src/HOL/Nat.thy
author haftmann
Tue Jan 17 16:36:57 2006 +0100 (2006-01-17)
changeset 18702 7dc7dcd63224
parent 18648 22f96cd085d5
child 19573 340c466c9605
permissions -rw-r--r--
substantial improvements in code generator
clasohm@923
     1
(*  Title:      HOL/Nat.thy
clasohm@923
     2
    ID:         $Id$
wenzelm@9436
     3
    Author:     Tobias Nipkow and Lawrence C Paulson
clasohm@923
     4
wenzelm@9436
     5
Type "nat" is a linear order, and a datatype; arithmetic operators + -
wenzelm@9436
     6
and * (for div, mod and dvd, see theory Divides).
clasohm@923
     7
*)
clasohm@923
     8
berghofe@13449
     9
header {* Natural numbers *}
berghofe@13449
    10
nipkow@15131
    11
theory Nat
nipkow@15140
    12
imports Wellfounded_Recursion Ring_and_Field
nipkow@15131
    13
begin
berghofe@13449
    14
berghofe@13449
    15
subsection {* Type @{text ind} *}
berghofe@13449
    16
berghofe@13449
    17
typedecl ind
berghofe@13449
    18
berghofe@13449
    19
consts
berghofe@13449
    20
  Zero_Rep      :: ind
berghofe@13449
    21
  Suc_Rep       :: "ind => ind"
berghofe@13449
    22
berghofe@13449
    23
axioms
berghofe@13449
    24
  -- {* the axiom of infinity in 2 parts *}
berghofe@13449
    25
  inj_Suc_Rep:          "inj Suc_Rep"
paulson@14267
    26
  Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep"
wenzelm@17702
    27
finalconsts
wenzelm@17702
    28
  Zero_Rep
wenzelm@17702
    29
  Suc_Rep
berghofe@13449
    30
berghofe@13449
    31
subsection {* Type nat *}
berghofe@13449
    32
berghofe@13449
    33
text {* Type definition *}
berghofe@13449
    34
berghofe@13449
    35
consts
berghofe@13449
    36
  Nat :: "ind set"
berghofe@13449
    37
berghofe@13449
    38
inductive Nat
berghofe@13449
    39
intros
berghofe@13449
    40
  Zero_RepI: "Zero_Rep : Nat"
berghofe@13449
    41
  Suc_RepI: "i : Nat ==> Suc_Rep i : Nat"
berghofe@13449
    42
berghofe@13449
    43
global
berghofe@13449
    44
berghofe@13449
    45
typedef (open Nat)
paulson@14208
    46
  nat = Nat by (rule exI, rule Nat.Zero_RepI)
berghofe@13449
    47
wenzelm@14691
    48
instance nat :: "{ord, zero, one}" ..
berghofe@13449
    49
berghofe@13449
    50
berghofe@13449
    51
text {* Abstract constants and syntax *}
berghofe@13449
    52
berghofe@13449
    53
consts
berghofe@13449
    54
  Suc :: "nat => nat"
berghofe@13449
    55
  pred_nat :: "(nat * nat) set"
berghofe@13449
    56
berghofe@13449
    57
local
berghofe@13449
    58
berghofe@13449
    59
defs
berghofe@13449
    60
  Zero_nat_def: "0 == Abs_Nat Zero_Rep"
paulson@18648
    61
  Suc_def:      "Suc == (%n. Abs_Nat (Suc_Rep (Rep_Nat n)))"
paulson@18648
    62
  One_nat_def:  "1 == Suc 0"
berghofe@13449
    63
berghofe@13449
    64
  -- {* nat operations *}
berghofe@13449
    65
  pred_nat_def: "pred_nat == {(m, n). n = Suc m}"
berghofe@13449
    66
berghofe@13449
    67
  less_def: "m < n == (m, n) : trancl pred_nat"
berghofe@13449
    68
paulson@14267
    69
  le_def: "m \<le> (n::nat) == ~ (n < m)"
berghofe@13449
    70
paulson@18648
    71
declare One_nat_def [simp]
paulson@18648
    72
berghofe@13449
    73
berghofe@13449
    74
text {* Induction *}
clasohm@923
    75
berghofe@13449
    76
theorem nat_induct: "P 0 ==> (!!n. P n ==> P (Suc n)) ==> P n"
berghofe@13449
    77
  apply (unfold Zero_nat_def Suc_def)
berghofe@13449
    78
  apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *}
berghofe@13449
    79
  apply (erule Rep_Nat [THEN Nat.induct])
nipkow@17589
    80
  apply (iprover elim: Abs_Nat_inverse [THEN subst])
berghofe@13449
    81
  done
berghofe@13449
    82
berghofe@13449
    83
text {* Distinctness of constructors *}
berghofe@13449
    84
paulson@14267
    85
lemma Suc_not_Zero [iff]: "Suc m \<noteq> 0"
paulson@15413
    86
  by (simp add: Zero_nat_def Suc_def Abs_Nat_inject Rep_Nat Suc_RepI Zero_RepI
paulson@15413
    87
                Suc_Rep_not_Zero_Rep) 
berghofe@13449
    88
paulson@14267
    89
lemma Zero_not_Suc [iff]: "0 \<noteq> Suc m"
berghofe@13449
    90
  by (rule not_sym, rule Suc_not_Zero not_sym)
berghofe@13449
    91
berghofe@13449
    92
lemma Suc_neq_Zero: "Suc m = 0 ==> R"
berghofe@13449
    93
  by (rule notE, rule Suc_not_Zero)
berghofe@13449
    94
berghofe@13449
    95
lemma Zero_neq_Suc: "0 = Suc m ==> R"
berghofe@13449
    96
  by (rule Suc_neq_Zero, erule sym)
berghofe@13449
    97
berghofe@13449
    98
text {* Injectiveness of @{term Suc} *}
berghofe@13449
    99
nipkow@16733
   100
lemma inj_Suc[simp]: "inj_on Suc N"
paulson@15413
   101
  by (simp add: Suc_def inj_on_def Abs_Nat_inject Rep_Nat Suc_RepI 
paulson@15413
   102
                inj_Suc_Rep [THEN inj_eq] Rep_Nat_inject) 
berghofe@13449
   103
berghofe@13449
   104
lemma Suc_inject: "Suc x = Suc y ==> x = y"
berghofe@13449
   105
  by (rule inj_Suc [THEN injD])
berghofe@13449
   106
berghofe@13449
   107
lemma Suc_Suc_eq [iff]: "(Suc m = Suc n) = (m = n)"
paulson@15413
   108
  by (rule inj_Suc [THEN inj_eq])
berghofe@13449
   109
paulson@14267
   110
lemma nat_not_singleton: "(\<forall>x. x = (0::nat)) = False"
berghofe@13449
   111
  by auto
berghofe@13449
   112
berghofe@13449
   113
text {* @{typ nat} is a datatype *}
wenzelm@9436
   114
berghofe@5188
   115
rep_datatype nat
berghofe@13449
   116
  distinct  Suc_not_Zero Zero_not_Suc
berghofe@13449
   117
  inject    Suc_Suc_eq
berghofe@13449
   118
  induction nat_induct
berghofe@13449
   119
paulson@14267
   120
lemma n_not_Suc_n: "n \<noteq> Suc n"
berghofe@13449
   121
  by (induct n) simp_all
berghofe@13449
   122
paulson@14267
   123
lemma Suc_n_not_n: "Suc t \<noteq> t"
berghofe@13449
   124
  by (rule not_sym, rule n_not_Suc_n)
berghofe@13449
   125
berghofe@13449
   126
text {* A special form of induction for reasoning
berghofe@13449
   127
  about @{term "m < n"} and @{term "m - n"} *}
berghofe@13449
   128
berghofe@13449
   129
theorem diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
berghofe@13449
   130
    (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n"
paulson@14208
   131
  apply (rule_tac x = m in spec)
