src/HOL/Tools/Groebner_Basis/normalizer.ML
author haftmann
Fri May 07 15:05:52 2010 +0200 (2010-05-07)
changeset 36751 7f1da69cacb3
parent 36720 41da7025e59c
permissions -rw-r--r--
split of semiring normalization from Groebner theory; moved field_comp_conv to Numeral_Simproces
wenzelm@23252
     1
(*  Title:      HOL/Tools/Groebner_Basis/normalizer.ML
wenzelm@23252
     2
    Author:     Amine Chaieb, TU Muenchen
haftmann@36700
     3
haftmann@36700
     4
Normalization of expressions in semirings.
wenzelm@23252
     5
*)
wenzelm@23252
     6
wenzelm@23252
     7
signature NORMALIZER = 
wenzelm@23252
     8
sig
haftmann@36700
     9
  type entry
haftmann@36703
    10
  val get: Proof.context -> (thm * entry) list
haftmann@36700
    11
  val match: Proof.context -> cterm -> entry option
haftmann@36700
    12
  val del: attribute
haftmann@36711
    13
  val add: {semiring: cterm list * thm list, ring: cterm list * thm list,
haftmann@36711
    14
    field: cterm list * thm list, idom: thm list, ideal: thm list} -> attribute
haftmann@36700
    15
  val funs: thm -> {is_const: morphism -> cterm -> bool,
haftmann@36700
    16
    dest_const: morphism -> cterm -> Rat.rat,
haftmann@36700
    17
    mk_const: morphism -> ctyp -> Rat.rat -> cterm,
haftmann@36700
    18
    conv: morphism -> Proof.context -> cterm -> thm} -> declaration
haftmann@36720
    19
  val semiring_funs: thm -> declaration
haftmann@36720
    20
  val field_funs: thm -> declaration
haftmann@36700
    21
haftmann@36711
    22
  val semiring_normalize_conv: Proof.context -> conv
haftmann@36711
    23
  val semiring_normalize_ord_conv: Proof.context -> (cterm -> cterm -> bool) -> conv
haftmann@36711
    24
  val semiring_normalize_wrapper: Proof.context -> entry -> conv
haftmann@36711
    25
  val semiring_normalize_ord_wrapper: Proof.context -> entry
haftmann@36711
    26
    -> (cterm -> cterm -> bool) -> conv
haftmann@36711
    27
  val semiring_normalizers_conv: cterm list -> cterm list * thm list
haftmann@36711
    28
    -> cterm list * thm list -> cterm list * thm list ->
haftmann@36700
    29
      (cterm -> bool) * conv * conv * conv -> (cterm -> cterm -> bool) ->
haftmann@36700
    30
        {add: conv, mul: conv, neg: conv, main: conv, pow: conv, sub: conv}
haftmann@36711
    31
  val semiring_normalizers_ord_wrapper:  Proof.context -> entry ->
haftmann@36711
    32
    (cterm -> cterm -> bool) ->
chaieb@27222
    33
      {add: conv, mul: conv, neg: conv, main: conv, pow: conv, sub: conv}
haftmann@36700
    34
haftmann@36700
    35
  val setup: theory -> theory
wenzelm@23252
    36
end
wenzelm@23252
    37
wenzelm@23252
    38
structure Normalizer: NORMALIZER = 
wenzelm@23252
    39
struct
wenzelm@23559
    40
haftmann@36720
    41
(** some conversion **)
haftmann@36720
    42
haftmann@36720
    43
haftmann@36720
    44
haftmann@36708
    45
(** data **)
haftmann@36700
    46
haftmann@36700
    47
type entry =
haftmann@36700
    48
 {vars: cterm list,
haftmann@36700
    49
  semiring: cterm list * thm list,
haftmann@36700
    50
  ring: cterm list * thm list,
haftmann@36700
    51
  field: cterm list * thm list,
haftmann@36700
    52
  idom: thm list,
haftmann@36700
    53
  ideal: thm list} *
haftmann@36700
    54
 {is_const: cterm -> bool,
haftmann@36700
    55
  dest_const: cterm -> Rat.rat,
haftmann@36700
    56
  mk_const: ctyp -> Rat.rat -> cterm,
haftmann@36700
    57
  conv: Proof.context -> cterm -> thm};
haftmann@36700
    58
haftmann@36700
    59
structure Data = Generic_Data
haftmann@36700
    60
(
haftmann@36705
    61
  type T = (thm * entry) list;
haftmann@36705
    62
  val empty = [];
haftmann@36700
    63
  val extend = I;
haftmann@36718
    64
  val merge = AList.merge Thm.eq_thm (K true);
haftmann@36700
    65
);
haftmann@36700
    66
haftmann@36705
    67
val get = Data.get o Context.Proof;
haftmann@36700
    68
haftmann@36700
    69
fun match ctxt tm =
haftmann@36700
    70
  let
haftmann@36700
    71
    fun match_inst
haftmann@36700
    72
        ({vars, semiring = (sr_ops, sr_rules), 
haftmann@36700
    73
          ring = (r_ops, r_rules), field = (f_ops, f_rules), idom, ideal},
haftmann@36700
    74
         fns as {is_const, dest_const, mk_const, conv}) pat =
haftmann@36700
    75
       let
haftmann@36700
    76
        fun h instT =
haftmann@36700
    77
          let
haftmann@36700
    78
            val substT = Thm.instantiate (instT, []);
haftmann@36700
    79
            val substT_cterm = Drule.cterm_rule substT;
haftmann@36700
    80
haftmann@36700
    81
            val vars' = map substT_cterm vars;
haftmann@36700
    82
            val semiring' = (map substT_cterm sr_ops, map substT sr_rules);
haftmann@36700
    83
            val ring' = (map substT_cterm r_ops, map substT r_rules);
haftmann@36700
    84
            val field' = (map substT_cterm f_ops, map substT f_rules);
haftmann@36700
    85
            val idom' = map substT idom;
haftmann@36700
    86
            val ideal' = map substT ideal;
haftmann@36700
    87
haftmann@36700
    88
