src/HOL/Ln.thy
author haftmann
Mon Apr 27 10:11:44 2009 +0200 (2009-04-27)
changeset 31001 7e6ffd8f51a9
parent 30273 ecd6f0ca62ea
child 31338 d41a8ba25b67
permissions -rw-r--r--
cleaned up theory power further
avigad@16959
     1
(*  Title:      Ln.thy
avigad@16959
     2
    Author:     Jeremy Avigad
avigad@16959
     3
*)
avigad@16959
     4
avigad@16959
     5
header {* Properties of ln *}
avigad@16959
     6
avigad@16959
     7
theory Ln
avigad@16959
     8
imports Transcendental
avigad@16959
     9
begin
avigad@16959
    10
avigad@16959
    11
lemma exp_first_two_terms: "exp x = 1 + x + suminf (%n. 
avigad@16959
    12
  inverse(real (fact (n+2))) * (x ^ (n+2)))"
avigad@16959
    13
proof -
avigad@16959
    14
  have "exp x = suminf (%n. inverse(real (fact n)) * (x ^ n))"
wenzelm@19765
    15
    by (simp add: exp_def)
avigad@16959
    16
  also from summable_exp have "... = (SUM n : {0..<2}. 
avigad@16959
    17
      inverse(real (fact n)) * (x ^ n)) + suminf (%n.
avigad@16959
    18
      inverse(real (fact (n+2))) * (x ^ (n+2)))" (is "_ = ?a + _")
avigad@16959
    19
    by (rule suminf_split_initial_segment)
avigad@16959
    20
  also have "?a = 1 + x"
avigad@16959
    21
    by (simp add: numerals)
avigad@16959
    22
  finally show ?thesis .
avigad@16959
    23
qed
avigad@16959
    24
avigad@16959
    25
lemma exp_tail_after_first_two_terms_summable: 
avigad@16959
    26
  "summable (%n. inverse(real (fact (n+2))) * (x ^ (n+2)))"
avigad@16959
    27
proof -
avigad@16959
    28
  note summable_exp
avigad@16959
    29
  thus ?thesis
avigad@16959
    30
    by (frule summable_ignore_initial_segment)
avigad@16959
    31
qed
avigad@16959
    32
avigad@16959
    33
lemma aux1: assumes a: "0 <= x" and b: "x <= 1"
avigad@16959
    34
    shows "inverse (real (fact (n + 2))) * x ^ (n + 2) <= (x^2/2) * ((1/2)^n)"
avigad@16959
    35
proof (induct n)
avigad@16959
    36
  show "inverse (real (fact (0 + 2))) * x ^ (0 + 2) <= 
avigad@16959
    37
      x ^ 2 / 2 * (1 / 2) ^ 0"
nipkow@23482
    38
    by (simp add: real_of_nat_Suc power2_eq_square)
avigad@16959
    39
next
avigad@16959
    40
  fix n
avigad@16959
    41
  assume c: "inverse (real (fact (n + 2))) * x ^ (n + 2)
avigad@16959
    42
       <= x ^ 2 / 2 * (1 / 2) ^ n"
avigad@16959
    43
  show "inverse (real (fact (Suc n + 2))) * x ^ (Suc n + 2)
avigad@16959
    44
           <= x ^ 2 / 2 * (1 / 2) ^ Suc n"
avigad@16959
    45
  proof -
avigad@16959
    46
    have "inverse(real (fact (Suc n + 2))) <= 
avigad@16959
    47
        (1 / 2) *inverse (real (fact (n+2)))"
avigad@16959
    48
    proof -
avigad@16959
    49
      have "Suc n + 2 = Suc (n + 2)" by simp
avigad@16959
    50
      then have "fact (Suc n + 2) = Suc (n + 2) * fact (n + 2)" 
avigad@16959
    51
        by simp
avigad@16959
    52
      then have "real(fact (Suc n + 2)) = real(Suc (n + 2) * fact (n + 2))" 
avigad@16959
    53
        apply (rule subst)
avigad@16959
    54
        apply (rule refl)
avigad@16959
    55
        done
avigad@16959
    56
      also have "... = real(Suc (n + 2)) * real(fact (n + 2))"
avigad@16959
    57
        by (rule real_of_nat_mult)
avigad@16959
    58
      finally have "real (fact (Suc n + 2)) = 
avigad@16959
    59
         real (Suc (n + 2)) * real (fact (n + 2))" .
