src/HOL/Ring_and_Field.thy
author huffman
Wed Feb 18 15:01:53 2009 -0800 (2009-02-18)
changeset 29981 7d0ed261b712
parent 29949 20a506b8256d
child 30042 31039ee583fa
permissions -rw-r--r--
generalize int_dvd_cancel_factor simproc to idom class
paulson@14265
     1
(*  Title:   HOL/Ring_and_Field.thy
nipkow@23477
     2
    Author:  Gertrud Bauer, Steven Obua, Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel,
avigad@16775
     3
             with contributions by Jeremy Avigad
paulson@14265
     4
*)
paulson@14265
     5
obua@14738
     6
header {* (Ordered) Rings and Fields *}
paulson@14265
     7
paulson@15229
     8
theory Ring_and_Field
nipkow@15140
     9
imports OrderedGroup
nipkow@15131
    10
begin
paulson@14504
    11
obua@14738
    12
text {*
obua@14738
    13
  The theory of partially ordered rings is taken from the books:
obua@14738
    14
  \begin{itemize}
obua@14738
    15
  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
obua@14738
    16
  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
obua@14738
    17
  \end{itemize}
obua@14738
    18
  Most of the used notions can also be looked up in 
obua@14738
    19
  \begin{itemize}
wenzelm@14770
    20
  \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
obua@14738
    21
  \item \emph{Algebra I} by van der Waerden, Springer.
obua@14738
    22
  \end{itemize}
obua@14738
    23
*}
paulson@14504
    24
haftmann@22390
    25
class semiring = ab_semigroup_add + semigroup_mult +
nipkow@29667
    26
  assumes left_distrib[algebra_simps]: "(a + b) * c = a * c + b * c"
nipkow@29667
    27
  assumes right_distrib[algebra_simps]: "a * (b + c) = a * b + a * c"
haftmann@25152
    28
begin
haftmann@25152
    29
haftmann@25152
    30
text{*For the @{text combine_numerals} simproc*}
haftmann@25152
    31
lemma combine_common_factor:
haftmann@25152
    32
  "a * e + (b * e + c) = (a + b) * e + c"
nipkow@29667
    33
by (simp add: left_distrib add_ac)
haftmann@25152
    34
haftmann@25152
    35
end
paulson@14504
    36
haftmann@22390
    37
class mult_zero = times + zero +
haftmann@25062
    38
  assumes mult_zero_left [simp]: "0 * a = 0"
haftmann@25062
    39
  assumes mult_zero_right [simp]: "a * 0 = 0"
krauss@21199
    40
haftmann@22390
    41
class semiring_0 = semiring + comm_monoid_add + mult_zero
krauss@21199
    42
huffman@29904
    43
class semiring_0_cancel = semiring + cancel_comm_monoid_add
haftmann@25186
    44
begin
paulson@14504
    45
haftmann@25186
    46
subclass semiring_0
haftmann@28823
    47
proof
krauss@21199
    48
  fix a :: 'a
nipkow@29667
    49
  have "0 * a + 0 * a = 0 * a + 0" by (simp add: left_distrib [symmetric])
nipkow@29667
    50
  thus "0 * a = 0" by (simp only: add_left_cancel)
haftmann@25152
    51
next
haftmann@25152
    52
  fix a :: 'a
nipkow@29667
    53
  have "a * 0 + a * 0 = a * 0 + 0" by (simp add: right_distrib [symmetric])
nipkow@29667
    54
  thus "a * 0 = 0" by (simp only: add_left_cancel)
krauss@21199
    55
qed
obua@14940
    56
haftmann@25186
    57
end
haftmann@25152
    58
haftmann@22390
    59
class comm_semiring = ab_semigroup_add + ab_semigroup_mult +
haftmann@25062
    60
  assumes distrib: "(a + b) * c = a * c + b * c"
haftmann@25152
    61
begin
paulson@14504
    62
haftmann@25152
    63
subclass semiring
haftmann@28823
    64
proof
obua@14738
    65
  fix a b c :: 'a
obua@14738
    66
  show "(a + b) * c = a * c + b * c" by (simp add: distrib)
obua@14738
    67
  have "a * (b + c) = (b + c) * a" by (simp add: mult_ac)
obua@14738
    68
  also have "... = b * a + c * a" by (simp only: distrib)
obua@14738
    69
  also have "... = a * b + a * c" by (simp add: mult_ac)
obua@14738
    70
  finally show "a * (b + c) = a * b + a * c" by blast
paulson@14504
    71
qed
paulson@14504
    72
haftmann@25152
    73
end
paulson@14504
    74
haftmann@25152
    75
class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero
haftmann@25152
    76
begin
haftmann@25152
    77
huffman@27516
    78
subclass semiring_0 ..
haftmann@25152
    79
haftmann@25152
    80
end
paulson@14504
    81
huffman@29904
    82
class comm_semiring_0_cancel = comm_semiring + cancel_comm_monoid_add
haftmann@25186
    83
begin
obua@14940
    84
huffman@27516
    85
subclass semiring_0_cancel ..
obua@14940
    86
huffman@28141
    87
subclass comm_semiring_0 ..
huffman@28141
    88
haftmann@25186
    89
end
krauss@21199
    90
haftmann@22390
    91
class zero_neq_one = zero + one +
haftmann@25062
    92
  assumes zero_neq_one [simp]: "0 \<noteq> 1"
haftmann@26193
    93
begin
haftmann@26193
    94
haftmann@26193
    95
lemma one_neq_zero [simp]: "1 \<noteq> 0"
nipkow@29667
    96
by (rule not_sym) (rule zero_neq_one)
haftmann@26193
    97
haftmann@26193
    98
end
paulson@14265
    99
haftmann@22390
   100
class semiring_1 = zero_neq_one + semiring_0 + monoid_mult
paulson@14504
   101
haftmann@27651
   102
text {* Abstract divisibility *}
haftmann@27651
   103
haftmann@27651
   104
class dvd = times
haftmann@27651
   105
begin
haftmann@27651
   106
haftmann@28559
   107
definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "dvd" 50) where
haftmann@28559
   108
  [code del]: "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)"
haftmann@27651
   109
haftmann@27651
   110
lemma dvdI [intro?]: "a = b * k \<Longrightarrow> b dvd a"
haftmann@27651
   111
  unfolding dvd_def ..
haftmann@27651
   112
haftmann@27651
   113
lemma dvdE [elim?]: "b dvd a \<Longrightarrow> (\<And>k. a = b * k \<Longrightarrow> P) \<Longrightarrow> P"
haftmann@27651
   114
  unfolding dvd_def by blast 
haftmann@27651
   115
haftmann@27651
   116
end
haftmann@27651
   117
haftmann@27651
   118
class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult + dvd
haftmann@22390
   119
  (*previously almost_semiring*)
haftmann@25152
   120
begin
obua@14738
   121
huffman@27516
   122
subclass semiring_1 ..
haftmann@25152
   123
nipkow@29925
   124
lemma dvd_refl[simp]: "a dvd a"
haftmann@28559
   125
proof
haftmann@28559
   126
  show "a = a * 1" by simp
haftmann@27651
   127
qed
haftmann@27651
   128
haftmann@27651
   129
lemma dvd_trans:
haftmann@27651
   130
  assumes "a dvd b" and "b dvd c"
haftmann@27651
   131
  shows "a dvd c"
haftmann@27651
   132
proof -
haftmann@28559
   133
  from assms obtain v where "b = a * v" by (auto elim!: dvdE)
haftmann@28559
   134
  moreover from assms obtain w where "c = b * w" by (auto elim!: dvdE)
haftmann@27651
   135
  ultimately have "c = a * (v * w)" by (simp add: mult_assoc)
haftmann@28559
   136
  then show ?thesis ..
haftmann@27651
   137
qed
haftmann@27651
   138
haftmann@27651
   139
lemma dvd_0_left_iff [noatp, simp]: "0 dvd a \<longleftrightarrow> a = 0"
nipkow@29667
   140
by (auto intro: dvd_refl elim!: dvdE)
haftmann@28559
   141
haftmann@28559
   142
lemma dvd_0_right [iff]: "a dvd 0"
haftmann@28559
   143
proof
haftmann@27651
   144
  show "0 = a * 0" by simp
haftmann@27651
   145
qed
haftmann@27651
   146
haftmann@27651
   147
lemma one_dvd [simp]: "1 dvd a"
nipkow@29667
   148
by (auto intro!: dvdI)
haftmann@27651
   149
haftmann@27651
   150
lemma dvd_mult: "a dvd c \<Longrightarrow> a dvd (b * c)"
nipkow@29667
   151
by (auto intro!: mult_left_commute dvdI elim!: dvdE)
haftmann@27651
   152
haftmann@27651
   153
lemma dvd_mult2: "a dvd b \<Longrightarrow> a dvd (b * c)"
haftmann@27651
   154
  apply (subst mult_commute)
haftmann@27651
   155
  apply (erule dvd_mult)
haftmann@27651
   156
  done
haftmann@27651
   157
haftmann@27651
   158
lemma dvd_triv_right [simp]: "a dvd b * a"
nipkow@29667
   159
by (rule dvd_mult) (rule dvd_refl)
haftmann@27651
   160
haftmann@27651
   161
lemma dvd_triv_left [simp]: "a dvd a * b"
nipkow@29667
   162
by (rule dvd_mult2) (rule dvd_refl)
haftmann@27651
   163
haftmann@27651
   164
lemma mult_dvd_mono:
haftmann@27651
   165
  assumes ab: "a dvd b"
haftmann@27651
   166
    and "cd": "c dvd d"
haftmann@27651
   167
  shows "a * c dvd b * d"
haftmann@27651
   168
proof -
haftmann@27651
   169
  from ab obtain b' where "b = a * b'" ..
haftmann@27651
   170
  moreover from "cd" obtain d' where "d = c * d'" ..
haftmann@27651
   171
  ultimately have "b * d = (a * c) * (b' * d')" by (simp add: mult_ac)
haftmann@27651
   172
  then show ?thesis ..
haftmann@27651
   173
qed
haftmann@27651
   174
haftmann@27651
   175
lemma dvd_mult_left: "a * b dvd c \<Longrightarrow> a dvd c"
nipkow@29667
   176
by (simp add: dvd_def mult_assoc, blast)
haftmann@27651
   177
haftmann@27651
   178
lemma dvd_mult_right: "a * b dvd c \<Longrightarrow> b dvd c"
haftmann@27651
   179
  unfolding mult_ac [of a] by (rule dvd_mult_left)
haftmann@27651
   180
haftmann@27651
   181
lemma dvd_0_left: "0 dvd a \<Longrightarrow> a = 0"
nipkow@29667
   182
by simp
haftmann@27651
   183
nipkow@29925
   184
lemma dvd_add[simp]:
nipkow@29925
   185
  assumes "a dvd b" and "a dvd c" shows "a dvd (b + c)"
haftmann@27651
   186
proof -
nipkow@29925
   187
  from `a dvd b` obtain b' where "b = a * b'" ..
nipkow@29925
   188
  moreover from `a dvd c` obtain c' where "c = a * c'" ..
haftmann@27651
   189
  ultimately have "b + c = a * (b' + c')" by (simp add: right_distrib)
haftmann@27651
   190
  then show ?thesis ..
haftmann@27651
   191
qed
haftmann@27651
   192
haftmann@25152
   193
end
paulson@14421
   194
nipkow@29925
   195
haftmann@22390
   196
class no_zero_divisors = zero + times +
haftmann@25062
   197
  assumes no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0"
paulson@14504
   198
huffman@29904
   199
class semiring_1_cancel = semiring + cancel_comm_monoid_add
huffman@29904
   200
  + zero_neq_one + monoid_mult
haftmann@25267
   201
begin
obua@14940
   202
huffman@27516
   203
subclass semiring_0_cancel ..
haftmann@25512
   204
huffman@27516
   205
subclass semiring_1 ..
haftmann@25267
   206
haftmann@25267
   207
end
krauss@21199
   208
huffman@29904
   209
class comm_semiring_1_cancel = comm_semiring + cancel_comm_monoid_add
huffman@29904
   210
  + zero_neq_one + comm_monoid_mult
haftmann@25267
   211
begin
obua@14738
   212
huffman@27516
   213
subclass semiring_1_cancel ..
huffman@27516
   214
subclass comm_semiring_0_cancel ..
huffman@27516
   215
subclass comm_semiring_1 ..
haftmann@25267
   216
haftmann@25267
   217
end
haftmann@25152
   218
haftmann@22390
   219
class ring = semiring + ab_group_add
haftmann@25267
   220
begin
haftmann@25152
   221
huffman@27516
   222
subclass semiring_0_cancel ..
haftmann@25152
   223
haftmann@25152
   224
text {* Distribution rules *}
haftmann@25152
   225
haftmann@25152
   226
lemma minus_mult_left: "- (a * b) = - a * b"
nipkow@29667
   227
by (rule equals_zero_I) (simp add: left_distrib [symmetric]) 
haftmann@25152
   228
haftmann@25152
   229
lemma minus_mult_right: "- (a * b) = a * - b"
nipkow@29667
   230
by (rule equals_zero_I) (simp add: right_distrib [symmetric]) 
haftmann@25152
   231
huffman@29407
   232
text{*Extract signs from products*}
nipkow@29833
   233
lemmas mult_minus_left [simp, noatp] = minus_mult_left [symmetric]
nipkow@29833
   234
lemmas mult_minus_right [simp,noatp] = minus_mult_right [symmetric]
huffman@29407
   235
haftmann@25152
   236
lemma minus_mult_minus [simp]: "- a * - b = a * b"
nipkow@29667
   237
by simp
haftmann@25152
   238
haftmann@25152
   239
lemma minus_mult_commute: "- a * b = a * - b"
nipkow@29667
   240
by simp
nipkow@29667
   241
nipkow@29667
   242
lemma right_diff_distrib[algebra_simps]: "a * (b - c) = a * b - a * c"
nipkow@29667
   243
by (simp add: right_distrib diff_minus)
nipkow@29667
   244
nipkow@29667
   245
lemma left_diff_distrib[algebra_simps]: "(a - b) * c = a * c - b * c"
nipkow@29667
   246
by (simp add: left_distrib diff_minus)
haftmann@25152
   247
nipkow@29833
   248
lemmas ring_distribs[noatp] =
haftmann@25152
   249
  right_distrib left_distrib left_diff_distrib right_diff_distrib
haftmann@25152
   250
nipkow@29667
   251
text{*Legacy - use @{text algebra_simps} *}
nipkow@29833
   252
lemmas ring_simps[noatp] = algebra_simps
haftmann@25230
   253
haftmann@25230
   254
lemma eq_add_iff1:
haftmann@25230
   255
  "a * e + c = b * e + d \<longleftrightarrow> (a - b) * e + c = d"
nipkow@29667
   256
by (simp add: algebra_simps)
haftmann@25230
   257
haftmann@25230
   258
lemma eq_add_iff2:
haftmann@25230
   259
  "a * e + c = b * e + d \<longleftrightarrow> c = (b - a) * e + d"
nipkow@29667
   260
by (simp add: algebra_simps)
haftmann@25230
   261
haftmann@25152
   262
end
haftmann@25152
   263
nipkow@29833
   264
lemmas ring_distribs[noatp] =
haftmann@25152
   265
  right_distrib left_distrib left_diff_distrib right_diff_distrib
haftmann@25152
   266
haftmann@22390
   267
class comm_ring = comm_semiring + ab_group_add
haftmann@25267
   268
begin
obua@14738
   269
huffman@27516
   270
subclass ring ..
huffman@28141
   271
subclass comm_semiring_0_cancel ..
haftmann@25267
   272
haftmann@25267
   273
end
obua@14738
   274
haftmann@22390
   275
class ring_1 = ring + zero_neq_one + monoid_mult
haftmann@25267
   276
begin
paulson@14265
   277
huffman@27516
   278
subclass semiring_1_cancel ..
haftmann@25267
   279
haftmann@25267
   280
end
haftmann@25152
   281
haftmann@22390
   282
class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult
haftmann@22390
   283
  (*previously ring*)
haftmann@25267
   284
begin
obua@14738
   285
huffman@27516
   286
subclass ring_1 ..
huffman@27516
   287
subclass comm_semiring_1_cancel ..
haftmann@25267
   288
huffman@29465
   289
lemma dvd_minus_iff [simp]: "x dvd - y \<longleftrightarrow> x dvd y"
huffman@29408
   290
proof
huffman@29408
   291
  assume "x dvd - y"
huffman@29408
   292
  then have "x dvd - 1 * - y" by (rule dvd_mult)
huffman@29408
   293
  then show "x dvd y" by simp
huffman@29408
   294
next
huffman@29408
   295
  assume "x dvd y"
huffman@29408
   296
  then have "x dvd - 1 * y" by (rule dvd_mult)
huffman@29408
   297
  then show "x dvd - y" by simp
huffman@29408
   298
qed
huffman@29408
   299
huffman@29465
   300
lemma minus_dvd_iff [simp]: "- x dvd y \<longleftrightarrow> x dvd y"
huffman@29408
   301
proof
huffman@29408
   302
  assume "- x dvd y"
huffman@29408
   303
  then obtain k where "y = - x * k" ..
huffman@29408
   304
  then have "y = x * - k" by simp
huffman@29408
   305
  then show "x dvd y" ..
huffman@29408
   306
next
huffman@29408
   307
  assume "x dvd y"
huffman@29408
   308
  then obtain k where "y = x * k" ..
huffman@29408
   309
  then have "y = - x * - k" by simp
huffman@29408
   310
  then show "- x dvd y" ..
