thm.eta_conversion lhs));
wenzelm@16665
   442
    val elhs = if term_of elhs aconv term_of lhs then lhs else elhs;  (*share identical copies*)
wenzelm@18929
   443
    val erhs = Envir.eta_contract (term_of rhs);
wenzelm@15023
   444
    val perm =
wenzelm@15023
   445
      var_perm (term_of elhs, erhs) andalso
wenzelm@15023
   446
      not (term_of elhs aconv erhs) andalso
wenzelm@15023
   447
      not (is_Var (term_of elhs));
wenzelm@16458
   448
  in (thy, prems, term_of lhs, elhs, term_of rhs, perm) end;
berghofe@10413
   449
wenzelm@12783
   450
fun decomp_simp' thm =
wenzelm@12979
   451
  let val (_, _, lhs, _, rhs, _) = decomp_simp thm in
wenzelm@12783
   452
    if Thm.nprems_of thm > 0 then raise SIMPLIFIER ("Bad conditional rewrite rule", thm)
wenzelm@12979
   453
    else (lhs, rhs)
wenzelm@12783
   454
  end;
wenzelm@12783
   455
wenzelm@15023
   456
fun mk_eq_True (Simpset (_, {mk_rews = {mk_eq_True, ...}, ...})) (thm, name) =
wenzelm@15023
   457
  (case mk_eq_True thm of
skalberg@15531
   458
    NONE => []
skalberg@15531
   459
  | SOME eq_True =>
wenzelm@20546
   460
      let
wenzelm@20546
   461
        val (_, _, lhs, elhs, _, _) = decomp_simp eq_True;
wenzelm@20546
   462
        val extra = rrule_extra_vars elhs eq_True;
wenzelm@15023
   463
      in [{thm = eq_True, name = name, lhs = lhs, elhs = elhs, perm = false}] end);
berghofe@10413
   464
wenzelm@15023
   465
(*create the rewrite rule and possibly also the eq_True variant,
wenzelm@15023
   466
  in case there are extra vars on the rhs*)
wenzelm@15023
   467
fun rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm2) =
wenzelm@15023
   468
  let val rrule = {thm = thm, name = name, lhs = lhs, elhs = elhs, perm = false} in
wenzelm@20546
   469
    if rewrite_rule_extra_vars [] lhs rhs then
wenzelm@20546
   470
      mk_eq_True ss (thm2, name) @ [rrule]
wenzelm@20546
   471
    else [rrule]
berghofe@10413
   472
  end;
berghofe@10413
   473
wenzelm@15023
   474
fun mk_rrule ss (thm, name) =
wenzelm@15023
   475
  let val (_, prems, lhs, elhs, rhs, perm) = decomp_simp thm in
wenzelm@15023
   476
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
wenzelm@15023
   477
    else
wenzelm@15023
   478
      (*weak test for loops*)
wenzelm@15023
   479
      if rewrite_rule_extra_vars prems lhs rhs orelse is_Var (term_of elhs)
wenzelm@15023
   480
      then mk_eq_True ss (thm, name)
wenzelm@15023
   481
      else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
berghofe@10413
   482
  end;
berghofe@10413
   483
wenzelm@15023
   484
fun orient_rrule ss (thm, name) =
wenzelm@18208
   485
  let
wenzelm@18208
   486
    val (thy, prems, lhs, elhs, rhs, perm) = decomp_simp thm;
wenzelm@18208
   487
    val Simpset (_, {mk_rews = {reorient, mk_sym, ...}, ...}) = ss;
wenzelm@18208
   488
  in
wenzelm@15023
   489
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
wenzelm@16458
   490
    else if reorient thy prems lhs rhs then
wenzelm@16458
   491
      if reorient thy prems rhs lhs
wenzelm@15023
   492
      then mk_eq_True ss (thm, name)
wenzelm@15023
   493
      else
wenzelm@18208
   494
        (case mk_sym thm of
wenzelm@18208
   495
          NONE => []
wenzelm@18208
   496
        | SOME thm' =>
wenzelm@18208
   497
            let val (_, _, lhs', elhs', rhs', _) = decomp_simp thm'
wenzelm@18208
   498
            in rrule_eq_True (thm', name, lhs', elhs', rhs', ss, thm) end)
wenzelm@15023
   499
    else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
berghofe@10413
   500
  end;
berghofe@10413
   501
nipkow@15199
   502
fun extract_rews (Simpset (_, {mk_rews = {mk, ...}, ...}), thms) =
wenzelm@27865
   503
  maps (fn thm => map (rpair (Thm.get_name_hint thm)) (mk thm)) thms;
berghofe@10413
   504
wenzelm@15023
   505
fun extract_safe_rrules (ss, thm) =
wenzelm@19482
   506
  maps (orient_rrule ss) (extract_rews (ss, [thm]));
berghofe@10413
   507
berghofe@10413
   508
wenzelm@20028
   509
(* add/del rules explicitly *)
berghofe@10413
   510
wenzelm@20028
   511
fun comb_simps comb mk_rrule (ss, thms) =
wenzelm@20028
   512
  let
wenzelm@20028
   513
    val rews = extract_rews (ss, thms);
wenzelm@20028
   514
  in fold (fold comb o mk_rrule) rews ss end;
berghofe@10413
   515
wenzelm@20028
   516
fun ss addsimps thms =
wenzelm@20028
   517
  comb_simps insert_rrule (mk_rrule ss) (ss, thms);
berghofe@10413
   518
wenzelm@15023
   519
fun ss delsimps thms =
wenzelm@20028
   520
  comb_simps del_rrule (map mk_rrule2 o mk_rrule ss) (ss, thms);
wenzelm@15023
   521
haftmann@27558
   522
fun add_simp thm ss = ss addsimps [thm];
haftmann@27558
   523
fun del_simp thm ss = ss delsimps [thm];
wenzelm@15023
   524
wenzelm@30318
   525
wenzelm@15023
   526
(* congs *)
berghofe@10413
   527
skalberg@15531
   528
fun cong_name (Const (a, _)) = SOME a
skalberg@15531
   529
  | cong_name (Free (a, _)) = SOME ("Free: " ^ a)
skalberg@15531
   530
  | cong_name _ = NONE;
ballarin@13835
   531
wenzelm@15023
   532
local
wenzelm@15023
   533
wenzelm@15023
   534
fun is_full_cong_prems [] [] = true
wenzelm@15023
   535
  | is_full_cong_prems [] _ = false
wenzelm@15023
   536
  | is_full_cong_prems (p :: prems) varpairs =
wenzelm@15023
   537
      (case Logic.strip_assums_concl p of
wenzelm@15023
   538
        Const ("==", _) $ lhs $ rhs =>
wenzelm@15023
   539
          let val (x, xs) = strip_comb lhs and (y, ys) = strip_comb rhs in
wenzelm@15023
   540
            is_Var x andalso forall is_Bound xs andalso
haftmann@20972
   541
            not (has_duplicates (op =) xs) andalso xs = ys andalso
wenzelm@20671
   542
            member (op =) varpairs (x, y) andalso
wenzelm@19303
   543
            is_full_cong_prems prems (remove (op =) (x, y) varpairs)
wenzelm@15023
   544
          end
wenzelm@15023
   545
      | _ => false);
wenzelm@15023
   546
wenzelm@15023
   547
fun is_full_cong thm =
berghofe@10413
   548
  let
wenzelm@15023
   549
    val prems = prems_of thm and concl = concl_of thm;
wenzelm@15023
   550
    val (lhs, rhs) = Logic.dest_equals concl;
wenzelm@15023
   551
    val (f, xs) = strip_comb lhs and (g, ys) = strip_comb rhs;
berghofe@10413
   552
  in
haftmann@20972
   553
    f = g andalso not (has_duplicates (op =) (xs @ ys)) andalso length xs = length ys andalso
wenzelm@15023
   554
    is_full_cong_prems prems (xs ~~ ys)
berghofe@10413
   555
  end;
berghofe@10413
   556
wenzelm@15023
   557
fun add_cong (ss, thm) = ss |>
wenzelm@15023
   558
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   559
    let
wenzelm@22902
   560
      val (lhs, _) = Thm.dest_equals (Drule.strip_imp_concl (Thm.cprop_of thm))
wenzelm@15023
   561
        handle TERM _ => raise SIMPLIFIER ("Congruence not a meta-equality", thm);
wenzelm@18929
   562
    (*val lhs = Envir.eta_contract lhs;*)
wenzelm@20057
   563
      val a = the (cong_name (head_of (term_of lhs))) handle Option.Option =>
wenzelm@15023
   564
        raise SIMPLIFIER ("Congruence must start with a constant or free variable", thm);
haftmann@22221
   565
      val (xs, weak) = congs;
haftmann@22221
   566
      val _ =  if AList.defined (op =) xs a
haftmann@22221
   567
        then warning ("Overwriting congruence rule for " ^ quote a)
haftmann@22221
   568
        else ();
krauss@30908
   569
      val xs' = AList.update (op =) (a, thm) xs;
haftmann@22221
   570