avigad@16959
    60
      then have "inverse(real (fact (Suc n + 2))) = 
avigad@16959
    61
         inverse(real (Suc (n + 2))) * inverse(real (fact (n + 2)))"
avigad@16959
    62
        apply (rule ssubst)
avigad@16959
    63
        apply (rule inverse_mult_distrib)
avigad@16959
    64
        done
avigad@16959
    65
      also have "... <= (1/2) * inverse(real (fact (n + 2)))"
avigad@16959
    66
        apply (rule mult_right_mono)
avigad@16959
    67
        apply (subst inverse_eq_divide)
avigad@16959
    68
        apply simp
avigad@16959
    69
        apply (rule inv_real_of_nat_fact_ge_zero)
avigad@16959
    70
        done
avigad@16959
    71
      finally show ?thesis .
avigad@16959
    72
    qed
avigad@16959
    73
    moreover have "x ^ (Suc n + 2) <= x ^ (n + 2)"
avigad@16959
    74
      apply (simp add: mult_compare_simps)
avigad@16959
    75
      apply (simp add: prems)
avigad@16959
    76
      apply (subgoal_tac "0 <= x * (x * x^n)")
avigad@16959
    77
      apply force
avigad@16959
    78
      apply (rule mult_nonneg_nonneg, rule a)+
avigad@16959
    79
      apply (rule zero_le_power, rule a)
avigad@16959
    80
      done
avigad@16959
    81
    ultimately have "inverse (real (fact (Suc n + 2))) *  x ^ (Suc n + 2) <=
avigad@16959
    82
        (1 / 2 * inverse (real (fact (n + 2)))) * x ^ (n + 2)"
avigad@16959
    83
      apply (rule mult_mono)
avigad@16959
    84
      apply (rule mult_nonneg_nonneg)
avigad@16959
    85
      apply simp
avigad@16959
    86
      apply (subst inverse_nonnegative_iff_nonnegative)
huffman@27483
    87
      apply (rule real_of_nat_ge_zero)
avigad@16959
    88
      apply (rule zero_le_power)
huffman@23441
    89
      apply (rule a)
avigad@16959
    90
      done
avigad@16959
    91
    also have "... = 1 / 2 * (inverse (real (fact (n + 2))) * x ^ (n + 2))"
avigad@16959
    92
      by simp
avigad@16959
    93
    also have "... <= 1 / 2 * (x ^ 2 / 2 * (1 / 2) ^ n)"
avigad@16959
    94
      apply (rule mult_left_mono)
avigad@16959
    95
      apply (rule prems)
avigad@16959
    96
      apply simp
avigad@16959
    97
      done
avigad@16959
    98
    also have "... = x ^ 2 / 2 * (1 / 2 * (1 / 2) ^ n)"
avigad@16959
    99
      by auto
avigad@16959
   100
    also have "(1::real) / 2 * (1 / 2) ^ n = (1 / 2) ^ (Suc n)"
huffman@30273
   101
      by (rule power_Suc [THEN sym])
avigad@16959
   102
    finally show ?thesis .
avigad@16959
   103
  qed
avigad@16959
   104
qed
avigad@16959
   105
huffman@20692
   106
lemma aux2: "(%n. (x::real) ^ 2 / 2 * (1 / 2) ^ n) sums x^2"
avigad@16959
   107
proof -
huffman@20692
   108
  have "(%n. (1 / 2::real)^n) sums (1 / (1 - (1/2)))"
avigad@16959
   109
    apply (rule geometric_sums)
huffman@22998
   110
    by (simp add: abs_less_iff)
avigad@16959
   111
  also have "(1::real) / (1 - 1/2) = 2"
avigad@16959
   112
    by simp
huffman@20692
   113
  finally have "(%n. (1 / 2::real)^n) sums 2" .