            val result = ({vars = vars', semiring = semiring', 
haftmann@36700
    89
                           ring = ring', field = field', idom = idom', ideal = ideal'}, fns);
haftmann@36700
    90
          in SOME result end
haftmann@36700
    91
      in (case try Thm.match (pat, tm) of
haftmann@36700
    92
           NONE => NONE
haftmann@36700
    93
         | SOME (instT, _) => h instT)
haftmann@36700
    94
      end;
haftmann@36700
    95
haftmann@36700
    96
    fun match_struct (_,
haftmann@36700
    97
        entry as ({semiring = (sr_ops, _), ring = (r_ops, _), field = (f_ops, _), ...}, _): entry) =
haftmann@36700
    98
      get_first (match_inst entry) (sr_ops @ r_ops @ f_ops);
haftmann@36704
    99
  in get_first match_struct (get ctxt) end;
haftmann@36700
   100
haftmann@36700
   101
haftmann@36700
   102
(* logical content *)
haftmann@36700
   103
haftmann@36700
   104
val semiringN = "semiring";
haftmann@36700
   105
val ringN = "ring";
haftmann@36700
   106
val idomN = "idom";
haftmann@36700
   107
val idealN = "ideal";
haftmann@36700
   108
val fieldN = "field";
haftmann@36700
   109
haftmann@36700
   110
fun undefined _ = raise Match;
haftmann@36700
   111
haftmann@36706
   112
val del = Thm.declaration_attribute (Data.map o AList.delete Thm.eq_thm);
haftmann@36700
   113
haftmann@36700
   114
fun add {semiring = (sr_ops, sr_rules), ring = (r_ops, r_rules), 
haftmann@36700
   115
         field = (f_ops, f_rules), idom, ideal} =
haftmann@36700
   116
  Thm.declaration_attribute (fn key => fn context => context |> Data.map
haftmann@36700
   117
    let
haftmann@36700
   118
      val ctxt = Context.proof_of context;
haftmann@36700
   119
haftmann@36700
   120
      fun check kind name xs n =
haftmann@36700
   121
        null xs orelse length xs = n orelse
haftmann@36700
   122
        error ("Expected " ^ string_of_int n ^ " " ^ kind ^ " for " ^ name);
haftmann@36700
   123
      val check_ops = check "operations";
haftmann@36700
   124
      val check_rules = check "rules";
haftmann@36700
   125
haftmann@36700
   126
      val _ =
haftmann@36700
   127
        check_ops semiringN sr_ops 5 andalso
haftmann@36700
   128
        check_rules semiringN sr_rules 37 andalso
haftmann@36700
   129
        check_ops ringN r_ops 2 andalso
haftmann@36700
   130
        check_rules ringN r_rules 2 andalso
haftmann@36700
   131
        check_ops fieldN f_ops 2 andalso
haftmann@36700
   132
        check_rules fieldN f_rules 2 andalso
haftmann@36700
   133
        check_rules idomN idom 2;
haftmann@36700
   134
haftmann@36700
   135
      val mk_meta = Local_Defs.meta_rewrite_rule ctxt;
haftmann@36700
   136
      val sr_rules' = map mk_meta sr_rules;
haftmann@36700
   137
      val r_rules' = map mk_meta r_rules;
haftmann@36700
   138
      val f_rules' = map mk_meta f_rules;
haftmann@36700
   139
haftmann@36700
   140
      fun rule i = nth sr_rules' (i - 1);
haftmann@36700
   141
haftmann@36700
   142
      val (cx, cy) = Thm.dest_binop (hd sr_ops);
haftmann@36700
   143
      val cz = rule 34 |> Thm.rhs_of |> Thm.dest_arg |> Thm.dest_arg;
haftmann@36700
   144
      val cn = rule 36 |> Thm.rhs_of |> Thm.dest_arg |> Thm.dest_arg;
haftmann@36700
   145
      val ((clx, crx), (cly, cry)) =
haftmann@36700
   146
        rule 13 |> Thm.rhs_of |> Thm.dest_binop |> pairself Thm.dest_binop;
haftmann@36700
   147
      val ((ca, cb), (cc, cd)) =
haftmann@36700
   148
        rule 20 |> Thm.lhs_of |> Thm.dest_binop |> pairself Thm.dest_binop;
haftmann@36700
   149
      val cm = rule 1 |> Thm.rhs_of |> Thm.dest_arg;
haftmann@36700
   150
      val (cp, cq) = rule 26 |> Thm.lhs_of |> Thm.dest_binop |> pairself Thm.dest_arg;
haftmann@36700
   151
haftmann@36700
   152
      val vars = [ca, cb, cc, cd, cm, cn, cp, cq, cx, cy, cz, clx, crx, cly, cry];
haftmann@36700
   153
      val semiring = (sr_ops, sr_rules');
haftmann@36700
   154
      val ring = (r_ops, r_rules');
haftmann@36700
   155
      val field = (f_ops, f_rules');
haftmann@36700
   156
      val ideal' = map (symmetric o mk_meta) ideal
haftmann@36700
   157
    in
haftmann@36706
   158
      AList.delete Thm.eq_thm key #>
haftmann@36705
   159
      cons (key, ({vars = vars, semiring = semiring, 
haftmann@36700
   160
                          ring = ring, field = field, idom = idom, ideal = ideal'},
haftmann@36700
   161
             {is_const = undefined, dest_const = undefined, mk_const = undefined,
haftmann@36705
   162
             conv = undefined}))
haftmann@36700
   163
    end);
haftmann@36700
   164
haftmann@36700
   165
haftmann@36700
   166
(* extra-logical functions *)
haftmann@36700
   167
haftmann@36700
   168
fun funs raw_key {is_const, dest_const, mk_const, conv} phi = 
haftmann@36705
   169
 Data.map (fn data =>
haftmann@36700
   170
  let
haftmann@36700
   171
    val key = Morphism.thm phi raw_key;
haftmann@36706
   172
    val _ = AList.defined Thm.eq_thm data key orelse
haftmann@36700
   173
      raise THM ("No data entry for structure key", 0, [key]);
haftmann@36700
   174