      val weak' = if is_full_cong thm then weak else a :: weak;
haftmann@22221
   571
    in ((xs', weak'), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
berghofe@10413
   572
wenzelm@15023
   573
fun del_cong (ss, thm) = ss |>
wenzelm@15023
   574
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   575
    let
wenzelm@15023
   576
      val (lhs, _) = Logic.dest_equals (Thm.concl_of thm) handle TERM _ =>
wenzelm@15023
   577
        raise SIMPLIFIER ("Congruence not a meta-equality", thm);
wenzelm@18929
   578
    (*val lhs = Envir.eta_contract lhs;*)
wenzelm@20057
   579
      val a = the (cong_name (head_of lhs)) handle Option.Option =>
wenzelm@15023
   580
        raise SIMPLIFIER ("Congruence must start with a constant", thm);
haftmann@22221
   581
      val (xs, _) = congs;
haftmann@22221
   582
      val xs' = filter_out (fn (x : string, _) => x = a) xs;
krauss@30908
   583
      val weak' = xs' |> map_filter (fn (a, thm) =>
skalberg@15531
   584
        if is_full_cong thm then NONE else SOME a);
haftmann@22221
   585
    in ((xs', weak'), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
berghofe@10413
   586
wenzelm@15023
   587
fun mk_cong (Simpset (_, {mk_rews = {mk_cong = f, ...}, ...})) = f;
wenzelm@15023
   588
wenzelm@15023
   589
in
wenzelm@15023
   590
skalberg@15570
   591
val (op addeqcongs) = Library.foldl add_cong;
skalberg@15570
   592
val (op deleqcongs) = Library.foldl del_cong;
wenzelm@15023
   593
wenzelm@15023
   594
fun ss addcongs congs = ss addeqcongs map (mk_cong ss) congs;
wenzelm@15023
   595
fun ss delcongs congs = ss deleqcongs map (mk_cong ss) congs;
wenzelm@15023
   596
wenzelm@15023
   597
end;
berghofe@10413
   598
berghofe@10413
   599
wenzelm@15023
   600
(* simprocs *)
wenzelm@15023
   601
wenzelm@22234
   602
datatype simproc =
wenzelm@22234
   603
  Simproc of
wenzelm@22234
   604
    {name: string,
wenzelm@22234
   605
     lhss: cterm list,
wenzelm@22234
   606
     proc: morphism -> simpset -> cterm -> thm option,
wenzelm@22234
   607
     id: stamp * thm list};
wenzelm@22234
   608
wenzelm@22234
   609
fun eq_simproc (Simproc {id = id1, ...}, Simproc {id = id2, ...}) = eq_procid (id1, id2);
wenzelm@22008
   610
wenzelm@22234
   611
fun morph_simproc phi (Simproc {name, lhss, proc, id = (s, ths)}) =
wenzelm@22234
   612
  Simproc
wenzelm@22234
   613
   {name = name,
wenzelm@22234
   614
    lhss = map (Morphism.cterm phi) lhss,
wenzelm@22669
   615
    proc = Morphism.transform phi proc,
wenzelm@22234
   616
    id = (s, Morphism.fact phi ths)};
wenzelm@22234
   617
wenzelm@22234
   618
fun make_simproc {name, lhss, proc, identifier} =
wenzelm@22234
   619
  Simproc {name = name, lhss = lhss, proc = proc, id = (stamp (), identifier)};
wenzelm@22008
   620
wenzelm@22008
   621
fun mk_simproc name lhss proc =
wenzelm@22234
   622
  make_simproc {name = name, lhss = lhss, proc = fn _ => fn ss => fn ct =>
wenzelm@22234
   623
    proc (ProofContext.theory_of (the_context ss)) ss (Thm.term_of ct), identifier = []};
wenzelm@22008
   624
wenzelm@22008
   625
(* FIXME avoid global thy and Logic.varify *)
wenzelm@22008
   626
fun simproc_i thy name = mk_simproc name o map (Thm.cterm_of thy o Logic.varify);
wenzelm@24707
   627
fun simproc thy name = simproc_i thy name o map (Syntax.read_term_global thy);
wenzelm@22008
   628
wenzelm@22008
   629
wenzelm@15023
   630
local
berghofe@10413
   631
wenzelm@16985
   632
fun add_proc (proc as Proc {name, lhs, ...}) ss =
wenzelm@22254
   633
 (trace_cterm false (fn () => "Adding simplification procedure " ^ quote name ^ " for") ss lhs;
wenzelm@15023
   634
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@16807
   635
    (congs, Net.insert_term eq_proc (term_of lhs, proc) procs,
wenzelm@15023
   636
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
wenzelm@15023
   637
  handle Net.INSERT =>
wenzelm@15023
   638
    (warning ("Ignoring duplicate simplification procedure " ^ quote name); ss));
berghofe@10413
   639
wenzelm@16985
   640
fun del_proc (proc as Proc {name, lhs, ...}) ss =
wenzelm@15023
   641
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@16807
   642
    (congs, Net.delete_term eq_proc (term_of lhs, proc) procs,
wenzelm@15023
   643
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
wenzelm@15023
   644
  handle Net.DELETE =>
wenzelm@15023
   645
    (warning ("Simplification procedure " ^ quote name ^ " not in simpset"); ss);
berghofe@10413
   646
wenzelm@22234
   647
fun prep_procs (Simproc {name, lhss, proc, id}) =
wenzelm@22669
   648
  lhss |> map (fn lhs => Proc {name = name, lhs = lhs, proc = Morphism.form proc, id = id});
wenzelm@22234
   649
wenzelm@15023
   650
in
berghofe@10413
   651
wenzelm@22234
   652
fun ss addsimprocs ps = fold (fold add_proc o prep_procs) ps ss;
wenzelm@22234
   653
fun ss delsimprocs ps = fold (fold del_proc o prep_procs) ps ss;
berghofe@10413
   654
wenzelm@15023
   655
end;
berghofe@10413
   656
berghofe@10413
   657
berghofe@10413
   658
(* mk_rews *)
berghofe@10413
   659
wenzelm@15023
   660
local
wenzelm@15023
   661
wenzelm@18208
   662
fun map_mk_rews f = map_simpset2 (fn (congs, procs, {mk, mk_cong, mk_sym, mk_eq_True, reorient},
wenzelm@15023
   663
      termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@18208
   664
  let
wenzelm@18208
   665
    val (mk', mk_cong', mk_sym', mk_eq_True', reorient') =
wenzelm@18208
   666
      f (mk, mk_cong, mk_sym, mk_eq_True, reorient);
wenzelm@18208
   667
    val mk_rews' = {mk = mk', mk_cong = mk_cong', mk_sym = mk_sym', mk_eq_True = mk_eq_True',
wenzelm@18208
   668
      reorient = reorient'};
wenzelm@18208
   669
  in (congs, procs, mk_rews', termless, subgoal_tac, loop_tacs, solvers) end);
wenzelm@15023
   670
wenzelm@15023
   671
in
berghofe@10413
   672
wenzelm@30336
   673
fun mksimps (Simpset (_, {mk_rews = {mk, ...}, ...})) = mk;
wenzelm@30318
   674
wenzelm@18208
   675
fun ss setmksimps mk = ss |> map_mk_rews (fn (_, mk_cong, mk_sym, mk_eq_True, reorient) =>
wenzelm@18208
   676
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@15023
   677
wenzelm@18208
   678
fun ss setmkcong mk_cong = ss |> map_mk_rews (fn (mk, _, mk_sym, mk_eq_True, reorient) =>
wenzelm@18208
   679
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
berghofe@10413
   680
wenzelm@18208
   681
fun ss setmksym mk_sym = ss |> map_mk_rews (fn (mk, mk_cong, _, mk_eq_True, reorient) =>
wenzelm@18208
   682
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
berghofe@10413
   683
wenzelm@18208
   684
fun ss setmkeqTrue mk_eq_True = ss |> map_mk_rews (fn (mk, mk_cong, mk_sym, _, reorient) =>
wenzelm@18208
   685
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@18208
   686
wenzelm@18208
   687
fun set_reorient reorient = map_mk_rews (fn (mk, mk_cong, mk_sym, mk_eq_True, _) =>
wenzelm@18208
   688
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@15023
   689
wenzelm@15023
   690
end;
wenzelm@15023
   691
skalberg@14242
   692
berghofe@10413
   693
(* termless *)
berghofe@10413
   694
wenzelm@15023
   695
fun ss settermless termless = ss |>
wenzelm@15023
   696
  map_simpset2 (fn (congs, procs, mk_rews, _, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   697
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
skalberg@15006
   698
skalberg@15006
   699
wenzelm@15023
   700
(* tactics *)
skalberg@15006
   701
wenzelm@15023
   702