paulson@15251
   132
  apply (induct n)
berghofe@13449
   133
  prefer 2
berghofe@13449
   134
  apply (rule allI)
nipkow@17589
   135
  apply (induct_tac x, iprover+)
berghofe@13449
   136
  done
berghofe@13449
   137
berghofe@13449
   138
subsection {* Basic properties of "less than" *}
berghofe@13449
   139
berghofe@13449
   140
lemma wf_pred_nat: "wf pred_nat"
paulson@14208
   141
  apply (unfold wf_def pred_nat_def, clarify)
paulson@14208
   142
  apply (induct_tac x, blast+)
berghofe@13449
   143
  done
berghofe@13449
   144
berghofe@13449
   145
lemma wf_less: "wf {(x, y::nat). x < y}"
berghofe@13449
   146
  apply (unfold less_def)
paulson@14208
   147
  apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_subset], blast)
berghofe@13449
   148
  done
berghofe@13449
   149
berghofe@13449
   150
lemma less_eq: "((m, n) : pred_nat^+) = (m < n)"
berghofe@13449
   151
  apply (unfold less_def)
berghofe@13449
   152
  apply (rule refl)
berghofe@13449
   153
  done
berghofe@13449
   154
berghofe@13449
   155
subsubsection {* Introduction properties *}
berghofe@13449
   156
berghofe@13449
   157
lemma less_trans: "i < j ==> j < k ==> i < (k::nat)"
berghofe@13449
   158
  apply (unfold less_def)
paulson@14208
   159
  apply (rule trans_trancl [THEN transD], assumption+)
berghofe@13449
   160
  done
berghofe@13449
   161
berghofe@13449
   162
lemma lessI [iff]: "n < Suc n"
berghofe@13449
   163
  apply (unfold less_def pred_nat_def)
berghofe@13449
   164
  apply (simp add: r_into_trancl)
berghofe@13449
   165
  done
berghofe@13449
   166
berghofe@13449
   167
lemma less_SucI: "i < j ==> i < Suc j"
paulson@14208
   168
  apply (rule less_trans, assumption)
berghofe@13449
   169
  apply (rule lessI)
berghofe@13449
   170
  done
berghofe@13449
   171
berghofe@13449
   172
lemma zero_less_Suc [iff]: "0 < Suc n"
berghofe@13449
   173
  apply (induct n)
berghofe@13449
   174
  apply (rule lessI)
berghofe@13449
   175
  apply (erule less_trans)
berghofe@13449
   176
  apply (rule lessI)
berghofe@13449
   177
  done
berghofe@13449
   178
berghofe@13449
   179
subsubsection {* Elimination properties *}
berghofe@13449
   180
berghofe@13449
   181
lemma less_not_sym: "n < m ==> ~ m < (n::nat)"
berghofe@13449
   182
  apply (unfold less_def)
berghofe@13449
   183
  apply (blast intro: wf_pred_nat wf_trancl [THEN wf_asym])
berghofe@13449
   184
  done
berghofe@13449
   185
berghofe@13449
   186
lemma less_asym:
berghofe@13449
   187
  assumes h1: "(n::nat) < m" and h2: "~ P ==> m < n" shows P
berghofe@13449
   188
  apply (rule contrapos_np)
berghofe@13449
   189
  apply (rule less_not_sym)
berghofe@13449
   190
  apply (rule h1)
berghofe@13449
   191
  apply (erule h2)
berghofe@13449
   192
  done
berghofe@13449
   193
berghofe@13449
   194
lemma less_not_refl: "~ n < (n::nat)"
berghofe@13449
   195
  apply (unfold less_def)
berghofe@13449
   196
  apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_not_refl])
berghofe@13449
   197
  done
berghofe@13449
   198
berghofe@13449
   199
lemma less_irrefl [elim!]: "(n::nat) < n ==> R"
berghofe@13449
   200
  by (rule notE, rule less_not_refl)
berghofe@13449
   201
paulson@14267
   202
lemma less_not_refl2: "n < m ==> m \<noteq> (n::nat)" by blast
berghofe@13449
   203
paulson@14267
   204
lemma less_not_refl3: "(s::nat) < t ==> s \<noteq> t"
berghofe@13449
   205
  by (rule not_sym, rule less_not_refl2)
berghofe@13449
   206
berghofe@13449
   207
lemma lessE:
berghofe@13449
   208
  assumes major: "i < k"
berghofe@13449
   209
  and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P"
berghofe@13449
   210
  shows P
paulson@14208
   211
  apply (rule major [unfolded less_def pred_nat_def, THEN tranclE], simp_all)
berghofe@13449
   212
  apply (erule p1)
berghofe@13449
   213
  apply (rule p2)
paulson@14208
   214
  apply (simp add: less_def pred_nat_def, assumption)
berghofe@13449
   215
  done
berghofe@13449
   216
berghofe@13449
   217
lemma not_less0 [iff]: "~ n < (0::nat)"
berghofe@13449
   218
  by (blast elim: lessE)
berghofe@13449
   219
berghofe@13449
   220
lemma less_zeroE: "(n::nat) < 0 ==> R"
berghofe@13449
   221
  by (rule notE, rule not_less0)
berghofe@13449
   222
berghofe@13449
   223
lemma less_SucE: assumes major: "m < Suc n"
berghofe@13449
   224
  and less: "m < n ==> P" and eq: "m = n ==> P" shows P
berghofe@13449
   225
  apply (rule major [THEN lessE])
paulson@14208
   226
  apply (rule eq, blast)
paulson@14208
   227
  apply (rule less, blast)
berghofe@13449
   228
  done
berghofe@13449
   229
berghofe@13449
   230
lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)"
berghofe@13449
   231
  by (blast elim!: less_SucE intro: less_trans)
berghofe@13449
   232
berghofe@13449
   233
lemma less_one [iff]: "(n < (1::nat)) = (n = 0)"
berghofe@13449
   234
  by (simp add: less_Suc_eq)
berghofe@13449
   235
berghofe@13449
   236
lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)"
berghofe@13449
   237
  by (simp add: less_Suc_eq)
berghofe@13449
   238
berghofe@13449
   239
lemma Suc_mono: "m < n ==> Suc m < Suc n"
berghofe@13449
   240
  by (induct n) (fast elim: less_trans lessE)+
berghofe@13449
   241
berghofe@13449
   242
text {* "Less than" is a linear ordering *}
berghofe@13449
   243
lemma less_linear: "m < n | m = n | n < (m::nat)"
paulson@15251
   244
  apply (induct m)
paulson@15251
   245
  apply (induct n)
berghofe@13449
   246
  apply (rule refl [THEN disjI1, THEN disjI2])
berghofe@13449
   247
  apply (rule zero_less_Suc [THEN disjI1])
berghofe@13449
   248
  apply (blast intro: Suc_mono less_SucI elim: lessE)
berghofe@13449
   249
  done
berghofe@13449
   250
nipkow@14302
   251
text {* "Less than" is antisymmetric, sort of *}
nipkow@14302
   252
lemma less_antisym: "\<lbrakk> \<not> n < m; n < Suc m \<rbrakk> \<Longrightarrow> m = n"
nipkow@14302
   253
apply(simp only:less_Suc_eq)
nipkow@14302
   254
apply blast
nipkow@14302
   255
done
nipkow@14302
   256
paulson@14267
   257
lemma nat_neq_iff: "((m::nat) \<noteq> n) = (m < n | n < m)"
berghofe@13449