    val fns = {is_const = is_const phi, dest_const = dest_const phi,
haftmann@36700
   175
      mk_const = mk_const phi, conv = conv phi};
haftmann@36706
   176
  in AList.map_entry Thm.eq_thm key (apsnd (K fns)) data end);
haftmann@36700
   177
haftmann@36720
   178
fun semiring_funs key = funs key
haftmann@36720
   179
   {is_const = fn phi => can HOLogic.dest_number o Thm.term_of,
haftmann@36720
   180
    dest_const = fn phi => fn ct =>
haftmann@36720
   181
      Rat.rat_of_int (snd
haftmann@36720
   182
        (HOLogic.dest_number (Thm.term_of ct)
haftmann@36720
   183
          handle TERM _ => error "ring_dest_const")),
haftmann@36720
   184
    mk_const = fn phi => fn cT => fn x => Numeral.mk_cnumber cT
haftmann@36720
   185
      (case Rat.quotient_of_rat x of (i, 1) => i | _ => error "int_of_rat: bad int"),
haftmann@36720
   186
    conv = fn phi => fn _ => Simplifier.rewrite (HOL_basic_ss addsimps @{thms semiring_norm})
haftmann@36720
   187
      then_conv Simplifier.rewrite (HOL_basic_ss addsimps
haftmann@36720
   188
        (@{thms numeral_1_eq_1} @ @{thms numeral_0_eq_0} @ @{thms numerals(1-2)}))};
haftmann@36720
   189
haftmann@36720
   190
fun field_funs key =
haftmann@36720
   191
  let
haftmann@36720
   192
    fun numeral_is_const ct =
haftmann@36720
   193
      case term_of ct of
haftmann@36720
   194
       Const (@{const_name Rings.divide},_) $ a $ b =>
haftmann@36720
   195
         can HOLogic.dest_number a andalso can HOLogic.dest_number b
haftmann@36720
   196
     | Const (@{const_name Rings.inverse},_)$t => can HOLogic.dest_number t
haftmann@36720
   197
     | t => can HOLogic.dest_number t
haftmann@36720
   198
    fun dest_const ct = ((case term_of ct of
haftmann@36720
   199
       Const (@{const_name Rings.divide},_) $ a $ b=>
haftmann@36720
   200
        Rat.rat_of_quotient (snd (HOLogic.dest_number a), snd (HOLogic.dest_number b))
haftmann@36720
   201
     | Const (@{const_name Rings.inverse},_)$t => 
haftmann@36720
   202
                   Rat.inv (Rat.rat_of_int (snd (HOLogic.dest_number t)))
haftmann@36720
   203
     | t => Rat.rat_of_int (snd (HOLogic.dest_number t))) 
haftmann@36720
   204
       handle TERM _ => error "ring_dest_const")
haftmann@36720
   205
    fun mk_const phi cT x =
haftmann@36720
   206
      let val (a, b) = Rat.quotient_of_rat x
haftmann@36720
   207
      in if b = 1 then Numeral.mk_cnumber cT a
haftmann@36720
   208
        else Thm.capply
haftmann@36720
   209
             (Thm.capply (Drule.cterm_rule (instantiate' [SOME cT] []) @{cpat "op /"})
haftmann@36720
   210
                         (Numeral.mk_cnumber cT a))
haftmann@36720
   211
             (Numeral.mk_cnumber cT b)
haftmann@36720
   212
      end
haftmann@36720
   213
  in funs key
haftmann@36720
   214
     {is_const = K numeral_is_const,
haftmann@36720
   215
      dest_const = K dest_const,
haftmann@36720
   216
      mk_const = mk_const,
haftmann@36751
   217
      conv = K (K Numeral_Simprocs.field_comp_conv)}
haftmann@36720
   218
  end;
haftmann@36720
   219
haftmann@36720
   220
haftmann@36700
   221
haftmann@36710
   222
(** auxiliary **)
chaieb@25253
   223
chaieb@25253
   224
fun is_comb ct =
chaieb@25253
   225
  (case Thm.term_of ct of
chaieb@25253
   226
    _ $ _ => true
chaieb@25253
   227
  | _ => false);
chaieb@25253
   228
chaieb@25253
   229
val concl = Thm.cprop_of #> Thm.dest_arg;
chaieb@25253
   230
chaieb@25253
   231
fun is_binop ct ct' =
chaieb@25253
   232
  (case Thm.term_of ct' of
chaieb@25253
   233
    c $ _ $ _ => term_of ct aconv c
chaieb@25253
   234
  | _ => false);
chaieb@25253
   235
chaieb@25253
   236
fun dest_binop ct ct' =
chaieb@25253
   237
  if is_binop ct ct' then Thm.dest_binop ct'
chaieb@25253
   238
  else raise CTERM ("dest_binop: bad binop", [ct, ct'])
chaieb@25253
   239
chaieb@25253
   240
fun inst_thm inst = Thm.instantiate ([], inst);
chaieb@25253
   241
wenzelm@23252
   242
val dest_numeral = term_of #> HOLogic.dest_number #> snd;
wenzelm@23252
   243
val is_numeral = can dest_numeral;
wenzelm@23252
   244
wenzelm@23252
   245
val numeral01_conv = Simplifier.rewrite
haftmann@25481
   246
                         (HOL_basic_ss addsimps [@{thm numeral_1_eq_1}, @{thm numeral_0_eq_0}]);
wenzelm@23252
   247
val zero1_numeral_conv = 
haftmann@25481
   248
 Simplifier.rewrite (HOL_basic_ss addsimps [@{thm numeral_1_eq_1} RS sym, @{thm numeral_0_eq_0} RS sym]);
wenzelm@23580
   249
fun zerone_conv cv = zero1_numeral_conv then_conv cv then_conv numeral01_conv;
wenzelm@23252
   250
val natarith = [@{thm "add_nat_number_of"}, @{thm "diff_nat_number_of"},
wenzelm@23252
   251
                @{thm "mult_nat_number_of"}, @{thm "eq_nat_number_of"}, 
wenzelm@23252
   252
                @{thm "less_nat_number_of"}];
haftmann@36700
   253
wenzelm@23252
   254
val nat_add_conv = 
wenzelm@23252
   255
 zerone_conv 
wenzelm@23252
   256
  (Simplifier.rewrite 
wenzelm@23252
   257
    (HOL_basic_ss 
haftmann@25481
   258
       addsimps @{thms arith_simps} @ natarith @ @{thms rel_simps}
wenzelm@35410
   259