fun ss setsubgoaler subgoal_tac = ss |>
wenzelm@15023
   703
  map_simpset2 (fn (congs, procs, mk_rews, termless, _, loop_tacs, solvers) =>
wenzelm@15023
   704
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
skalberg@15006
   705
wenzelm@17882
   706
fun ss setloop' tac = ss |>
wenzelm@15023
   707
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, _, solvers) =>
wenzelm@15023
   708
   (congs, procs, mk_rews, termless, subgoal_tac, [("", tac)], solvers));
skalberg@15006
   709
wenzelm@17882
   710
fun ss setloop tac = ss setloop' (K tac);
wenzelm@17882
   711
wenzelm@17882
   712
fun ss addloop' (name, tac) = ss |>
wenzelm@15023
   713
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   714
    (congs, procs, mk_rews, termless, subgoal_tac,
haftmann@21286
   715
      (if AList.defined (op =) loop_tacs name
haftmann@21286
   716
        then warning ("Overwriting looper " ^ quote name)
haftmann@21286
   717
        else (); AList.update (op =) (name, tac) loop_tacs),
wenzelm@15023
   718
      solvers));
skalberg@15006
   719
wenzelm@17882
   720
fun ss addloop (name, tac) = ss addloop' (name, K tac);
wenzelm@17882
   721
wenzelm@15023
   722
fun ss delloop name = ss |>
wenzelm@15023
   723
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
haftmann@21286
   724
    (congs, procs, mk_rews, termless, subgoal_tac,
haftmann@21286
   725
      (if AList.defined (op =) loop_tacs name
haftmann@21286
   726
        then ()
haftmann@21286
   727
        else warning ("No such looper in simpset: " ^ quote name);
haftmann@21286
   728
       AList.delete (op =) name loop_tacs), solvers));
skalberg@15006
   729
wenzelm@15023
   730
fun ss setSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   731
  subgoal_tac, loop_tacs, (unsafe_solvers, _)) =>
wenzelm@15023
   732
    (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, (unsafe_solvers, [solver])));
skalberg@15006
   733
wenzelm@15023
   734
fun ss addSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   735
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
haftmann@22717
   736
    subgoal_tac, loop_tacs, (unsafe_solvers, insert eq_solver solver solvers)));
skalberg@15006
   737
wenzelm@15023
   738
fun ss setSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   739
  subgoal_tac, loop_tacs, (_, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   740
    subgoal_tac, loop_tacs, ([solver], solvers)));
skalberg@15006
   741
wenzelm@15023
   742
fun ss addSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   743
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
haftmann@22717
   744
    subgoal_tac, loop_tacs, (insert eq_solver solver unsafe_solvers, solvers)));
skalberg@15006
   745
wenzelm@15023
   746
fun set_solvers solvers = map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   747
  subgoal_tac, loop_tacs, _) => (congs, procs, mk_rews, termless,
wenzelm@15023
   748
  subgoal_tac, loop_tacs, (solvers, solvers)));
skalberg@15006
   749
skalberg@15006
   750
wenzelm@18208
   751
(* empty *)
wenzelm@18208
   752
wenzelm@18208
   753
fun init_ss mk_rews termless subgoal_tac solvers =
wenzelm@23938
   754
  make_simpset ((Net.empty, [], (0, []), (0, ref false), NONE),
wenzelm@18208
   755
    (([], []), Net.empty, mk_rews, termless, subgoal_tac, [], solvers));
wenzelm@18208
   756
wenzelm@18208
   757
fun clear_ss (ss as Simpset (_, {mk_rews, termless, subgoal_tac, solvers, ...})) =
wenzelm@18208
   758
  init_ss mk_rews termless subgoal_tac solvers
wenzelm@18208
   759
  |> inherit_context ss;
wenzelm@18208
   760
wenzelm@18208
   761
val basic_mk_rews: mk_rews =
wenzelm@18208
   762
 {mk = fn th => if can Logic.dest_equals (Thm.concl_of th) then [th] else [],
wenzelm@18208
   763
  mk_cong = I,
wenzelm@18208
   764
  mk_sym = SOME o Drule.symmetric_fun,
wenzelm@18208
   765
  mk_eq_True = K NONE,
wenzelm@18208
   766
  reorient = default_reorient};
wenzelm@18208
   767
wenzelm@29269
   768
val empty_ss = init_ss basic_mk_rews TermOrd.termless (K (K no_tac)) ([], []);
wenzelm@18208
   769
wenzelm@18208
   770
wenzelm@18208
   771
(* merge *)  (*NOTE: ignores some fields of 2nd simpset*)
wenzelm@18208
   772
wenzelm@18208
   773
fun merge_ss (ss1, ss2) =
wenzelm@24358
   774
  if pointer_eq (ss1, ss2) then ss1
wenzelm@24358
   775
  else
wenzelm@24358
   776
    let
wenzelm@24358
   777
      val Simpset ({rules = rules1, prems = prems1, bounds = bounds1, depth = depth1, context = _},
wenzelm@24358
   778
       {congs = (congs1, weak1), procs = procs1, mk_rews, termless, subgoal_tac,
wenzelm@24358
   779
        loop_tacs = loop_tacs1, solvers = (unsafe_solvers1, solvers1)}) = ss1;
wenzelm@24358
   780
      val Simpset ({rules = rules2, prems = prems2, bounds = bounds2, depth = depth2, context = _},
wenzelm@24358
   781
       {congs = (congs2, weak2), procs = procs2, mk_rews = _, termless = _, subgoal_tac = _,
wenzelm@24358
   782
        loop_tacs = loop_tacs2, solvers = (unsafe_solvers2, solvers2)}) = ss2;
wenzelm@30356
   783
wenzelm@24358
   784
      val rules' = Net.merge eq_rrule (rules1, rules2);
wenzelm@24358
   785
      val prems' = merge Thm.eq_thm_prop (prems1, prems2);
wenzelm@24358
   786
      val bounds' = if #1 bounds1 < #1 bounds2 then bounds2 else bounds1;
wenzelm@24358
   787
      val depth' = if #1 depth1 < #1 depth2 then depth2 else depth1;
wenzelm@24358
   788
      val congs' = merge (eq_cong o pairself #2) (congs1, congs2);
wenzelm@24358
   789
      val weak' = merge (op =) (weak1, weak2);
wenzelm@24358
   790
      val procs' = Net.merge eq_proc (procs1, procs2);
wenzelm@24358
   791
      val loop_tacs' = AList.merge (op =) (K true) (loop_tacs1, loop_tacs2);
wenzelm@24358
   792
      val unsafe_solvers' = merge eq_solver (unsafe_solvers1, unsafe_solvers2);
wenzelm@24358
   793
      val solvers' = merge eq_solver (solvers1, solvers2);
wenzelm@24358
   794
    in
wenzelm@24358
   795
      make_simpset ((rules', prems', bounds', depth', NONE), ((congs', weak'), procs',
wenzelm@24358
   796
        mk_rews, termless, subgoal_tac, loop_tacs', (unsafe_solvers', solvers')))
wenzelm@24358
   797
    end;
wenzelm@18208
   798
wenzelm@18208
   799
wenzelm@30356
   800
(* dest_ss *)
wenzelm@30356
   801
wenzelm@30356
   802
fun dest_ss (Simpset ({rules, ...}, {congs, procs, loop_tacs, solvers, ...})) =
wenzelm@30356
   803
 {simps = Net.entries rules
wenzelm@30356
   804
    |> map (fn {name, thm, ...} => (name, thm)),
wenzelm@30356
   805
  procs = Net.entries procs
wenzelm@30356
   806
    |> map (fn Proc {name, lhs, id, ...} => ((name, lhs), id))
wenzelm@30356
   807
    |> partition_eq (eq_snd eq_procid)
wenzelm@30356
   808
    |> map (fn ps => (fst (fst (hd ps)), map (snd o fst) ps)),
krauss@30908
   809
  congs = #1 congs,
wenzelm@30356
   810
  weak_congs = #2 congs,
wenzelm@30356
   811
  loopers = map fst loop_tacs,
wenzelm@30356
   812
  unsafe_solvers = map solver_name (#1 solvers),
wenzelm@30356
   813
  safe_solvers = map solver_name (#2 solvers)};
wenzelm@30356
   814
wenzelm@30356
   815
skalberg@15006
   816
berghofe@10413
   817
(** rewriting **)
berghofe@10413
   818
berghofe@10413
   819
(*
berghofe@10413
   820
  Uses conversions, see:
berghofe@10413
   821
    L C Paulson, A higher-order implementation of rewriting,
berghofe@10413
   822
    Science of Computer Programming 3 (1983), pages 119-149.