huffman@29408
   311
qed
huffman@29408
   312
huffman@29409
   313
lemma dvd_diff: "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)"
nipkow@29667
   314
by (simp add: diff_minus dvd_add dvd_minus_iff)
huffman@29409
   315
haftmann@25267
   316
end
haftmann@25152
   317
huffman@22990
   318
class ring_no_zero_divisors = ring + no_zero_divisors
haftmann@25230
   319
begin
haftmann@25230
   320
haftmann@25230
   321
lemma mult_eq_0_iff [simp]:
haftmann@25230
   322
  shows "a * b = 0 \<longleftrightarrow> (a = 0 \<or> b = 0)"
haftmann@25230
   323
proof (cases "a = 0 \<or> b = 0")
haftmann@25230
   324
  case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto
haftmann@25230
   325
    then show ?thesis using no_zero_divisors by simp
haftmann@25230
   326
next
haftmann@25230
   327
  case True then show ?thesis by auto
haftmann@25230
   328
qed
haftmann@25230
   329
haftmann@26193
   330
text{*Cancellation of equalities with a common factor*}
haftmann@26193
   331
lemma mult_cancel_right [simp, noatp]:
haftmann@26193
   332
  "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b"
haftmann@26193
   333
proof -
haftmann@26193
   334
  have "(a * c = b * c) = ((a - b) * c = 0)"
nipkow@29667
   335
    by (simp add: algebra_simps right_minus_eq)
nipkow@29667
   336
  thus ?thesis by (simp add: disj_commute right_minus_eq)
haftmann@26193
   337
qed
haftmann@26193
   338
haftmann@26193
   339
lemma mult_cancel_left [simp, noatp]:
haftmann@26193
   340
  "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b"
haftmann@26193
   341
proof -
haftmann@26193
   342
  have "(c * a = c * b) = (c * (a - b) = 0)"
nipkow@29667
   343
    by (simp add: algebra_simps right_minus_eq)
nipkow@29667
   344
  thus ?thesis by (simp add: right_minus_eq)
haftmann@26193
   345
qed
haftmann@26193
   346
haftmann@25230
   347
end
huffman@22990
   348
huffman@23544
   349
class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors
haftmann@26274
   350
begin
haftmann@26274
   351
haftmann@26274
   352
lemma mult_cancel_right1 [simp]:
haftmann@26274
   353
  "c = b * c \<longleftrightarrow> c = 0 \<or> b = 1"
nipkow@29667
   354
by (insert mult_cancel_right [of 1 c b], force)
haftmann@26274
   355
haftmann@26274
   356
lemma mult_cancel_right2 [simp]:
haftmann@26274
   357
  "a * c = c \<longleftrightarrow> c = 0 \<or> a = 1"
nipkow@29667
   358
by (insert mult_cancel_right [of a c 1], simp)
haftmann@26274
   359
 
haftmann@26274
   360
lemma mult_cancel_left1 [simp]:
haftmann@26274
   361
  "c = c * b \<longleftrightarrow> c = 0 \<or> b = 1"
nipkow@29667
   362
by (insert mult_cancel_left [of c 1 b], force)
haftmann@26274
   363
haftmann@26274
   364
lemma mult_cancel_left2 [simp]:
haftmann@26274
   365
  "c * a = c \<longleftrightarrow> c = 0 \<or> a = 1"
nipkow@29667
   366
by (insert mult_cancel_left [of c a 1], simp)
haftmann@26274
   367
haftmann@26274
   368
end
huffman@22990
   369
haftmann@22390
   370
class idom = comm_ring_1 + no_zero_divisors
haftmann@25186
   371
begin
paulson@14421
   372
huffman@27516
   373
subclass ring_1_no_zero_divisors ..
huffman@22990
   374
huffman@29915
   375
lemma square_eq_iff: "a * a = b * b \<longleftrightarrow> (a = b \<or> a = - b)"
huffman@29915
   376
proof
huffman@29915
   377
  assume "a * a = b * b"
huffman@29915
   378
  then have "(a - b) * (a + b) = 0"
huffman@29915
   379
    by (simp add: algebra_simps)
huffman@29915
   380
  then show "a = b \<or> a = - b"
huffman@29915
   381
    by (simp add: right_minus_eq eq_neg_iff_add_eq_0)
huffman@29915
   382
next
huffman@29915
   383
  assume "a = b \<or> a = - b"
huffman@29915
   384
  then show "a * a = b * b" by auto
huffman@29915
   385
qed
huffman@29915
   386
huffman@29981
   387
lemma dvd_mult_cancel_right [simp]:
huffman@29981
   388
  "a * c dvd b * c \<longleftrightarrow> c = 0 \<or> a dvd b"
huffman@29981
   389
proof -
huffman@29981
   390
  have "a * c dvd b * c \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)"
huffman@29981
   391
    unfolding dvd_def by (simp add: mult_ac)
huffman@29981
   392
  also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b"
huffman@29981
   393
    unfolding dvd_def by simp
huffman@29981
   394
  finally show ?thesis .
huffman@29981
   395
qed
huffman@29981
   396
huffman@29981
   397
lemma dvd_mult_cancel_left [simp]:
huffman@29981
   398
  "c * a dvd c * b \<longleftrightarrow> c = 0 \<or> a dvd b"
huffman@29981
   399
proof -
huffman@29981
   400
  have "c * a dvd c * b \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)"
huffman@29981
   401
    unfolding dvd_def by (simp add: mult_ac)
huffman@29981
   402
  also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b"
huffman@29981
   403
    unfolding dvd_def by simp
huffman@29981
   404
  finally show ?thesis .
huffman@29981
   405
qed
huffman@29981
   406
haftmann@25186
   407
end
haftmann@25152
   408
haftmann@22390
   409
class division_ring = ring_1 + inverse +
haftmann@25062
   410
  assumes left_inverse [simp]:  "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
haftmann@25062
   411
  assumes right_inverse [simp]: "a \<noteq> 0 \<Longrightarrow> a * inverse a = 1"
haftmann@25186
   412
begin
huffman@20496
   413
haftmann@25186
   414
subclass ring_1_no_zero_divisors
haftmann@28823
   415
proof
huffman@22987
   416
  fix a b :: 'a
huffman@22987
   417
  assume a: "a \<noteq> 0" and b: "b \<noteq> 0"
huffman@22987
   418
  show "a * b \<noteq> 0"
huffman@22987
   419
  proof
huffman@22987
   420
    assume ab: "a * b = 0"
nipkow@29667
   421
    hence "0 = inverse a * (a * b) * inverse b" by simp
huffman@22987
   422
    also have "\<dots> = (inverse a * a) * (b * inverse b)"
huffman@22987
   423
      by (simp only: mult_assoc)
nipkow@29667
   424
    also have "\<dots> = 1" using a b by simp
nipkow@29667
   425
    finally show False by simp
huffman@22987
   426
  qed
huffman@22987
   427
qed
huffman@20496
   428
haftmann@26274
   429
lemma nonzero_imp_inverse_nonzero:
haftmann@26274
   430
  "a \<noteq> 0 \<Longrightarrow> inverse a \<noteq> 0"
haftmann@26274
   431
proof
haftmann@26274
   432
  assume ianz: "inverse a = 0"
haftmann@26274
   433
  assume "a \<noteq> 0"
haftmann@26274
   434
  hence "1 = a * inverse a" by simp
haftmann@26274
   435
  also have "... = 0" by (simp add: ianz)
haftmann@26274
   436
  finally have "1 = 0" .
haftmann@26274
   437
  thus False by (simp add: eq_commute)
haftmann@26274
   438
qed
haftmann@26274
   439
haftmann@26274
   440
lemma inverse_zero_imp_zero:
haftmann@26274
   441
  "inverse a = 0 \<Longrightarrow> a = 0"
haftmann@26274
   442
apply (rule classical)
haftmann@26274
   443
apply (drule nonzero_imp_inverse_nonzero)
haftmann@26274
   444
apply auto
haftmann@26274
   445
done
haftmann@26274
   446
haftmann@26274
   447
lemma inverse_unique: 
haftmann@26274
   448
  assumes ab: "a * b = 1"
haftmann@26274
   449
  shows "inverse a = b"
haftmann@26274
   450
proof -
haftmann@26274
   451
  have "a \<noteq> 0" using ab by (cases "a = 0") simp_all
huffman@29406
   452
  moreover have "inverse a * (a * b) = inverse a" by (simp add: ab)
huffman@29406
   453
  ultimately show ?thesis by (simp add: mult_assoc [symmetric])
haftmann@26274
   454
qed
haftmann@26274
   455
huffman@29406
   456
lemma nonzero_inverse_minus_eq:
huffman@29406
   457
  "a \<noteq> 0 \<Longrightarrow> inverse (- a) = - inverse a"
nipkow@29667
   458
by (rule inverse_unique) simp
huffman@29406
   459
huffman@29406
   460
lemma nonzero_inverse_inverse_eq:
huffman@29406
   461
  "a \<noteq> 0 \<Longrightarrow> inverse (inverse a) = a"
nipkow@29667
   462
by (rule inverse_unique) simp
huffman@29406
   463
huffman@29406
   464
lemma nonzero_inverse_eq_imp_eq:
huffman@29406
   465
  assumes "inverse a = inverse b" and "a \<noteq> 0" and "b \<noteq> 0"
huffman@29406
   466
  shows "a = b"
huffman@29406
   467
proof -
huffman@29406
   468
  from `inverse a = inverse b`
nipkow@29667
   469
  have "inverse (inverse a) = inverse (inverse b)" by (rule arg_cong)
huffman@29406
   470
  with `a \<noteq> 0` and `b \<noteq> 0` show "a = b"
huffman@29406
   471
    by (simp add: nonzero_inverse_inverse_eq)
huffman@29406
   472
qed
huffman@29406
   473
huffman@29406
   474
lemma inverse_1 [simp]: "inverse 1 = 1"
nipkow@29667
   475
by (rule inverse_unique) simp
huffman@29406
   476
haftmann@26274
   477
lemma nonzero_inverse_mult_distrib: 
huffman@29406
   478
  assumes "a \<noteq> 0" and "b \<noteq> 0"
haftmann@26274
   479
  shows "inverse (a * b) = inverse b * inverse a"
haftmann@26274
   480
proof -
nipkow@29667
   481
  have "a * (b * inverse b) * inverse a = 1" using assms by simp
nipkow@29667
   482
  hence "a * b * (inverse b * inverse a) = 1" by (simp only: mult_assoc)
nipkow@29667
   483
  thus ?thesis by (rule inverse_unique)
haftmann@26274
   484
qed
haftmann@26274
   485
haftmann@26274
   486
lemma division_ring_inverse_add:
haftmann@26274
   487
  "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a + inverse b = inverse a * (a + b) * inverse b"
nipkow@29667
   488
by (simp add: algebra_simps)
haftmann@26274
   489
haftmann@26274
   490
lemma division_ring_inverse_diff:
haftmann@26274
   491
  "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a - inverse b = inverse a * (b - a) * inverse b"
nipkow@29667
   492
by (simp add: algebra_simps)
haftmann@26274
   493
haftmann@25186
   494
end
haftmann@25152
   495
huffman@22987
   496
class field = comm_ring_1 + inverse +
haftmann@25062
   497
  assumes field_inverse:  "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
haftmann@25062
   498
  assumes divide_inverse: "a / b = a * inverse b"
haftmann@25267
   499
begin
huffman@20496
   500
haftmann@25267
   501
subclass division_ring
haftmann@28823
   502
proof
huffman@22987
   503
  fix a :: 'a
huffman@22987
   504
  assume "a \<noteq> 0"
huffman@22987
   505
  thus "inverse a * a = 1" by (rule field_inverse)
huffman@22987
   506
  thus "a * inverse a = 1" by (simp only: mult_commute)
obua@14738
   507
qed
haftmann@25230
   508
huffman@27516
   509
subclass idom ..
haftmann@25230
   510
haftmann@25230
   511
lemma right_inverse_eq: "b \<noteq> 0 \<Longrightarrow> a / b = 1 \<longleftrightarrow> a = b"
haftmann@25230
   512
proof
haftmann@25230
   513
  assume neq: "b \<noteq> 0"
haftmann@25230
   514
  {
haftmann@25230
   515
    hence "a = (a / b) * b" by (simp add: divide_inverse mult_ac)
haftmann@25230
   516
    also assume "a / b = 1"
haftmann@25230
   517
    finally show "a = b" by simp
haftmann@25230
   518
  next
haftmann@25230
   519
    assume "a = b"
haftmann@25230
   520
    with neq show "a / b = 1" by (simp add: divide_inverse)
haftmann@25230
   521
  }
haftmann@25230
   522
qed
haftmann@25230
   523
haftmann@25230
   524
lemma nonzero_inverse_eq_divide: "a \<noteq> 0 \<Longrightarrow> inverse a = 1 / a"
nipkow@29667
   525
by (simp add: divide_inverse)
haftmann@25230
   526
haftmann@25230
   527
lemma divide_self [simp]: "a \<noteq> 0 \<Longrightarrow> a / a = 1"
nipkow@29667
   528
by (simp add: divide_inverse)
haftmann@25230
   529
haftmann@25230
   530
lemma divide_zero_left [simp]: "0 / a = 0"
nipkow@29667
   531
by (simp add: divide_inverse)
haftmann@25230
   532
haftmann@25230
   533
lemma inverse_eq_divide: "inverse a = 1 / a"
nipkow@29667
   534
by (simp add: divide_inverse)
haftmann@25230
   535
haftmann@25230
   536
lemma add_divide_distrib: "(a+b) / c = a/c + b/c"
nipkow@29667
   537
by (simp add: divide_inverse algebra_simps) 
haftmann@25230
   538
haftmann@25230
   539
end
haftmann@25230
   540
haftmann@22390
   541
class division_by_zero = zero + inverse +
haftmann@25062
   542
  assumes inverse_zero [simp]: "inverse 0 = 0"
paulson@14265
   543
haftmann@25230
   544
lemma divide_zero [simp]:
haftmann@25230
   545
  "a / 0 = (0::'a::{field,division_by_zero})"
nipkow@29667
   546
by (simp add: divide_inverse)
haftmann@25230
   547
haftmann@25230
   548
lemma divide_self_if [simp]:
haftmann@25230
   549
  "a / (a::'a::{field,division_by_zero}) = (if a=0 then 0 else 1)"
nipkow@29667
   550
by simp
haftmann@25230
   551
haftmann@22390
   552
class mult_mono = times + zero + ord +
haftmann@25062
   553
  assumes mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b"
haftmann@25062
   554
  assumes mult_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c"
paulson@14267
   555
haftmann@22390
   556
class pordered_semiring = mult_mono + semiring_0 + pordered_ab_semigroup_add 
haftmann@25230
   557
begin
haftmann@25230
   558
haftmann@25230
   559
lemma mult_mono:
haftmann@25230
   560
  "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> c
haftmann@25230
   561
     \<Longrightarrow> a * c \<le> b * d"
haftmann@25230
   562
apply (erule mult_right_mono [THEN order_trans], assumption)
haftmann@25230
   563
apply (erule mult_left_mono, assumption)
haftmann@25230
   564
done
haftmann@25230
   565
haftmann@25230
   566
lemma mult_mono':
haftmann@25230
   567
  "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c
haftmann@25230
   568
     \<Longrightarrow> a * c \<le> b * d"
haftmann@25230
   569
apply (rule mult_mono)
haftmann@25230
   570
apply (fast intro: order_trans)+
haftmann@25230
   571
done
haftmann@25230
   572
haftmann@25230
   573
end
krauss@21199
   574
haftmann@22390
   575
class pordered_cancel_semiring = mult_mono + pordered_ab_semigroup_add
huffman@29904
   576
  + semiring + cancel_comm_monoid_add
haftmann@25267
   577
begin
paulson@14268
   578
huffman@27516
   579
subclass semiring_0_cancel ..
huffman@27516
   580
subclass pordered_semiring ..
obua@23521
   581
haftmann@25230
   582
lemma mult_nonneg_nonneg: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * b"
nipkow@29667
   583
by (drule mult_left_mono [of zero b], auto)
haftmann@25230
   584
haftmann@25230
   585
lemma mult_nonneg_nonpos: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> 0"
nipkow@29667
   586
by (drule mult_left_mono [of b zero], auto)
haftmann@25230
   587
haftmann@25230
   588
lemma mult_nonneg_nonpos2: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> b * a \<le> 0" 
nipkow@29667
   589
by (drule mult_right_mono [of b zero], auto)
haftmann@25230
   590
haftmann@26234
   591
lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> 0" 
nipkow@29667
   592
by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)
haftmann@25230
   593
haftmann@25230
   594
end
haftmann@25230
   595
haftmann@25230
   596
class ordered_semiring = semiring + comm_monoid_add + ordered_cancel_ab_semigroup_add + mult_mono
haftmann@25267
   597
begin
haftmann@25230
   598
huffman@27516
   599
subclass pordered_cancel_semiring ..
haftmann@25512
   600
huffman@27516
   601
subclass pordered_comm_monoid_add ..
haftmann@25304
   602
haftmann@25230
   603
lemma mult_left_less_imp_less:
haftmann@25230
   604
  "c * a < c * b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b"
nipkow@29667
   605
by (force simp add: mult_left_mono not_le [symmetric])
haftmann@25230
   606
 
haftmann@25230
   607
lemma mult_right_less_imp_less:
haftmann@25230
   608
  "a * c < b * c \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b"
nipkow@29667
   609
by (force simp add: mult_right_mono not_le [symmetric])
obua@23521
   610
haftmann@25186
   611
end
haftmann@25152
   612
haftmann@22390
   613
class ordered_semiring_strict = semiring + comm_monoid_add + ordered_cancel_ab_semigroup_add +
haftmann@25062
   614
  assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
haftmann@25062
   615
  assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c"
haftmann@25267
   616
begin
paulson@14341
   617
huffman@27516
   618
subclass semiring_0_cancel ..