   258
  using less_linear by blast
berghofe@13449
   259
berghofe@13449
   260
lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m"
berghofe@13449
   261
  and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m"
berghofe@13449
   262
  shows "P n m"
berghofe@13449
   263
  apply (rule less_linear [THEN disjE])
berghofe@13449
   264
  apply (erule_tac [2] disjE)
berghofe@13449
   265
  apply (erule lessCase)
berghofe@13449
   266
  apply (erule sym [THEN eqCase])
berghofe@13449
   267
  apply (erule major)
berghofe@13449
   268
  done
berghofe@13449
   269
berghofe@13449
   270
berghofe@13449
   271
subsubsection {* Inductive (?) properties *}
berghofe@13449
   272
paulson@14267
   273
lemma Suc_lessI: "m < n ==> Suc m \<noteq> n ==> Suc m < n"
berghofe@13449
   274
  apply (simp add: nat_neq_iff)
berghofe@13449
   275
  apply (blast elim!: less_irrefl less_SucE elim: less_asym)
berghofe@13449
   276
  done
berghofe@13449
   277
berghofe@13449
   278
lemma Suc_lessD: "Suc m < n ==> m < n"
berghofe@13449
   279
  apply (induct n)
berghofe@13449
   280
  apply (fast intro!: lessI [THEN less_SucI] elim: less_trans lessE)+
berghofe@13449
   281
  done
berghofe@13449
   282
berghofe@13449
   283
lemma Suc_lessE: assumes major: "Suc i < k"
berghofe@13449
   284
  and minor: "!!j. i < j ==> k = Suc j ==> P" shows P
berghofe@13449
   285
  apply (rule major [THEN lessE])
berghofe@13449
   286
  apply (erule lessI [THEN minor])
paulson@14208
   287
  apply (erule Suc_lessD [THEN minor], assumption)
berghofe@13449
   288
  done
berghofe@13449
   289
berghofe@13449
   290
lemma Suc_less_SucD: "Suc m < Suc n ==> m < n"
berghofe@13449
   291
  by (blast elim: lessE dest: Suc_lessD)
wenzelm@4104
   292
berghofe@16635
   293
lemma Suc_less_eq [iff, code]: "(Suc m < Suc n) = (m < n)"
berghofe@13449
   294
  apply (rule iffI)
berghofe@13449
   295
  apply (erule Suc_less_SucD)
berghofe@13449
   296
  apply (erule Suc_mono)
berghofe@13449
   297
  done
berghofe@13449
   298
berghofe@13449
   299
lemma less_trans_Suc:
berghofe@13449
   300
  assumes le: "i < j" shows "j < k ==> Suc i < k"
paulson@14208
   301
  apply (induct k, simp_all)
berghofe@13449
   302
  apply (insert le)
berghofe@13449
   303
  apply (simp add: less_Suc_eq)
berghofe@13449
   304
  apply (blast dest: Suc_lessD)
berghofe@13449
   305
  done
berghofe@13449
   306
berghofe@16635
   307
lemma [code]: "((n::nat) < 0) = False" by simp
berghofe@16635
   308
lemma [code]: "(0 < Suc n) = True" by simp
berghofe@16635
   309
berghofe@13449
   310
text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *}
berghofe@13449
   311
lemma not_less_eq: "(~ m < n) = (n < Suc m)"
paulson@14208
   312
by (rule_tac m = m and n = n in diff_induct, simp_all)
berghofe@13449
   313
berghofe@13449
   314
text {* Complete induction, aka course-of-values induction *}
berghofe@13449
   315
lemma nat_less_induct:
paulson@14267
   316
  assumes prem: "!!n. \<forall>m::nat. m < n --> P m ==> P n" shows "P n"
berghofe@13449
   317
  apply (rule_tac a=n in wf_induct)
berghofe@13449
   318
  apply (rule wf_pred_nat [THEN wf_trancl])
berghofe@13449
   319
  apply (rule prem)
paulson@14208
   320
  apply (unfold less_def, assumption)
berghofe@13449
   321
  done
berghofe@13449
   322
paulson@14131
   323
lemmas less_induct = nat_less_induct [rule_format, case_names less]
paulson@14131
   324
paulson@14131
   325
subsection {* Properties of "less than or equal" *}
berghofe@13449
   326
berghofe@13449
   327
text {* Was @{text le_eq_less_Suc}, but this orientation is more useful *}
paulson@14267
   328
lemma less_Suc_eq_le: "(m < Suc n) = (m \<le> n)"
berghofe@13449
   329
  by (unfold le_def, rule not_less_eq [symmetric])
berghofe@13449
   330
paulson@14267
   331
lemma le_imp_less_Suc: "m \<le> n ==> m < Suc n"
berghofe@13449
   332
  by (rule less_Suc_eq_le [THEN iffD2])
berghofe@13449
   333
paulson@14267
   334
lemma le0 [iff]: "(0::nat) \<le> n"
berghofe@13449
   335
  by (unfold le_def, rule not_less0)
berghofe@13449
   336
paulson@14267
   337
lemma Suc_n_not_le_n: "~ Suc n \<le> n"
berghofe@13449
   338
  by (simp add: le_def)
berghofe@13449
   339
paulson@14267
   340
lemma le_0_eq [iff]: "((i::nat) \<le> 0) = (i = 0)"
berghofe@13449
   341
  by (induct i) (simp_all add: le_def)
berghofe@13449
   342
paulson@14267
   343
lemma le_Suc_eq: "(m \<le> Suc n) = (m \<le> n | m = Suc n)"
berghofe@13449
   344
  by (simp del: less_Suc_eq_le add: less_Suc_eq_le [symmetric] less_Suc_eq)
berghofe@13449
   345
paulson@14267
   346
lemma le_SucE: "m \<le> Suc n ==> (m \<le> n ==> R) ==> (m = Suc n ==> R) ==> R"
nipkow@17589
   347
  by (drule le_Suc_eq [THEN iffD1], iprover+)
berghofe@13449
   348
paulson@14267
   349
lemma Suc_leI: "m < n ==> Suc(m) \<le> n"
berghofe@13449
   350
  apply (simp add: le_def less_Suc_eq)
berghofe@13449
   351
  apply (blast elim!: less_irrefl less_asym)
berghofe@13449
   352
  done -- {* formerly called lessD *}
berghofe@13449
   353
paulson@14267
   354
lemma Suc_leD: "Suc(m) \<le> n ==> m \<le> n"
berghofe@13449
   355
  by (simp add: le_def less_Suc_eq)
berghofe@13449
   356
berghofe@13449
   357
text {* Stronger version of @{text Suc_leD} *}
paulson@14267
   358
lemma Suc_le_lessD: "Suc m \<le> n ==> m < n"
berghofe@13449
   359
  apply (simp add: le_def less_Suc_eq)
berghofe@13449
   360
  using less_linear
berghofe@13449
   361
  apply blast
berghofe@13449
   362
  done
berghofe@13449
   363
paulson@14267
   364
lemma Suc_le_eq: "(Suc m \<le> n) = (m < n)"
berghofe@13449
   365
  by (blast intro: Suc_leI Suc_le_lessD)
berghofe@13449
   366
paulson@14267
   367
lemma le_SucI: "m \<le> n ==> m \<le> Suc n"
berghofe@13449
   368
  by (unfold le_def) (blast dest: Suc_lessD)
berghofe@13449
   369
paulson@14267
   370
lemma less_imp_le: "m < n ==> m \<le> (n::nat)"
berghofe@13449
   371
  by (unfold le_def) (blast elim: less_asym)
berghofe@13449
   372
paulson@14267
   373
text {* For instance, @{text "(Suc m < Suc n) = (Suc m \<le> n) = (m < n)"} *}
berghofe@13449
   374