berghofe@10413
   823
*)
berghofe@10413
   824
wenzelm@16985
   825
fun check_conv msg ss thm thm' =
berghofe@10413
   826
  let
berghofe@25472
   827
    val thm'' = transitive thm thm' handle THM _ =>
berghofe@25472
   828
     transitive thm (transitive
berghofe@25472
   829
       (symmetric (Drule.beta_eta_conversion (Thm.lhs_of thm'))) thm')
wenzelm@22254
   830
  in if msg then trace_thm (fn () => "SUCCEEDED") ss thm' else (); SOME thm'' end
berghofe@10413
   831
  handle THM _ =>
wenzelm@26626
   832
    let
wenzelm@26626
   833
      val thy = Thm.theory_of_thm thm;
wenzelm@26626
   834
      val _ $ _ $ prop0 = Thm.prop_of thm;
wenzelm@26626
   835
    in
wenzelm@22254
   836
      trace_thm (fn () => "Proved wrong thm (Check subgoaler?)") ss thm';
wenzelm@22254
   837
      trace_term false (fn () => "Should have proved:") ss thy prop0;
skalberg@15531
   838
      NONE
berghofe@10413
   839
    end;
berghofe@10413
   840
berghofe@10413
   841
berghofe@10413
   842
(* mk_procrule *)
berghofe@10413
   843
wenzelm@16985
   844
fun mk_procrule ss thm =
wenzelm@15023
   845
  let val (_, prems, lhs, elhs, rhs, _) = decomp_simp thm in
wenzelm@15023
   846
    if rewrite_rule_extra_vars prems lhs rhs
wenzelm@16985
   847
    then (warn_thm "Extra vars on rhs:" ss thm; [])
wenzelm@15023
   848
    else [mk_rrule2 {thm = thm, name = "", lhs = lhs, elhs = elhs, perm = false}]
berghofe@10413
   849
  end;
berghofe@10413
   850
berghofe@10413
   851
wenzelm@15023
   852
(* rewritec: conversion to apply the meta simpset to a term *)
berghofe@10413
   853
wenzelm@15023
   854
(*Since the rewriting strategy is bottom-up, we avoid re-normalizing already
wenzelm@15023
   855
  normalized terms by carrying around the rhs of the rewrite rule just
wenzelm@15023
   856
  applied. This is called the `skeleton'. It is decomposed in parallel
wenzelm@15023
   857
  with the term. Once a Var is encountered, the corresponding term is
wenzelm@15023
   858
  already in normal form.
wenzelm@15023
   859
  skel0 is a dummy skeleton that is to enforce complete normalization.*)
wenzelm@15023
   860
berghofe@10413
   861
val skel0 = Bound 0;
berghofe@10413
   862
wenzelm@15023
   863
(*Use rhs as skeleton only if the lhs does not contain unnormalized bits.
wenzelm@15023
   864
  The latter may happen iff there are weak congruence rules for constants
wenzelm@15023
   865
  in the lhs.*)
berghofe@10413
   866
wenzelm@15023
   867
fun uncond_skel ((_, weak), (lhs, rhs)) =
wenzelm@15023
   868
  if null weak then rhs  (*optimization*)
wenzelm@20671
   869
  else if exists_Const (member (op =) weak o #1) lhs then skel0
wenzelm@15023
   870
  else rhs;
wenzelm@15023
   871
wenzelm@15023
   872
(*Behaves like unconditional rule if rhs does not contain vars not in the lhs.
wenzelm@15023
   873
  Otherwise those vars may become instantiated with unnormalized terms
wenzelm@15023
   874
  while the premises are solved.*)
wenzelm@15023
   875
wenzelm@15023
   876
fun cond_skel (args as (congs, (lhs, rhs))) =
wenzelm@20197
   877
  if Term.add_vars rhs [] subset Term.add_vars lhs [] then uncond_skel args
berghofe@10413
   878
  else skel0;
berghofe@10413
   879
berghofe@10413
   880
(*
wenzelm@15023
   881
  Rewriting -- we try in order:
berghofe@10413
   882
    (1) beta reduction
berghofe@10413
   883
    (2) unconditional rewrite rules
berghofe@10413
   884
    (3) conditional rewrite rules
berghofe@10413
   885
    (4) simplification procedures
berghofe@10413
   886
berghofe@10413
   887
  IMPORTANT: rewrite rules must not introduce new Vars or TVars!