             @ [@{thm if_False}, @{thm if_True}, @{thm Nat.add_0}, @{thm add_Suc},
nipkow@31790
   260
                 @{thm add_number_of_left}, @{thm Suc_eq_plus1}]
haftmann@25481
   261
             @ map (fn th => th RS sym) @{thms numerals}));
wenzelm@23252
   262
wenzelm@23252
   263
val zeron_tm = @{cterm "0::nat"};
wenzelm@23252
   264
val onen_tm  = @{cterm "1::nat"};
wenzelm@23252
   265
val true_tm = @{cterm "True"};
wenzelm@23252
   266
wenzelm@23252
   267
haftmann@36710
   268
(** normalizing conversions **)
haftmann@36710
   269
haftmann@36710
   270
(* core conversion *)
haftmann@36710
   271
chaieb@30866
   272
fun semiring_normalizers_conv vars (sr_ops, sr_rules) (r_ops, r_rules) (f_ops, f_rules)
wenzelm@23252
   273
  (is_semiring_constant, semiring_add_conv, semiring_mul_conv, semiring_pow_conv) =
wenzelm@23252
   274
let
wenzelm@23252
   275
wenzelm@23252
   276
val [pthm_02, pthm_03, pthm_04, pthm_05, pthm_07, pthm_08,
wenzelm@23252
   277
     pthm_09, pthm_10, pthm_11, pthm_12, pthm_13, pthm_14, pthm_15, pthm_16,
wenzelm@23252
   278
     pthm_17, pthm_18, pthm_19, pthm_21, pthm_22, pthm_23, pthm_24,
wenzelm@23252
   279
     pthm_25, pthm_26, pthm_27, pthm_28, pthm_29, pthm_30, pthm_31, pthm_32,
wenzelm@23252
   280
     pthm_33, pthm_34, pthm_35, pthm_36, pthm_37, pthm_38,pthm_39,pthm_40] = sr_rules;
wenzelm@23252
   281
wenzelm@23252
   282
val [ca, cb, cc, cd, cm, cn, cp, cq, cx, cy, cz, clx, crx, cly, cry] = vars;
wenzelm@23252
   283
val [add_pat, mul_pat, pow_pat, zero_tm, one_tm] = sr_ops;
wenzelm@23252
   284
val [add_tm, mul_tm, pow_tm] = map (Thm.dest_fun o Thm.dest_fun) [add_pat, mul_pat, pow_pat];
wenzelm@23252
   285
wenzelm@23252
   286
val dest_add = dest_binop add_tm
wenzelm@23252
   287
val dest_mul = dest_binop mul_tm
wenzelm@23252
   288
fun dest_pow tm =
wenzelm@23252
   289
 let val (l,r) = dest_binop pow_tm tm
wenzelm@23252
   290
 in if is_numeral r then (l,r) else raise CTERM ("dest_pow",[tm])
wenzelm@23252
   291
 end;
wenzelm@23252
   292
val is_add = is_binop add_tm
wenzelm@23252
   293
val is_mul = is_binop mul_tm
wenzelm@23252
   294
fun is_pow tm = is_binop pow_tm tm andalso is_numeral(Thm.dest_arg tm);
wenzelm@23252
   295
wenzelm@23252
   296
val (neg_mul,sub_add,sub_tm,neg_tm,dest_sub,is_sub,cx',cy') =
wenzelm@23252
   297
  (case (r_ops, r_rules) of
chaieb@30866
   298
    ([sub_pat, neg_pat], [neg_mul, sub_add]) =>
wenzelm@23252
   299
      let
wenzelm@23252
   300
        val sub_tm = Thm.dest_fun (Thm.dest_fun sub_pat)
wenzelm@23252
   301
        val neg_tm = Thm.dest_fun neg_pat
wenzelm@23252
   302
        val dest_sub = dest_binop sub_tm
wenzelm@23252
   303
        val is_sub = is_binop sub_tm
wenzelm@23252
   304
      in (neg_mul,sub_add,sub_tm,neg_tm,dest_sub,is_sub, neg_mul |> concl |> Thm.dest_arg,
wenzelm@23252
   305
          sub_add |> concl |> Thm.dest_arg |> Thm.dest_arg)
chaieb@30866
   306
      end
chaieb@30866
   307
    | _ => (TrueI, TrueI, true_tm, true_tm, (fn t => (t,t)), K false, true_tm, true_tm));
chaieb@30866
   308
chaieb@30866
   309
val (divide_inverse, inverse_divide, divide_tm, inverse_tm, is_divide) = 
chaieb@30866
   310
  (case (f_ops, f_rules) of 
chaieb@30866
   311
   ([divide_pat, inverse_pat], [div_inv, inv_div]) => 
chaieb@30866
   312
     let val div_tm = funpow 2 Thm.dest_fun divide_pat
chaieb@30866
   313
         val inv_tm = Thm.dest_fun inverse_pat
chaieb@30866
   314
     in (div_inv, inv_div, div_tm, inv_tm, is_binop div_tm)
chaieb@30866
   315
     end
chaieb@30866
   316
   | _ => (TrueI, TrueI, true_tm, true_tm, K false));
chaieb@30866
   317
wenzelm@23252
   318
in fn variable_order =>
wenzelm@23252
   319
 let
wenzelm@23252
   320
wenzelm@23252
   321
(* Conversion for "x^n * x^m", with either x^n = x and/or x^m = x possible.  *)
wenzelm@23252
   322
(* Also deals with "const * const", but both terms must involve powers of    *)
wenzelm@23252
   323
(* the same variable, or both be constants, or behaviour may be incorrect.   *)
wenzelm@23252
   324
wenzelm@23252
   325
 fun powvar_mul_conv tm =
wenzelm@23252
   326
  let
wenzelm@23252
   327
  val (l,r) = dest_mul tm
wenzelm@23252
   328
  in if is_semiring_constant l andalso is_semiring_constant r
wenzelm@23252
   329
     then semiring_mul_conv tm
wenzelm@23252
   330
     else
wenzelm@23252
   331
      ((let
wenzelm@23252
   332
         val (lx,ln) = dest_pow l
wenzelm@23252
   333
        in
wenzelm@23252
   334
         ((let val (rx,rn) = dest_pow r
wenzelm@23252
   335
               val th1 = inst_thm [(cx,lx),(cp,ln),(cq,rn)] pthm_29
wenzelm@23252
   336
                val (tm1,tm2) = Thm.dest_comb(concl th1) in
wenzelm@23252
   337
               transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv tm2)) end)
wenzelm@23252
   338
           handle CTERM _ =>
wenzelm@23252
   339
            (let val th1 = inst_thm [(cx,lx),(cq,ln)] pthm_31
wenzelm@23252
   340
                 val (tm1,tm2) = Thm.dest_comb(concl th1) in
wenzelm@23252
   341
               transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv tm2)) end)) end)
wenzelm@23252
   342
       handle CTERM _ =>
wenzelm@23252
   343
           ((let val (rx,rn) = dest_pow r
wenzelm@23252
   344
                val th1 = inst_thm [(cx,rx),(cq,rn)] pthm_30
wenzelm@23252
   345
                val (tm1,tm2) = Thm.dest_comb(concl th1) in
wenzelm@23252
   346
               transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv tm2)) end)
wenzelm@23252
   347
           handle CTERM _ => inst_thm [(cx,l)] pthm_32
wenzelm@23252
   348
wenzelm@23252
   349
))
wenzelm@23252
   350
 end;
wenzelm@23252
   351
wenzelm@23252
   352
(* Remove "1 * m" from a monomial, and just leave m.                         *)
wenzelm@23252
   353
wenzelm@23252
   354
 fun monomial_deone th =
wenzelm@23252
   355
       (let val (l,r) = dest_mul(concl th) in
wenzelm@23252
   356
           if l aconvc one_tm
wenzelm@23252
   357
          then transitive th (inst_thm [(ca,r)] pthm_13)  else th end)
wenzelm@23252
   358
       handle CTERM _ => th;
wenzelm@23252
   359
wenzelm@23252
   360
(* Conversion for "(monomial)^n", where n is a numeral.                      *)
wenzelm@23252
   361
wenzelm@23252
   362
 val monomial_pow_conv =
wenzelm@23252
   363
  let
wenzelm@23252
   364
   fun monomial_pow tm bod ntm =
wenzelm@23252
   365
    if not(is_comb bod)
wenzelm@23252
   366
    then reflexive tm
wenzelm@23252
   367
    else
wenzelm@23252
   368
     if is_semiring_constant bod
wenzelm@23252
   369
     then semiring_pow_conv tm
wenzelm@23252
   370
     else
wenzelm@23252
   371
      let
wenzelm@23252
   372
      val (lopr,r) = Thm.dest_comb bod
wenzelm@23252
   373
      in if not(is_comb lopr)
wenzelm@23252
   374
         then reflexive tm
wenzelm@23252
   375
        else
wenzelm@23252
   376
          let
wenzelm@23252
   377
          val (opr,l) = Thm.dest_comb lopr
wenzelm@23252
   378
         in
wenzelm@23252
   379
           if opr aconvc pow_tm andalso is_numeral r
wenzelm@23252
   380
          then
wenzelm@23252
   381
            let val th1 = inst_thm [(cx,l),(cp,r),(cq,ntm)] pthm_34
wenzelm@23252
   382
                val (l,r) = Thm.dest_comb(concl th1)
haftmann@36700
   383
           in transitive th1 (Drule.arg_cong_rule l (nat_add_conv r))
wenzelm@23252
   384
           end
wenzelm@23252
   385
           else
wenzelm@23252
   386
            if opr aconvc mul_tm
wenzelm@23252
   387
            then
wenzelm@23252
   388
             let
wenzelm@23252
   389
              val th1 = inst_thm [(cx,l),(cy,r),(cq,ntm)] pthm_33
wenzelm@23252
   390
             val (xy,z) = Thm.dest_comb(concl th1)
wenzelm@23252
   391
              val (x,y) = Thm.dest_comb xy
wenzelm@23252
   392
              val thl = monomial_pow y l ntm
wenzelm@23252
   393
              val thr = monomial_pow z r ntm
wenzelm@23252
   394
             in transitive th1 (combination (Drule.arg_cong_rule x thl) thr)
wenzelm@23252
   395
             end
wenzelm@23252
   396
             else reflexive tm
wenzelm@23252
   397
          end
wenzelm@23252
   398
      end
wenzelm@23252
   399
  in fn tm =>
wenzelm@23252
   400
   let
wenzelm@23252
   401
    val (lopr,r) = Thm.dest_comb tm
wenzelm@23252
   402
    val (opr,l) = Thm.dest_comb lopr
wenzelm@23252
   403
   in if not (opr aconvc pow_tm) orelse not(is_numeral r)
wenzelm@23252
   404
      then raise CTERM ("monomial_pow_conv", [tm])
wenzelm@23252
   405
      else if r aconvc zeron_tm
wenzelm@23252
   406
      then inst_thm [(cx,l)] pthm_35
wenzelm@23252
   407
      else if r aconvc onen_tm
wenzelm@23252
   408
      then inst_thm [(cx,l)] pthm_36
wenzelm@23252
   409
      else monomial_deone(monomial_pow tm l r)
wenzelm@23252
   410
   end
wenzelm@23252
   411
  end;
wenzelm@23252
   412
wenzelm@23252
   413
(* Multiplication of canonical monomials.                                    *)
wenzelm@23252
   414
 val monomial_mul_conv =
wenzelm@23252
   415
  let
wenzelm@23252
   416
   fun powvar tm =
wenzelm@23252
   417
    if is_semiring_constant tm then one_tm
wenzelm@23252
   418
    else
wenzelm@23252
   419
     ((let val (lopr,r) = Thm.dest_comb tm
wenzelm@23252
   420
           val (opr,l) = Thm.dest_comb lopr
wenzelm@23252
   421
       in if opr aconvc pow_tm andalso is_numeral r then l 
wenzelm@23252
   422
          else raise CTERM ("monomial_mul_conv",[tm]) end)
wenzelm@23252
   423
     handle CTERM _ => tm)   (* FIXME !? *)
wenzelm@23252
   424
   fun  vorder x y =
wenzelm@23252
   425
    if x aconvc y then 0
wenzelm@23252
   426
    else
wenzelm@23252
   427
     if x aconvc one_tm then ~1
wenzelm@23252
   428
     else if y aconvc one_tm then 1
wenzelm@23252
   429
      else if variable_order x y then ~1 else 1
wenzelm@23252
   430
   fun monomial_mul tm l r =
wenzelm@23252
   431
    ((let val (lx,ly) = dest_mul l val vl = powvar lx
wenzelm@23252
   432
      in
wenzelm@23252
   433
      ((let
wenzelm@23252
   434
        val (rx,ry) = dest_mul r
wenzelm@23252
   435
         val vr = powvar rx
wenzelm@23252
   436