lemmas le_simps = less_imp_le less_Suc_eq_le Suc_le_eq
berghofe@13449
   375
berghofe@13449
   376
paulson@14267
   377
text {* Equivalence of @{term "m \<le> n"} and @{term "m < n | m = n"} *}
berghofe@13449
   378
paulson@14267
   379
lemma le_imp_less_or_eq: "m \<le> n ==> m < n | m = (n::nat)"
berghofe@13449
   380
  apply (unfold le_def)
berghofe@13449
   381
  using less_linear
berghofe@13449
   382
  apply (blast elim: less_irrefl less_asym)
berghofe@13449
   383
  done
berghofe@13449
   384
paulson@14267
   385
lemma less_or_eq_imp_le: "m < n | m = n ==> m \<le> (n::nat)"
berghofe@13449
   386
  apply (unfold le_def)
berghofe@13449
   387
  using less_linear
berghofe@13449
   388
  apply (blast elim!: less_irrefl elim: less_asym)
berghofe@13449
   389
  done
berghofe@13449
   390
paulson@14267
   391
lemma le_eq_less_or_eq: "(m \<le> (n::nat)) = (m < n | m=n)"
nipkow@17589
   392
  by (iprover intro: less_or_eq_imp_le le_imp_less_or_eq)
berghofe@13449
   393
berghofe@13449
   394
text {* Useful with @{text Blast}. *}
paulson@14267
   395
lemma eq_imp_le: "(m::nat) = n ==> m \<le> n"
berghofe@13449
   396
  by (rule less_or_eq_imp_le, rule disjI2)
berghofe@13449
   397
paulson@14267
   398
lemma le_refl: "n \<le> (n::nat)"
berghofe@13449
   399
  by (simp add: le_eq_less_or_eq)
berghofe@13449
   400
paulson@14267
   401
lemma le_less_trans: "[| i \<le> j; j < k |] ==> i < (k::nat)"
berghofe@13449
   402
  by (blast dest!: le_imp_less_or_eq intro: less_trans)
berghofe@13449
   403
paulson@14267
   404
lemma less_le_trans: "[| i < j; j \<le> k |] ==> i < (k::nat)"
berghofe@13449
   405
  by (blast dest!: le_imp_less_or_eq intro: less_trans)
berghofe@13449
   406
paulson@14267
   407
lemma le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::nat)"
berghofe@13449
   408
  by (blast dest!: le_imp_less_or_eq intro: less_or_eq_imp_le less_trans)
berghofe@13449
   409
paulson@14267
   410
lemma le_anti_sym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)"
berghofe@13449
   411
  by (blast dest!: le_imp_less_or_eq elim!: less_irrefl elim: less_asym)
berghofe@13449
   412
paulson@14267
   413
lemma Suc_le_mono [iff]: "(Suc n \<le> Suc m) = (n \<le> m)"
berghofe@13449
   414
  by (simp add: le_simps)
berghofe@13449
   415
berghofe@13449
   416
text {* Axiom @{text order_less_le} of class @{text order}: *}
paulson@14267
   417
lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)"
berghofe@13449
   418
  by (simp add: le_def nat_neq_iff) (blast elim!: less_asym)
berghofe@13449
   419
paulson@14267
   420
lemma le_neq_implies_less: "(m::nat) \<le> n ==> m \<noteq> n ==> m < n"
berghofe@13449
   421
  by (rule iffD2, rule nat_less_le, rule conjI)
berghofe@13449
   422
berghofe@13449
   423
text {* Axiom @{text linorder_linear} of class @{text linorder}: *}
paulson@14267
   424
lemma nat_le_linear: "(m::nat) \<le> n | n \<le> m"
berghofe@13449
   425
  apply (simp add: le_eq_less_or_eq)
berghofe@13449
   426
  using less_linear
berghofe@13449
   427
  apply blast
berghofe@13449
   428
  done
berghofe@13449
   429
paulson@14341
   430
text {* Type {@typ nat} is a wellfounded linear order *}
paulson@14341
   431
wenzelm@14691
   432
instance nat :: "{order, linorder, wellorder}"
wenzelm@14691
   433
  by intro_classes
wenzelm@14691
   434
    (assumption |
wenzelm@14691
   435
      rule le_refl le_trans le_anti_sym nat_less_le nat_le_linear wf_less)+
paulson@14341
   436
nipkow@15921
   437
lemmas linorder_neqE_nat = linorder_neqE[where 'a = nat]
nipkow@15921
   438
berghofe@13449
   439
lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)"
berghofe@13449
   440
  by (blast elim!: less_SucE)
berghofe@13449
   441
berghofe@13449
   442
text {*
berghofe@13449
   443
  Rewrite @{term "n < Suc m"} to @{term "n = m"}
paulson@14267
   444
  if @{term "~ n < m"} or @{term "m \<le> n"} hold.
berghofe@13449
   445
  Not suitable as default simprules because they often lead to looping
berghofe@13449
   446
*}
paulson@14267
   447
lemma le_less_Suc_eq: "m \<le> n ==> (n < Suc m) = (n = m)"
berghofe@13449
   448
  by (rule not_less_less_Suc_eq, rule leD)
berghofe@13449
   449
berghofe@13449
   450
lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq
berghofe@13449
   451
berghofe@13449
   452
berghofe@13449
   453
text {*
berghofe@13449
   454
  Re-orientation of the equations @{text "0 = x"} and @{text "1 = x"}. 
berghofe@13449
   455
  No longer added as simprules (they loop) 
berghofe@13449
   456
  but via @{text reorient_simproc} in Bin
berghofe@13449
   457
*}
berghofe@13449
   458
berghofe@13449
   459
text {* Polymorphic, not just for @{typ nat} *}
berghofe@13449
   460
lemma zero_reorient: "(0 = x) = (x = 0)"
berghofe@13449
   461
  by auto
berghofe@13449
   462
berghofe@13449
   463
lemma one_reorient: "(1 = x) = (x = 1)"
berghofe@13449
   464
  by auto
berghofe@13449
   465
berghofe@13449
   466
subsection {* Arithmetic operators *}
oheimb@1660
   467
wenzelm@12338
   468
axclass power < type
wenzelm@10435
   469
paulson@3370
   470
consts
berghofe@13449
   471
  power :: "('a::power) => nat => 'a"            (infixr "^" 80)
paulson@3370
   472
wenzelm@9436
   473
berghofe@13449
   474
text {* arithmetic operators @{text "+ -"} and @{text "*"} *}
berghofe@13449
   475
wenzelm@14691
   476
instance nat :: "{plus, minus, times, power}" ..
wenzelm@9436
   477
berghofe@13449
   478
text {* size of a datatype value; overloaded *}
berghofe@13449
   479
consts size :: "'a => nat"
wenzelm@9436
   480
berghofe@13449
   481
primrec
berghofe@13449
   482
  add_0:    "0 + n = n"
berghofe@13449
   483
  add_Suc:  "Suc m + n = Suc (m + n)"
berghofe@13449
   484
berghofe@13449
   485
primrec
berghofe@13449
   486
  diff_0:   "m - 0 = m"
berghofe@13449
   487
  diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"
wenzelm@9436
   488
wenzelm@9436
   489
primrec
berghofe@13449
   490
  mult_0:   "0 * n = 0"
berghofe@13449
   491
  mult_Suc: "Suc m * n = n + (m * n)"
berghofe@13449
   492
paulson@14341
   493
text {* These two rules ease the use of primitive recursion. 