berghofe@10413
   888
*)
berghofe@10413
   889
wenzelm@16458
   890
fun rewritec (prover, thyt, maxt) ss t =
berghofe@10413
   891
  let
wenzelm@24124
   892
    val ctxt = the_context ss;
wenzelm@15023
   893
    val Simpset ({rules, ...}, {congs, procs, termless, ...}) = ss;
berghofe@10413
   894
    val eta_thm = Thm.eta_conversion t;
wenzelm@22902
   895
    val eta_t' = Thm.rhs_of eta_thm;
berghofe@10413
   896
    val eta_t = term_of eta_t';
wenzelm@20546
   897
    fun rew {thm, name, lhs, elhs, extra, fo, perm} =
berghofe@10413
   898
      let
wenzelm@26626
   899
        val thy = Thm.theory_of_thm thm;
wenzelm@26626
   900
        val {prop, maxidx, ...} = rep_thm thm;
wenzelm@20546
   901
        val (rthm, elhs') =
wenzelm@20546
   902
          if maxt = ~1 orelse not extra then (thm, elhs)
wenzelm@22902
   903
          else (Thm.incr_indexes (maxt + 1) thm, Thm.incr_indexes_cterm (maxt + 1) elhs);
wenzelm@22902
   904
        val insts =
wenzelm@22902
   905
          if fo then Thm.first_order_match (elhs', eta_t')
wenzelm@22902
   906
          else Thm.match (elhs', eta_t');
berghofe@10413
   907
        val thm' = Thm.instantiate insts (Thm.rename_boundvars lhs eta_t rthm);
wenzelm@14643
   908
        val prop' = Thm.prop_of thm';
wenzelm@21576
   909
        val unconditional = (Logic.count_prems prop' = 0);
berghofe@10413
   910
        val (lhs', rhs') = Logic.dest_equals (Logic.strip_imp_concl prop')
berghofe@10413
   911
      in
nipkow@11295
   912
        if perm andalso not (termless (rhs', lhs'))
wenzelm@22254
   913
        then (trace_named_thm (fn () => "Cannot apply permutative rewrite rule") ss (thm, name);
wenzelm@22254
   914
              trace_thm (fn () => "Term does not become smaller:") ss thm'; NONE)
wenzelm@22254
   915
        else (trace_named_thm (fn () => "Applying instance of rewrite rule") ss (thm, name);
berghofe@10413
   916
           if unconditional
berghofe@10413
   917
           then
wenzelm@22254
   918
             (trace_thm (fn () => "Rewriting:") ss thm';
berghofe@10413
   919
              let val lr = Logic.dest_equals prop;
wenzelm@16985
   920
                  val SOME thm'' = check_conv false ss eta_thm thm'
skalberg@15531
   921
              in SOME (thm'', uncond_skel (congs, lr)) end)
berghofe@10413
   922
           else
wenzelm@22254
   923
             (trace_thm (fn () => "Trying to rewrite:") ss thm';
wenzelm@24124
   924
              if simp_depth ss > Config.get ctxt simp_depth_limit
nipkow@16042
   925
              then let val s = "simp_depth_limit exceeded - giving up"
wenzelm@22892
   926
                   in trace false (fn () => s) ss; warning s; NONE end
nipkow@16042
   927
              else
nipkow@16042
   928
              case prover ss thm' of
wenzelm@22254
   929
                NONE => (trace_thm (fn () => "FAILED") ss thm'; NONE)
skalberg@15531
   930
              | SOME thm2 =>
wenzelm@16985
   931
                  (case check_conv true ss eta_thm thm2 of
skalberg@15531
   932
                     NONE => NONE |
skalberg@15531
   933
                     SOME thm2' =>
berghofe@10413
   934
                       let val concl = Logic.strip_imp_concl prop
berghofe@10413
   935
                           val lr = Logic.dest_equals concl
nipkow@16042
   936
                       in SOME (thm2', cond_skel (congs, lr)) end)))
berghofe@10413
   937
      end
berghofe@10413
   938
skalberg@15531
   939
    fun rews [] = NONE
berghofe@10413
   940
      | rews (rrule :: rrules) =
skalberg@15531
   941
          let val opt = rew rrule handle Pattern.MATCH => NONE
skalberg@15531
   942
          in case opt of NONE => rews rrules | some => some end;
berghofe@10413
   943
berghofe@10413
   944
    fun sort_rrules rrs = let
wenzelm@14643
   945
      fun is_simple({thm, ...}:rrule) = case Thm.prop_of thm of
berghofe@10413
   946
                                      Const("==",_) $ _ $ _ => true
wenzelm@12603
   947
                                      | _                   => false
berghofe@10413
   948
      fun sort []        (re1,re2) = re1 @ re2
wenzelm@12603
   949
        | sort (rr::rrs) (re1,re2) = if is_simple rr
berghofe@10413
   950
                                     then sort rrs (rr::re1,re2)
berghofe@10413
   951
                                     else sort rrs (re1,rr::re2)
berghofe@10413
   952
    in sort rrs ([],[]) end
berghofe@10413
   953
skalberg@15531
   954
    fun proc_rews [] = NONE
wenzelm@15023
   955
      | proc_rews (Proc {name, proc, lhs, ...} :: ps) =
wenzelm@17203
   956
          if Pattern.matches thyt (Thm.term_of lhs, Thm.term_of t) then
wenzelm@22254
   957
            (debug_term false (fn () => "Trying procedure " ^ quote name ^ " on:") ss thyt eta_t;
wenzelm@23938
   958
             case proc ss eta_t' of
wenzelm@22892
   959
               NONE => (debug false (fn () => "FAILED") ss; proc_rews ps)
skalberg@15531
   960
             | SOME raw_thm =>
wenzelm@22254
   961
                 (trace_thm (fn () => "Procedure " ^ quote name ^ " produced rewrite rule:")
wenzelm@22254
   962
                   ss raw_thm;
wenzelm@16985
   963
                  (case rews (mk_procrule ss raw_thm) of
wenzelm@22254
   964
                    NONE => (trace_cterm true (fn () => "IGNORED result of simproc " ^ quote name ^
wenzelm@16985
   965
                      " -- does not match") ss t; proc_rews ps)
berghofe@10413
   966
                  | some => some)))
berghofe@10413
   967
          else proc_rews ps;
berghofe@10413
   968
  in case eta_t of
skalberg@15531
   969
       Abs _ $ _ => SOME (transitive eta_thm
berghofe@12155
   970
         (beta_conversion false eta_t'), skel0)
berghofe@10413
   971
     | _ => (case rews (sort_rrules (Net.match_term rules eta_t)) of
skalberg@15531
   972
               NONE => proc_rews (Net.match_term procs eta_t)
berghofe@10413
   973
             | some => some)
berghofe@10413
   974
  end;
berghofe@10413
   975
berghofe@10413
   976
berghofe@10413
   977
(* conversion to apply a congruence rule to a term *)
berghofe@10413
   978
krauss@30908
   979
fun congc prover ss maxt cong t =
wenzelm@22902
   980
  let val rthm = Thm.incr_indexes (maxt + 1) cong;
wenzelm@22902
   981
      val rlhs = fst (Thm.dest_equals (Drule.strip_imp_concl (cprop_of rthm)));
wenzelm@22902
   982
      val insts = Thm.match (rlhs, t)
wenzelm@22902
   983
      (* Thm.match can raise Pattern.MATCH;
berghofe@10413
   984
         is handled when congc is called *)
berghofe@10413
   985
      val thm' = Thm.instantiate insts (Thm.rename_boundvars (term_of rlhs) (term_of t) rthm);
wenzelm@22254
   986
      val unit = trace_thm (fn () => "Applying congruence rule:") ss thm';
wenzelm@22254
   987
      fun err (msg, thm) = (trace_thm (fn () => msg) ss thm; NONE)
berghofe@10413
   988
  in case prover thm' of
skalberg@15531
   989
       NONE => err ("Congruence proof failed.  Could not prove", thm')
wenzelm@16985
   990
     | SOME thm2 => (case check_conv true ss (Drule.beta_eta_conversion t) thm2 of
skalberg@15531
   991
          NONE => err ("Congruence proof failed.  Should not have proved", thm2)