         val ord = vorder vl vr
wenzelm@23252
   437
        in
wenzelm@23252
   438
         if ord = 0
wenzelm@23252
   439
        then
wenzelm@23252
   440
          let
wenzelm@23252
   441
             val th1 = inst_thm [(clx,lx),(cly,ly),(crx,rx),(cry,ry)] pthm_15
wenzelm@23252
   442
             val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   443
             val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   444
             val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv tm4)) tm2
wenzelm@23252
   445
             val th3 = transitive th1 th2
wenzelm@23252
   446
              val  (tm5,tm6) = Thm.dest_comb(concl th3)
wenzelm@23252
   447
              val  (tm7,tm8) = Thm.dest_comb tm6
wenzelm@23252
   448
             val  th4 = monomial_mul tm6 (Thm.dest_arg tm7) tm8
wenzelm@23252
   449
         in  transitive th3 (Drule.arg_cong_rule tm5 th4)
wenzelm@23252
   450
         end
wenzelm@23252
   451
         else
wenzelm@23252
   452
          let val th0 = if ord < 0 then pthm_16 else pthm_17
wenzelm@23252
   453
             val th1 = inst_thm [(clx,lx),(cly,ly),(crx,rx),(cry,ry)] th0
wenzelm@23252
   454
             val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   455
             val (tm3,tm4) = Thm.dest_comb tm2
wenzelm@23252
   456
         in transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4))
wenzelm@23252
   457
         end
wenzelm@23252
   458
        end)
wenzelm@23252
   459
       handle CTERM _ =>
wenzelm@23252
   460
        (let val vr = powvar r val ord = vorder vl vr
wenzelm@23252
   461
        in
wenzelm@23252
   462
          if ord = 0 then
wenzelm@23252
   463
           let
wenzelm@23252
   464
           val th1 = inst_thm [(clx,lx),(cly,ly),(crx,r)] pthm_18
wenzelm@23252
   465
                 val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   466
           val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   467
           val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv tm4)) tm2
wenzelm@23252
   468
          in transitive th1 th2
wenzelm@23252
   469
          end
wenzelm@23252
   470
          else
wenzelm@23252
   471
          if ord < 0 then
wenzelm@23252
   472
            let val th1 = inst_thm [(clx,lx),(cly,ly),(crx,r)] pthm_19
wenzelm@23252
   473
                val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   474
                val (tm3,tm4) = Thm.dest_comb tm2
wenzelm@23252
   475
           in transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4))
wenzelm@23252
   476
           end
wenzelm@23252
   477
           else inst_thm [(ca,l),(cb,r)] pthm_09
wenzelm@23252
   478
        end)) end)
wenzelm@23252
   479
     handle CTERM _ =>
wenzelm@23252
   480
      (let val vl = powvar l in
wenzelm@23252
   481
        ((let
wenzelm@23252
   482
          val (rx,ry) = dest_mul r
wenzelm@23252
   483
          val vr = powvar rx
wenzelm@23252
   484
           val ord = vorder vl vr
wenzelm@23252
   485
         in if ord = 0 then
wenzelm@23252
   486
              let val th1 = inst_thm [(clx,l),(crx,rx),(cry,ry)] pthm_21
wenzelm@23252
   487
                 val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   488
                 val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   489
             in transitive th1 (Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv tm4)) tm2)
wenzelm@23252
   490
             end
wenzelm@23252
   491
             else if ord > 0 then
wenzelm@23252
   492
                 let val th1 = inst_thm [(clx,l),(crx,rx),(cry,ry)] pthm_22
wenzelm@23252
   493
                     val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   494
                    val (tm3,tm4) = Thm.dest_comb tm2
wenzelm@23252
   495
                in transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4))
wenzelm@23252
   496
                end
wenzelm@23252
   497
             else reflexive tm
wenzelm@23252
   498
         end)
wenzelm@23252
   499
        handle CTERM _ =>
wenzelm@23252
   500
          (let val vr = powvar r
wenzelm@23252
   501
               val  ord = vorder vl vr
wenzelm@23252
   502
          in if ord = 0 then powvar_mul_conv tm
wenzelm@23252
   503
              else if ord > 0 then inst_thm [(ca,l),(cb,r)] pthm_09
wenzelm@23252
   504
              else reflexive tm
wenzelm@23252
   505
          end)) end))
wenzelm@23252
   506
  in fn tm => let val (l,r) = dest_mul tm in monomial_deone(monomial_mul tm l r)
wenzelm@23252
   507
             end
wenzelm@23252
   508
  end;
wenzelm@23252
   509
(* Multiplication by monomial of a polynomial.                               *)
wenzelm@23252
   510
wenzelm@23252
   511
 val polynomial_monomial_mul_conv =
wenzelm@23252
   512
  let
wenzelm@23252
   513
   fun pmm_conv tm =
wenzelm@23252
   514
    let val (l,r) = dest_mul tm
wenzelm@23252
   515
    in
wenzelm@23252
   516
    ((let val (y,z) = dest_add r
wenzelm@23252
   517
          val th1 = inst_thm [(cx,l),(cy,y),(cz,z)] pthm_37
wenzelm@23252
   518