avigad@16959
   114
  then have "(%n. x ^ 2 / 2 * (1 / 2) ^ n) sums (x^2 / 2 * 2)"
avigad@16959
   115
    by (rule sums_mult)
avigad@16959
   116
  also have "x^2 / 2 * 2 = x^2"
avigad@16959
   117
    by simp
avigad@16959
   118
  finally show ?thesis .
avigad@16959
   119
qed
avigad@16959
   120
huffman@23114
   121
lemma exp_bound: "0 <= (x::real) ==> x <= 1 ==> exp x <= 1 + x + x^2"
avigad@16959
   122
proof -
avigad@16959
   123
  assume a: "0 <= x"
avigad@16959
   124
  assume b: "x <= 1"
avigad@16959
   125
  have c: "exp x = 1 + x + suminf (%n. inverse(real (fact (n+2))) * 
avigad@16959
   126
      (x ^ (n+2)))"
avigad@16959
   127
    by (rule exp_first_two_terms)
avigad@16959
   128
  moreover have "suminf (%n. inverse(real (fact (n+2))) * (x ^ (n+2))) <= x^2"
avigad@16959
   129
  proof -
avigad@16959
   130
    have "suminf (%n. inverse(real (fact (n+2))) * (x ^ (n+2))) <=
avigad@16959
   131
        suminf (%n. (x^2/2) * ((1/2)^n))"
avigad@16959
   132
      apply (rule summable_le)
avigad@16959
   133
      apply (auto simp only: aux1 prems)
avigad@16959
   134
      apply (rule exp_tail_after_first_two_terms_summable)
avigad@16959
   135
      by (rule sums_summable, rule aux2)  
avigad@16959
   136
    also have "... = x^2"
avigad@16959
   137
      by (rule sums_unique [THEN sym], rule aux2)
avigad@16959
   138
    finally show ?thesis .
avigad@16959
   139
  qed
avigad@16959
   140
  ultimately show ?thesis
avigad@16959
   141
    by auto
avigad@16959
   142
qed
avigad@16959
   143
huffman@23114
   144
lemma aux4: "0 <= (x::real) ==> x <= 1 ==> exp (x - x^2) <= 1 + x" 
avigad@16959
   145
proof -
avigad@16959
   146
  assume a: "0 <= x" and b: "x <= 1"
avigad@16959
   147
  have "exp (x - x^2) = exp x / exp (x^2)"
avigad@16959
   148
    by (rule exp_diff)
avigad@16959
   149
  also have "... <= (1 + x + x^2) / exp (x ^2)"
avigad@16959
   150
    apply (rule divide_right_mono) 
avigad@16959
   151
    apply (rule exp_bound)
avigad@16959
   152
    apply (rule a, rule b)
avigad@16959
   153
    apply simp
avigad@16959
   154
    done
avigad@16959
   155
  also have "... <= (1 + x + x^2) / (1 + x^2)"
avigad@16959
   156
    apply (rule divide_left_mono)
avigad@17013
   157
    apply (auto simp add: exp_ge_add_one_self_aux)
avigad@16959
   158
    apply (rule add_nonneg_nonneg)
avigad@16959
   159
    apply (insert prems, auto)
avigad@16959
   160
    apply (rule mult_pos_pos)
avigad@16959
   161
    apply auto
avigad@16959
   162
    apply (rule add_pos_nonneg)
avigad@16959
   163
    apply auto
avigad@16959
   164
    done
avigad@16959
   165
  also from a have "... <= 1 + x"
nipkow@23482
   166
    by(simp add:field_simps zero_compare_simps)
avigad@16959
   167
  finally show ?thesis .
avigad@16959
   168
qed
avigad@16959
   169
avigad@16959
   170
lemma ln_one_plus_pos_lower_bound: "0 <= x ==> x <= 1 ==> 
avigad@16959
   171
    x - x^2 <= ln (1 + x)"
avigad@16959
   172
proof -
avigad@16959
   173
  assume a: "0 <= x" and b: "x <= 1"
avigad@16959
   174
  then have "exp (x - x^2) <= 1 + x"
avigad@16959
   175
    by (rule aux4)
avigad@16959
   176
  also have "... = exp (ln (1 + x))"
avigad@16959
   177
  proof -
avigad@16959
   178
    from a have "0 < 1 + x" by auto
avigad@16959
   179
    thus ?thesis
avigad@16959
   180
      by (auto simp only: exp_ln_iff [THEN sym])
avigad@16959
   181
  qed
avigad@16959
   182
  finally have "exp (x - x ^ 2) <= exp (ln (1 + x))" .