skalberg@15531
   992
        | SOME thm2' =>
wenzelm@22902
   993
            if op aconv (pairself term_of (Thm.dest_equals (cprop_of thm2')))
skalberg@15531
   994
            then NONE else SOME thm2')
berghofe@10413
   995
  end;
berghofe@10413
   996
berghofe@10413
   997
val (cA, (cB, cC)) =
wenzelm@22902
   998
  apsnd Thm.dest_equals (Thm.dest_implies (hd (cprems_of Drule.imp_cong)));
berghofe@10413
   999
skalberg@15531
  1000
fun transitive1 NONE NONE = NONE
skalberg@15531
  1001
  | transitive1 (SOME thm1) NONE = SOME thm1
skalberg@15531
  1002
  | transitive1 NONE (SOME thm2) = SOME thm2
skalberg@15531
  1003
  | transitive1 (SOME thm1) (SOME thm2) = SOME (transitive thm1 thm2)
berghofe@10413
  1004
skalberg@15531
  1005
fun transitive2 thm = transitive1 (SOME thm);
skalberg@15531
  1006
fun transitive3 thm = transitive1 thm o SOME;
berghofe@13607
  1007
wenzelm@16458
  1008
fun bottomc ((simprem, useprem, mutsimp), prover, thy, maxidx) =
berghofe@10413
  1009
  let
wenzelm@15023
  1010
    fun botc skel ss t =
skalberg@15531
  1011
          if is_Var skel then NONE
berghofe@10413
  1012
          else
wenzelm@15023
  1013
          (case subc skel ss t of
skalberg@15531
  1014
             some as SOME thm1 =>
wenzelm@22902
  1015
               (case rewritec (prover, thy, maxidx) ss (Thm.rhs_of thm1) of
skalberg@15531
  1016
                  SOME (thm2, skel2) =>
berghofe@13607
  1017
                    transitive2 (transitive thm1 thm2)
wenzelm@22902
  1018
                      (botc skel2 ss (Thm.rhs_of thm2))
skalberg@15531
  1019
                | NONE => some)
skalberg@15531
  1020
           | NONE =>
wenzelm@16458
  1021
               (case rewritec (prover, thy, maxidx) ss t of
skalberg@15531
  1022
                  SOME (thm2, skel2) => transitive2 thm2
wenzelm@22902
  1023
                    (botc skel2 ss (Thm.rhs_of thm2))
skalberg@15531
  1024
                | NONE => NONE))
berghofe@10413
  1025
wenzelm@15023
  1026
    and try_botc ss t =
wenzelm@15023
  1027
          (case botc skel0 ss t of
skalberg@15531
  1028
             SOME trec1 => trec1 | NONE => (reflexive t))
berghofe@10413
  1029
wenzelm@15023
  1030
    and subc skel (ss as Simpset ({bounds, ...}, {congs, ...})) t0 =
berghofe@10413
  1031
       (case term_of t0 of
berghofe@10413
  1032
           Abs (a, T, t) =>
wenzelm@15023
  1033
             let
wenzelm@20079
  1034
                 val b = Name.bound (#1 bounds);
wenzelm@16985
  1035
                 val (v, t') = Thm.dest_abs (SOME b) t0;
wenzelm@16985
  1036
                 val b' = #1 (Term.dest_Free (Thm.term_of v));
wenzelm@21962
  1037
                 val _ =
wenzelm@21962
  1038
                   if b <> b' then
wenzelm@21962
  1039
                     warning ("Simplifier: renamed bound variable " ^ quote b ^ " to " ^ quote b')
wenzelm@21962
  1040
                   else ();
wenzelm@17614
  1041
                 val ss' = add_bound ((b', T), a) ss;
wenzelm@15023
  1042
                 val skel' = case skel of Abs (_, _, sk) => sk | _ => skel0;
wenzelm@15023
  1043
             in case botc skel' ss' t' of
skalberg@15531
  1044
                  SOME thm => SOME (abstract_rule a v thm)
skalberg@15531
  1045
                | NONE => NONE
berghofe@10413
  1046
             end
berghofe@10413
  1047
         | t $ _ => (case t of
wenzelm@15023
  1048
             Const ("==>", _) $ _  => impc t0 ss
berghofe@10413
  1049
           | Abs _ =>
berghofe@10413
  1050
               let val thm = beta_conversion false t0
wenzelm@22902
  1051
               in case subc skel0 ss (Thm.rhs_of thm) of
skalberg@15531
  1052
                    NONE => SOME thm
skalberg@15531
  1053
                  | SOME thm' => SOME (transitive thm thm')
berghofe@10413
  1054
               end
berghofe@10413
  1055
           | _  =>
berghofe@10413
  1056
               let fun appc () =
berghofe@10413
  1057
                     let
berghofe@10413
  1058
                       val (tskel, uskel) = case skel of
berghofe@10413
  1059
                           tskel $ uskel => (tskel, uskel)
berghofe@10413
  1060
                         | _ => (skel0, skel0);
wenzelm@10767
  1061
                       val (ct, cu) = Thm.dest_comb t0
berghofe@10413
  1062
                     in
wenzelm@15023
  1063
                     (case botc tskel ss ct of
skalberg@15531
  1064
                        SOME thm1 =>
wenzelm@15023
  1065
                          (case botc uskel ss cu of
skalberg@15531
  1066
                             SOME thm2 => SOME (combination thm1 thm2)
skalberg@15531
  1067
                           | NONE => SOME (combination thm1 (reflexive cu)))
skalberg@15531
  1068
                      | NONE =>
wenzelm@15023
  1069
                          (case botc uskel ss cu of
skalberg@15531
  1070
                             SOME thm1 => SOME (combination (reflexive ct) thm1)
skalberg@15531
  1071
                           | NONE => NONE))
berghofe@10413
  1072
                     end
berghofe@10413
  1073
                   val (h, ts) = strip_comb t
ballarin@13835
  1074
               in case cong_name h of
skalberg@15531
  1075
                    SOME a =>
haftmann@17232
  1076
                      (case AList.lookup (op =) (fst congs) a of
skalberg@15531
  1077
                         NONE => appc ()
skalberg@15531
  1078
                       | SOME cong =>
wenzelm@15023
  1079
  (*post processing: some partial applications h t1 ... tj, j <= length ts,
wenzelm@15023
  1080
    may be a redex. Example: map (%x. x) = (%xs. xs) wrt map_cong*)
berghofe@10413
  1081
                          (let
wenzelm@16985
  1082
                             val thm = congc (prover ss) ss maxidx cong t0;
wenzelm@22902
  1083
                             val t = the_default t0 (Option.map Thm.rhs_of thm);
wenzelm@10767
  1084
                             val (cl, cr) = Thm.dest_comb t
berghofe@10413
  1085
                             val dVar = Var(("", 0), dummyT)
berghofe@10413
  1086
                             val skel =
berghofe@10413
  1087
                               list_comb (h, replicate (length ts) dVar)
wenzelm@15023
  1088
                           in case botc skel ss cl of
skalberg@15531
  1089
                                NONE => thm
skalberg@15531
  1090
                              | SOME thm' => transitive3 thm
berghofe@12155
  1091
                                  (combination thm' (reflexive cr))
wenzelm@20057
  1092
                           end handle Pattern.MATCH => appc ()))
berghofe@10413
  1093
                  | _ => appc ()
berghofe@10413
  1094
               end)
skalberg@15531
  1095
         | _ => NONE)
berghofe@10413
  1096
wenzelm@15023
  1097
    and impc ct ss =
wenzelm@15023
  1098
      if mutsimp then mut_impc0 [] ct [] [] ss else nonmut_impc ct ss
berghofe@10413
  1099
wenzelm@15023
  1100
    and rules_of_prem ss prem =
berghofe@13607
  1101
      if maxidx_of_term (term_of prem) <> ~1
berghofe@13607
  1102
      then (trace_cterm true
wenzelm@22254
  1103
        (fn () => "Cannot add premise as rewrite rule because it contains (type) unknowns:")