paulson@14341
   494
NOTE USE OF @{text "=="} *}
berghofe@13449
   495
lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c"
berghofe@13449
   496
  by simp
berghofe@13449
   497
berghofe@13449
   498
lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)"
berghofe@13449
   499
  by simp
berghofe@13449
   500
paulson@14267
   501
lemma not0_implies_Suc: "n \<noteq> 0 ==> \<exists>m. n = Suc m"
berghofe@13449
   502
  by (case_tac n) simp_all
berghofe@13449
   503
paulson@14267
   504
lemma gr_implies_not0: "!!n::nat. m<n ==> n \<noteq> 0"
berghofe@13449
   505
  by (case_tac n) simp_all
berghofe@13449
   506
paulson@14267
   507
lemma neq0_conv [iff]: "!!n::nat. (n \<noteq> 0) = (0 < n)"
berghofe@13449
   508
  by (case_tac n) simp_all
berghofe@13449
   509
berghofe@13449
   510
text {* This theorem is useful with @{text blast} *}
berghofe@13449
   511
lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n"
nipkow@17589
   512
  by (rule iffD1, rule neq0_conv, iprover)
berghofe@13449
   513
paulson@14267
   514
lemma gr0_conv_Suc: "(0 < n) = (\<exists>m. n = Suc m)"
berghofe@13449
   515
  by (fast intro: not0_implies_Suc)
berghofe@13449
   516
berghofe@13449
   517
lemma not_gr0 [iff]: "!!n::nat. (~ (0 < n)) = (n = 0)"
berghofe@13449
   518
  apply (rule iffI)
paulson@14208
   519
  apply (rule ccontr, simp_all)
berghofe@13449
   520
  done
berghofe@13449
   521
paulson@14267
   522
lemma Suc_le_D: "(Suc n \<le> m') ==> (? m. m' = Suc m)"
berghofe@13449
   523
  by (induct m') simp_all
berghofe@13449
   524
berghofe@13449
   525
text {* Useful in certain inductive arguments *}
paulson@14267
   526
lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (\<exists>j. m = Suc j & j < n))"
berghofe@13449
   527
  by (case_tac m) simp_all
berghofe@13449
   528
paulson@14341
   529
lemma nat_induct2: "[|P 0; P (Suc 0); !!k. P k ==> P (Suc (Suc k))|] ==> P n"
berghofe@13449
   530
  apply (rule nat_less_induct)
berghofe@13449
   531
  apply (case_tac n)
berghofe@13449
   532
  apply (case_tac [2] nat)
berghofe@13449
   533
  apply (blast intro: less_trans)+
berghofe@13449
   534
  done
berghofe@13449
   535
paulson@15341
   536
subsection {* @{text LEAST} theorems for type @{typ nat}*}
berghofe@13449
   537
paulson@14267
   538
lemma Least_Suc:
paulson@14267
   539
     "[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))"
paulson@14208
   540
  apply (case_tac "n", auto)
berghofe@13449
   541
  apply (frule LeastI)
berghofe@13449
   542
  apply (drule_tac P = "%x. P (Suc x) " in LeastI)
paulson@14267
   543
  apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))")
berghofe@13449
   544
  apply (erule_tac [2] Least_le)
paulson@14208
   545
  apply (case_tac "LEAST x. P x", auto)
berghofe@13449
   546
  apply (drule_tac P = "%x. P (Suc x) " in Least_le)
berghofe@13449
   547
  apply (blast intro: order_antisym)
berghofe@13449
   548
  done
berghofe@13449
   549
paulson@14267
   550
lemma Least_Suc2:
paulson@14267
   551
     "[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)"
paulson@14267
   552
  by (erule (1) Least_Suc [THEN ssubst], simp)
berghofe@13449
   553
berghofe@13449
   554
paulson@14265
   555
berghofe@13449
   556
subsection {* @{term min} and @{term max} *}
berghofe@13449
   557
berghofe@13449
   558
lemma min_0L [simp]: "min 0 n = (0::nat)"
berghofe@13449
   559
  by (rule min_leastL) simp
berghofe@13449
   560
berghofe@13449
   561
lemma min_0R [simp]: "min n 0 = (0::nat)"
berghofe@13449
   562
  by (rule min_leastR) simp
berghofe@13449
   563
berghofe@13449
   564
lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)"
berghofe@13449
   565
  by (simp add: min_of_mono)
berghofe@13449
   566
berghofe@13449
   567
lemma max_0L [simp]: "max 0 n = (n::nat)"
berghofe@13449
   568
  by (rule max_leastL) simp
berghofe@13449
   569
berghofe@13449
   570
lemma max_0R [simp]: "max n 0 = (n::nat)"
berghofe@13449
   571
  by (rule max_leastR) simp
berghofe@13449
   572
berghofe@13449
   573
lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)"
berghofe@13449
   574
  by (simp add: max_of_mono)
berghofe@13449
   575
berghofe@13449
   576
berghofe@13449
   577
subsection {* Basic rewrite rules for the arithmetic operators *}
berghofe@13449
   578
berghofe@13449
   579
text {* Difference *}
berghofe@13449
   580
berghofe@14193
   581
lemma diff_0_eq_0 [simp, code]: "0 - n = (0::nat)"
paulson@15251
   582
  by (induct n) simp_all
berghofe@13449
   583
berghofe@14193
   584
lemma diff_Suc_Suc [simp, code]: "Suc(m) - Suc(n) = m - n"
paulson@15251
   585
  by (induct n) simp_all
berghofe@13449
   586
berghofe@13449
   587
berghofe@13449
   588
text {*
berghofe@13449
   589
  Could be (and is, below) generalized in various ways
berghofe@13449
   590
  However, none of the generalizations are currently in the simpset,
berghofe@13449
   591
  and I dread to think what happens if I put them in
berghofe@13449
   592
*}
berghofe@13449
   593
lemma Suc_pred [simp]: "0 < n ==> Suc (n - Suc 0) = n"
berghofe@13449
   594
  by (simp split add: nat.split)
berghofe@13449
   595
berghofe@14193
   596
declare diff_Suc [simp del, code del]
berghofe@13449
   597
berghofe@13449
   598
berghofe@13449
   599
subsection {* Addition *}
berghofe@13449
   600
berghofe@13449
   601
lemma add_0_right [simp]: "m + 0 = (m::nat)"
berghofe@13449
   602
  by (induct m) simp_all
berghofe@13449
   603
berghofe@13449
   604
lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)"
berghofe@13449
   605
  by (induct m) simp_all
berghofe@13449
   606
berghofe@14193
   607
lemma [code]: "Suc m + n = m + Suc n" by simp
berghofe@14193
   608
berghofe@13449
   609
berghofe@13449
   610
text {* Associative law for addition *}
paulson@14267
   611
lemma nat_add_assoc: "(m + n) + k = m + ((n + k)::nat)"
berghofe@13449
   612
  by (induct m) simp_all
berghofe@13449
   613
berghofe@13449
   614
text {* Commutative law for addition *}
paulson@14267
   615
lemma nat_add_commute: "m + n = n + (m::nat)"
berghofe@13449
   616
  by (induct m) simp_all
berghofe@13449
   617
paulson@14267
   618
lemma nat_add_left_commute: "x + (y + z) = y + ((x + z)::nat)"
berghofe@13449
   619
  apply (rule mk_left_commute [of "op +"])
paulson@14267
   620
  apply (rule nat_add_assoc)
paulson@14267
   621
  apply (rule nat_add_commute)
berghofe@13449
   622
  done
berghofe@13449
   623
paulson@14331
   624
lemma nat_add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))"
berghofe@13449
   625
  by (induct k) simp_all
berghofe@13449
   626
paulson@14331
   627
lemma nat_add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))"
berghofe@13449
   628
  by (induct k) simp_all
berghofe@13449
   629
paulson@14331
   630
lemma nat_add_left_cancel_le [simp]: "(k + m \<le> k + n) = (m\<le>(n::nat))"
berghofe@13449
   631
  by (induct k) simp_all
berghofe@13449
   632
paulson@14331
   633
lemma nat_add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))"
berghofe@13449
   634
  by (induct k) simp_all