obua@14940
   619
haftmann@25267
   620
subclass ordered_semiring
haftmann@28823
   621
proof
huffman@23550
   622
  fix a b c :: 'a
huffman@23550
   623
  assume A: "a \<le> b" "0 \<le> c"
huffman@23550
   624
  from A show "c * a \<le> c * b"
haftmann@25186
   625
    unfolding le_less
haftmann@25186
   626
    using mult_strict_left_mono by (cases "c = 0") auto
huffman@23550
   627
  from A show "a * c \<le> b * c"
haftmann@25152
   628
    unfolding le_less
haftmann@25186
   629
    using mult_strict_right_mono by (cases "c = 0") auto
haftmann@25152
   630
qed
haftmann@25152
   631
haftmann@25230
   632
lemma mult_left_le_imp_le:
haftmann@25230
   633
  "c * a \<le> c * b \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b"
nipkow@29667
   634
by (force simp add: mult_strict_left_mono _not_less [symmetric])
haftmann@25230
   635
 
haftmann@25230
   636
lemma mult_right_le_imp_le:
haftmann@25230
   637
  "a * c \<le> b * c \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b"
nipkow@29667
   638
by (force simp add: mult_strict_right_mono not_less [symmetric])
haftmann@25230
   639
haftmann@25230
   640
lemma mult_pos_pos:
haftmann@25230
   641
  "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a * b"
nipkow@29667
   642
by (drule mult_strict_left_mono [of zero b], auto)
haftmann@25230
   643
haftmann@25230
   644
lemma mult_pos_neg:
haftmann@25230
   645
  "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> a * b < 0"
nipkow@29667
   646
by (drule mult_strict_left_mono [of b zero], auto)
haftmann@25230
   647
haftmann@25230
   648
lemma mult_pos_neg2:
haftmann@25230
   649
  "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> b * a < 0" 
nipkow@29667
   650
by (drule mult_strict_right_mono [of b zero], auto)
haftmann@25230
   651
haftmann@25230
   652
lemma zero_less_mult_pos:
haftmann@25230
   653
  "0 < a * b \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b"
haftmann@25230
   654
apply (cases "b\<le>0") 
haftmann@25230
   655
 apply (auto simp add: le_less not_less)
haftmann@25230
   656
apply (drule_tac mult_pos_neg [of a b]) 
haftmann@25230
   657
 apply (auto dest: less_not_sym)
haftmann@25230
   658
done
haftmann@25230
   659
haftmann@25230
   660
lemma zero_less_mult_pos2:
haftmann@25230
   661
  "0 < b * a \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b"
haftmann@25230
   662
apply (cases "b\<le>0") 
haftmann@25230
   663
 apply (auto simp add: le_less not_less)
haftmann@25230
   664
apply (drule_tac mult_pos_neg2 [of a b]) 
haftmann@25230
   665
 apply (auto dest: less_not_sym)
haftmann@25230
   666
done
haftmann@25230
   667
haftmann@26193
   668
text{*Strict monotonicity in both arguments*}
haftmann@26193
   669
lemma mult_strict_mono:
haftmann@26193
   670
  assumes "a < b" and "c < d" and "0 < b" and "0 \<le> c"
haftmann@26193
   671
  shows "a * c < b * d"
haftmann@26193
   672
  using assms apply (cases "c=0")
haftmann@26193
   673
  apply (simp add: mult_pos_pos) 
haftmann@26193
   674
  apply (erule mult_strict_right_mono [THEN less_trans])
haftmann@26193
   675
  apply (force simp add: le_less) 
haftmann@26193
   676
  apply (erule mult_strict_left_mono, assumption)
haftmann@26193
   677
  done
haftmann@26193
   678
haftmann@26193
   679
text{*This weaker variant has more natural premises*}
haftmann@26193
   680
lemma mult_strict_mono':
haftmann@26193
   681
  assumes "a < b" and "c < d" and "0 \<le> a" and "0 \<le> c"
haftmann@26193
   682
  shows "a * c < b * d"
nipkow@29667
   683
by (rule mult_strict_mono) (insert assms, auto)
haftmann@26193
   684
haftmann@26193
   685
lemma mult_less_le_imp_less:
haftmann@26193
   686
  assumes "a < b" and "c \<le> d" and "0 \<le> a" and "0 < c"
haftmann@26193
   687
  shows "a * c < b * d"
haftmann@26193
   688
  using assms apply (subgoal_tac "a * c < b * c")
haftmann@26193
   689
  apply (erule less_le_trans)
haftmann@26193
   690
  apply (erule mult_left_mono)
haftmann@26193
   691
  apply simp
haftmann@26193
   692
  apply (erule mult_strict_right_mono)
haftmann@26193
   693
  apply assumption
haftmann@26193
   694
  done
haftmann@26193
   695
haftmann@26193
   696
lemma mult_le_less_imp_less:
haftmann@26193
   697
  assumes "a \<le> b" and "c < d" and "0 < a" and "0 \<le> c"
haftmann@26193
   698
  shows "a * c < b * d"
haftmann@26193
   699
  using assms apply (subgoal_tac "a * c \<le> b * c")
haftmann@26193
   700
  apply (erule le_less_trans)
haftmann@26193
   701
  apply (erule mult_strict_left_mono)
haftmann@26193
   702
  apply simp
haftmann@26193
   703
  apply (erule mult_right_mono)
haftmann@26193
   704
  apply simp
haftmann@26193
   705
  done
haftmann@26193
   706
haftmann@26193
   707
lemma mult_less_imp_less_left:
haftmann@26193
   708
  assumes less: "c * a < c * b" and nonneg: "0 \<le> c"
haftmann@26193
   709
  shows "a < b"
haftmann@26193
   710
proof (rule ccontr)
haftmann@26193
   711
  assume "\<not>  a < b"
haftmann@26193
   712
  hence "b \<le> a" by (simp add: linorder_not_less)
haftmann@26193
   713
  hence "c * b \<le> c * a" using nonneg by (rule mult_left_mono)
nipkow@29667
   714
  with this and less show False by (simp add: not_less [symmetric])
haftmann@26193
   715
qed
haftmann@26193
   716
haftmann@26193
   717
lemma mult_less_imp_less_right:
haftmann@26193
   718
  assumes less: "a * c < b * c" and nonneg: "0 \<le> c"
haftmann@26193
   719
  shows "a < b"
haftmann@26193
   720
proof (rule ccontr)
haftmann@26193
   721
  assume "\<not> a < b"
haftmann@26193
   722
  hence "b \<le> a" by (simp add: linorder_not_less)
haftmann@26193
   723
  hence "b * c \<le> a * c" using nonneg by (rule mult_right_mono)
nipkow@29667
   724
  with this and less show False by (simp add: not_less [symmetric])
haftmann@26193
   725
qed  
haftmann@26193
   726
haftmann@25230
   727
end
haftmann@25230
   728
haftmann@22390
   729
class mult_mono1 = times + zero + ord +
haftmann@25230
   730
  assumes mult_mono1: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b"
paulson@14270
   731
haftmann@22390
   732
class pordered_comm_semiring = comm_semiring_0
haftmann@22390
   733
  + pordered_ab_semigroup_add + mult_mono1
haftmann@25186
   734
begin
haftmann@25152
   735
haftmann@25267
   736
subclass pordered_semiring
haftmann@28823
   737
proof
krauss@21199
   738
  fix a b c :: 'a
huffman@23550
   739
  assume "a \<le> b" "0 \<le> c"
haftmann@25230
   740
  thus "c * a \<le> c * b" by (rule mult_mono1)
huffman@23550
   741
  thus "a * c \<le> b * c" by (simp only: mult_commute)
krauss@21199
   742
qed
paulson@14265
   743
haftmann@25267
   744
end
haftmann@25267
   745
haftmann@25267
   746
class pordered_cancel_comm_semiring = comm_semiring_0_cancel
haftmann@25267
   747
  + pordered_ab_semigroup_add + mult_mono1
haftmann@25267
   748
begin
paulson@14265
   749
huffman@27516
   750
subclass pordered_comm_semiring ..
huffman@27516
   751
subclass pordered_cancel_semiring ..
haftmann@25267
   752
haftmann@25267
   753
end
haftmann@25267
   754
haftmann@25267
   755
class ordered_comm_semiring_strict = comm_semiring_0 + ordered_cancel_ab_semigroup_add +
haftmann@26193
   756
  assumes mult_strict_left_mono_comm: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
haftmann@25267
   757
begin
haftmann@25267
   758
haftmann@25267
   759
subclass ordered_semiring_strict
haftmann@28823
   760
proof
huffman@23550
   761
  fix a b c :: 'a
huffman@23550
   762
  assume "a < b" "0 < c"
haftmann@26193
   763
  thus "c * a < c * b" by (rule mult_strict_left_mono_comm)
huffman@23550
   764
  thus "a * c < b * c" by (simp only: mult_commute)
huffman@23550
   765
qed
paulson@14272
   766
haftmann@25267
   767
subclass pordered_cancel_comm_semiring
haftmann@28823
   768
proof
huffman@23550
   769
  fix a b c :: 'a
huffman@23550
   770
  assume "a \<le> b" "0 \<le> c"
huffman@23550
   771
  thus "c * a \<le> c * b"
haftmann@25186
   772
    unfolding le_less
haftmann@26193
   773
    using mult_strict_left_mono by (cases "c = 0") auto
huffman@23550
   774
qed
paulson@14272
   775
haftmann@25267
   776
end
haftmann@25230
   777
haftmann@25267
   778
class pordered_ring = ring + pordered_cancel_semiring 
haftmann@25267
   779
begin
haftmann@25230
   780
huffman@27516
   781
subclass pordered_ab_group_add ..
paulson@14270
   782
nipkow@29667
   783
text{*Legacy - use @{text algebra_simps} *}
nipkow@29833
   784
lemmas ring_simps[noatp] = algebra_simps
haftmann@25230
   785
haftmann@25230
   786
lemma less_add_iff1:
haftmann@25230
   787
  "a * e + c < b * e + d \<longleftrightarrow> (a - b) * e + c < d"
nipkow@29667
   788
by (simp add: algebra_simps)
haftmann@25230
   789
haftmann@25230
   790
lemma less_add_iff2:
haftmann@25230
   791
  "a * e + c < b * e + d \<longleftrightarrow> c < (b - a) * e + d"
nipkow@29667
   792
by (simp add: algebra_simps)
haftmann@25230
   793
haftmann@25230
   794
lemma le_add_iff1:
haftmann@25230
   795
  "a * e + c \<le> b * e + d \<longleftrightarrow> (a - b) * e + c \<le> d"
nipkow@29667
   796
by (simp add: algebra_simps)
haftmann@25230
   797
haftmann@25230
   798
lemma le_add_iff2:
haftmann@25230
   799
  "a * e + c \<le> b * e + d \<longleftrightarrow> c \<le> (b - a) * e + d"
nipkow@29667
   800
by (simp add: algebra_simps)
haftmann@25230
   801
haftmann@25230
   802
lemma mult_left_mono_neg:
haftmann@25230
   803
  "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c * a \<le> c * b"
haftmann@25230
   804
  apply (drule mult_left_mono [of _ _ "uminus c"])
haftmann@25230
   805
  apply (simp_all add: minus_mult_left [symmetric]) 
haftmann@25230
   806
  done
haftmann@25230
   807
haftmann@25230
   808
lemma mult_right_mono_neg:
haftmann@25230
   809
  "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a * c \<le> b * c"
haftmann@25230
   810
  apply (drule mult_right_mono [of _ _ "uminus c"])
haftmann@25230
   811
  apply (simp_all add: minus_mult_right [symmetric]) 
haftmann@25230
   812
  done
haftmann@25230
   813
haftmann@25230
   814
lemma mult_nonpos_nonpos:
haftmann@25230
   815
  "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a * b"
nipkow@29667
   816
by (drule mult_right_mono_neg [of a zero b]) auto
haftmann@25230
   817
haftmann@25230
   818
lemma split_mult_pos_le:
haftmann@25230
   819
  "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a * b"
nipkow@29667
   820
by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos)
haftmann@25186
   821
haftmann@25186
   822
end
paulson@14270
   823
haftmann@25762
   824
class abs_if = minus + uminus + ord + zero + abs +
haftmann@25762
   825
  assumes abs_if: "\<bar>a\<bar> = (if a < 0 then - a else a)"
haftmann@25762
   826
haftmann@25762
   827
class sgn_if = minus + uminus + zero + one + ord + sgn +
haftmann@25186
   828
  assumes sgn_if: "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
nipkow@24506
   829
nipkow@25564
   830
lemma (in sgn_if) sgn0[simp]: "sgn 0 = 0"
nipkow@25564
   831
by(simp add:sgn_if)
nipkow@25564
   832
haftmann@25230
   833
class ordered_ring = ring + ordered_semiring
haftmann@25304
   834
  + ordered_ab_group_add + abs_if
haftmann@25304
   835
begin
haftmann@25304
   836
huffman@27516
   837
subclass pordered_ring ..
haftmann@25304
   838
haftmann@25304
   839
subclass pordered_ab_group_add_abs
haftmann@28823
   840
proof
haftmann@25304
   841
  fix a b
haftmann@25304
   842
  show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
nipkow@29667
   843
by (auto simp add: abs_if not_less neg_less_eq_nonneg less_eq_neg_nonpos)
haftmann@25304
   844
   (auto simp del: minus_add_distrib simp add: minus_add_distrib [symmetric]
haftmann@25304
   845
     neg_less_eq_nonneg less_eq_neg_nonpos, auto intro: add_nonneg_nonneg,
haftmann@25304
   846
      auto intro!: less_imp_le add_neg_neg)
haftmann@25304
   847
qed (auto simp add: abs_if less_eq_neg_nonpos neg_equal_zero)
haftmann@25304
   848
haftmann@25304
   849
end
obua@23521
   850
haftmann@25230
   851
(* The "strict" suffix can be seen as describing the combination of ordered_ring and no_zero_divisors.
haftmann@25230
   852
   Basically, ordered_ring + no_zero_divisors = ordered_ring_strict.
haftmann@25230
   853
 *)
haftmann@25230
   854
class ordered_ring_strict = ring + ordered_semiring_strict
haftmann@25304
   855
  + ordered_ab_group_add + abs_if
haftmann@25230
   856
begin
paulson@14348
   857
huffman@27516
   858
subclass ordered_ring ..
haftmann@25304
   859
paulson@14265
   860
lemma mult_strict_left_mono_neg:
haftmann@25230
   861
  "b < a \<Longrightarrow> c < 0 \<Longrightarrow> c * a < c * b"
haftmann@25230
   862
  apply (drule mult_strict_left_mono [of _ _ "uminus c"])
haftmann@25230
   863
  apply (simp_all add: minus_mult_left [symmetric]) 
haftmann@25230
   864
  done
obua@14738
   865
paulson@14265
   866
lemma mult_strict_right_mono_neg:
haftmann@25230
   867
  "b < a \<Longrightarrow> c < 0 \<Longrightarrow> a * c < b * c"
haftmann@25230
   868
  apply (drule mult_strict_right_mono [of _ _ "uminus c"])
haftmann@25230
   869
  apply (simp_all add: minus_mult_right [symmetric]) 
haftmann@25230
   870
  done
obua@14738
   871
haftmann@25230
   872
lemma mult_neg_neg:
haftmann@25230
   873
  "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> 0 < a * b"
nipkow@29667
   874
by (drule mult_strict_right_mono_neg, auto)
obua@14738
   875
haftmann@25917
   876
subclass ring_no_zero_divisors
haftmann@28823
   877
proof
haftmann@25917
   878
  fix a b
haftmann@25917
   879
  assume "a \<noteq> 0" then have A: "a < 0 \<or> 0 < a" by (simp add: neq_iff)
haftmann@25917
   880
  assume "b \<noteq> 0" then have B: "b < 0 \<or> 0 < b" by (simp add: neq_iff)
haftmann@25917
   881
  have "a * b < 0 \<or> 0 < a * b"
haftmann@25917
   882
  proof (cases "a < 0")
haftmann@25917
   883
    case True note A' = this
haftmann@25917
   884
    show ?thesis proof (cases "b < 0")
haftmann@25917
   885
      case True with A'
haftmann@25917
   886
      show ?thesis by (auto dest: mult_neg_neg)
haftmann@25917
   887
    next
haftmann@25917
   888
      case False with B have "0 < b" by auto
haftmann@25917
   889
      with A' show ?thesis by (auto dest: mult_strict_right_mono)
haftmann@25917
   890
    qed
haftmann@25917
   891
  next
haftmann@25917
   892
    case False with A have A': "0 < a" by auto
haftmann@25917
   893
    show ?thesis proof (cases "b < 0")
haftmann@25917
   894
      case True with A'
haftmann@25917
   895
      show ?thesis by (auto dest: mult_strict_right_mono_neg)
haftmann@25917
   896
    next
haftmann@25917
   897
      case False with B have "0 < b" by auto
haftmann@25917
   898
      with A' show ?thesis by (auto dest: mult_pos_pos)
haftmann@25917
   899
    qed
haftmann@25917
   900
  qed
haftmann@25917
   901
  then show "a * b \<noteq> 0" by (simp add: neq_iff)
haftmann@25917
   902
qed
haftmann@25304
   903
paulson@14265
   904
lemma zero_less_mult_iff:
haftmann@25917
   905
  "0 < a * b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0"
haftmann@25917
   906
  apply (auto simp add: mult_pos_pos mult_neg_neg)
haftmann@25917
   907
  apply (simp_all add: not_less le_less)
haftmann@25917
   908
  apply (erule disjE) apply assumption defer
haftmann@25917
   909
  apply (erule disjE) defer apply (drule sym) apply simp
haftmann@25917
   910
  apply (erule disjE) defer apply (drule sym) apply simp
haftmann@25917
   911
  apply (erule disjE) apply assumption apply (drule sym) apply simp
haftmann@25917
   912
  apply (drule sym) apply simp
haftmann@25917
   913
  apply (blast dest: zero_less_mult_pos)
haftmann@25230
   914
  apply (blast dest: zero_less_mult_pos2)
haftmann@25230
   915
  done
huffman@22990
   916
paulson@14265
   917
lemma zero_le_mult_iff:
haftmann@25917
   918
  "0 \<le> a * b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0"
nipkow@29667
   919
by (auto simp add: eq_commute [of 0] le_less not_less zero_less_mult_iff)
paulson@14265
   920
paulson@14265
   921
lemma mult_less_0_iff:
haftmann@25917
   922
  "a * b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b"
haftmann@25917
   923
  apply (insert zero_less_mult_iff [of "-a" b]) 
haftmann@25917
   924
  apply (force simp add: minus_mult_left[symmetric]) 
haftmann@25917
   925
  done
paulson@14265
   926
paulson@14265
   927
lemma mult_le_0_iff:
haftmann@25917
   928
  "a * b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b"
haftmann@25917
   929
  apply (insert zero_le_mult_iff [of "-a" b]) 
haftmann@25917
   930
  apply (force simp add: minus_mult_left[symmetric]) 
haftmann@25917
   931
  done
haftmann@25917
   932
haftmann@25917
   933
lemma zero_le_square [simp]: "0 \<le> a * a"
nipkow@29667
   934
by (simp add: zero_le_mult_iff linear)
haftmann@25917
   935
haftmann@25917
   936
lemma not_square_less_zero [simp]: "\<not> (a * a < 0)"
nipkow@29667
   937
by (simp add: not_less)
haftmann@25917
   938
haftmann@26193
   939
text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
haftmann@26193
   940
   also with the relations @{text "\<le>"} and equality.*}
haftmann@26193
   941
haftmann@26193
   942
text{*These ``disjunction'' versions produce two cases when the comparison is
haftmann@26193
   943
 an assumption, but effectively four when the comparison is a goal.*}
haftmann@26193
   944
haftmann@26193
   945
lemma mult_less_cancel_right_disj:
haftmann@26193
   946
  "a * c < b * c \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and>  b < a"
haftmann@26193
   947
  apply (cases "c = 0")
haftmann@26193
   948
  apply (auto simp add: neq_iff mult_strict_right_mono 
haftmann@26193
   949
                      mult_strict_right_mono_neg)
haftmann@26193
   950
  apply (auto simp add: not_less 
haftmann@26193
   951
                      not_le [symmetric, of "a*c"]
haftmann@26193
   952
                      not_le [symmetric, of a])
haftmann@26193
   953
  apply (erule_tac [!] notE)
haftmann@26193
   954
  apply (auto simp add: less_imp_le mult_right_mono 
haftmann@26193
   955
                      mult_right_mono_neg)
haftmann@26193
   956
  done
haftmann@26193
   957
haftmann@26193
   958
lemma mult_less_cancel_left_disj:
haftmann@26193
   959
  "c * a < c * b \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and>  b < a"
haftmann@26193
   960
  apply (cases "c = 0")
haftmann@26193
   961
  apply (auto simp add: neq_iff mult_strict_left_mono 
haftmann@26193
   962
                      mult_strict_left_mono_neg)
haftmann@26193
   963
  apply (auto simp add: not_less 
haftmann@26193
   964
                      not_le [symmetric, of "c*a"]
haftmann@26193
   965
                      not_le [symmetric, of a])
haftmann@26193
   966
  apply (erule_tac [!] notE)
haftmann@26193
   967
  apply (auto simp add: less_imp_le mult_left_mono 
haftmann@26193
   968
                      mult_left_mono_neg)
haftmann@26193
   969
  done
haftmann@26193
   970
haftmann@26193
   971
text{*The ``conjunction of implication'' lemmas produce two cases when the
haftmann@26193
   972
comparison is a goal, but give four when the comparison is an assumption.*}
haftmann@26193
   973
haftmann@26193
   974
lemma mult_less_cancel_right:
haftmann@26193
   975
  "a * c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)"
haftmann@26193
   976
  using mult_less_cancel_right_disj [of a c b] by auto
haftmann@26193
   977
haftmann@26193
   978
lemma mult_less_cancel_left:
haftmann@26193
   979
  "c * a < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)"
haftmann@26193
   980
  using mult_less_cancel_left_disj [of c a b] by auto
haftmann@26193
   981
haftmann@26193
   982
lemma mult_le_cancel_right:
haftmann@26193
   983
   "a * c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"
nipkow@29667
   984
by (simp add: not_less [symmetric] mult_less_cancel_right_disj)
haftmann@26193
   985
haftmann@26193
   986
lemma mult_le_cancel_left:
haftmann@26193
   987
  "c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"
nipkow@29667
   988
by (simp add: not_less [symmetric] mult_less_cancel_left_disj)
haftmann@26193
   989
haftmann@25917
   990
end
paulson@14265
   991
nipkow@29667
   992
text{*Legacy - use @{text algebra_simps} *}
nipkow@29833
   993
lemmas ring_simps[noatp] = algebra_simps
haftmann@25230
   994
haftmann@25230
   995
haftmann@25230
   996
class pordered_comm_ring = comm_ring + pordered_comm_semiring
haftmann@25267
   997
begin
haftmann@25230
   998
huffman@27516
   999
subclass pordered_ring ..