wenzelm@22254
  1104
          ss prem; ([], NONE))
berghofe@13607
  1105
      else
berghofe@13607
  1106
        let val asm = assume prem
skalberg@15531
  1107
        in (extract_safe_rrules (ss, asm), SOME asm) end
berghofe@10413
  1108
wenzelm@15023
  1109
    and add_rrules (rrss, asms) ss =
wenzelm@20028
  1110
      (fold o fold) insert_rrule rrss ss |> add_prems (map_filter I asms)
berghofe@10413
  1111
wenzelm@23178
  1112
    and disch r prem eq =
berghofe@13607
  1113
      let
wenzelm@22902
  1114
        val (lhs, rhs) = Thm.dest_equals (Thm.cprop_of eq);
berghofe@13607
  1115
        val eq' = implies_elim (Thm.instantiate
berghofe@13607
  1116
          ([], [(cA, prem), (cB, lhs), (cC, rhs)]) Drule.imp_cong)
berghofe@13607
  1117
          (implies_intr prem eq)
berghofe@13607
  1118
      in if not r then eq' else
berghofe@10413
  1119
        let
wenzelm@22902
  1120
          val (prem', concl) = Thm.dest_implies lhs;
wenzelm@22902
  1121
          val (prem'', _) = Thm.dest_implies rhs
berghofe@13607
  1122
        in transitive (transitive
berghofe@13607
  1123
          (Thm.instantiate ([], [(cA, prem'), (cB, prem), (cC, concl)])
berghofe@13607
  1124
             Drule.swap_prems_eq) eq')
berghofe@13607
  1125
          (Thm.instantiate ([], [(cA, prem), (cB, prem''), (cC, concl)])
berghofe@13607
  1126
             Drule.swap_prems_eq)
berghofe@10413
  1127
        end
berghofe@10413
  1128
      end
berghofe@10413
  1129
berghofe@13607
  1130
    and rebuild [] _ _ _ _ eq = eq
wenzelm@15023
  1131
      | rebuild (prem :: prems) concl (rrs :: rrss) (asm :: asms) ss eq =
berghofe@13607
  1132
          let
wenzelm@15023
  1133
            val ss' = add_rrules (rev rrss, rev asms) ss;
berghofe@13607
  1134
            val concl' =
wenzelm@22902
  1135
              Drule.mk_implies (prem, the_default concl (Option.map Thm.rhs_of eq));
wenzelm@23178
  1136
            val dprem = Option.map (disch false prem)
wenzelm@16458
  1137
          in case rewritec (prover, thy, maxidx) ss' concl' of
skalberg@15531
  1138
              NONE => rebuild prems concl' rrss asms ss (dprem eq)
wenzelm@23178
  1139
            | SOME (eq', _) => transitive2 (fold (disch false)
wenzelm@23178
  1140
                  prems (the (transitive3 (dprem eq) eq')))
wenzelm@22902
  1141
                (mut_impc0 (rev prems) (Thm.rhs_of eq') (rev rrss) (rev asms) ss)
berghofe@13607
  1142
          end
wenzelm@15023
  1143
wenzelm@15023
  1144
    and mut_impc0 prems concl rrss asms ss =
berghofe@13607
  1145
      let
berghofe@13607
  1146
        val prems' = strip_imp_prems concl;
wenzelm@15023
  1147
        val (rrss', asms') = split_list (map (rules_of_prem ss) prems')
berghofe@13607
  1148
      in mut_impc (prems @ prems') (strip_imp_concl concl) (rrss @ rrss')
wenzelm@15023
  1149
        (asms @ asms') [] [] [] [] ss ~1 ~1
berghofe@13607
  1150
      end
wenzelm@15023
  1151
wenzelm@15023
  1152
    and mut_impc [] concl [] [] prems' rrss' asms' eqns ss changed k =
skalberg@15570
  1153
        transitive1 (Library.foldl (fn (eq2, (eq1, prem)) => transitive1 eq1
wenzelm@23178
  1154
            (Option.map (disch false prem) eq2)) (NONE, eqns ~~ prems'))
berghofe@13607
  1155
          (if changed > 0 then
berghofe@13607
  1156
             mut_impc (rev prems') concl (rev rrss') (rev asms')
wenzelm@15023
  1157
               [] [] [] [] ss ~1 changed
wenzelm@15023
  1158
           else rebuild prems' concl rrss' asms' ss
wenzelm@15023
  1159
             (botc skel0 (add_rrules (rev rrss', rev asms') ss) concl))
berghofe@13607
  1160
berghofe@13607
  1161
      | mut_impc (prem :: prems) concl (rrs :: rrss) (asm :: asms)
wenzelm@15023
  1162
          prems' rrss' asms' eqns ss changed k =
skalberg@15531
  1163
        case (if k = 0 then NONE else botc skel0 (add_rrules
wenzelm@15023
  1164
          (rev rrss' @ rrss, rev asms' @ asms) ss) prem) of
skalberg@15531
  1165
            NONE => mut_impc prems concl rrss asms (prem :: prems')
skalberg@15531
  1166
              (rrs :: rrss') (asm :: asms') (NONE :: eqns) ss changed
berghofe@13607
  1167
              (if k = 0 then 0 else k - 1)
skalberg@15531
  1168
          | SOME eqn =>
berghofe@13607
  1169
            let
wenzelm@22902
  1170
              val prem' = Thm.rhs_of eqn;
berghofe@13607
  1171
              val tprems = map term_of prems;
skalberg@15570
  1172
              val i = 1 + Library.foldl Int.max (~1, map (fn p =>
wenzelm@19618
  1173
                find_index (fn q => q aconv p) tprems) (#hyps (rep_thm eqn)));
wenzelm@15023
  1174
              val (rrs', asm') = rules_of_prem ss prem'
berghofe@13607
  1175
            in mut_impc prems concl rrss asms (prem' :: prems')
wenzelm@23178
  1176
              (rrs' :: rrss') (asm' :: asms') (SOME (fold_rev (disch true)
wenzelm@23178
  1177
                (Library.take (i, prems))
wenzelm@18470
  1178
                (Drule.imp_cong_rule eqn (reflexive (Drule.list_implies
wenzelm@23178
  1179
                  (Library.drop (i, prems), concl))))) :: eqns)
wenzelm@20671
  1180
                  ss (length prems') ~1
berghofe@13607
  1181
            end
berghofe@13607
  1182
wenzelm@15023
  1183
     (*legacy code - only for backwards compatibility*)
wenzelm@15023
  1184
     and nonmut_impc ct ss =
wenzelm@22902
  1185
       let val (prem, conc) = Thm.dest_implies ct;
skalberg@15531
  1186
           val thm1 = if simprem then botc skel0 ss prem else NONE;
wenzelm@22902
  1187
           val prem1 = the_default prem (Option.map Thm.rhs_of thm1);
wenzelm@15023
  1188
           val ss1 = if not useprem then ss else add_rrules
wenzelm@15023
  1189
             (apsnd single (apfst single (rules_of_prem ss prem1))) ss
wenzelm@15023
  1190
       in (case botc skel0 ss1 conc of
skalberg@15531
  1191
           NONE => (case thm1 of
skalberg@15531
  1192
               NONE => NONE
wenzelm@18470
  1193
             | SOME thm1' => SOME (Drule.imp_cong_rule thm1' (reflexive conc)))
skalberg@15531
  1194
         | SOME thm2 =>
wenzelm@23178
  1195
           let val thm2' = disch false prem1 thm2
berghofe@10413
  1196
           in (case thm1 of
skalberg@15531
  1197
               NONE => SOME thm2'
skalberg@15531
  1198
             | SOME thm1' =>
wenzelm@18470
  1199
                 SOME (transitive (Drule.imp_cong_rule thm1' (reflexive conc)) thm2'))
berghofe@10413
  1200
           end)
berghofe@10413
  1201
       end
berghofe@10413
  1202
wenzelm@15023
  1203
 in try_botc end;
berghofe@10413
  1204
berghofe@10413
  1205
wenzelm@15023
  1206
(* Meta-rewriting: rewrites t to u and returns the theorem t==u *)
berghofe@10413
  1207
berghofe@10413
  1208
(*
berghofe@10413
  1209
  Parameters:
berghofe@10413
  1210
    mode = (simplify A,
berghofe@10413
  1211
            use A in simplifying B,
berghofe@10413
  1212
            use prems of B (if B is again a meta-impl.) to simplify A)
berghofe@10413
  1213
           when simplifying A ==> B
berghofe@10413
  1214
    prover: how to solve premises in conditional rewrites and congruences
berghofe@10413
  1215
*)
berghofe@10413
  1216
wenzelm@17705
  1217