avigad@16959
   183
  thus ?thesis by (auto simp only: exp_le_cancel_iff)
avigad@16959
   184
qed
avigad@16959
   185
avigad@16959
   186
lemma ln_one_minus_pos_upper_bound: "0 <= x ==> x < 1 ==> ln (1 - x) <= - x"
avigad@16959
   187
proof -
avigad@16959
   188
  assume a: "0 <= (x::real)" and b: "x < 1"
avigad@16959
   189
  have "(1 - x) * (1 + x + x^2) = (1 - x^3)"
nipkow@29667
   190
    by (simp add: algebra_simps power2_eq_square power3_eq_cube)
avigad@16959
   191
  also have "... <= 1"
nipkow@25875
   192
    by (auto simp add: a)
avigad@16959
   193
  finally have "(1 - x) * (1 + x + x ^ 2) <= 1" .
avigad@16959
   194
  moreover have "0 < 1 + x + x^2"
avigad@16959
   195
    apply (rule add_pos_nonneg)
avigad@16959
   196
    apply (insert a, auto)
avigad@16959
   197
    done
avigad@16959
   198
  ultimately have "1 - x <= 1 / (1 + x + x^2)"
avigad@16959
   199
    by (elim mult_imp_le_div_pos)
avigad@16959
   200
  also have "... <= 1 / exp x"
avigad@16959
   201
    apply (rule divide_left_mono)
avigad@16959
   202
    apply (rule exp_bound, rule a)
avigad@16959
   203
    apply (insert prems, auto)
avigad@16959
   204
    apply (rule mult_pos_pos)
avigad@16959
   205
    apply (rule add_pos_nonneg)
avigad@16959
   206
    apply auto
avigad@16959
   207
    done
avigad@16959
   208
  also have "... = exp (-x)"
avigad@16959
   209
    by (auto simp add: exp_minus real_divide_def)
avigad@16959
   210
  finally have "1 - x <= exp (- x)" .
avigad@16959
   211
  also have "1 - x = exp (ln (1 - x))"
avigad@16959
   212
  proof -
avigad@16959
   213
    have "0 < 1 - x"
avigad@16959
   214
      by (insert b, auto)
avigad@16959
   215
    thus ?thesis
avigad@16959
   216
      by (auto simp only: exp_ln_iff [THEN sym])
avigad@16959
   217
  qed
avigad@16959
   218
  finally have "exp (ln (1 - x)) <= exp (- x)" .
avigad@16959
   219
  thus ?thesis by (auto simp only: exp_le_cancel_iff)
avigad@16959
   220
qed
avigad@16959
   221
avigad@16959
   222
lemma aux5: "x < 1 ==> ln(1 - x) = - ln(1 + x / (1 - x))"
avigad@16959
   223
proof -
avigad@16959
   224
  assume a: "x < 1"
avigad@16959
   225
  have "ln(1 - x) = - ln(1 / (1 - x))"
avigad@16959
   226
  proof -
avigad@16959
   227
    have "ln(1 - x) = - (- ln (1 - x))"
avigad@16959
   228
      by auto
avigad@16959
   229
    also have "- ln(1 - x) = ln 1 - ln(1 - x)"
avigad@16959
   230
      by simp
avigad@16959
   231
    also have "... = ln(1 / (1 - x))"
avigad@16959
   232
      apply (rule ln_div [THEN sym])
avigad@16959
   233
      by (insert a, auto)
avigad@16959
   234
    finally show ?thesis .
avigad@16959
   235
  qed
nipkow@23482
   236
  also have " 1 / (1 - x) = 1 + x / (1 - x)" using a by(simp add:field_simps)
avigad@16959
   237
  finally show ?thesis .