huffman@27516
  1000
subclass pordered_cancel_comm_semiring ..
haftmann@25230
  1001
haftmann@25267
  1002
end
haftmann@25230
  1003
haftmann@25230
  1004
class ordered_semidom = comm_semiring_1_cancel + ordered_comm_semiring_strict +
haftmann@25230
  1005
  (*previously ordered_semiring*)
haftmann@25230
  1006
  assumes zero_less_one [simp]: "0 < 1"
haftmann@25230
  1007
begin
haftmann@25230
  1008
haftmann@25230
  1009
lemma pos_add_strict:
haftmann@25230
  1010
  shows "0 < a \<Longrightarrow> b < c \<Longrightarrow> b < a + c"
haftmann@25230
  1011
  using add_strict_mono [of zero a b c] by simp
haftmann@25230
  1012
haftmann@26193
  1013
lemma zero_le_one [simp]: "0 \<le> 1"
nipkow@29667
  1014
by (rule zero_less_one [THEN less_imp_le]) 
haftmann@26193
  1015
haftmann@26193
  1016
lemma not_one_le_zero [simp]: "\<not> 1 \<le> 0"
nipkow@29667
  1017
by (simp add: not_le) 
haftmann@26193
  1018
haftmann@26193
  1019
lemma not_one_less_zero [simp]: "\<not> 1 < 0"
nipkow@29667
  1020
by (simp add: not_less) 
haftmann@26193
  1021
haftmann@26193
  1022
lemma less_1_mult:
haftmann@26193
  1023
  assumes "1 < m" and "1 < n"
haftmann@26193
  1024
  shows "1 < m * n"
haftmann@26193
  1025
  using assms mult_strict_mono [of 1 m 1 n]
haftmann@26193
  1026
    by (simp add:  less_trans [OF zero_less_one]) 
haftmann@26193
  1027
haftmann@25230
  1028
end
haftmann@25230
  1029
haftmann@26193
  1030
class ordered_idom = comm_ring_1 +
haftmann@26193
  1031
  ordered_comm_semiring_strict + ordered_ab_group_add +
haftmann@25230
  1032
  abs_if + sgn_if
haftmann@25230
  1033
  (*previously ordered_ring*)
haftmann@25917
  1034
begin
haftmann@25917
  1035
huffman@27516
  1036
subclass ordered_ring_strict ..
huffman@27516
  1037
subclass pordered_comm_ring ..
huffman@27516
  1038
subclass idom ..
haftmann@25917
  1039
haftmann@25917
  1040
subclass ordered_semidom
haftmann@28823
  1041
proof
haftmann@26193
  1042
  have "0 \<le> 1 * 1" by (rule zero_le_square)
haftmann@26193
  1043
  thus "0 < 1" by (simp add: le_less)
haftmann@25917
  1044
qed 
haftmann@25917
  1045
haftmann@26193
  1046
lemma linorder_neqE_ordered_idom:
haftmann@26193
  1047
  assumes "x \<noteq> y" obtains "x < y" | "y < x"
haftmann@26193
  1048
  using assms by (rule neqE)
haftmann@26193
  1049
haftmann@26274
  1050
text {* These cancellation simprules also produce two cases when the comparison is a goal. *}
haftmann@26274
  1051
haftmann@26274
  1052
lemma mult_le_cancel_right1:
haftmann@26274
  1053
  "c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)"
nipkow@29667
  1054
by (insert mult_le_cancel_right [of 1 c b], simp)
haftmann@26274
  1055
haftmann@26274
  1056
lemma mult_le_cancel_right2:
haftmann@26274
  1057
  "a * c \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)"
nipkow@29667
  1058
by (insert mult_le_cancel_right [of a c 1], simp)
haftmann@26274
  1059
haftmann@26274
  1060
lemma mult_le_cancel_left1:
haftmann@26274
  1061
  "c \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)"
nipkow@29667
  1062
by (insert mult_le_cancel_left [of c 1 b], simp)
haftmann@26274
  1063
haftmann@26274
  1064
lemma mult_le_cancel_left2:
haftmann@26274
  1065
  "c * a \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)"
nipkow@29667
  1066
by (insert mult_le_cancel_left [of c a 1], simp)
haftmann@26274
  1067
haftmann@26274
  1068
lemma mult_less_cancel_right1:
haftmann@26274
  1069
  "c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)"
nipkow@29667
  1070
by (insert mult_less_cancel_right [of 1 c b], simp)
haftmann@26274
  1071
haftmann@26274
  1072
lemma mult_less_cancel_right2:
haftmann@26274
  1073
  "a * c < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)"
nipkow@29667
  1074
by (insert mult_less_cancel_right [of a c 1], simp)
haftmann@26274
  1075
haftmann@26274
  1076
lemma mult_less_cancel_left1:
haftmann@26274
  1077
  "c < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)"
nipkow@29667
  1078
by (insert mult_less_cancel_left [of c 1 b], simp)
haftmann@26274
  1079
haftmann@26274
  1080
lemma mult_less_cancel_left2:
haftmann@26274
  1081
  "c * a < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)"
nipkow@29667
  1082
by (insert mult_less_cancel_left [of c a 1], simp)
haftmann@26274
  1083
haftmann@27651
  1084
lemma sgn_sgn [simp]:
haftmann@27651
  1085
  "sgn (sgn a) = sgn a"
nipkow@29700
  1086
unfolding sgn_if by simp
haftmann@27651
  1087
haftmann@27651
  1088
lemma sgn_0_0:
haftmann@27651
  1089
  "sgn a = 0 \<longleftrightarrow> a = 0"
nipkow@29700
  1090
unfolding sgn_if by simp
haftmann@27651
  1091
haftmann@27651
  1092
lemma sgn_1_pos:
haftmann@27651
  1093
  "sgn a = 1 \<longleftrightarrow> a > 0"
nipkow@29700
  1094
unfolding sgn_if by (simp add: neg_equal_zero)
haftmann@27651
  1095
haftmann@27651
  1096
lemma sgn_1_neg:
haftmann@27651
  1097
  "sgn a = - 1 \<longleftrightarrow> a < 0"
nipkow@29700
  1098
unfolding sgn_if by (auto simp add: equal_neg_zero)
haftmann@27651
  1099
haftmann@29940
  1100
lemma sgn_pos [simp]:
haftmann@29940
  1101
  "0 < a \<Longrightarrow> sgn a = 1"
haftmann@29940
  1102
unfolding sgn_1_pos .
haftmann@29940
  1103
haftmann@29940
  1104
lemma sgn_neg [simp]:
haftmann@29940
  1105
  "a < 0 \<Longrightarrow> sgn a = - 1"
haftmann@29940
  1106
unfolding sgn_1_neg .
haftmann@29940
  1107
haftmann@27651
  1108
lemma sgn_times:
haftmann@27651
  1109
  "sgn (a * b) = sgn a * sgn b"
nipkow@29667
  1110
by (auto simp add: sgn_if zero_less_mult_iff)
haftmann@27651
  1111
haftmann@29653
  1112
lemma abs_sgn: "abs k = k * sgn k"
nipkow@29700
  1113
unfolding sgn_if abs_if by auto
nipkow@29700
  1114
haftmann@29940
  1115
lemma sgn_greater [simp]:
haftmann@29940
  1116
  "0 < sgn a \<longleftrightarrow> 0 < a"
haftmann@29940
  1117
  unfolding sgn_if by auto
haftmann@29940
  1118
haftmann@29940
  1119
lemma sgn_less [simp]:
haftmann@29940
  1120
  "sgn a < 0 \<longleftrightarrow> a < 0"
haftmann@29940
  1121
  unfolding sgn_if by auto
haftmann@29940
  1122
huffman@29949
  1123
lemma abs_dvd_iff [simp]: "(abs m) dvd k \<longleftrightarrow> m dvd k"
huffman@29949
  1124
  by (simp add: abs_if)
huffman@29949
  1125
huffman@29949
  1126
lemma dvd_abs_iff [simp]: "m dvd (abs k) \<longleftrightarrow> m dvd k"
huffman@29949
  1127
  by (simp add: abs_if)
haftmann@29653
  1128
haftmann@25917
  1129
end
haftmann@25230
  1130
haftmann@25230
  1131
class ordered_field = field + ordered_idom
haftmann@25230
  1132
haftmann@26274
  1133
text {* Simprules for comparisons where common factors can be cancelled. *}
paulson@15234
  1134
nipkow@29833
  1135
lemmas mult_compare_simps[noatp] =
paulson@15234
  1136
    mult_le_cancel_right mult_le_cancel_left
paulson@15234
  1137
    mult_le_cancel_right1 mult_le_cancel_right2
paulson@15234
  1138
    mult_le_cancel_left1 mult_le_cancel_left2
paulson@15234
  1139
    mult_less_cancel_right mult_less_cancel_left
paulson@15234
  1140
    mult_less_cancel_right1 mult_less_cancel_right2
paulson@15234
  1141
    mult_less_cancel_left1 mult_less_cancel_left2
paulson@15234
  1142
    mult_cancel_right mult_cancel_left
paulson@15234
  1143
    mult_cancel_right1 mult_cancel_right2
paulson@15234
  1144
    mult_cancel_left1 mult_cancel_left2
paulson@15234
  1145
haftmann@26274
  1146
-- {* FIXME continue localization here *}
paulson@14268
  1147
paulson@14268
  1148
lemma inverse_nonzero_iff_nonzero [simp]:
huffman@20496
  1149
   "(inverse a = 0) = (a = (0::'a::{division_ring,division_by_zero}))"
haftmann@26274
  1150
by (force dest: inverse_zero_imp_zero) 
paulson@14268
  1151
paulson@14268
  1152
lemma inverse_minus_eq [simp]:
huffman@20496
  1153
   "inverse(-a) = -inverse(a::'a::{division_ring,division_by_zero})"
paulson@14377
  1154
proof cases
paulson@14377
  1155
  assume "a=0" thus ?thesis by (simp add: inverse_zero)
paulson@14377
  1156
next
paulson@14377
  1157
  assume "a\<noteq>0" 
paulson@14377
  1158
  thus ?thesis by (simp add: nonzero_inverse_minus_eq)
paulson@14377
  1159
qed
paulson@14268
  1160
paulson@14268
  1161
lemma inverse_eq_imp_eq:
huffman@20496
  1162
  "inverse a = inverse b ==> a = (b::'a::{division_ring,division_by_zero})"
haftmann@21328
  1163
apply (cases "a=0 | b=0") 
paulson@14268
  1164
 apply (force dest!: inverse_zero_imp_zero
paulson@14268
  1165
              simp add: eq_commute [of "0::'a"])
paulson@14268
  1166
apply (force dest!: nonzero_inverse_eq_imp_eq) 
paulson@14268
  1167
done
paulson@14268
  1168
paulson@14268
  1169
lemma inverse_eq_iff_eq [simp]:
huffman@20496
  1170
  "(inverse a = inverse b) = (a = (b::'a::{division_ring,division_by_zero}))"
huffman@20496
  1171
by (force dest!: inverse_eq_imp_eq)
paulson@14268
  1172
paulson@14270
  1173
lemma inverse_inverse_eq [simp]:
huffman@20496
  1174
     "inverse(inverse (a::'a::{division_ring,division_by_zero})) = a"
paulson@14270
  1175
  proof cases
paulson@14270
  1176
    assume "a=0" thus ?thesis by simp
paulson@14270
  1177
  next
paulson@14270
  1178
    assume "a\<noteq>0" 
paulson@14270
  1179
    thus ?thesis by (simp add: nonzero_inverse_inverse_eq)
paulson@14270
  1180
  qed
paulson@14270
  1181
paulson@14270
  1182
text{*This version builds in division by zero while also re-orienting
paulson@14270
  1183
      the right-hand side.*}
paulson@14270
  1184
lemma inverse_mult_distrib [simp]:
paulson@14270
  1185
     "inverse(a*b) = inverse(a) * inverse(b::'a::{field,division_by_zero})"
paulson@14270
  1186
  proof cases
paulson@14270
  1187
    assume "a \<noteq> 0 & b \<noteq> 0" 
nipkow@29667
  1188
    thus ?thesis by (simp add: nonzero_inverse_mult_distrib mult_commute)
paulson@14270
  1189
  next
paulson@14270
  1190
    assume "~ (a \<noteq> 0 & b \<noteq> 0)" 
nipkow@29667
  1191
    thus ?thesis by force
paulson@14270
  1192
  qed
paulson@14270
  1193
paulson@14270
  1194
text{*There is no slick version using division by zero.*}
paulson@14270
  1195
lemma inverse_add:
nipkow@23477
  1196
  "[|a \<noteq> 0;  b \<noteq> 0|]
nipkow@23477
  1197
   ==> inverse a + inverse b = (a+b) * inverse a * inverse (b::'a::field)"
huffman@20496
  1198
by (simp add: division_ring_inverse_add mult_ac)
paulson@14270
  1199
paulson@14365
  1200
lemma inverse_divide [simp]:
nipkow@23477
  1201
  "inverse (a/b) = b / (a::'a::{field,division_by_zero})"
nipkow@23477
  1202
by (simp add: divide_inverse mult_commute)
paulson@14365
  1203
wenzelm@23389
  1204
avigad@16775
  1205
subsection {* Calculations with fractions *}
avigad@16775
  1206
nipkow@23413
  1207
text{* There is a whole bunch of simp-rules just for class @{text
nipkow@23413
  1208
field} but none for class @{text field} and @{text nonzero_divides}
nipkow@23413
  1209
because the latter are covered by a simproc. *}
nipkow@23413
  1210
paulson@24427
  1211
lemma nonzero_mult_divide_mult_cancel_left[simp,noatp]:
nipkow@23477
  1212
assumes [simp]: "b\<noteq>0" and [simp]: "c\<noteq>0" shows "(c*a)/(c*b) = a/(b::'a::field)"
paulson@14277
  1213
proof -
paulson@14277
  1214
  have "(c*a)/(c*b) = c * a * (inverse b * inverse c)"
nipkow@23482
  1215
    by (simp add: divide_inverse nonzero_inverse_mult_distrib)
paulson@14277
  1216
  also have "... =  a * inverse b * (inverse c * c)"
paulson@14277
  1217
    by (simp only: mult_ac)
nipkow@29667
  1218
  also have "... =  a * inverse b" by simp
nipkow@29667
  1219
    finally show ?thesis by (simp add: divide_inverse)
paulson@14277
  1220
qed
paulson@14277
  1221
nipkow@23413
  1222
lemma mult_divide_mult_cancel_left:
nipkow@23477
  1223
  "c\<noteq>0 ==> (c*a) / (c*b) = a / (b::'a::{field,division_by_zero})"
haftmann@21328
  1224
apply (cases "b = 0")
nipkow@23413
  1225
apply (simp_all add: nonzero_mult_divide_mult_cancel_left)
paulson@14277
  1226
done
paulson@14277
  1227
paulson@24427
  1228
lemma nonzero_mult_divide_mult_cancel_right [noatp]:
nipkow@23477
  1229
  "[|b\<noteq>0; c\<noteq>0|] ==> (a*c) / (b*c) = a/(b::'a::field)"
nipkow@23413
  1230
by (simp add: mult_commute [of _ c] nonzero_mult_divide_mult_cancel_left) 
paulson@14321
  1231
nipkow@23413
  1232
lemma mult_divide_mult_cancel_right:
nipkow@23477
  1233
  "c\<noteq>0 ==> (a*c) / (b*c) = a / (b::'a::{field,division_by_zero})"
haftmann@21328
  1234
apply (cases "b = 0")
nipkow@23413
  1235
apply (simp_all add: nonzero_mult_divide_mult_cancel_right)
paulson@14321
  1236
done
nipkow@23413
  1237
paulson@14284
  1238
lemma divide_1 [simp]: "a/1 = (a::'a::field)"
nipkow@23477
  1239
by (simp add: divide_inverse)
paulson@14284
  1240
paulson@15234
  1241
lemma times_divide_eq_right: "a * (b/c) = (a*b) / (c::'a::field)"
paulson@14430
  1242
by (simp add: divide_inverse mult_assoc)
paulson@14288
  1243
paulson@14430
  1244
lemma times_divide_eq_left: "(b/c) * a = (b*a) / (c::'a::field)"
paulson@14430
  1245
by (simp add: divide_inverse mult_ac)
paulson@14288
  1246
nipkow@29833
  1247
lemmas times_divide_eq[noatp] = times_divide_eq_right times_divide_eq_left
nipkow@23482
  1248
paulson@24286
  1249
lemma divide_divide_eq_right [simp,noatp]:
nipkow@23477
  1250
  "a / (b/c) = (a*c) / (b::'a::{field,division_by_zero})"
paulson@14430
  1251
by (simp add: divide_inverse mult_ac)
paulson@14288
  1252
paulson@24286
  1253