          val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   519
          val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   520
          val th2 = combination (Drule.arg_cong_rule tm3 (monomial_mul_conv tm4)) (pmm_conv tm2)
wenzelm@23252
   521
      in transitive th1 th2
wenzelm@23252
   522
      end)
wenzelm@23252
   523
     handle CTERM _ => monomial_mul_conv tm)
wenzelm@23252
   524
   end
wenzelm@23252
   525
 in pmm_conv
wenzelm@23252
   526
 end;
wenzelm@23252
   527
wenzelm@23252
   528
(* Addition of two monomials identical except for constant multiples.        *)
wenzelm@23252
   529
wenzelm@23252
   530
fun monomial_add_conv tm =
wenzelm@23252
   531
 let val (l,r) = dest_add tm
wenzelm@23252
   532
 in if is_semiring_constant l andalso is_semiring_constant r
wenzelm@23252
   533
    then semiring_add_conv tm
wenzelm@23252
   534
    else
wenzelm@23252
   535
     let val th1 =
wenzelm@23252
   536
           if is_mul l andalso is_semiring_constant(Thm.dest_arg1 l)
wenzelm@23252
   537
           then if is_mul r andalso is_semiring_constant(Thm.dest_arg1 r) then
wenzelm@23252
   538
                    inst_thm [(ca,Thm.dest_arg1 l),(cm,Thm.dest_arg r), (cb,Thm.dest_arg1 r)] pthm_02
wenzelm@23252
   539
                else inst_thm [(ca,Thm.dest_arg1 l),(cm,r)] pthm_03
wenzelm@23252
   540
           else if is_mul r andalso is_semiring_constant(Thm.dest_arg1 r)
wenzelm@23252
   541
           then inst_thm [(cm,l),(ca,Thm.dest_arg1 r)] pthm_04
wenzelm@23252
   542
           else inst_thm [(cm,r)] pthm_05
wenzelm@23252
   543
         val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   544
         val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   545
         val th2 = Drule.arg_cong_rule tm3 (semiring_add_conv tm4)
wenzelm@23252
   546
         val th3 = transitive th1 (Drule.fun_cong_rule th2 tm2)
wenzelm@23252
   547
         val tm5 = concl th3
wenzelm@23252
   548
      in
wenzelm@23252
   549
      if (Thm.dest_arg1 tm5) aconvc zero_tm
wenzelm@23252
   550
      then transitive th3 (inst_thm [(ca,Thm.dest_arg tm5)] pthm_11)
wenzelm@23252
   551
      else monomial_deone th3
wenzelm@23252
   552
     end
wenzelm@23252
   553
 end;
wenzelm@23252
   554
wenzelm@23252
   555
(* Ordering on monomials.                                                    *)
wenzelm@23252
   556
wenzelm@23252
   557
fun striplist dest =
wenzelm@23252
   558
 let fun strip x acc =
wenzelm@23252
   559
   ((let val (l,r) = dest x in
wenzelm@23252
   560
        strip l (strip r acc) end)
wenzelm@23252
   561
    handle CTERM _ => x::acc)    (* FIXME !? *)
wenzelm@23252
   562
 in fn x => strip x []
wenzelm@23252
   563
 end;
wenzelm@23252
   564
wenzelm@23252
   565
wenzelm@23252
   566
fun powervars tm =
wenzelm@23252
   567
 let val ptms = striplist dest_mul tm
wenzelm@23252
   568
 in if is_semiring_constant (hd ptms) then tl ptms else ptms
wenzelm@23252
   569
 end;
wenzelm@23252
   570
val num_0 = 0;
wenzelm@23252
   571
val num_1 = 1;
wenzelm@23252
   572
fun dest_varpow tm =
wenzelm@23252
   573
 ((let val (x,n) = dest_pow tm in (x,dest_numeral n) end)
wenzelm@23252
   574
   handle CTERM _ =>
wenzelm@23252
   575
   (tm,(if is_semiring_constant tm then num_0 else num_1)));
wenzelm@23252
   576
wenzelm@23252
   577
val morder =
wenzelm@23252
   578
 let fun lexorder l1 l2 =
wenzelm@23252
   579
  case (l1,l2) of
wenzelm@23252
   580
    ([],[]) => 0
wenzelm@23252
   581
  | (vps,[]) => ~1
wenzelm@23252
   582
  | ([],vps) => 1
wenzelm@23252
   583
  | (((x1,n1)::vs1),((x2,n2)::vs2)) =>
wenzelm@23252
   584
     if variable_order x1 x2 then 1
wenzelm@23252
   585
     else if variable_order x2 x1 then ~1
wenzelm@23252
   586
     else if n1 < n2 then ~1
wenzelm@23252
   587
     else if n2 < n1 then 1
wenzelm@23252
   588
     else lexorder vs1 vs2
wenzelm@23252
   589
 in fn tm1 => fn tm2 =>
wenzelm@23252
   590
  let val vdegs1 = map dest_varpow (powervars tm1)
wenzelm@23252
   591
      val vdegs2 = map dest_varpow (powervars tm2)
wenzelm@33002
   592
      val deg1 = fold (Integer.add o snd) vdegs1 num_0
wenzelm@33002
   593
      val deg2 = fold (Integer.add o snd) vdegs2 num_0
wenzelm@23252
   594
  in if deg1 < deg2 then ~1 else if deg1 > deg2 then 1
wenzelm@23252
   595
                            else lexorder vdegs1 vdegs2
wenzelm@23252
   596
  end
wenzelm@23252
   597
 end;
wenzelm@23252
   598
wenzelm@23252
   599
(* Addition of two polynomials.                                              *)
wenzelm@23252
   600
wenzelm@23252
   601
val polynomial_add_conv =
wenzelm@23252
   602
 let
wenzelm@23252
   603
 fun dezero_rule th =
wenzelm@23252
   604
  let
wenzelm@23252
   605
   val tm = concl th
wenzelm@23252
   606
  in
wenzelm@23252
   607
   if not(is_add tm) then th else
wenzelm@23252
   608
   let val (lopr,r) = Thm.dest_comb tm
wenzelm@23252
   609
       val l = Thm.dest_arg lopr
wenzelm@23252
   610
   in
wenzelm@23252
   611
    if l aconvc zero_tm
wenzelm@23252
   612
    then transitive th (inst_thm [(ca,r)] pthm_07)   else
wenzelm@23252
