src/HOL/Typedef.thy
author haftmann
Tue Aug 17 16:44:24 2010 +0200 (2010-08-17)
changeset 38536 7e57a0dcbd4f
parent 38393 7c045c03598f
child 41732 996b0c14a430
permissions -rw-r--r--
dropped SML typedef_codegen: does not fit to code equations for record operations any longer
wenzelm@11608
     1
(*  Title:      HOL/Typedef.thy
wenzelm@11608
     2
    Author:     Markus Wenzel, TU Munich
wenzelm@11743
     3
*)
wenzelm@11608
     4
wenzelm@11979
     5
header {* HOL type definitions *}
wenzelm@11608
     6
nipkow@15131
     7
theory Typedef
nipkow@15140
     8
imports Set
haftmann@38536
     9
uses ("Tools/typedef.ML")
nipkow@15131
    10
begin
wenzelm@11608
    11
haftmann@23247
    12
ML {*
wenzelm@37863
    13
structure HOL = struct val thy = @{theory HOL} end;
haftmann@23247
    14
*}  -- "belongs to theory HOL"
haftmann@23247
    15
wenzelm@13412
    16
locale type_definition =
wenzelm@13412
    17
  fixes Rep and Abs and A
wenzelm@13412
    18
  assumes Rep: "Rep x \<in> A"
wenzelm@13412
    19
    and Rep_inverse: "Abs (Rep x) = x"
wenzelm@13412
    20
    and Abs_inverse: "y \<in> A ==> Rep (Abs y) = y"
wenzelm@13412
    21
  -- {* This will be axiomatized for each typedef! *}
haftmann@23247
    22
begin
wenzelm@11608
    23
haftmann@23247
    24
lemma Rep_inject:
wenzelm@13412
    25
  "(Rep x = Rep y) = (x = y)"
wenzelm@13412
    26
proof
wenzelm@13412
    27
  assume "Rep x = Rep y"
haftmann@23710
    28
  then have "Abs (Rep x) = Abs (Rep y)" by (simp only:)
haftmann@23710
    29
  moreover have "Abs (Rep x) = x" by (rule Rep_inverse)
haftmann@23710
    30
  moreover have "Abs (Rep y) = y" by (rule Rep_inverse)
haftmann@23710
    31
  ultimately show "x = y" by simp
wenzelm@13412
    32
next
wenzelm@13412
    33
  assume "x = y"
wenzelm@13412
    34
  thus "Rep x = Rep y" by (simp only:)
wenzelm@13412
    35
qed
wenzelm@11608
    36
haftmann@23247
    37
lemma Abs_inject:
wenzelm@13412
    38
  assumes x: "x \<in> A" and y: "y \<in> A"
wenzelm@13412
    39
  shows "(Abs x = Abs y) = (x = y)"
wenzelm@13412
    40
proof
wenzelm@13412
    41
  assume "Abs x = Abs y"
haftmann@23710
    42
  then have "Rep (Abs x) = Rep (Abs y)" by (simp only:)
haftmann@23710
    43
  moreover from x have "Rep (Abs x) = x" by (rule Abs_inverse)
haftmann@23710
    44
  moreover from y have "Rep (Abs y) = y" by (rule Abs_inverse)
haftmann@23710
    45
  ultimately show "x = y" by simp
wenzelm@13412
    46
next
wenzelm@13412
    47
  assume "x = y"
wenzelm@13412
    48
  thus "Abs x = Abs y" by (simp only:)
wenzelm@11608
    49
qed
wenzelm@11608
    50
haftmann@23247
    51
lemma Rep_cases [cases set]:
wenzelm@13412
    52
  assumes y: "y \<in> A"
wenzelm@13412
    53
    and hyp: "!!x. y = Rep x ==> P"
wenzelm@13412
    54
  shows P
wenzelm@13412
    55
proof (rule hyp)
wenzelm@13412
    56
  from y have "Rep (Abs y) = y" by (rule Abs_inverse)
wenzelm@13412
    57
  thus "y = Rep (Abs y)" ..
wenzelm@11608
    58
qed
wenzelm@11608
    59
haftmann@23247
    60
lemma Abs_cases [cases type]:
wenzelm@13412
    61
  assumes r: "!!y. x = Abs y ==> y \<in> A ==> P"
wenzelm@13412
    62
  shows P
wenzelm@13412
    63
proof (rule r)
wenzelm@13412
    64
  have "Abs (Rep x) = x" by (rule Rep_inverse)
wenzelm@13412
    65
  thus "x = Abs (Rep x)" ..
wenzelm@13412
    66
  show "Rep x \<in> A" by (rule Rep)
wenzelm@11608
    67
qed
wenzelm@11608
    68
haftmann@23247
    69
lemma Rep_induct [induct set]:
wenzelm@13412
    70
  assumes y: "y \<in> A"
wenzelm@13412
    71
    and hyp: "!!x. P (Rep x)"
wenzelm@13412
    72
  shows "P y"
wenzelm@11608
    73
proof -
wenzelm@13412
    74
  have "P (Rep (Abs y))" by (rule hyp)
haftmann@23710
    75
  moreover from y have "Rep (Abs y) = y" by (rule Abs_inverse)
haftmann@23710
    76
  ultimately show "P y" by simp
wenzelm@11608
    77
qed
wenzelm@11608
    78
haftmann@23247
    79
lemma Abs_induct [induct type]:
wenzelm@13412
    80
  assumes r: "!!y. y \<in> A ==> P (Abs y)"
wenzelm@13412
    81
  shows "P x"
wenzelm@11608
    82
proof -
wenzelm@13412
    83
  have "Rep x \<in> A" by (rule Rep)
haftmann@23710
    84
  then have "P (Abs (Rep x))" by (rule r)
haftmann@23710
    85
  moreover have "Abs (Rep x) = x" by (rule Rep_inverse)
haftmann@23710
    86
  ultimately show "P x" by simp
wenzelm@11608
    87
qed
wenzelm@11608
    88
huffman@27295
    89
lemma Rep_range: "range Rep = A"
huffman@24269
    90
proof
huffman@24269
    91
  show "range Rep <= A" using Rep by (auto simp add: image_def)
huffman@24269
    92
  show "A <= range Rep"
nipkow@23433
    93
  proof
nipkow@23433
    94
    fix x assume "x : A"
huffman@24269
    95
    hence "x = Rep (Abs x)" by (rule Abs_inverse [symmetric])
huffman@24269
    96
    thus "x : range Rep" by (rule range_eqI)
nipkow@23433
    97
  qed
nipkow@23433
    98
qed
nipkow@23433
    99
huffman@27295
   100
lemma Abs_image: "Abs ` A = UNIV"
huffman@27295
   101
proof
huffman@27295
   102
  show "Abs ` A <= UNIV" by (rule subset_UNIV)
huffman@27295
   103
next
huffman@27295
   104
  show "UNIV <= Abs ` A"
huffman@27295
   105
  proof
huffman@27295
   106
    fix x
huffman@27295
   107
    have "x = Abs (Rep x)" by (rule Rep_inverse [symmetric])
huffman@27295
   108
    moreover have "Rep x : A" by (rule Rep)
huffman@27295
   109
    ultimately show "x : Abs ` A" by (rule image_eqI)
huffman@27295
   110
  qed
huffman@27295
   111
qed
huffman@27295
   112
haftmann@23247
   113
end
haftmann@23247
   114
haftmann@31723
   115
use "Tools/typedef.ML" setup Typedef.setup
wenzelm@11608
   116
wenzelm@11608
   117
end