lemma divide_divide_eq_left [simp,noatp]:
nipkow@23477
  1254
  "(a / b) / (c::'a::{field,division_by_zero}) = a / (b*c)"
paulson@14430
  1255
by (simp add: divide_inverse mult_assoc)
paulson@14288
  1256
avigad@16775
  1257
lemma add_frac_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
avigad@16775
  1258
    x / y + w / z = (x * z + w * y) / (y * z)"
nipkow@23477
  1259
apply (subgoal_tac "x / y = (x * z) / (y * z)")
nipkow@23477
  1260
apply (erule ssubst)
nipkow@23477
  1261
apply (subgoal_tac "w / z = (w * y) / (y * z)")
nipkow@23477
  1262
apply (erule ssubst)
nipkow@23477
  1263
apply (rule add_divide_distrib [THEN sym])
nipkow@23477
  1264
apply (subst mult_commute)
nipkow@23477
  1265
apply (erule nonzero_mult_divide_mult_cancel_left [THEN sym])
nipkow@23477
  1266
apply assumption
nipkow@23477
  1267
apply (erule nonzero_mult_divide_mult_cancel_right [THEN sym])
nipkow@23477
  1268
apply assumption
avigad@16775
  1269
done
paulson@14268
  1270
wenzelm@23389
  1271
paulson@15234
  1272
subsubsection{*Special Cancellation Simprules for Division*}
paulson@15234
  1273
paulson@24427
  1274
lemma mult_divide_mult_cancel_left_if[simp,noatp]:
nipkow@23477
  1275
fixes c :: "'a :: {field,division_by_zero}"
nipkow@23477
  1276
shows "(c*a) / (c*b) = (if c=0 then 0 else a/b)"
nipkow@23413
  1277
by (simp add: mult_divide_mult_cancel_left)
nipkow@23413
  1278
paulson@24427
  1279
lemma nonzero_mult_divide_cancel_right[simp,noatp]:
nipkow@23413
  1280
  "b \<noteq> 0 \<Longrightarrow> a * b / b = (a::'a::field)"
nipkow@23413
  1281
using nonzero_mult_divide_mult_cancel_right[of 1 b a] by simp
nipkow@23413
  1282
paulson@24427
  1283
lemma nonzero_mult_divide_cancel_left[simp,noatp]:
nipkow@23413
  1284
  "a \<noteq> 0 \<Longrightarrow> a * b / a = (b::'a::field)"
nipkow@23413
  1285
using nonzero_mult_divide_mult_cancel_left[of 1 a b] by simp
nipkow@23413
  1286
nipkow@23413
  1287
paulson@24427
  1288
lemma nonzero_divide_mult_cancel_right[simp,noatp]:
nipkow@23413
  1289
  "\<lbrakk> a\<noteq>0; b\<noteq>0 \<rbrakk> \<Longrightarrow> b / (a * b) = 1/(a::'a::field)"
nipkow@23413
  1290
using nonzero_mult_divide_mult_cancel_right[of a b 1] by simp
nipkow@23413
  1291
paulson@24427
  1292
lemma nonzero_divide_mult_cancel_left[simp,noatp]:
nipkow@23413
  1293
  "\<lbrakk> a\<noteq>0; b\<noteq>0 \<rbrakk> \<Longrightarrow> a / (a * b) = 1/(b::'a::field)"
nipkow@23413
  1294
using nonzero_mult_divide_mult_cancel_left[of b a 1] by simp
nipkow@23413
  1295
nipkow@23413
  1296
paulson@24427
  1297
lemma nonzero_mult_divide_mult_cancel_left2[simp,noatp]:
nipkow@23477
  1298
  "[|b\<noteq>0; c\<noteq>0|] ==> (c*a) / (b*c) = a/(b::'a::field)"
nipkow@23413
  1299
using nonzero_mult_divide_mult_cancel_left[of b c a] by(simp add:mult_ac)
nipkow@23413
  1300
paulson@24427
  1301
lemma nonzero_mult_divide_mult_cancel_right2[simp,noatp]:
nipkow@23477
  1302
  "[|b\<noteq>0; c\<noteq>0|] ==> (a*c) / (c*b) = a/(b::'a::field)"
nipkow@23413
  1303
using nonzero_mult_divide_mult_cancel_right[of b c a] by(simp add:mult_ac)
nipkow@23413
  1304
paulson@15234
  1305
paulson@14293
  1306
subsection {* Division and Unary Minus *}
paulson@14293
  1307
paulson@14293
  1308
lemma nonzero_minus_divide_left: "b \<noteq> 0 ==> - (a/b) = (-a) / (b::'a::field)"
huffman@29407
  1309
by (simp add: divide_inverse)
paulson@14293
  1310
paulson@14293
  1311
lemma nonzero_minus_divide_right: "b \<noteq> 0 ==> - (a/b) = a / -(b::'a::field)"
huffman@29407
  1312
by (simp add: divide_inverse nonzero_inverse_minus_eq)
paulson@14293
  1313
paulson@14293
  1314
lemma nonzero_minus_divide_divide: "b \<noteq> 0 ==> (-a)/(-b) = a / (b::'a::field)"
paulson@14293
  1315
by (simp add: divide_inverse nonzero_inverse_minus_eq)
paulson@14293
  1316
paulson@14430
  1317
lemma minus_divide_left: "- (a/b) = (-a) / (b::'a::field)"
huffman@29407
  1318
by (simp add: divide_inverse)
paulson@14293
  1319
paulson@14293
  1320
lemma minus_divide_right: "- (a/b) = a / -(b::'a::{field,division_by_zero})"
huffman@29407
  1321
by (simp add: divide_inverse)
paulson@14430
  1322
paulson@14293
  1323
paulson@14293
  1324
text{*The effect is to extract signs from divisions*}
nipkow@29833
  1325
lemmas divide_minus_left[noatp] = minus_divide_left [symmetric]
nipkow@29833
  1326
lemmas divide_minus_right[noatp] = minus_divide_right [symmetric]
paulson@17085
  1327
declare divide_minus_left [simp]   divide_minus_right [simp]
paulson@14293
  1328
paulson@14293
  1329
lemma minus_divide_divide [simp]:
nipkow@23477
  1330
  "(-a)/(-b) = a / (b::'a::{field,division_by_zero})"
haftmann@21328
  1331
apply (cases "b=0", simp) 
paulson@14293
  1332
apply (simp add: nonzero_minus_divide_divide) 
paulson@14293
  1333
done
paulson@14293
  1334
paulson@14430
  1335
lemma diff_divide_distrib: "(a-b)/(c::'a::field) = a/c - b/c"
paulson@14387
  1336
by (simp add: diff_minus add_divide_distrib) 
paulson@14387
  1337
nipkow@23482
  1338
lemma add_divide_eq_iff:
nipkow@23482
  1339
  "(z::'a::field) \<noteq> 0 \<Longrightarrow> x + y/z = (z*x + y)/z"
nipkow@23482
  1340
by(simp add:add_divide_distrib nonzero_mult_divide_cancel_left)
nipkow@23482
  1341
nipkow@23482
  1342
lemma divide_add_eq_iff:
nipkow@23482
  1343
  "(z::'a::field) \<noteq> 0 \<Longrightarrow> x/z + y = (x + z*y)/z"
nipkow@23482
  1344
by(simp add:add_divide_distrib nonzero_mult_divide_cancel_left)
nipkow@23482
  1345
nipkow@23482
  1346
lemma diff_divide_eq_iff:
nipkow@23482
  1347
  "(z::'a::field) \<noteq> 0 \<Longrightarrow> x - y/z = (z*x - y)/z"
nipkow@23482
  1348
by(simp add:diff_divide_distrib nonzero_mult_divide_cancel_left)
nipkow@23482
  1349
nipkow@23482
  1350
lemma divide_diff_eq_iff:
nipkow@23482
  1351
  "(z::'a::field) \<noteq> 0 \<Longrightarrow> x/z - y = (x - z*y)/z"
nipkow@23482
  1352
by(simp add:diff_divide_distrib nonzero_mult_divide_cancel_left)
nipkow@23482
  1353
nipkow@23482
  1354
lemma nonzero_eq_divide_eq: "c\<noteq>0 ==> ((a::'a::field) = b/c) = (a*c = b)"
nipkow@23482
  1355
proof -
nipkow@23482
  1356
  assume [simp]: "c\<noteq>0"
nipkow@23496
  1357
  have "(a = b/c) = (a*c = (b/c)*c)" by simp
nipkow@23496
  1358
  also have "... = (a*c = b)" by (simp add: divide_inverse mult_assoc)
nipkow@23482
  1359
  finally show ?thesis .
nipkow@23482
  1360
qed
nipkow@23482
  1361
nipkow@23482
  1362
lemma nonzero_divide_eq_eq: "c\<noteq>0 ==> (b/c = (a::'a::field)) = (b = a*c)"
nipkow@23482
  1363
proof -
nipkow@23482
  1364
  assume [simp]: "c\<noteq>0"
nipkow@23496
  1365
  have "(b/c = a) = ((b/c)*c = a*c)"  by simp
nipkow@23496
  1366
  also have "... = (b = a*c)"  by (simp add: divide_inverse mult_assoc) 
nipkow@23482
  1367
  finally show ?thesis .
nipkow@23482
  1368
qed
nipkow@23482
  1369
nipkow@23482
  1370
lemma eq_divide_eq:
nipkow@23482
  1371
  "((a::'a::{field,division_by_zero}) = b/c) = (if c\<noteq>0 then a*c = b else a=0)"
nipkow@23482
  1372
by (simp add: nonzero_eq_divide_eq) 
nipkow@23482
  1373
nipkow@23482
  1374
lemma divide_eq_eq:
nipkow@23482
  1375
  "(b/c = (a::'a::{field,division_by_zero})) = (if c\<noteq>0 then b = a*c else a=0)"
nipkow@23482
  1376
by (force simp add: nonzero_divide_eq_eq) 
nipkow@23482
  1377
nipkow@23482
  1378
lemma divide_eq_imp: "(c::'a::{division_by_zero,field}) ~= 0 ==>
nipkow@23482
  1379
    b = a * c ==> b / c = a"
nipkow@29667
  1380
by (subst divide_eq_eq, simp)
nipkow@23482
  1381
nipkow@23482
  1382
lemma eq_divide_imp: "(c::'a::{division_by_zero,field}) ~= 0 ==>
nipkow@23482
  1383
    a * c = b ==> a = b / c"
nipkow@29667
  1384
by (subst eq_divide_eq, simp)
nipkow@29667
  1385
nipkow@29667
  1386
nipkow@29833
  1387
lemmas field_eq_simps[noatp] = algebra_simps
nipkow@23482
  1388
  (* pull / out*)
nipkow@23482
  1389
  add_divide_eq_iff divide_add_eq_iff
nipkow@23482
  1390
  diff_divide_eq_iff divide_diff_eq_iff
nipkow@23482
  1391
  (* multiply eqn *)
nipkow@23482
  1392
  nonzero_eq_divide_eq nonzero_divide_eq_eq
nipkow@23482
  1393
(* is added later:
nipkow@23482
  1394
  times_divide_eq_left times_divide_eq_right
nipkow@23482
  1395
*)
nipkow@23482
  1396
nipkow@23482
  1397
text{*An example:*}
nipkow@23482
  1398
lemma fixes a b c d e f :: "'a::field"
nipkow@23482
  1399
shows "\<lbrakk>a\<noteq>b; c\<noteq>d; e\<noteq>f \<rbrakk> \<Longrightarrow> ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) = 1"
nipkow@23482
  1400
apply(subgoal_tac "(c-d)*(e-f)*(a-b) \<noteq> 0")
nipkow@23482
  1401
 apply(simp add:field_eq_simps)
nipkow@23482
  1402
apply(simp)
nipkow@23482
  1403
done
nipkow@23482
  1404
nipkow@23482
  1405
avigad@16775
  1406
lemma diff_frac_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
avigad@16775
  1407
    x / y - w / z = (x * z - w * y) / (y * z)"
nipkow@23482
  1408
by (simp add:field_eq_simps times_divide_eq)
nipkow@23482
  1409
nipkow@23482
  1410
lemma frac_eq_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
nipkow@23482
  1411
    (x / y = w / z) = (x * z = w * y)"
nipkow@23482
  1412
by (simp add:field_eq_simps times_divide_eq)
paulson@14293
  1413
wenzelm@23389
  1414
paulson@14268
  1415
subsection {* Ordered Fields *}
paulson@14268
  1416
paulson@14277
  1417
lemma positive_imp_inverse_positive: 
nipkow@23482
  1418
assumes a_gt_0: "0 < a"  shows "0 < inverse (a::'a::ordered_field)"
nipkow@23482
  1419
proof -
paulson@14268
  1420
  have "0 < a * inverse a" 
paulson@14268
  1421
    by (simp add: a_gt_0 [THEN order_less_imp_not_eq2] zero_less_one)
paulson@14268
  1422
  thus "0 < inverse a" 
paulson@14268
  1423
    by (simp add: a_gt_0 [THEN order_less_not_sym] zero_less_mult_iff)
nipkow@23482
  1424
qed
paulson@14268
  1425
paulson@14277
  1426
lemma negative_imp_inverse_negative:
nipkow@23482
  1427
  "a < 0 ==> inverse a < (0::'a::ordered_field)"
nipkow@23482
  1428
by (insert positive_imp_inverse_positive [of "-a"], 
nipkow@23482
  1429
    simp add: nonzero_inverse_minus_eq order_less_imp_not_eq)
paulson@14268
  1430
paulson@14268
  1431
lemma inverse_le_imp_le:
nipkow@23482
  1432
assumes invle: "inverse a \<le> inverse b" and apos:  "0 < a"
nipkow@23482
  1433
shows "b \<le> (a::'a::ordered_field)"
nipkow@23482
  1434
proof (rule classical)
paulson@14268
  1435
  assume "~ b \<le> a"
nipkow@23482
  1436
  hence "a < b"  by (simp add: linorder_not_le)
nipkow@23482
  1437
  hence bpos: "0 < b"  by (blast intro: apos order_less_trans)
paulson@14268
  1438
  hence "a * inverse a \<le> a * inverse b"
paulson@14268
  1439
    by (simp add: apos invle order_less_imp_le mult_left_mono)
paulson@14268
  1440
  hence "(a * inverse a) * b \<le> (a * inverse b) * b"
paulson@14268
  1441
    by (simp add: bpos order_less_imp_le mult_right_mono)
nipkow@23482
  1442
  thus "b \<le> a"  by (simp add: mult_assoc apos bpos order_less_imp_not_eq2)
nipkow@23482
  1443
qed
paulson@14268
  1444
paulson@14277
  1445
lemma inverse_positive_imp_positive:
nipkow@23482
  1446
assumes inv_gt_0: "0 < inverse a" and nz: "a \<noteq> 0"
nipkow@23482
  1447
shows "0 < (a::'a::ordered_field)"
wenzelm@23389
  1448
proof -
paulson@14277
  1449
  have "0 < inverse (inverse a)"
wenzelm@23389
  1450
    using inv_gt_0 by (rule positive_imp_inverse_positive)
paulson@14277
  1451
  thus "0 < a"
wenzelm@23389
  1452
    using nz by (simp add: nonzero_inverse_inverse_eq)
wenzelm@23389
  1453
qed
paulson@14277
  1454
paulson@14277
  1455
lemma inverse_positive_iff_positive [simp]:
nipkow@23482
  1456
  "(0 < inverse a) = (0 < (a::'a::{ordered_field,division_by_zero}))"
haftmann@21328
  1457
apply (cases "a = 0", simp)
paulson@14277
  1458
apply (blast intro: inverse_positive_imp_positive positive_imp_inverse_positive)
paulson@14277
  1459
done
paulson@14277
  1460
paulson@14277
  1461
lemma inverse_negative_imp_negative:
nipkow@23482
  1462
assumes inv_less_0: "inverse a < 0" and nz:  "a \<noteq> 0"
nipkow@23482
  1463
shows "a < (0::'a::ordered_field)"
wenzelm@23389
  1464
proof -
paulson@14277
  1465
  have "inverse (inverse a) < 0"
wenzelm@23389
  1466
    using inv_less_0 by (rule negative_imp_inverse_negative)
nipkow@23482
  1467
  thus "a < 0" using nz by (simp add: nonzero_inverse_inverse_eq)
wenzelm@23389
  1468
qed
paulson@14277
  1469
paulson@14277
  1470
lemma inverse_negative_iff_negative [simp]:
nipkow@23482
  1471
  "(inverse a < 0) = (a < (0::'a::{ordered_field,division_by_zero}))"
haftmann@21328
  1472
apply (cases "a = 0", simp)
paulson@14277
  1473
apply (blast intro: inverse_negative_imp_negative negative_imp_inverse_negative)
paulson@14277
  1474
done
paulson@14277
  1475
paulson@14277
  1476
lemma inverse_nonnegative_iff_nonnegative [simp]:
nipkow@23482
  1477
  "(0 \<le> inverse a) = (0 \<le> (a::'a::{ordered_field,division_by_zero}))"
paulson@14277
  1478
by (simp add: linorder_not_less [symmetric])
paulson@14277
  1479
paulson@14277
  1480
lemma inverse_nonpositive_iff_nonpositive [simp]:
nipkow@23482
  1481
  "(inverse a \<le> 0) = (a \<le> (0::'a::{ordered_field,division_by_zero}))"
paulson@14277
  1482
by (simp add: linorder_not_less [symmetric])
paulson@14277
  1483
chaieb@23406
  1484
lemma ordered_field_no_lb: "\<forall> x. \<exists>y. y < (x::'a::ordered_field)"
chaieb@23406
  1485
proof
chaieb@23406
  1486
  fix x::'a
chaieb@23406