avigad@16959
   238
qed
avigad@16959
   239
avigad@16959
   240
lemma ln_one_minus_pos_lower_bound: "0 <= x ==> x <= (1 / 2) ==> 
avigad@16959
   241
    - x - 2 * x^2 <= ln (1 - x)"
avigad@16959
   242
proof -
avigad@16959
   243
  assume a: "0 <= x" and b: "x <= (1 / 2)"
avigad@16959
   244
  from b have c: "x < 1"
avigad@16959
   245
    by auto
avigad@16959
   246
  then have "ln (1 - x) = - ln (1 + x / (1 - x))"
avigad@16959
   247
    by (rule aux5)
avigad@16959
   248
  also have "- (x / (1 - x)) <= ..."
avigad@16959
   249
  proof - 
avigad@16959
   250
    have "ln (1 + x / (1 - x)) <= x / (1 - x)"
avigad@16959
   251
      apply (rule ln_add_one_self_le_self)
avigad@16959
   252
      apply (rule divide_nonneg_pos)
avigad@16959
   253
      by (insert a c, auto) 
avigad@16959
   254
    thus ?thesis
avigad@16959
   255
      by auto
avigad@16959
   256
  qed
avigad@16959
   257
  also have "- (x / (1 - x)) = -x / (1 - x)"
avigad@16959
   258
    by auto
avigad@16959
   259
  finally have d: "- x / (1 - x) <= ln (1 - x)" .
nipkow@23482
   260
  have "0 < 1 - x" using prems by simp
nipkow@23482
   261
  hence e: "-x - 2 * x^2 <= - x / (1 - x)"
nipkow@23482
   262
    using mult_right_le_one_le[of "x*x" "2*x"] prems
nipkow@23482
   263
    by(simp add:field_simps power2_eq_square)
avigad@16959
   264
  from e d show "- x - 2 * x^2 <= ln (1 - x)"
avigad@16959
   265
    by (rule order_trans)
avigad@16959
   266
qed
avigad@16959
   267
huffman@23114
   268
lemma exp_ge_add_one_self [simp]: "1 + (x::real) <= exp x"
avigad@16959
   269
  apply (case_tac "0 <= x")
avigad@17013
   270
  apply (erule exp_ge_add_one_self_aux)
avigad@16959
   271
  apply (case_tac "x <= -1")
avigad@16959
   272
  apply (subgoal_tac "1 + x <= 0")
avigad@16959
   273
  apply (erule order_trans)
avigad@16959
   274
  apply simp
avigad@16959
   275
  apply simp
avigad@16959
   276
  apply (subgoal_tac "1 + x = exp(ln (1 + x))")
avigad@16959
   277
  apply (erule ssubst)
avigad@16959
   278
  apply (subst exp_le_cancel_iff)
avigad@16959
   279
  apply (subgoal_tac "ln (1 - (- x)) <= - (- x)")
avigad@16959
   280
  apply simp
avigad@16959
   281
  apply (rule ln_one_minus_pos_upper_bound) 
avigad@16959
   282
  apply auto
avigad@16959
   283
done
avigad@16959
   284
avigad@16959
   285
lemma ln_add_one_self_le_self2: "-1 < x ==> ln(1 + x) <= x"
avigad@16959
   286
  apply (subgoal_tac "x = ln (exp x)")
avigad@16959
   287
  apply (erule ssubst)back
avigad@16959
   288
  apply (subst ln_le_cancel_iff)
avigad@16959
   289
  apply auto
avigad@16959
   290
done
avigad@16959
   291
avigad@16959
   292
lemma abs_ln_one_plus_x_minus_x_bound_nonneg:
avigad@16959
   293
    "0 <= x ==> x <= 1 ==> abs(ln (1 + x) - x) <= x^2"
avigad@16959
   294
proof -
huffman@23441
   295
  assume x: "0 <= x"
avigad@16959
   296
  assume "x <= 1"
huffman@23441
   297
  from x have "ln (1 + x) <= x"
avigad@16959
   298
    by (rule ln_add_one_self_le_self)
avigad@16959
   299
  then have "ln (1 + x) - x <= 0" 
avigad@16959
   300
    by simp
avigad@16959
   301
  then have "abs(ln(1 + x) - x) = - (ln(1 + x) - x)"
avigad@16959
   302
    by (rule abs_of_nonpos)
avigad@16959
   303
  also have "... = x - ln (1 + x)" 
avigad@16959
   304
    by simp
avigad@16959
   305
  also have "... <= x^2"
avigad@16959
   306
  proof -
avigad@16959
   307
    from prems have "x - x^2 <= ln (1 + x)"
avigad@16959
   308
      by (intro ln_one_plus_pos_lower_bound)
avigad@16959
   309
    thus ?thesis
avigad@16959
   310
      by simp
avigad@16959
   311
  qed
avigad@16959
   312
  finally show ?thesis .