berghofe@13449
   635
berghofe@13449
   636
text {* Reasoning about @{text "m + 0 = 0"}, etc. *}
berghofe@13449
   637
berghofe@13449
   638
lemma add_is_0 [iff]: "!!m::nat. (m + n = 0) = (m = 0 & n = 0)"
berghofe@13449
   639
  by (case_tac m) simp_all
berghofe@13449
   640
berghofe@13449
   641
lemma add_is_1: "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)"
berghofe@13449
   642
  by (case_tac m) simp_all
berghofe@13449
   643
berghofe@13449
   644
lemma one_is_add: "(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)"
berghofe@13449
   645
  by (rule trans, rule eq_commute, rule add_is_1)
berghofe@13449
   646
berghofe@13449
   647
lemma add_gr_0 [iff]: "!!m::nat. (0 < m + n) = (0 < m | 0 < n)"
berghofe@13449
   648
  by (simp del: neq0_conv add: neq0_conv [symmetric])
berghofe@13449
   649
berghofe@13449
   650
lemma add_eq_self_zero: "!!m::nat. m + n = m ==> n = 0"
berghofe@13449
   651
  apply (drule add_0_right [THEN ssubst])
paulson@14267
   652
  apply (simp add: nat_add_assoc del: add_0_right)
berghofe@13449
   653
  done
berghofe@13449
   654
paulson@14267
   655
nipkow@16733
   656
lemma inj_on_add_nat[simp]: "inj_on (%n::nat. n+k) N"
nipkow@16733
   657
apply(induct k)
nipkow@16733
   658
 apply simp
nipkow@16733
   659
apply(drule comp_inj_on[OF _ inj_Suc])
nipkow@16733
   660
apply (simp add:o_def)
nipkow@16733
   661
done
nipkow@16733
   662
nipkow@16733
   663
paulson@14267
   664
subsection {* Multiplication *}
paulson@14267
   665
paulson@14267
   666
text {* right annihilation in product *}
paulson@14267
   667
lemma mult_0_right [simp]: "(m::nat) * 0 = 0"
paulson@14267
   668
  by (induct m) simp_all
paulson@14267
   669
paulson@14267
   670
text {* right successor law for multiplication *}
paulson@14267
   671
lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)"
paulson@14267
   672
  by (induct m) (simp_all add: nat_add_left_commute)
paulson@14267
   673
paulson@14267
   674
text {* Commutative law for multiplication *}
paulson@14267
   675
lemma nat_mult_commute: "m * n = n * (m::nat)"
paulson@14267
   676
  by (induct m) simp_all
paulson@14267
   677
paulson@14267
   678
text {* addition distributes over multiplication *}
paulson@14267
   679
lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)"
paulson@14267
   680
  by (induct m) (simp_all add: nat_add_assoc nat_add_left_commute)
paulson@14267
   681
paulson@14267
   682
lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)"
paulson@14267
   683
  by (induct m) (simp_all add: nat_add_assoc)
paulson@14267
   684
paulson@14267
   685
text {* Associative law for multiplication *}
paulson@14267
   686
lemma nat_mult_assoc: "(m * n) * k = m * ((n * k)::nat)"
paulson@14267
   687
  by (induct m) (simp_all add: add_mult_distrib)
paulson@14267
   688
paulson@14267
   689
nipkow@14740
   690
text{*The naturals form a @{text comm_semiring_1_cancel}*}
obua@14738
   691
instance nat :: comm_semiring_1_cancel
paulson@14267
   692
proof
paulson@14267
   693
  fix i j k :: nat
paulson@14267
   694
  show "(i + j) + k = i + (j + k)" by (rule nat_add_assoc)
paulson@14267
   695
  show "i + j = j + i" by (rule nat_add_commute)
paulson@14267
   696
  show "0 + i = i" by simp
paulson@14267
   697
  show "(i * j) * k = i * (j * k)" by (rule nat_mult_assoc)
paulson@14267
   698
  show "i * j = j * i" by (rule nat_mult_commute)
paulson@14267
   699
  show "1 * i = i" by simp
paulson@14267
   700
  show "(i + j) * k = i * k + j * k" by (simp add: add_mult_distrib)
paulson@14267
   701
  show "0 \<noteq> (1::nat)" by simp
paulson@14341
   702
  assume "k+i = k+j" thus "i=j" by simp
paulson@14341
   703
qed
paulson@14341
   704
paulson@14341
   705
lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)"
paulson@15251
   706
  apply (induct m)
paulson@14341
   707
  apply (induct_tac [2] n, simp_all)
paulson@14341
   708
  done
paulson@14341
   709
paulson@14341
   710
subsection {* Monotonicity of Addition *}
paulson@14341
   711
paulson@14341
   712
text {* strict, in 1st argument *}
paulson@14341
   713
lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)"
paulson@14341
   714
  by (induct k) simp_all
paulson@14341
   715
paulson@14341
   716
text {* strict, in both arguments *}
paulson@14341
   717
lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)"
paulson@14341
   718
  apply (rule add_less_mono1 [THEN less_trans], assumption+)
paulson@15251
   719
  apply (induct j, simp_all)
paulson@14341
   720
  done
paulson@14341
   721
paulson@14341
   722
text {* Deleted @{text less_natE}; use @{text "less_imp_Suc_add RS exE"} *}
paulson@14341
   723
lemma less_imp_Suc_add: "m < n ==> (\<exists>k. n = Suc (m + k))"
paulson@14341
   724
  apply (induct n)
paulson@14341
   725
  apply (simp_all add: order_le_less)
paulson@14341
   726
  apply (blast elim!: less_SucE 
paulson@14341
   727
               intro!: add_0_right [symmetric] add_Suc_right [symmetric])
paulson@14341
   728
  done
paulson@14341
   729
paulson@14341
   730
text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *}
paulson@14341
   731
lemma mult_less_mono2: "(i::nat) < j ==> 0 < k ==> k * i < k * j"
paulson@14341
   732
  apply (erule_tac m1 = 0 in less_imp_Suc_add [THEN exE], simp)
paulson@14341
   733
  apply (induct_tac x) 
paulson@14341
   734
  apply (simp_all add: add_less_mono)
paulson@14341
   735
  done
paulson@14341
   736
paulson@14341
   737
nipkow@14740
   738
text{*The naturals form an ordered @{text comm_semiring_1_cancel}*}
obua@14738
   739
instance nat :: ordered_semidom
paulson@14341
   740
proof
paulson@14341
   741
  fix i j k :: nat
paulson@14348
   742
  show "0 < (1::nat)" by simp
paulson@14267
   743
  show "i \<le> j ==> k + i \<le> k + j" by simp
paulson@14267
   744
  show "i < j ==> 0 < k ==> k * i < k * j" by (simp add: mult_less_mono2)
paulson@14267
   745
qed
paulson@14267
   746
paulson@14267
   747
lemma nat_mult_1: "(1::nat) * n = n"
paulson@14267
   748
  by simp
paulson@14267
   749
paulson@14267
   750
lemma nat_mult_1_right: "n * (1::nat) = n"
paulson@14267
   751
  by simp
paulson@14267
   752
paulson@14267
   753
paulson@14267
   754
subsection {* Additional theorems about "less than" *}
paulson@14267
   755
paulson@14267
   756
text {* A [clumsy] way of lifting @{text "<"}
paulson@14267
   757
  monotonicity to @{text "\<le>"} monotonicity *}
paulson@14267
   758
lemma less_mono_imp_le_mono:
paulson@14267
   759
  assumes lt_mono: "!!i j::nat. i < j ==> f i < f j"
paulson@14267
   760
  and le: "i \<le> j" shows "f i \<le> ((f j)::nat)" using le
paulson@14267
   761
  apply (simp add: order_le_less)
paulson@14267
   762
  apply (blast intro!: lt_mono)
paulson@14267
   763
  done
paulson@14267
   764
paulson@14267
   765
text {* non-strict, in 1st argument *}
paulson@14267
   766
lemma add_le_mono1: "i \<le> j ==> i + k \<le> j + (k::nat)"
paulson@14267
   767
  by (rule add_right_mono)
paulson@14267
   768
paulson@14267
   769
text {* non-strict, in both arguments *}