  1487
  have m1: "- (1::'a) < 0" by simp
chaieb@23406
  1488
  from add_strict_right_mono[OF m1, where c=x] 
chaieb@23406
  1489
  have "(- 1) + x < x" by simp
chaieb@23406
  1490
  thus "\<exists>y. y < x" by blast
chaieb@23406
  1491
qed
chaieb@23406
  1492
chaieb@23406
  1493
lemma ordered_field_no_ub: "\<forall> x. \<exists>y. y > (x::'a::ordered_field)"
chaieb@23406
  1494
proof
chaieb@23406
  1495
  fix x::'a
chaieb@23406
  1496
  have m1: " (1::'a) > 0" by simp
chaieb@23406
  1497
  from add_strict_right_mono[OF m1, where c=x] 
chaieb@23406
  1498
  have "1 + x > x" by simp
chaieb@23406
  1499
  thus "\<exists>y. y > x" by blast
chaieb@23406
  1500
qed
paulson@14277
  1501
paulson@14277
  1502
subsection{*Anti-Monotonicity of @{term inverse}*}
paulson@14277
  1503
paulson@14268
  1504
lemma less_imp_inverse_less:
nipkow@23482
  1505
assumes less: "a < b" and apos:  "0 < a"
nipkow@23482
  1506
shows "inverse b < inverse (a::'a::ordered_field)"
nipkow@23482
  1507
proof (rule ccontr)
paulson@14268
  1508
  assume "~ inverse b < inverse a"
nipkow@29667
  1509
  hence "inverse a \<le> inverse b" by (simp add: linorder_not_less)
paulson@14268
  1510
  hence "~ (a < b)"
paulson@14268
  1511
    by (simp add: linorder_not_less inverse_le_imp_le [OF _ apos])
nipkow@29667
  1512
  thus False by (rule notE [OF _ less])
nipkow@23482
  1513
qed
paulson@14268
  1514
paulson@14268
  1515
lemma inverse_less_imp_less:
nipkow@23482
  1516
  "[|inverse a < inverse b; 0 < a|] ==> b < (a::'a::ordered_field)"
paulson@14268
  1517
apply (simp add: order_less_le [of "inverse a"] order_less_le [of "b"])
paulson@14268
  1518
apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq) 
paulson@14268
  1519
done
paulson@14268
  1520
paulson@14268
  1521
text{*Both premises are essential. Consider -1 and 1.*}
paulson@24286
  1522
lemma inverse_less_iff_less [simp,noatp]:
nipkow@23482
  1523
  "[|0 < a; 0 < b|] ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
paulson@14268
  1524
by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less) 
paulson@14268
  1525
paulson@14268
  1526
lemma le_imp_inverse_le:
nipkow@23482
  1527
  "[|a \<le> b; 0 < a|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
nipkow@23482
  1528
by (force simp add: order_le_less less_imp_inverse_less)
paulson@14268
  1529
paulson@24286
  1530
lemma inverse_le_iff_le [simp,noatp]:
nipkow@23482
  1531
 "[|0 < a; 0 < b|] ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
paulson@14268
  1532
by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le) 
paulson@14268
  1533
paulson@14268
  1534
paulson@14268
  1535
text{*These results refer to both operands being negative.  The opposite-sign
paulson@14268
  1536
case is trivial, since inverse preserves signs.*}
paulson@14268
  1537
lemma inverse_le_imp_le_neg:
nipkow@23482
  1538
  "[|inverse a \<le> inverse b; b < 0|] ==> b \<le> (a::'a::ordered_field)"
nipkow@23482
  1539
apply (rule classical) 
nipkow@23482
  1540
apply (subgoal_tac "a < 0") 
nipkow@23482
  1541
 prefer 2 apply (force simp add: linorder_not_le intro: order_less_trans) 
nipkow@23482
  1542
apply (insert inverse_le_imp_le [of "-b" "-a"])
nipkow@23482
  1543
apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
nipkow@23482
  1544
done
paulson@14268
  1545
paulson@14268
  1546
lemma less_imp_inverse_less_neg:
paulson@14268
  1547
   "[|a < b; b < 0|] ==> inverse b < inverse (a::'a::ordered_field)"
nipkow@23482
  1548
apply (subgoal_tac "a < 0") 
nipkow@23482
  1549
 prefer 2 apply (blast intro: order_less_trans) 
nipkow@23482
  1550
apply (insert less_imp_inverse_less [of "-b" "-a"])
nipkow@23482
  1551
apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
nipkow@23482
  1552
done
paulson@14268
  1553
paulson@14268
  1554
lemma inverse_less_imp_less_neg:
paulson@14268
  1555
   "[|inverse a < inverse b; b < 0|] ==> b < (a::'a::ordered_field)"
nipkow@23482
  1556
apply (rule classical) 
nipkow@23482
  1557
apply (subgoal_tac "a < 0") 
nipkow@23482
  1558
 prefer 2
nipkow@23482
  1559
 apply (force simp add: linorder_not_less intro: order_le_less_trans) 
nipkow@23482
  1560
apply (insert inverse_less_imp_less [of "-b" "-a"])
nipkow@23482
  1561
apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
nipkow@23482
  1562
done
paulson@14268
  1563
paulson@24286
  1564
lemma inverse_less_iff_less_neg [simp,noatp]:
nipkow@23482
  1565
  "[|a < 0; b < 0|] ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
nipkow@23482
  1566
apply (insert inverse_less_iff_less [of "-b" "-a"])
nipkow@23482
  1567
apply (simp del: inverse_less_iff_less 
nipkow@23482
  1568
            add: order_less_imp_not_eq nonzero_inverse_minus_eq)
nipkow@23482
  1569
done
paulson@14268
  1570
paulson@14268
  1571
lemma le_imp_inverse_le_neg:
nipkow@23482
  1572
  "[|a \<le> b; b < 0|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
nipkow@23482
  1573
by (force simp add: order_le_less less_imp_inverse_less_neg)
paulson@14268
  1574
paulson@24286
  1575
lemma inverse_le_iff_le_neg [simp,noatp]:
nipkow@23482
  1576
 "[|a < 0; b < 0|] ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
paulson@14268
  1577
by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg) 
paulson@14265
  1578
paulson@14277
  1579
paulson@14365
  1580
subsection{*Inverses and the Number One*}
paulson@14365
  1581
paulson@14365
  1582
lemma one_less_inverse_iff:
nipkow@23482
  1583
  "(1 < inverse x) = (0 < x & x < (1::'a::{ordered_field,division_by_zero}))"
nipkow@23482
  1584
proof cases
paulson@14365
  1585
  assume "0 < x"
paulson@14365
  1586
    with inverse_less_iff_less [OF zero_less_one, of x]
paulson@14365
  1587
    show ?thesis by simp
paulson@14365
  1588
next
paulson@14365
  1589
  assume notless: "~ (0 < x)"
paulson@14365
  1590
  have "~ (1 < inverse x)"
paulson@14365
  1591
  proof
paulson@14365
  1592
    assume "1 < inverse x"
paulson@14365
  1593
    also with notless have "... \<le> 0" by (simp add: linorder_not_less)
paulson@14365
  1594
    also have "... < 1" by (rule zero_less_one) 
paulson@14365
  1595
    finally show False by auto
paulson@14365
  1596
  qed
paulson@14365
  1597
  with notless show ?thesis by simp
paulson@14365
  1598
qed
paulson@14365
  1599
paulson@14365
  1600
lemma inverse_eq_1_iff [simp]:
nipkow@23482
  1601
  "(inverse x = 1) = (x = (1::'a::{field,division_by_zero}))"
paulson@14365
  1602
by (insert inverse_eq_iff_eq [of x 1], simp) 
paulson@14365
  1603
paulson@14365
  1604
lemma one_le_inverse_iff:
nipkow@23482
  1605
  "(1 \<le> inverse x) = (0 < x & x \<le> (1::'a::{ordered_field,division_by_zero}))"
paulson@14365
  1606
by (force simp add: order_le_less one_less_inverse_iff zero_less_one 
paulson@14365
  1607
                    eq_commute [of 1]) 
paulson@14365
  1608
paulson@14365
  1609
lemma inverse_less_1_iff:
nipkow@23482
  1610
  "(inverse x < 1) = (x \<le> 0 | 1 < (x::'a::{ordered_field,division_by_zero}))"
paulson@14365
  1611
by (simp add: linorder_not_le [symmetric] one_le_inverse_iff) 
paulson@14365
  1612
paulson@14365
  1613
lemma inverse_le_1_iff:
nipkow@23482
  1614
  "(inverse x \<le> 1) = (x \<le> 0 | 1 \<le> (x::'a::{ordered_field,division_by_zero}))"
paulson@14365
  1615
by (simp add: linorder_not_less [symmetric] one_less_inverse_iff) 
paulson@14365
  1616
wenzelm@23389
  1617
paulson@14288
  1618
subsection{*Simplification of Inequalities Involving Literal Divisors*}
paulson@14288
  1619
paulson@14288
  1620
lemma pos_le_divide_eq: "0 < (c::'a::ordered_field) ==> (a \<le> b/c) = (a*c \<le> b)"
paulson@14288
  1621
proof -
paulson@14288
  1622
  assume less: "0<c"
paulson@14288
  1623
  hence "(a \<le> b/c) = (a*c \<le> (b/c)*c)"
paulson@14288
  1624
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
paulson@14288
  1625
  also have "... = (a*c \<le> b)"
paulson@14288
  1626
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
paulson@14288
  1627
  finally show ?thesis .
paulson@14288
  1628
qed
paulson@14288
  1629
paulson@14288
  1630
lemma neg_le_divide_eq: "c < (0::'a::ordered_field) ==> (a \<le> b/c) = (b \<le> a*c)"
paulson@14288
  1631
proof -
paulson@14288
  1632
  assume less: "c<0"
paulson@14288
  1633
  hence "(a \<le> b/c) = ((b/c)*c \<le> a*c)"
paulson@14288
  1634
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
paulson@14288
  1635
  also have "... = (b \<le> a*c)"
paulson@14288
  1636
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
paulson@14288
  1637
  finally show ?thesis .
paulson@14288
  1638
qed
paulson@14288
  1639
paulson@14288
  1640
lemma le_divide_eq:
paulson@14288
  1641
  "(a \<le> b/c) = 
paulson@14288
  1642
   (if 0 < c then a*c \<le> b
paulson@14288
  1643
             else if c < 0 then b \<le> a*c
paulson@14288
  1644
             else  a \<le> (0::'a::{ordered_field,division_by_zero}))"
haftmann@21328
  1645
apply (cases "c=0", simp) 
paulson@14288
  1646
apply (force simp add: pos_le_divide_eq neg_le_divide_eq linorder_neq_iff) 
paulson@14288
  1647
done
paulson@14288
  1648
paulson@14288
  1649
lemma pos_divide_le_eq: "0 < (c::'a::ordered_field) ==> (b/c \<le> a) = (b \<le> a*c)"
paulson@14288
  1650
proof -
paulson@14288
  1651
  assume less: "0<c"
paulson@14288
  1652
  hence "(b/c \<le> a) = ((b/c)*c \<le> a*c)"
paulson@14288
  1653
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
paulson@14288
  1654
  also have "... = (b \<le> a*c)"
paulson@14288
  1655
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
paulson@14288
  1656
  finally show ?thesis .
paulson@14288
  1657
qed
paulson@14288
  1658
paulson@14288
  1659
lemma neg_divide_le_eq: "c < (0::'a::ordered_field) ==> (b/c \<le> a) = (a*c \<le> b)"
paulson@14288
  1660
proof -
paulson@14288
  1661
  assume less: "c<0"
paulson@14288
  1662
  hence "(b/c \<le> a) = (a*c \<le> (b/c)*c)"
paulson@14288
  1663
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
paulson@14288
  1664
  also have "... = (a*c \<le> b)"
paulson@14288
  1665
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
paulson@14288
  1666
  finally show ?thesis .
paulson@14288
  1667
qed
paulson@14288
  1668
paulson@14288
  1669
lemma divide_le_eq:
paulson@14288
  1670
  "(b/c \<le> a) = 
paulson@14288
  1671
   (if 0 < c then b \<le> a*c
paulson@14288
  1672
             else if c < 0 then a*c \<le> b
paulson@14288
  1673
             else 0 \<le> (a::'a::{ordered_field,division_by_zero}))"
haftmann@21328
  1674
apply (cases "c=0", simp) 
paulson@14288
  1675
apply (force simp add: pos_divide_le_eq neg_divide_le_eq linorder_neq_iff) 
paulson@14288
  1676
done
paulson@14288
  1677
paulson@14288
  1678
lemma pos_less_divide_eq:
paulson@14288
  1679
     "0 < (c::'a::ordered_field) ==> (a < b/c) = (a*c < b)"
paulson@14288
  1680
proof -
paulson@14288
  1681
  assume less: "0<c"
paulson@14288
  1682
  hence "(a < b/c) = (a*c < (b/c)*c)"
paulson@15234
  1683
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
paulson@14288
  1684
  also have "... = (a*c < b)"
paulson@14288
  1685
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
paulson@14288
  1686
  finally show ?thesis .
paulson@14288
  1687
qed
paulson@14288
  1688
paulson@14288
  1689
lemma neg_less_divide_eq:
paulson@14288
  1690
 "c < (0::'a::ordered_field) ==> (a < b/c) = (b < a*c)"
paulson@14288
  1691
proof -
paulson@14288
  1692
  assume less: "c<0"
paulson@14288
  1693
  hence "(a < b/c) = ((b/c)*c < a*c)"
paulson@15234
  1694
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
paulson@14288
  1695
  also have "... = (b < a*c)"
paulson@14288
  1696
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
paulson@14288
  1697
  finally show ?thesis .
paulson@14288
  1698
qed
paulson@14288
  1699
paulson@14288
  1700
lemma less_divide_eq:
paulson@14288
  1701
  "(a < b/c) = 
paulson@14288
  1702
   (if 0 < c then a*c < b
paulson@14288
  1703
             else if c < 0 then b < a*c
paulson@14288
  1704
             else  a < (0::'a::{ordered_field,division_by_zero}))"
haftmann@21328
  1705
apply (cases "c=0", simp) 
paulson@14288
  1706
apply (force simp add: pos_less_divide_eq neg_less_divide_eq linorder_neq_iff) 
paulson@14288
  1707
done
paulson@14288
  1708
paulson@14288
  1709
lemma pos_divide_less_eq:
paulson@14288
  1710
     "0 < (c::'a::ordered_field) ==> (b/c < a) = (b < a*c)"
paulson@14288
  1711
proof -
paulson@14288
  1712
  assume less: "0<c"
paulson@14288
  1713
  hence "(b/c < a) = ((b/c)*c < a*c)"
paulson@15234
  1714
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
paulson@14288
  1715
  also have "... = (b < a*c)"
paulson@14288
  1716
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
paulson@14288
  1717
  finally show ?thesis .
paulson@14288
  1718
qed
paulson@14288
  1719
paulson@14288
  1720
lemma neg_divide_less_eq:
paulson@14288
  1721
 "c < (0::'a::ordered_field) ==> (b/c < a) = (a*c < b)"
paulson@14288
  1722
proof -
paulson@14288
  1723
  assume less: "c<0"
paulson@14288
  1724
  hence "(b/c < a) = (a*c < (b/c)*c)"
paulson@15234
  1725
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
paulson@14288
  1726
  also have "... = (a*c < b)"
paulson@14288
  1727
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
paulson@14288
  1728
  finally show ?thesis .