avigad@16959
   313
qed
avigad@16959
   314
avigad@16959
   315
lemma abs_ln_one_plus_x_minus_x_bound_nonpos:
avigad@16959
   316
    "-(1 / 2) <= x ==> x <= 0 ==> abs(ln (1 + x) - x) <= 2 * x^2"
avigad@16959
   317
proof -
avigad@16959
   318
  assume "-(1 / 2) <= x"
avigad@16959
   319
  assume "x <= 0"
avigad@16959
   320
  have "abs(ln (1 + x) - x) = x - ln(1 - (-x))" 
avigad@16959
   321
    apply (subst abs_of_nonpos)
avigad@16959
   322
    apply simp
avigad@16959
   323
    apply (rule ln_add_one_self_le_self2)
avigad@16959
   324
    apply (insert prems, auto)
avigad@16959
   325
    done
avigad@16959
   326
  also have "... <= 2 * x^2"
avigad@16959
   327
    apply (subgoal_tac "- (-x) - 2 * (-x)^2 <= ln (1 - (-x))")
nipkow@29667
   328
    apply (simp add: algebra_simps)
avigad@16959
   329
    apply (rule ln_one_minus_pos_lower_bound)
avigad@16959
   330
    apply (insert prems, auto)
nipkow@29667
   331
    done
avigad@16959
   332
  finally show ?thesis .
avigad@16959
   333
qed
avigad@16959
   334
avigad@16959
   335
lemma abs_ln_one_plus_x_minus_x_bound:
avigad@16959
   336
    "abs x <= 1 / 2 ==> abs(ln (1 + x) - x) <= 2 * x^2"
avigad@16959
   337
  apply (case_tac "0 <= x")
avigad@16959
   338
  apply (rule order_trans)
avigad@16959
   339
  apply (rule abs_ln_one_plus_x_minus_x_bound_nonneg)
avigad@16959
   340
  apply auto
avigad@16959
   341
  apply (rule abs_ln_one_plus_x_minus_x_bound_nonpos)
avigad@16959
   342
  apply auto
avigad@16959
   343
done
avigad@16959
   344
avigad@16959
   345
lemma DERIV_ln: "0 < x ==> DERIV ln x :> 1 / x"
avigad@16959
   346
  apply (unfold deriv_def, unfold LIM_def, clarsimp)
avigad@16959
   347
  apply (rule exI)
avigad@16959
   348
  apply (rule conjI)
avigad@16959
   349
  prefer 2
avigad@16959
   350
  apply clarsimp
huffman@20563
   351
  apply (subgoal_tac "(ln (x + xa) - ln x) / xa - (1 / x) = 
avigad@16959
   352
      (ln (1 + xa / x) - xa / x) / xa")
avigad@16959
   353
  apply (erule ssubst)
avigad@16959
   354
  apply (subst abs_divide)
avigad@16959
   355
  apply (rule mult_imp_div_pos_less)
avigad@16959
   356
  apply force
avigad@16959
   357
  apply (rule order_le_less_trans)
avigad@16959
   358
  apply (rule abs_ln_one_plus_x_minus_x_bound)
avigad@16959
   359
  apply (subst abs_divide)
avigad@16959
   360
  apply (subst abs_of_pos, assumption)
avigad@16959
   361
  apply (erule mult_imp_div_pos_le)
avigad@16959
   362
  apply (subgoal_tac "abs xa < min (x / 2) (r * x^2 / 2)")
avigad@16959
   363
  apply force
avigad@16959
   364
  apply assumption
webertj@20432
   365
  apply (simp add: power2_eq_square mult_compare_simps)
avigad@16959
   366
  apply (rule mult_imp_div_pos_less)
avigad@16959
   367
  apply (rule mult_pos_pos, assumption, assumption)
avigad@16959
   368
  apply (subgoal_tac "xa * xa = abs xa * abs xa")
avigad@16959
   369
  apply (erule ssubst)
avigad@16959
   370
  apply (subgoal_tac "abs xa * (abs xa * 2) < abs xa * (r * (x * x))")
avigad@16959