paulson@14267
   770
lemma add_le_mono: "[| i \<le> j;  k \<le> l |] ==> i + k \<le> j + (l::nat)"
paulson@14267
   771
  by (rule add_mono)
paulson@14267
   772
paulson@14267
   773
lemma le_add2: "n \<le> ((m + n)::nat)"
paulson@14341
   774
  by (insert add_right_mono [of 0 m n], simp) 
berghofe@13449
   775
paulson@14267
   776
lemma le_add1: "n \<le> ((n + m)::nat)"
paulson@14341
   777
  by (simp add: add_commute, rule le_add2)
berghofe@13449
   778
berghofe@13449
   779
lemma less_add_Suc1: "i < Suc (i + m)"
berghofe@13449
   780
  by (rule le_less_trans, rule le_add1, rule lessI)
berghofe@13449
   781
berghofe@13449
   782
lemma less_add_Suc2: "i < Suc (m + i)"
berghofe@13449
   783
  by (rule le_less_trans, rule le_add2, rule lessI)
berghofe@13449
   784
paulson@14267
   785
lemma less_iff_Suc_add: "(m < n) = (\<exists>k. n = Suc (m + k))"
nipkow@17589
   786
  by (iprover intro!: less_add_Suc1 less_imp_Suc_add)
berghofe@13449
   787
paulson@14267
   788
lemma trans_le_add1: "(i::nat) \<le> j ==> i \<le> j + m"
berghofe@13449
   789
  by (rule le_trans, assumption, rule le_add1)
berghofe@13449
   790
paulson@14267
   791
lemma trans_le_add2: "(i::nat) \<le> j ==> i \<le> m + j"
berghofe@13449
   792
  by (rule le_trans, assumption, rule le_add2)
berghofe@13449
   793
berghofe@13449
   794
lemma trans_less_add1: "(i::nat) < j ==> i < j + m"
berghofe@13449
   795
  by (rule less_le_trans, assumption, rule le_add1)
berghofe@13449
   796
berghofe@13449
   797
lemma trans_less_add2: "(i::nat) < j ==> i < m + j"
berghofe@13449
   798
  by (rule less_le_trans, assumption, rule le_add2)
berghofe@13449
   799
berghofe@13449
   800
lemma add_lessD1: "i + j < (k::nat) ==> i < k"
paulson@14341
   801
  apply (rule le_less_trans [of _ "i+j"]) 
paulson@14341
   802
  apply (simp_all add: le_add1)
berghofe@13449
   803
  done
berghofe@13449
   804
berghofe@13449
   805
lemma not_add_less1 [iff]: "~ (i + j < (i::nat))"
berghofe@13449
   806
  apply (rule notI)
berghofe@13449
   807
  apply (erule add_lessD1 [THEN less_irrefl])
berghofe@13449
   808
  done
berghofe@13449
   809
berghofe@13449
   810
lemma not_add_less2 [iff]: "~ (j + i < (i::nat))"
berghofe@13449
   811
  by (simp add: add_commute not_add_less1)
berghofe@13449
   812
paulson@14267
   813
lemma add_leD1: "m + k \<le> n ==> m \<le> (n::nat)"
paulson@14341
   814
  apply (rule order_trans [of _ "m+k"]) 
paulson@14341
   815
  apply (simp_all add: le_add1)
paulson@14341
   816
  done
berghofe@13449
   817
paulson@14267
   818
lemma add_leD2: "m + k \<le> n ==> k \<le> (n::nat)"
berghofe@13449
   819
  apply (simp add: add_commute)
berghofe@13449
   820
  apply (erule add_leD1)
berghofe@13449
   821
  done
berghofe@13449
   822
paulson@14267
   823
lemma add_leE: "(m::nat) + k \<le> n ==> (m \<le> n ==> k \<le> n ==> R) ==> R"
berghofe@13449
   824
  by (blast dest: add_leD1 add_leD2)
berghofe@13449
   825
berghofe@13449
   826
text {* needs @{text "!!k"} for @{text add_ac} to work *}
berghofe@13449
   827
lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n"
berghofe@13449
   828
  by (force simp del: add_Suc_right
berghofe@13449
   829
    simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac)
berghofe@13449
   830
berghofe@13449
   831
berghofe@13449
   832
berghofe@13449
   833
subsection {* Difference *}
berghofe@13449
   834
berghofe@13449
   835
lemma diff_self_eq_0 [simp]: "(m::nat) - m = 0"
berghofe@13449
   836
  by (induct m) simp_all
berghofe@13449
   837
berghofe@13449
   838
text {* Addition is the inverse of subtraction:
paulson@14267
   839
  if @{term "n \<le> m"} then @{term "n + (m - n) = m"}. *}
berghofe@13449
   840
lemma add_diff_inverse: "~  m < n ==> n + (m - n) = (m::nat)"
berghofe@13449
   841
  by (induct m n rule: diff_induct) simp_all
berghofe@13449
   842
paulson@14267
   843
lemma le_add_diff_inverse [simp]: "n \<le> m ==> n + (m - n) = (m::nat)"
paulson@16796
   844
  by (simp add: add_diff_inverse linorder_not_less)
berghofe@13449
   845
paulson@14267
   846
lemma le_add_diff_inverse2 [simp]: "n \<le> m ==> (m - n) + n = (m::nat)"
berghofe@13449
   847
  by (simp add: le_add_diff_inverse add_commute)
berghofe@13449
   848
berghofe@13449
   849
berghofe@13449
   850
subsection {* More results about difference *}
berghofe@13449
   851
paulson@14267
   852
lemma Suc_diff_le: "n \<le> m ==> Suc m - n = Suc (m - n)"
berghofe@13449
   853
  by (induct m n rule: diff_induct) simp_all
berghofe@13449
   854
berghofe@13449
   855
lemma diff_less_Suc: "m - n < Suc m"
berghofe@13449
   856
  apply (induct m n rule: diff_induct)
berghofe@13449
   857
  apply (erule_tac [3] less_SucE)
berghofe@13449
   858
  apply (simp_all add: less_Suc_eq)
berghofe@13449
   859
  done
berghofe@13449
   860
paulson@14267
   861
lemma diff_le_self [simp]: "m - n \<le> (m::nat)"
berghofe@13449
   862
  by (induct m n rule: diff_induct) (simp_all add: le_SucI)
berghofe@13449
   863
berghofe@13449
   864
lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k"
berghofe@13449
   865
  by (rule le_less_trans, rule diff_le_self)
berghofe@13449
   866
berghofe@13449
   867
lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)"
berghofe@13449
   868
  by (induct i j rule: diff_induct) simp_all
berghofe@13449
   869
berghofe@13449
   870
lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k"
berghofe@13449
   871
  by (simp add: diff_diff_left)
berghofe@13449
   872
berghofe@13449
   873
lemma diff_Suc_less [simp]: "0<n ==> n - Suc i < n"
paulson@14208
   874
  apply (case_tac "n", safe)
berghofe@13449
   875
  apply (simp add: le_simps)
berghofe@13449
   876
  done
berghofe@13449
   877
berghofe@13449
   878
text {* This and the next few suggested by Florian Kammueller *}
berghofe@13449
   879
lemma diff_commute: "(i::nat) - j - k = i - k - j"
berghofe@13449
   880
  by (simp add: diff_diff_left add_commute)
berghofe@13449
   881
paulson@14267
   882
lemma diff_add_assoc: "k \<le> (j::nat) ==> (i + j) - k = i + (j - k)"
berghofe@13449
   883
  by (induct j k rule: diff_induct) simp_all
berghofe@13449
   884
paulson@14267
   885
lemma diff_add_assoc2: "k \<le> (j::nat) ==> (j + i) - k = (j - k) + i"
berghofe@13449
   886
  by (simp add: add_commute diff_add_assoc)
berghofe@13449
   887
berghofe@13449
   888
lemma diff_add_inverse: "(n + m) - n = (m::nat)"
berghofe@13449
   889
  by (induct n) simp_all
berghofe@13449
   890
berghofe@13449
   891
lemma diff_add_inverse2: "(m + n) - n = (m::nat)"
berghofe@13449
   892
  by (simp add: diff_add_assoc)
berghofe@13449
   893
paulson@14267
   894
lemma le_imp_diff_is_add: "i \<le> (j::nat) ==> (j - i = k) = (j = k + i)"
berghofe@13449
   895
  apply safe
berghofe@13449
   896
  apply (simp_all add: diff_add_inverse2)
berghofe@13449
   897
  done
berghofe@13449
   898
paulson@14267
   899
lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m \<le> n)"
berghofe@13449
   900
  by (induct m n rule: diff_induct) simp_all