paulson@14288
  1729
qed
paulson@14288
  1730
paulson@14288
  1731
lemma divide_less_eq:
paulson@14288
  1732
  "(b/c < a) = 
paulson@14288
  1733
   (if 0 < c then b < a*c
paulson@14288
  1734
             else if c < 0 then a*c < b
paulson@14288
  1735
             else 0 < (a::'a::{ordered_field,division_by_zero}))"
haftmann@21328
  1736
apply (cases "c=0", simp) 
paulson@14288
  1737
apply (force simp add: pos_divide_less_eq neg_divide_less_eq linorder_neq_iff) 
paulson@14288
  1738
done
paulson@14288
  1739
nipkow@23482
  1740
nipkow@23482
  1741
subsection{*Field simplification*}
nipkow@23482
  1742
nipkow@29667
  1743
text{* Lemmas @{text field_simps} multiply with denominators in in(equations)
nipkow@29667
  1744
if they can be proved to be non-zero (for equations) or positive/negative
nipkow@29667
  1745
(for inequations). Can be too aggressive and is therefore separate from the
nipkow@29667
  1746
more benign @{text algebra_simps}. *}
paulson@14288
  1747
nipkow@29833
  1748
lemmas field_simps[noatp] = field_eq_simps
nipkow@23482
  1749
  (* multiply ineqn *)
nipkow@23482
  1750
  pos_divide_less_eq neg_divide_less_eq
nipkow@23482
  1751
  pos_less_divide_eq neg_less_divide_eq
nipkow@23482
  1752
  pos_divide_le_eq neg_divide_le_eq
nipkow@23482
  1753
  pos_le_divide_eq neg_le_divide_eq
paulson@14288
  1754
nipkow@23482
  1755
text{* Lemmas @{text sign_simps} is a first attempt to automate proofs
nipkow@23483
  1756
of positivity/negativity needed for @{text field_simps}. Have not added @{text
nipkow@23482
  1757
sign_simps} to @{text field_simps} because the former can lead to case
nipkow@23482
  1758
explosions. *}
paulson@14288
  1759
nipkow@29833
  1760
lemmas sign_simps[noatp] = group_simps
nipkow@23482
  1761
  zero_less_mult_iff  mult_less_0_iff
paulson@14288
  1762
nipkow@23482
  1763
(* Only works once linear arithmetic is installed:
nipkow@23482
  1764
text{*An example:*}
nipkow@23482
  1765
lemma fixes a b c d e f :: "'a::ordered_field"
nipkow@23482
  1766
shows "\<lbrakk>a>b; c<d; e<f; 0 < u \<rbrakk> \<Longrightarrow>
nipkow@23482
  1767
 ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) <
nipkow@23482
  1768
 ((e-f)*(a-b)*(c-d))/((e-f)*(a-b)*(c-d)) + u"
nipkow@23482
  1769
apply(subgoal_tac "(c-d)*(e-f)*(a-b) > 0")
nipkow@23482
  1770
 prefer 2 apply(simp add:sign_simps)
nipkow@23482
  1771
apply(subgoal_tac "(c-d)*(e-f)*(a-b)*u > 0")
nipkow@23482
  1772
 prefer 2 apply(simp add:sign_simps)
nipkow@23482
  1773
apply(simp add:field_simps)
avigad@16775
  1774
done
nipkow@23482
  1775
*)
avigad@16775
  1776
wenzelm@23389
  1777
avigad@16775
  1778
subsection{*Division and Signs*}
avigad@16775
  1779
avigad@16775
  1780
lemma zero_less_divide_iff:
avigad@16775
  1781
     "((0::'a::{ordered_field,division_by_zero}) < a/b) = (0 < a & 0 < b | a < 0 & b < 0)"
avigad@16775
  1782
by (simp add: divide_inverse zero_less_mult_iff)
avigad@16775
  1783
avigad@16775
  1784
lemma divide_less_0_iff:
avigad@16775
  1785
     "(a/b < (0::'a::{ordered_field,division_by_zero})) = 
avigad@16775
  1786
      (0 < a & b < 0 | a < 0 & 0 < b)"
avigad@16775
  1787
by (simp add: divide_inverse mult_less_0_iff)
avigad@16775
  1788
avigad@16775
  1789
lemma zero_le_divide_iff:
avigad@16775
  1790
     "((0::'a::{ordered_field,division_by_zero}) \<le> a/b) =
avigad@16775
  1791
      (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
avigad@16775
  1792
by (simp add: divide_inverse zero_le_mult_iff)
avigad@16775
  1793
avigad@16775
  1794
lemma divide_le_0_iff:
avigad@16775
  1795
     "(a/b \<le> (0::'a::{ordered_field,division_by_zero})) =
avigad@16775
  1796
      (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
avigad@16775
  1797
by (simp add: divide_inverse mult_le_0_iff)
avigad@16775
  1798
paulson@24286
  1799
lemma divide_eq_0_iff [simp,noatp]:
avigad@16775
  1800
     "(a/b = 0) = (a=0 | b=(0::'a::{field,division_by_zero}))"
nipkow@23482
  1801
by (simp add: divide_inverse)
avigad@16775
  1802
nipkow@23482
  1803
lemma divide_pos_pos:
nipkow@23482
  1804
  "0 < (x::'a::ordered_field) ==> 0 < y ==> 0 < x / y"
nipkow@23482
  1805
by(simp add:field_simps)
nipkow@23482
  1806
avigad@16775
  1807
nipkow@23482
  1808
lemma divide_nonneg_pos:
nipkow@23482
  1809
  "0 <= (x::'a::ordered_field) ==> 0 < y ==> 0 <= x / y"
nipkow@23482
  1810
by(simp add:field_simps)
avigad@16775
  1811
nipkow@23482
  1812
lemma divide_neg_pos:
nipkow@23482
  1813
  "(x::'a::ordered_field) < 0 ==> 0 < y ==> x / y < 0"
nipkow@23482
  1814
by(simp add:field_simps)
avigad@16775
  1815
nipkow@23482
  1816
lemma divide_nonpos_pos:
nipkow@23482
  1817
  "(x::'a::ordered_field) <= 0 ==> 0 < y ==> x / y <= 0"
nipkow@23482
  1818
by(simp add:field_simps)
avigad@16775
  1819
nipkow@23482
  1820
lemma divide_pos_neg:
nipkow@23482
  1821
  "0 < (x::'a::ordered_field) ==> y < 0 ==> x / y < 0"
nipkow@23482
  1822
by(simp add:field_simps)
avigad@16775
  1823
nipkow@23482
  1824
lemma divide_nonneg_neg:
nipkow@23482
  1825
  "0 <= (x::'a::ordered_field) ==> y < 0 ==> x / y <= 0" 
nipkow@23482
  1826
by(simp add:field_simps)
avigad@16775
  1827
nipkow@23482
  1828
lemma divide_neg_neg:
nipkow@23482
  1829
  "(x::'a::ordered_field) < 0 ==> y < 0 ==> 0 < x / y"
nipkow@23482
  1830
by(simp add:field_simps)
avigad@16775
  1831
nipkow@23482
  1832
lemma divide_nonpos_neg:
nipkow@23482
  1833
  "(x::'a::ordered_field) <= 0 ==> y < 0 ==> 0 <= x / y"
nipkow@23482
  1834
by(simp add:field_simps)
paulson@15234
  1835
wenzelm@23389
  1836
paulson@14288
  1837
subsection{*Cancellation Laws for Division*}
paulson@14288
  1838
paulson@24286
  1839
lemma divide_cancel_right [simp,noatp]:
paulson@14288
  1840
     "(a/c = b/c) = (c = 0 | a = (b::'a::{field,division_by_zero}))"
nipkow@23482
  1841
apply (cases "c=0", simp)
nipkow@23496
  1842
apply (simp add: divide_inverse)
paulson@14288
  1843
done
paulson@14288
  1844
paulson@24286
  1845
lemma divide_cancel_left [simp,noatp]:
paulson@14288
  1846
     "(c/a = c/b) = (c = 0 | a = (b::'a::{field,division_by_zero}))" 
nipkow@23482
  1847
apply (cases "c=0", simp)
nipkow@23496
  1848
apply (simp add: divide_inverse)
paulson@14288
  1849
done
paulson@14288
  1850
wenzelm@23389
  1851
paulson@14353
  1852
subsection {* Division and the Number One *}
paulson@14353
  1853
paulson@14353
  1854
text{*Simplify expressions equated with 1*}
paulson@24286
  1855
lemma divide_eq_1_iff [simp,noatp]:
paulson@14353
  1856
     "(a/b = 1) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
nipkow@23482
  1857
apply (cases "b=0", simp)
nipkow@23482
  1858
apply (simp add: right_inverse_eq)
paulson@14353
  1859
done
paulson@14353
  1860
paulson@24286
  1861
lemma one_eq_divide_iff [simp,noatp]:
paulson@14353
  1862
     "(1 = a/b) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
nipkow@23482
  1863
by (simp add: eq_commute [of 1])
paulson@14353
  1864
paulson@24286
  1865
lemma zero_eq_1_divide_iff [simp,noatp]:
paulson@14353
  1866
     "((0::'a::{ordered_field,division_by_zero}) = 1/a) = (a = 0)"
nipkow@23482
  1867
apply (cases "a=0", simp)
nipkow@23482
  1868
apply (auto simp add: nonzero_eq_divide_eq)
paulson@14353
  1869
done
paulson@14353
  1870
paulson@24286
  1871
lemma one_divide_eq_0_iff [simp,noatp]:
paulson@14353
  1872
     "(1/a = (0::'a::{ordered_field,division_by_zero})) = (a = 0)"
nipkow@23482
  1873
apply (cases "a=0", simp)
nipkow@23482
  1874
apply (insert zero_neq_one [THEN not_sym])
nipkow@23482
  1875
apply (auto simp add: nonzero_divide_eq_eq)
paulson@14353
  1876
done
paulson@14353
  1877
paulson@14353
  1878
text{*Simplify expressions such as @{text "0 < 1/x"} to @{text "0 < x"}*}
paulson@18623
  1879
lemmas zero_less_divide_1_iff = zero_less_divide_iff [of 1, simplified]
paulson@18623
  1880
lemmas divide_less_0_1_iff = divide_less_0_iff [of 1, simplified]
paulson@18623
  1881
lemmas zero_le_divide_1_iff = zero_le_divide_iff [of 1, simplified]
paulson@18623
  1882
lemmas divide_le_0_1_iff = divide_le_0_iff [of 1, simplified]
paulson@17085
  1883
nipkow@29833
  1884
declare zero_less_divide_1_iff [simp,noatp]
paulson@24286
  1885
declare divide_less_0_1_iff [simp,noatp]
nipkow@29833
  1886
declare zero_le_divide_1_iff [simp,noatp]
paulson@24286
  1887
declare divide_le_0_1_iff [simp,noatp]
paulson@14353
  1888
wenzelm@23389
  1889
paulson@14293
  1890
subsection {* Ordering Rules for Division *}
paulson@14293
  1891
paulson@14293
  1892
lemma divide_strict_right_mono:
paulson@14293
  1893
     "[|a < b; 0 < c|] ==> a / c < b / (c::'a::ordered_field)"
paulson@14293
  1894
by (simp add: order_less_imp_not_eq2 divide_inverse mult_strict_right_mono 
nipkow@23482
  1895
              positive_imp_inverse_positive)
paulson@14293
  1896
paulson@14293
  1897
lemma divide_right_mono:
paulson@14293
  1898
     "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/(c::'a::{ordered_field,division_by_zero})"
nipkow@23482
  1899
by (force simp add: divide_strict_right_mono order_le_less)
paulson@14293
  1900
avigad@16775
  1901
lemma divide_right_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
avigad@16775
  1902
    ==> c <= 0 ==> b / c <= a / c"
nipkow@23482
  1903
apply (drule divide_right_mono [of _ _ "- c"])
nipkow@23482
  1904
apply auto
avigad@16775
  1905
done
avigad@16775
  1906
avigad@16775
  1907
lemma divide_strict_right_mono_neg:
avigad@16775
  1908
     "[|b < a; c < 0|] ==> a / c < b / (c::'a::ordered_field)"
nipkow@23482
  1909
apply (drule divide_strict_right_mono [of _ _ "-c"], simp)
nipkow@23482
  1910
apply (simp add: order_less_imp_not_eq nonzero_minus_divide_right [symmetric])
avigad@16775
  1911
done
paulson@14293
  1912
paulson@14293
  1913
text{*The last premise ensures that @{term a} and @{term b} 
paulson@14293
  1914
      have the same sign*}
paulson@14293
  1915
lemma divide_strict_left_mono:
nipkow@23482
  1916
  "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
nipkow@23482
  1917
by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono)
paulson@14293
  1918
paulson@14293
  1919
lemma divide_left_mono:
nipkow@23482
  1920
  "[|b \<le> a; 0 \<le> c; 0 < a*b|] ==> c / a \<le> c / (b::'a::ordered_field)"
nipkow@23482
  1921
by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_right_mono)
paulson@14293
  1922
avigad@16775
  1923
lemma divide_left_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
avigad@16775
  1924
    ==> c <= 0 ==> 0 < a * b ==> c / a <= c / b"
avigad@16775
  1925
  apply (drule divide_left_mono [of _ _ "- c"])
avigad@16775
  1926
  apply (auto simp add: mult_commute)
avigad@16775
  1927
done
avigad@16775
  1928
paulson@14293
  1929
lemma divide_strict_left_mono_neg:
nipkow@23482
  1930
  "[|a < b; c < 0; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
nipkow@23482
  1931
by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono_neg)
nipkow@23482
  1932
paulson@14293
  1933
avigad@16775
  1934
text{*Simplify quotients that are compared with the value 1.*}
avigad@16775
  1935
paulson@24286
  1936
lemma le_divide_eq_1 [noatp]:
avigad@16775
  1937
  fixes a :: "'a :: {ordered_field,division_by_zero}"
avigad@16775
  1938
  shows "(1 \<le> b / a) = ((0 < a & a \<le> b) | (a < 0 & b \<le> a))"
avigad@16775
  1939
by (auto simp add: le_divide_eq)
avigad@16775
  1940
paulson@24286
  1941
lemma divide_le_eq_1 [noatp]:
avigad@16775
  1942
  fixes a :: "'a :: {ordered_field,division_by_zero}"
avigad@16775
  1943
  shows "(b / a \<le> 1) = ((0 < a & b \<le> a) | (a < 0 & a \<le> b) | a=0)"
avigad@16775
  1944
by (auto simp add: divide_le_eq)
avigad@16775
  1945
paulson@24286
  1946
lemma less_divide_eq_1 [noatp]:
avigad@16775
  1947
  fixes a :: "'a :: {ordered_field,division_by_zero}"
avigad@16775
  1948
  shows "(1 < b / a) = ((0 < a & a < b) | (a < 0 & b < a))"
avigad@16775
  1949
by (auto simp add: less_divide_eq)
avigad@16775
  1950
paulson@24286
  1951
lemma divide_less_eq_1 [noatp]:
avigad@16775
  1952
  fixes a :: "'a :: {ordered_field,division_by_zero}"
avigad@16775
  1953
  shows "(b / a < 1) = ((0 < a & b < a) | (a < 0 & a < b) | a=0)"
avigad@16775
  1954
by (auto simp add: divide_less_eq)
avigad@16775
  1955
wenzelm@23389
  1956
avigad@16775
  1957
subsection{*Conditional Simplification Rules: No Case Splits*}
avigad@16775
  1958
paulson@24286
  1959
lemma le_divide_eq_1_pos [simp,noatp]:
avigad@16775
  1960
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1961
  shows "0 < a \<Longrightarrow> (1 \<le> b/a) = (a \<le> b)"
avigad@16775
  1962
by (auto simp add: le_divide_eq)
avigad@16775
  1963
paulson@24286
  1964
lemma le_divide_eq_1_neg [simp,noatp]:
avigad@16775
  1965
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1966
  shows "a < 0 \<Longrightarrow> (1 \<le> b/a) = (b \<le> a)"
avigad@16775
  1967
by (auto simp add: le_divide_eq)
avigad@16775
  1968
paulson@24286
  1969
lemma divide_le_eq_1_pos [simp,noatp]:
avigad@16775
  1970
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1971
  shows "0 < a \<Longrightarrow> (b/a \<le> 1) = (b \<le> a)"
avigad@16775
  1972
by (auto simp add: divide_le_eq)
avigad@16775
  1973
paulson@24286
  1974
lemma divide_le_eq_1_neg [simp,noatp]:
avigad@16775
  1975
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1976
  shows "a < 0 \<Longrightarrow> (b/a \<le> 1) = (a \<le> b)"
avigad@16775
  1977
by (auto simp add: divide_le_eq)
avigad@16775
  1978
paulson@24286
  1979
lemma less_divide_eq_1_pos [simp,noatp]:
avigad@16775
  1980
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1981
  shows "0 < a \<Longrightarrow> (1 < b/a) = (a < b)"
avigad@16775
  1982
by (auto simp add: less_divide_eq)
avigad@16775
  1983
paulson@24286
  1984
lemma less_divide_eq_1_neg [simp,noatp]:
avigad@16775
  1985
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1986
  shows "a < 0 \<Longrightarrow> (1 < b/a) = (b < a)"
avigad@16775
  1987
by (auto simp add: less_divide_eq)
avigad@16775
  1988
paulson@24286
  1989
lemma divide_less_eq_1_pos [simp,noatp]:
avigad@16775
  1990
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1991
  shows "0 < a \<Longrightarrow> (b/a < 1) = (b < a)"
paulson@18649
  1992
by (auto simp add: divide_less_eq)
paulson@18649
  1993
paulson@24286
  1994
lemma divide_less_eq_1_neg [simp,noatp]:
paulson@18649
  1995
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1996
  shows "a < 0 \<Longrightarrow> b/a < 1 <-> a < b"
avigad@16775
  1997
by (auto simp add: divide_less_eq)
avigad@16775
  1998
paulson@24286
  1999
lemma eq_divide_eq_1 [simp,noatp]:
avigad@16775
  2000
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  2001
  shows "(1 = b/a) = ((a \<noteq> 0 & a = b))"
avigad@16775
  2002
by (auto simp add: eq_divide_eq)
avigad@16775
  2003
paulson@24286
  2004
lemma divide_eq_eq_1 [simp,noatp]:
avigad@16775
  2005
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  2006
  shows "(b/a = 1) = ((a \<noteq> 0 & a = b))"
avigad@16775
  2007
by (auto simp add: divide_eq_eq)
avigad@16775
  2008
wenzelm@23389
  2009
avigad@16775
  2010
subsection {* Reasoning about inequalities with division *}
avigad@16775
  2011
avigad@16775
  2012
lemma mult_right_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1
avigad@16775
  2013
    ==> x * y <= x"
nipkow@29667
  2014
by (auto simp add: mult_compare_simps);
avigad@16775
  2015
avigad@16775
  2016
lemma mult_left_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1
avigad@16775
  2017
    ==> y * x <= x"
nipkow@29667
  2018
by (auto simp add: mult_compare_simps);
avigad@16775
  2019
avigad@16775
  2020
lemma mult_imp_div_pos_le: "0 < (y::'a::ordered_field) ==> x <= z * y ==>
avigad@16775
  2021
    x / y <= z";
nipkow@29667
  2022
by (subst pos_divide_le_eq, assumption+);
avigad@16775
  2023
avigad@16775
  2024
lemma mult_imp_le_div_pos: "0 < (y::'a::ordered_field) ==> z * y <= x ==>
nipkow@23482
  2025
    z <= x / y"
nipkow@23482
  2026
by(simp add:field_simps)
avigad@16775
  2027
avigad@16775
  2028
lemma mult_imp_div_pos_less: "0 < (y::'a::ordered_field) ==> x < z * y ==>
avigad@16775
  2029
    x / y < z"
nipkow@23482
  2030
by(simp add:field_simps)
avigad@16775
  2031
avigad@16775
  2032
lemma mult_imp_less_div_pos: "0 < (y::'a::ordered_field) ==> z * y < x ==>
avigad@16775
  2033
    z < x / y"
nipkow@23482
  2034
by(simp add:field_simps)
avigad@16775
  2035
avigad@16775
  2036
lemma frac_le: "(0::'a::ordered_field) <= x ==> 
avigad@16775
  2037
    x <= y ==> 0 < w ==> w <= z  ==> x / z <= y / w"
avigad@16775
  2038
  apply (rule mult_imp_div_pos_le)
haftmann@25230
  2039
  apply simp
haftmann@25230
  2040
  apply (subst times_divide_eq_left)
avigad@16775
  2041
  apply (rule mult_imp_le_div_pos, assumption)
avigad@16775
  2042
  apply (rule mult_mono)
avigad@16775
  2043
  apply simp_all
paulson@14293
  2044
done
paulson@14293
  2045
avigad@16775
  2046
lemma frac_less: "(0::'a::ordered_field) <= x ==> 
avigad@16775
  2047
    x < y ==> 0 < w ==> w <= z  ==> x / z < y / w"
avigad@16775
  2048
  apply (rule mult_imp_div_pos_less)
avigad@16775
  2049
  apply simp;
avigad@16775
  2050
  apply (subst times_divide_eq_left);
avigad@16775
  2051
  apply (rule mult_imp_less_div_pos, assumption)
avigad@16775
  2052
  apply (erule mult_less_le_imp_less)
avigad@16775
  2053
  apply simp_all
avigad@16775
  2054
done
avigad@16775
  2055
avigad@16775
  2056
lemma frac_less2: "(0::'a::ordered_field) < x ==> 
avigad@16775
  2057
    x <= y ==> 0 < w ==> w < z  ==> x / z < y / w"
avigad@16775
  2058
  apply (rule mult_imp_div_pos_less)
avigad@16775
  2059
  apply simp_all
avigad@16775
  2060
  apply (subst times_divide_eq_left);
avigad@16775
  2061
  apply (rule mult_imp_less_div_pos, assumption)
avigad@16775
  2062
  apply (erule mult_le_less_imp_less)
avigad@16775
  2063
  apply simp_all
avigad@16775
  2064
done
avigad@16775
  2065
avigad@16775
  2066
text{*It's not obvious whether these should be simprules or not. 