val debug_bounds = ref false;
wenzelm@17705
  1218
wenzelm@21962
  1219
fun check_bounds ss ct =
wenzelm@21962
  1220
  if ! debug_bounds then
wenzelm@21962
  1221
    let
wenzelm@21962
  1222
      val Simpset ({bounds = (_, bounds), ...}, _) = ss;
wenzelm@21962
  1223
      val bs = fold_aterms (fn Free (x, _) =>
wenzelm@21962
  1224
          if Name.is_bound x andalso not (AList.defined eq_bound bounds x)
wenzelm@21962
  1225
          then insert (op =) x else I
wenzelm@21962
  1226
        | _ => I) (term_of ct) [];
wenzelm@21962
  1227
    in
wenzelm@21962
  1228
      if null bs then ()
wenzelm@22892
  1229
      else print_term ss true ("Simplifier: term contains loose bounds: " ^ commas_quote bs)
wenzelm@21962
  1230
        (Thm.theory_of_cterm ct) (Thm.term_of ct)
wenzelm@21962
  1231
    end
wenzelm@21962
  1232
  else ();
wenzelm@17614
  1233
wenzelm@19052
  1234
fun rewrite_cterm mode prover raw_ss raw_ct =
wenzelm@17882
  1235
  let
wenzelm@26626
  1236
    val thy = Thm.theory_of_cterm raw_ct;
wenzelm@20260
  1237
    val ct = Thm.adjust_maxidx_cterm ~1 raw_ct;
wenzelm@26626
  1238
    val {t, maxidx, ...} = Thm.rep_cterm ct;
wenzelm@22892
  1239
    val ss = inc_simp_depth (activate_context thy raw_ss);
wenzelm@22892
  1240
    val depth = simp_depth ss;
wenzelm@21962
  1241
    val _ =
wenzelm@22892
  1242
      if depth mod 20 = 0 then
wenzelm@22892
  1243
        warning ("Simplification depth " ^ string_of_int depth)
wenzelm@21962
  1244
      else ();
wenzelm@22254
  1245
    val _ = trace_cterm false (fn () => "SIMPLIFIER INVOKED ON THE FOLLOWING TERM:") ss ct;
wenzelm@17882
  1246
    val _ = check_bounds ss ct;
wenzelm@22892
  1247
  in bottomc (mode, Option.map Drule.flexflex_unique oo prover, thy, maxidx) ss ct end;
berghofe@10413
  1248
wenzelm@21708
  1249
val simple_prover =
wenzelm@21708
  1250
  SINGLE o (fn ss => ALLGOALS (resolve_tac (prems_of_ss ss)));
wenzelm@21708
  1251
wenzelm@21708
  1252
fun rewrite _ [] ct = Thm.reflexive ct
haftmann@27582
  1253
  | rewrite full thms ct = rewrite_cterm (full, false, false) simple_prover
haftmann@27582
  1254
      (theory_context (Thm.theory_of_cterm ct) empty_ss addsimps thms) ct;
wenzelm@11672
  1255
wenzelm@23598
  1256
fun simplify full thms = Conv.fconv_rule (rewrite full thms);
wenzelm@21708
  1257
val rewrite_rule = simplify true;
wenzelm@21708
  1258
wenzelm@15023
  1259
(*simple term rewriting -- no proof*)
wenzelm@16458
  1260
fun rewrite_term thy rules procs =
wenzelm@17203
  1261
  Pattern.rewrite_term thy (map decomp_simp' rules) procs;
wenzelm@15023
  1262
wenzelm@22902
  1263
fun rewrite_thm mode prover ss = Conv.fconv_rule (rewrite_cterm mode prover ss);
berghofe@10413
  1264
wenzelm@23536
  1265
(*Rewrite the subgoals of a proof state (represented by a theorem)*)
wenzelm@21708
  1266
fun rewrite_goals_rule thms th =
wenzelm@23584
  1267
  Conv.fconv_rule (Conv.prems_conv ~1 (rewrite_cterm (true, true, true) simple_prover
wenzelm@23584
  1268
    (theory_context (Thm.theory_of_thm th) empty_ss addsimps thms))) th;
berghofe@10413
  1269
wenzelm@15023
  1270
(*Rewrite the subgoal of a proof state (represented by a theorem)*)
skalberg@15011
  1271
fun rewrite_goal_rule mode prover ss i thm =
wenzelm@23536
  1272
  if 0 < i andalso i <= Thm.nprems_of thm
wenzelm@23584
  1273
  then Conv.gconv_rule (rewrite_cterm mode prover ss) i thm
wenzelm@23536
  1274
  else raise THM ("rewrite_goal_rule", i, [thm]);
berghofe@10413
  1275
wenzelm@20228
  1276
wenzelm@21708
  1277
(** meta-rewriting tactics **)
wenzelm@21708
  1278
wenzelm@28839
  1279
(*Rewrite all subgoals*)
wenzelm@21708
  1280
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
wenzelm@21708
  1281
fun rewtac def = rewrite_goals_tac [def];
wenzelm@21708
  1282
wenzelm@28839
  1283
(*Rewrite one subgoal*)
wenzelm@25203
  1284
fun asm_rewrite_goal_tac mode prover_tac ss i thm =
wenzelm@25203
  1285
  if 0 < i andalso i <= Thm.nprems_of thm then
wenzelm@25203
  1286
    Seq.single (Conv.gconv_rule (rewrite_cterm mode (SINGLE o prover_tac) ss) i thm)
wenzelm@25203
  1287
  else Seq.empty;
wenzelm@23536
  1288
wenzelm@23536
  1289
fun rewrite_goal_tac rews =
wenzelm@23536
  1290
  let val ss = empty_ss addsimps rews in
wenzelm@23536
  1291
    fn i => fn st => asm_rewrite_goal_tac (true, false, false) (K no_tac)
wenzelm@23536
  1292
      (theory_context (Thm.theory_of_thm st) ss) i st
wenzelm@23536
  1293
  end;
wenzelm@23536
  1294
wenzelm@21708
  1295
(*Prunes all redundant parameters from the proof state by rewriting.
wenzelm@21708
  1296
  DOES NOT rewrite main goal, where quantification over an unused bound
wenzelm@21708
  1297
    variable is sometimes done to avoid the need for cut_facts_tac.*)
wenzelm@21708
  1298
val prune_params_tac = rewrite_goals_tac [triv_forall_equality];
wenzelm@21708
  1299
wenzelm@21708
  1300
wenzelm@21708
  1301
(* for folding definitions, handling critical pairs *)
wenzelm@21708
  1302
wenzelm@21708
  1303
(*The depth of nesting in a term*)
wenzelm@21708
  1304
fun term_depth (Abs(a,T,t)) = 1 + term_depth t
wenzelm@21708
  1305
  | term_depth (f$t) = 1 + Int.max(term_depth f, term_depth t)
wenzelm@21708
  1306
  | term_depth _ = 0;
wenzelm@21708
  1307
wenzelm@21708
  1308
val lhs_of_thm = #1 o Logic.dest_equals o prop_of;
wenzelm@21708
  1309
wenzelm@21708
  1310
(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
wenzelm@21708
  1311
  Returns longest lhs first to avoid folding its subexpressions.*)
wenzelm@21708
  1312
fun sort_lhs_depths defs =
wenzelm@21708
  1313
  let val keylist = AList.make (term_depth o lhs_of_thm) defs
wenzelm@21708
  1314
      val keys = sort_distinct (rev_order o int_ord) (map #2 keylist)
wenzelm@21708
  1315
  in map (AList.find (op =) keylist) keys end;
wenzelm@21708
  1316
wenzelm@21708
  1317
val rev_defs = sort_lhs_depths o map symmetric;
wenzelm@21708
  1318
wenzelm@21708
  1319
fun fold_rule defs = fold rewrite_rule (rev_defs defs);
wenzelm@21708
  1320
fun fold_goals_tac defs = EVERY (map rewrite_goals_tac (rev_defs defs));
wenzelm@21708
  1321
wenzelm@21708
  1322
wenzelm@20228
  1323
(* HHF normal form: !! before ==>, outermost !! generalized *)
wenzelm@20228
  1324
wenzelm@20228
  1325
local
wenzelm@20228
  1326
wenzelm@21565
  1327
fun gen_norm_hhf ss th =
wenzelm@21565
  1328
  (if Drule.is_norm_hhf (Thm.prop_of th) then th
wenzelm@26424
  1329
   else Conv.fconv_rule
wenzelm@26424
  1330
    (rewrite_cterm (true, false, false) (K (K NONE)) (theory_context (Thm.theory_of_thm th) ss)) th)
wenzelm@21565
  1331
  |> Thm.adjust_maxidx_thm ~1
wenzelm@21565
  1332
  |> Drule.gen_all;
wenzelm@20228
  1333
wenzelm@28620
  1334
val hhf_ss = empty_ss addsimps Drule.norm_hhf_eqs;
wenzelm@20228
  1335
wenzelm@20228
  1336
in
wenzelm@20228
  1337
wenzelm@26424
  1338
val norm_hhf = gen_norm_hhf hhf_ss;
wenzelm@26424
  1339
val norm_hhf_protect = gen_norm_hhf (hhf_ss addeqcongs [Drule.protect_cong]);
wenzelm@20228
  1340
wenzelm@20228
  1341
end;
wenzelm@20228
  1342
berghofe@10413
  1343
end;
berghofe@10413
  1344
wenzelm@11672
  1345
structure BasicMetaSimplifier: BASIC_META_SIMPLIFIER = MetaSimplifier;
wenzelm@11672
  1346
open BasicMetaSimplifier;