   371
  apply (simp only: mult_ac)
avigad@16959
   372
  apply (rule mult_strict_left_mono)
avigad@16959
   373
  apply (erule conjE, assumption)
avigad@16959
   374
  apply force
avigad@16959
   375
  apply simp
avigad@16959
   376
  apply (subst ln_div [THEN sym])
avigad@16959
   377
  apply arith
nipkow@29667
   378
  apply (auto simp add: algebra_simps add_frac_eq frac_eq_eq 
avigad@16959
   379
    add_divide_distrib power2_eq_square)
avigad@16959
   380
  apply (rule mult_pos_pos, assumption)+
avigad@16959
   381
  apply assumption
avigad@16959
   382
done
avigad@16959
   383
avigad@16959
   384
lemma ln_x_over_x_mono: "exp 1 <= x ==> x <= y ==> (ln y / y) <= (ln x / x)"  
avigad@16959
   385
proof -
avigad@16959
   386
  assume "exp 1 <= x" and "x <= y"
avigad@16959
   387
  have a: "0 < x" and b: "0 < y"
avigad@16959
   388
    apply (insert prems)
huffman@23114
   389
    apply (subgoal_tac "0 < exp (1::real)")
avigad@16959
   390
    apply arith
avigad@16959
   391
    apply auto
huffman@23114
   392
    apply (subgoal_tac "0 < exp (1::real)")
avigad@16959
   393
    apply arith
avigad@16959
   394
    apply auto
avigad@16959
   395
    done
avigad@16959
   396
  have "x * ln y - x * ln x = x * (ln y - ln x)"
nipkow@29667
   397
    by (simp add: algebra_simps)
avigad@16959
   398
  also have "... = x * ln(y / x)"
avigad@16959
   399
    apply (subst ln_div)
avigad@16959
   400
    apply (rule b, rule a, rule refl)
avigad@16959
   401
    done
avigad@16959
   402
  also have "y / x = (x + (y - x)) / x"
avigad@16959
   403
    by simp
nipkow@23482
   404
  also have "... = 1 + (y - x) / x" using a prems by(simp add:field_simps)
avigad@16959
   405
  also have "x * ln(1 + (y - x) / x) <= x * ((y - x) / x)"
avigad@16959
   406
    apply (rule mult_left_mono)
avigad@16959
   407
    apply (rule ln_add_one_self_le_self)
avigad@16959
   408
    apply (rule divide_nonneg_pos)
avigad@16959
   409
    apply (insert prems a, simp_all) 
avigad@16959
   410
    done
nipkow@23482
   411
  also have "... = y - x" using a by simp
nipkow@23482
   412
  also have "... = (y - x) * ln (exp 1)" by simp
avigad@16959
   413
  also have "... <= (y - x) * ln x"
avigad@16959
   414
    apply (rule mult_left_mono)
avigad@16959
   415
    apply (subst ln_le_cancel_iff)
avigad@16959
   416
    apply force
avigad@16959
   417
    apply (rule a)
avigad@16959
   418
    apply (rule prems)
avigad@16959
   419
    apply (insert prems, simp)
avigad@16959
   420
    done
avigad@16959
   421
  also have "... = y * ln x - x * ln x"
avigad@16959
   422
    by (rule left_diff_distrib)
avigad@16959
   423
  finally have "x * ln y <= y * ln x"
avigad@16959
   424
    by arith
nipkow@23482
   425
  then have "ln y <= (y * ln x) / x" using a by(simp add:field_simps)
nipkow@23482
   426
  also have "... = y * (ln x / x)"  by simp
nipkow@23482
   427
  finally show ?thesis using b by(simp add:field_simps)
avigad@16959
   428
qed
avigad@16959
   429
avigad@16959
   430
end