avigad@16775
  2067
  Their effect is to gather terms into one big fraction, like
avigad@16775
  2068
  a*b*c / x*y*z. The rationale for that is unclear, but many proofs 
avigad@16775
  2069
  seem to need them.*}
avigad@16775
  2070
avigad@16775
  2071
declare times_divide_eq [simp]
paulson@14293
  2072
wenzelm@23389
  2073
paulson@14293
  2074
subsection {* Ordered Fields are Dense *}
paulson@14293
  2075
haftmann@25193
  2076
context ordered_semidom
haftmann@25193
  2077
begin
haftmann@25193
  2078
haftmann@25193
  2079
lemma less_add_one: "a < a + 1"
paulson@14293
  2080
proof -
haftmann@25193
  2081
  have "a + 0 < a + 1"
nipkow@23482
  2082
    by (blast intro: zero_less_one add_strict_left_mono)
paulson@14293
  2083
  thus ?thesis by simp
paulson@14293
  2084
qed
paulson@14293
  2085
haftmann@25193
  2086
lemma zero_less_two: "0 < 1 + 1"
nipkow@29667
  2087
by (blast intro: less_trans zero_less_one less_add_one)
haftmann@25193
  2088
haftmann@25193
  2089
end
paulson@14365
  2090
paulson@14293
  2091
lemma less_half_sum: "a < b ==> a < (a+b) / (1+1::'a::ordered_field)"
nipkow@23482
  2092
by (simp add: field_simps zero_less_two)
paulson@14293
  2093
paulson@14293
  2094
lemma gt_half_sum: "a < b ==> (a+b)/(1+1::'a::ordered_field) < b"
nipkow@23482
  2095
by (simp add: field_simps zero_less_two)
paulson@14293
  2096
haftmann@24422
  2097
instance ordered_field < dense_linear_order
haftmann@24422
  2098
proof
haftmann@24422
  2099
  fix x y :: 'a
haftmann@24422
  2100
  have "x < x + 1" by simp
haftmann@24422
  2101
  then show "\<exists>y. x < y" .. 
haftmann@24422
  2102
  have "x - 1 < x" by simp
haftmann@24422
  2103
  then show "\<exists>y. y < x" ..
haftmann@24422
  2104
  show "x < y \<Longrightarrow> \<exists>z>x. z < y" by (blast intro!: less_half_sum gt_half_sum)
haftmann@24422
  2105
qed
paulson@14293
  2106
paulson@15234
  2107
paulson@14293
  2108
subsection {* Absolute Value *}
paulson@14293
  2109
haftmann@25304
  2110
context ordered_idom
haftmann@25304
  2111
begin
haftmann@25304
  2112
haftmann@25304
  2113
lemma mult_sgn_abs: "sgn x * abs x = x"
haftmann@25304
  2114
  unfolding abs_if sgn_if by auto
haftmann@25304
  2115
haftmann@25304
  2116
end
nipkow@24491
  2117
obua@14738
  2118
lemma abs_one [simp]: "abs 1 = (1::'a::ordered_idom)"
nipkow@29667
  2119
by (simp add: abs_if zero_less_one [THEN order_less_not_sym])
haftmann@25304
  2120
haftmann@25304
  2121
class pordered_ring_abs = pordered_ring + pordered_ab_group_add_abs +
haftmann@25304
  2122
  assumes abs_eq_mult:
haftmann@25304
  2123
    "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>"
haftmann@25304
  2124
haftmann@25304
  2125
haftmann@25304
  2126
class lordered_ring = pordered_ring + lordered_ab_group_add_abs
haftmann@25304
  2127
begin
haftmann@25304
  2128
huffman@27516
  2129
subclass lordered_ab_group_add_meet ..
huffman@27516
  2130
subclass lordered_ab_group_add_join ..
haftmann@25304
  2131
haftmann@25304
  2132
end
paulson@14294
  2133
obua@14738
  2134
lemma abs_le_mult: "abs (a * b) \<le> (abs a) * (abs (b::'a::lordered_ring))" 
obua@14738
  2135
proof -
obua@14738
  2136
  let ?x = "pprt a * pprt b - pprt a * nprt b - nprt a * pprt b + nprt a * nprt b"
obua@14738
  2137
  let ?y = "pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
obua@14738
  2138
  have a: "(abs a) * (abs b) = ?x"
nipkow@29667
  2139
    by (simp only: abs_prts[of a] abs_prts[of b] algebra_simps)
obua@14738
  2140
  {
obua@14738
  2141
    fix u v :: 'a
paulson@15481
  2142
    have bh: "\<lbrakk>u = a; v = b\<rbrakk> \<Longrightarrow> 
paulson@15481
  2143
              u * v = pprt a * pprt b + pprt a * nprt b + 
paulson@15481
  2144
                      nprt a * pprt b + nprt a * nprt b"
obua@14738
  2145
      apply (subst prts[of u], subst prts[of v])
nipkow@29667
  2146
      apply (simp add: algebra_simps) 
obua@14738
  2147
      done
obua@14738
  2148
  }
obua@14738
  2149
  note b = this[OF refl[of a] refl[of b]]
obua@14738
  2150
  note addm = add_mono[of "0::'a" _ "0::'a", simplified]
obua@14738
  2151
  note addm2 = add_mono[of _ "0::'a" _ "0::'a", simplified]
obua@14738
  2152
  have xy: "- ?x <= ?y"
obua@14754
  2153
    apply (simp)
obua@14754
  2154
    apply (rule_tac y="0::'a" in order_trans)
nipkow@16568
  2155
    apply (rule addm2)
avigad@16775
  2156
    apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos)
nipkow@16568
  2157
    apply (rule addm)
avigad@16775
  2158
    apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos)
obua@14754
  2159
    done
obua@14738
  2160
  have yx: "?y <= ?x"
nipkow@16568
  2161
    apply (simp add:diff_def)
obua@14754
  2162
    apply (rule_tac y=0 in order_trans)
avigad@16775
  2163
    apply (rule addm2, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+)
avigad@16775
  2164
    apply (rule addm, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+)
obua@14738
  2165
    done
obua@14738
  2166
  have i1: "a*b <= abs a * abs b" by (simp only: a b yx)
obua@14738
  2167
  have i2: "- (abs a * abs b) <= a*b" by (simp only: a b xy)
obua@14738
  2168
  show ?thesis
obua@14738
  2169
    apply (rule abs_leI)
obua@14738
  2170
    apply (simp add: i1)
obua@14738
  2171
    apply (simp add: i2[simplified minus_le_iff])
obua@14738
  2172
    done
obua@14738
  2173
qed
paulson@14294
  2174
haftmann@25304
  2175
instance lordered_ring \<subseteq> pordered_ring_abs
haftmann@25304
  2176
proof
haftmann@25304
  2177
  fix a b :: "'a\<Colon> lordered_ring"
haftmann@25304
  2178
  assume "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0)"
haftmann@25304
  2179
  show "abs (a*b) = abs a * abs b"
obua@14738
  2180
proof -
obua@14738
  2181
  have s: "(0 <= a*b) | (a*b <= 0)"
obua@14738
  2182
    apply (auto)    
obua@14738
  2183
    apply (rule_tac split_mult_pos_le)
obua@14738
  2184
    apply (rule_tac contrapos_np[of "a*b <= 0"])
obua@14738
  2185
    apply (simp)
obua@14738
  2186
    apply (rule_tac split_mult_neg_le)
obua@14738
  2187
    apply (insert prems)
obua@14738
  2188
    apply (blast)
obua@14738
  2189
    done
obua@14738
  2190
  have mulprts: "a * b = (pprt a + nprt a) * (pprt b + nprt b)"
obua@14738
  2191
    by (simp add: prts[symmetric])
obua@14738
  2192
  show ?thesis
obua@14738
  2193
  proof cases
obua@14738
  2194
    assume "0 <= a * b"
obua@14738
  2195
    then show ?thesis
obua@14738
  2196
      apply (simp_all add: mulprts abs_prts)
obua@14738
  2197
      apply (insert prems)
obua@14754
  2198
      apply (auto simp add: 
nipkow@29667
  2199
	algebra_simps 
haftmann@25078
  2200
	iffD1[OF zero_le_iff_zero_nprt] iffD1[OF le_zero_iff_zero_pprt]
haftmann@25078
  2201
	iffD1[OF le_zero_iff_pprt_id] iffD1[OF zero_le_iff_nprt_id])
avigad@16775
  2202
	apply(drule (1) mult_nonneg_nonpos[of a b], simp)
avigad@16775
  2203
	apply(drule (1) mult_nonneg_nonpos2[of b a], simp)
obua@14738
  2204
      done
obua@14738
  2205
  next
obua@14738
  2206
    assume "~(0 <= a*b)"
obua@14738
  2207
    with s have "a*b <= 0" by simp
obua@14738
  2208
    then show ?thesis
obua@14738
  2209
      apply (simp_all add: mulprts abs_prts)
obua@14738
  2210
      apply (insert prems)
nipkow@29667
  2211
      apply (auto simp add: algebra_simps)
avigad@16775
  2212
      apply(drule (1) mult_nonneg_nonneg[of a b],simp)
avigad@16775
  2213
      apply(drule (1) mult_nonpos_nonpos[of a b],simp)
obua@14738
  2214
      done
obua@14738
  2215
  qed
obua@14738
  2216
qed
haftmann@25304
  2217
qed
haftmann@25304
  2218
haftmann@25304
  2219
instance ordered_idom \<subseteq> pordered_ring_abs
haftmann@25304
  2220
by default (auto simp add: abs_if not_less
haftmann@25304
  2221
  equal_neg_zero neg_equal_zero mult_less_0_iff)
paulson@14294
  2222
obua@14738
  2223
lemma abs_mult: "abs (a * b) = abs a * abs (b::'a::ordered_idom)" 
nipkow@29667
  2224
by (simp add: abs_eq_mult linorder_linear)
paulson@14293
  2225
obua@14738
  2226
lemma abs_mult_self: "abs a * abs a = a * (a::'a::ordered_idom)"
nipkow@29667
  2227
by (simp add: abs_if) 
paulson@14294
  2228
paulson@14294
  2229
lemma nonzero_abs_inverse:
paulson@14294
  2230
     "a \<noteq> 0 ==> abs (inverse (a::'a::ordered_field)) = inverse (abs a)"
paulson@14294
  2231
apply (auto simp add: linorder_neq_iff abs_if nonzero_inverse_minus_eq 
paulson@14294
  2232
                      negative_imp_inverse_negative)
paulson@14294
  2233
apply (blast intro: positive_imp_inverse_positive elim: order_less_asym) 
paulson@14294
  2234
done
paulson@14294
  2235
paulson@14294
  2236
lemma abs_inverse [simp]:
paulson@14294
  2237
     "abs (inverse (a::'a::{ordered_field,division_by_zero})) = 
paulson@14294
  2238
      inverse (abs a)"
haftmann@21328
  2239
apply (cases "a=0", simp) 
paulson@14294
  2240
apply (simp add: nonzero_abs_inverse) 
paulson@14294
  2241
done
paulson@14294
  2242
paulson@14294
  2243
lemma nonzero_abs_divide:
paulson@14294
  2244
     "b \<noteq> 0 ==> abs (a / (b::'a::ordered_field)) = abs a / abs b"
paulson@14294
  2245
by (simp add: divide_inverse abs_mult nonzero_abs_inverse) 
paulson@14294
  2246
paulson@15234
  2247
lemma abs_divide [simp]:
paulson@14294
  2248
     "abs (a / (b::'a::{ordered_field,division_by_zero})) = abs a / abs b"
haftmann@21328
  2249
apply (cases "b=0", simp) 
paulson@14294
  2250
apply (simp add: nonzero_abs_divide) 
paulson@14294
  2251
done
paulson@14294
  2252
paulson@14294
  2253
lemma abs_mult_less:
obua@14738
  2254
     "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::ordered_idom)"
paulson@14294
  2255
proof -
paulson@14294
  2256
  assume ac: "abs a < c"
paulson@14294
  2257
  hence cpos: "0<c" by (blast intro: order_le_less_trans abs_ge_zero)
paulson@14294
  2258
  assume "abs b < d"
paulson@14294
  2259
  thus ?thesis by (simp add: ac cpos mult_strict_mono) 
paulson@14294
  2260
qed
paulson@14293
  2261
nipkow@29833
  2262
lemmas eq_minus_self_iff[noatp] = equal_neg_zero
obua@14738
  2263
obua@14738
  2264
lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::ordered_idom))"
haftmann@25304
  2265
  unfolding order_less_le less_eq_neg_nonpos equal_neg_zero ..
obua@14738
  2266
obua@14738
  2267
lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::ordered_idom))" 
obua@14738
  2268
apply (simp add: order_less_le abs_le_iff)  
haftmann@25304
  2269
apply (auto simp add: abs_if neg_less_eq_nonneg less_eq_neg_nonpos)
obua@14738
  2270
done
obua@14738
  2271
avigad@16775
  2272
lemma abs_mult_pos: "(0::'a::ordered_idom) <= x ==> 
haftmann@25304
  2273
    (abs y) * x = abs (y * x)"
haftmann@25304
  2274
  apply (subst abs_mult)
haftmann@25304
  2275
  apply simp
haftmann@25304
  2276
done
avigad@16775
  2277
avigad@16775
  2278
lemma abs_div_pos: "(0::'a::{division_by_zero,ordered_field}) < y ==> 
haftmann@25304
  2279
    abs x / y = abs (x / y)"
haftmann@25304
  2280
  apply (subst abs_divide)
haftmann@25304
  2281
  apply (simp add: order_less_imp_le)
haftmann@25304
  2282
done
avigad@16775
  2283
wenzelm@23389
  2284
obua@19404
  2285
subsection {* Bounds of products via negative and positive Part *}
obua@15178
  2286
obua@15580
  2287
lemma mult_le_prts:
obua@15580
  2288
  assumes
obua@15580
  2289
  "a1 <= (a::'a::lordered_ring)"
obua@15580
  2290
  "a <= a2"
obua@15580
  2291
  "b1 <= b"
obua@15580
  2292
  "b <= b2"
obua@15580
  2293
  shows
obua@15580
  2294
  "a * b <= pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1"
obua@15580
  2295
proof - 
obua@15580
  2296
  have "a * b = (pprt a + nprt a) * (pprt b + nprt b)" 
obua@15580
  2297
    apply (subst prts[symmetric])+
obua@15580
  2298
    apply simp
obua@15580
  2299
    done
obua@15580
  2300
  then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
nipkow@29667
  2301
    by (simp add: algebra_simps)
obua@15580
  2302
  moreover have "pprt a * pprt b <= pprt a2 * pprt b2"
obua@15580
  2303
    by (simp_all add: prems mult_mono)
obua@15580
  2304
  moreover have "pprt a * nprt b <= pprt a1 * nprt b2"
obua@15580
  2305
  proof -
obua@15580
  2306
    have "pprt a * nprt b <= pprt a * nprt b2"
obua@15580
  2307
      by (simp add: mult_left_mono prems)
obua@15580
  2308
    moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2"
obua@15580
  2309
      by (simp add: mult_right_mono_neg prems)
obua@15580
  2310
    ultimately show ?thesis
obua@15580
  2311
      by simp
obua@15580
  2312
  qed
obua@15580
  2313
  moreover have "nprt a * pprt b <= nprt a2 * pprt b1"
obua@15580
  2314
  proof - 
obua@15580
  2315
    have "nprt a * pprt b <= nprt a2 * pprt b"
obua@15580
  2316
      by (simp add: mult_right_mono prems)
obua@15580
  2317
    moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1"
obua@15580
  2318
      by (simp add: mult_left_mono_neg prems)
obua@15580
  2319
    ultimately show ?thesis
obua@15580
  2320
      by simp
obua@15580
  2321
  qed
obua@15580
  2322
  moreover have "nprt a * nprt b <= nprt a1 * nprt b1"
obua@15580
  2323
  proof -
obua@15580
  2324
    have "nprt a * nprt b <= nprt a * nprt b1"
obua@15580
  2325
      by (simp add: mult_left_mono_neg prems)
obua@15580
  2326
    moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1"
obua@15580
  2327
      by (simp add: mult_right_mono_neg prems)
obua@15580
  2328
    ultimately show ?thesis
obua@15580
  2329
      by simp
obua@15580
  2330
  qed
obua@15580
  2331
  ultimately show ?thesis
obua@15580
  2332
    by - (rule add_mono | simp)+
obua@15580
  2333
qed
obua@19404
  2334
obua@19404
  2335
lemma mult_ge_prts:
obua@15178
  2336
  assumes
obua@19404
  2337
  "a1 <= (a::'a::lordered_ring)"
obua@19404
  2338
  "a <= a2"
obua@19404
  2339
  "b1 <= b"
obua@19404
  2340
  "b <= b2"
obua@15178
  2341
  shows
obua@19404
  2342
  "a * b >= nprt a1 * pprt b2 + nprt a2 * nprt b2 + pprt a1 * pprt b1 + pprt a2 * nprt b1"
obua@19404
  2343
proof - 
obua@19404
  2344
  from prems have a1:"- a2 <= -a" by auto
obua@19404
  2345
  from prems have a2: "-a <= -a1" by auto
obua@19404
  2346
  from mult_le_prts[of "-a2" "-a" "-a1" "b1" b "b2", OF a1 a2 prems(3) prems(4), simplified nprt_neg pprt_neg] 
obua@19404
  2347
  have le: "- (a * b) <= - nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1" by simp  
obua@19404
  2348
  then have "-(- nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1) <= a * b"
obua@19404
  2349
    by (simp only: minus_le_iff)
obua@19404
  2350
  then show ?thesis by simp
obua@15178
  2351
qed
obua@15178
  2352
paulson@14265
  2353
end