berghofe@13449
   901
paulson@14267
   902
lemma diff_is_0_eq' [simp]: "m \<le> n ==> (m::nat) - n = 0"
berghofe@13449
   903
  by (rule iffD2, rule diff_is_0_eq)
berghofe@13449
   904
berghofe@13449
   905
lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)"
berghofe@13449
   906
  by (induct m n rule: diff_induct) simp_all
berghofe@13449
   907
paulson@14267
   908
lemma less_imp_add_positive: "i < j  ==> \<exists>k::nat. 0 < k & i + k = j"
berghofe@13449
   909
  apply (rule_tac x = "j - i" in exI)
berghofe@13449
   910
  apply (simp (no_asm_simp) add: add_diff_inverse less_not_sym)
berghofe@13449
   911
  done
wenzelm@9436
   912
berghofe@13449
   913
lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)"
berghofe@13449
   914
  apply (induct k i rule: diff_induct)
berghofe@13449
   915
  apply (simp_all (no_asm))
nipkow@17589
   916
  apply iprover
berghofe@13449
   917
  done
berghofe@13449
   918
berghofe@13449
   919
lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0"
berghofe@13449
   920
  apply (rule diff_self_eq_0 [THEN subst])
nipkow@17589
   921
  apply (rule zero_induct_lemma, iprover+)
berghofe@13449
   922
  done
berghofe@13449
   923
berghofe@13449
   924
lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)"
berghofe@13449
   925
  by (induct k) simp_all
berghofe@13449
   926
berghofe@13449
   927
lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)"
berghofe@13449
   928
  by (simp add: diff_cancel add_commute)
berghofe@13449
   929
berghofe@13449
   930
lemma diff_add_0: "n - (n + m) = (0::nat)"
berghofe@13449
   931
  by (induct n) simp_all
berghofe@13449
   932
berghofe@13449
   933
berghofe@13449
   934
text {* Difference distributes over multiplication *}
berghofe@13449
   935
berghofe@13449
   936
lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)"
berghofe@13449
   937
  by (induct m n rule: diff_induct) (simp_all add: diff_cancel)
berghofe@13449
   938
berghofe@13449
   939
lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)"
berghofe@13449
   940
  by (simp add: diff_mult_distrib mult_commute [of k])
berghofe@13449
   941
  -- {* NOT added as rewrites, since sometimes they are used from right-to-left *}
berghofe@13449
   942
berghofe@13449
   943
lemmas nat_distrib =
berghofe@13449
   944
  add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2
berghofe@13449
   945
berghofe@13449
   946
berghofe@13449
   947
subsection {* Monotonicity of Multiplication *}
berghofe@13449
   948
paulson@14267
   949
lemma mult_le_mono1: "i \<le> (j::nat) ==> i * k \<le> j * k"
paulson@14341
   950
  by (simp add: mult_right_mono) 
berghofe@13449
   951
paulson@14267
   952
lemma mult_le_mono2: "i \<le> (j::nat) ==> k * i \<le> k * j"
paulson@14341
   953
  by (simp add: mult_left_mono) 
berghofe@13449
   954
paulson@14267
   955
text {* @{text "\<le>"} monotonicity, BOTH arguments *}
paulson@14267
   956
lemma mult_le_mono: "i \<le> (j::nat) ==> k \<le> l ==> i * k \<le> j * l"
paulson@14341
   957
  by (simp add: mult_mono) 
berghofe@13449
   958
berghofe@13449
   959
lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k"
paulson@14341
   960
  by (simp add: mult_strict_right_mono) 
berghofe@13449
   961
paulson@14266
   962
text{*Differs from the standard @{text zero_less_mult_iff} in that
paulson@14266
   963
      there are no negative numbers.*}
paulson@14266
   964
lemma nat_0_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)"
berghofe@13449
   965
  apply (induct m)
paulson@14208
   966
  apply (case_tac [2] n, simp_all)
berghofe@13449
   967
  done
berghofe@13449
   968
paulson@14267
   969
lemma one_le_mult_iff [simp]: "(Suc 0 \<le> m * n) = (1 \<le> m & 1 \<le> n)"
berghofe@13449
   970
  apply (induct m)
paulson@14208
   971
  apply (case_tac [2] n, simp_all)
berghofe@13449
   972
  done
berghofe@13449
   973
berghofe@13449
   974
lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = 1 & n = 1)"
paulson@15251
   975
  apply (induct m, simp)
paulson@15251
   976
  apply (induct n, simp, fastsimp)
berghofe@13449
   977
  done
berghofe@13449
   978
berghofe@13449
   979
lemma one_eq_mult_iff [simp]: "(Suc 0 = m * n) = (m = 1 & n = 1)"
berghofe@13449
   980
  apply (rule trans)
paulson@14208
   981
  apply (rule_tac [2] mult_eq_1_iff, fastsimp)
berghofe@13449
   982
  done
berghofe@13449
   983
paulson@14341
   984
lemma mult_less_cancel2 [simp]: "((m::nat) * k < n * k) = (0 < k & m < n)"
berghofe@13449
   985
  apply (safe intro!: mult_less_mono1)
paulson@14208
   986
  apply (case_tac k, auto)
berghofe@13449
   987
  apply (simp del: le_0_eq add: linorder_not_le [symmetric])
berghofe@13449
   988
  apply (blast intro: mult_le_mono1)
berghofe@13449
   989
  done
berghofe@13449
   990
berghofe@13449
   991
lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)"
paulson@14341
   992
  by (simp add: mult_commute [of k])
berghofe@13449
   993
paulson@14267
   994
lemma mult_le_cancel1 [simp]: "(k * (m::nat) \<le> k * n) = (0 < k --> m \<le> n)"
paulson@14208
   995
by (simp add: linorder_not_less [symmetric], auto)
berghofe@13449
   996
paulson@14267
   997
lemma mult_le_cancel2 [simp]: "((m::nat) * k \<le> n * k) = (0 < k --> m \<le> n)"
paulson@14208
   998
by (simp add: linorder_not_less [symmetric], auto)
berghofe@13449
   999
paulson@14341
  1000
lemma mult_cancel2 [simp]: "(m * k = n * k) = (m = n | (k = (0::nat)))"
paulson@14208
  1001
  apply (cut_tac less_linear, safe, auto)
berghofe@13449
  1002
  apply (drule mult_less_mono1, assumption, simp)+
berghofe@13449
  1003
  done
berghofe@13449
  1004
berghofe@13449
  1005
lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))"
paulson@14341
  1006
  by (simp add: mult_commute [of k])
berghofe@13449
  1007
berghofe@13449
  1008
lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)"
berghofe@13449
  1009
  by (subst mult_less_cancel1) simp
berghofe@13449
  1010
paulson@14267
  1011
lemma Suc_mult_le_cancel1: "(Suc k * m \<le> Suc k * n) = (m \<le> n)"
berghofe@13449
  1012
  by (subst mult_le_cancel1) simp
berghofe@13449
  1013
berghofe@13449
  1014
lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)"
berghofe@13449
  1015
  by (subst mult_cancel1) simp
berghofe@13449
  1016
berghofe@13449
  1017
text {* Lemma for @{text gcd} *}
berghofe@13449
  1018
lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0"
berghofe@13449
  1019
  apply (drule sym)
berghofe@13449
  1020
  apply (rule disjCI)
berghofe@13449
  1021
  apply (rule nat_less_cases, erule_tac [2] _)
berghofe@13449
  1022
  apply (fastsimp elim!: less_SucE)
berghofe@13449
  1023
  apply (fastsimp dest: mult_less_mono2)
berghofe@13449
  1024
  done
wenzelm@9436
  1025
haftmann@18702
  1026
subsection {* Code generator setup *}
haftmann@18702
  1027
haftmann@18702
  1028
code_alias
haftmann@18702
  1029
  "nat" "Nat.nat"
haftmann@18702
  1030
  "0" "Nat.Zero"
haftmann@18702
  1031
  "1" "Nat.One"
haftmann@18702
  1032
  "Suc" "Nat.Suc"
nipkow@15539
  1033
clasohm@923
  1034
end