   613
        if r aconvc zero_tm
wenzelm@23252
   614
        then transitive th (inst_thm [(ca,l)] pthm_08)  else th
wenzelm@23252
   615
   end
wenzelm@23252
   616
  end
wenzelm@23252
   617
 fun padd tm =
wenzelm@23252
   618
  let
wenzelm@23252
   619
   val (l,r) = dest_add tm
wenzelm@23252
   620
  in
wenzelm@23252
   621
   if l aconvc zero_tm then inst_thm [(ca,r)] pthm_07
wenzelm@23252
   622
   else if r aconvc zero_tm then inst_thm [(ca,l)] pthm_08
wenzelm@23252
   623
   else
wenzelm@23252
   624
    if is_add l
wenzelm@23252
   625
    then
wenzelm@23252
   626
     let val (a,b) = dest_add l
wenzelm@23252
   627
     in
wenzelm@23252
   628
     if is_add r then
wenzelm@23252
   629
      let val (c,d) = dest_add r
wenzelm@23252
   630
          val ord = morder a c
wenzelm@23252
   631
      in
wenzelm@23252
   632
       if ord = 0 then
wenzelm@23252
   633
        let val th1 = inst_thm [(ca,a),(cb,b),(cc,c),(cd,d)] pthm_23
wenzelm@23252
   634
            val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   635
            val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   636
            val th2 = Drule.arg_cong_rule tm3 (monomial_add_conv tm4)
wenzelm@23252
   637
        in dezero_rule (transitive th1 (combination th2 (padd tm2)))
wenzelm@23252
   638
        end
wenzelm@23252
   639
       else (* ord <> 0*)
wenzelm@23252
   640
        let val th1 =
wenzelm@23252
   641
                if ord > 0 then inst_thm [(ca,a),(cb,b),(cc,r)] pthm_24
wenzelm@23252
   642
                else inst_thm [(ca,l),(cc,c),(cd,d)] pthm_25
wenzelm@23252
   643
            val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   644
        in dezero_rule (transitive th1 (Drule.arg_cong_rule tm1 (padd tm2)))
wenzelm@23252
   645
        end
wenzelm@23252
   646
      end
wenzelm@23252
   647
     else (* not (is_add r)*)
wenzelm@23252
   648
      let val ord = morder a r
wenzelm@23252
   649
      in
wenzelm@23252
   650
       if ord = 0 then
wenzelm@23252
   651
        let val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_26
wenzelm@23252
   652
            val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   653
            val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   654
            val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (monomial_add_conv tm4)) tm2
wenzelm@23252
   655
        in dezero_rule (transitive th1 th2)
wenzelm@23252
   656
        end
wenzelm@23252
   657
       else (* ord <> 0*)
wenzelm@23252
   658
        if ord > 0 then
wenzelm@23252
   659
          let val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_24
wenzelm@23252
   660
              val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   661
          in dezero_rule (transitive th1 (Drule.arg_cong_rule tm1 (padd tm2)))
wenzelm@23252
   662
          end
wenzelm@23252
   663
        else dezero_rule (inst_thm [(ca,l),(cc,r)] pthm_27)
wenzelm@23252
   664
      end
wenzelm@23252
   665
    end
wenzelm@23252
   666
   else (* not (is_add l)*)
wenzelm@23252
   667
    if is_add r then
wenzelm@23252
   668
      let val (c,d) = dest_add r
wenzelm@23252
   669
          val  ord = morder l c
wenzelm@23252
   670
      in
wenzelm@23252
   671
       if ord = 0 then
wenzelm@23252
   672
         let val th1 = inst_thm [(ca,l),(cc,c),(cd,d)] pthm_28
wenzelm@23252
   673
             val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   674
             val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   675
             val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (monomial_add_conv tm4)) tm2
wenzelm@23252
   676
         in dezero_rule (transitive th1 th2)
wenzelm@23252
   677
         end
wenzelm@23252
   678
       else
wenzelm@23252
   679
        if ord > 0 then reflexive tm
wenzelm@23252
   680
        else
wenzelm@23252
   681
         let val th1 = inst_thm [(ca,l),(cc,c),(cd,d)] pthm_25
wenzelm@23252
   682
             val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   683
         in dezero_rule (transitive th1 (Drule.arg_cong_rule tm1 (padd tm2)))
wenzelm@23252
   684
         end
wenzelm@23252
   685
      end
wenzelm@23252
   686
    else
wenzelm@23252
   687
     let val ord = morder l r
wenzelm@23252
   688
     in
wenzelm@23252
   689
      if ord = 0 then monomial_add_conv tm
wenzelm@23252
   690
      else if ord > 0 then dezero_rule(reflexive tm)
wenzelm@23252
   691
      else dezero_rule (inst_thm [(ca,l),(cc,r)] pthm_27)
wenzelm@23252
   692
     end
wenzelm@23252
   693
  end
wenzelm@23252
   694
 in padd
wenzelm@23252
   695
 end;
wenzelm@23252
   696
wenzelm@23252
   697
(* Multiplication of two polynomials.                                        *)
wenzelm@23252
   698
wenzelm@23252
   699
val polynomial_mul_conv =
wenzelm@23252
   700
 let
wenzelm@23252
   701
  fun pmul tm =
wenzelm@23252
   702
   let val (l,r) = dest_mul tm
wenzelm@23252
   703
   in
wenzelm@23252
   704
    if not(is_add l) then polynomial_monomial_mul_conv tm
wenzelm@23252
   705
    else
wenzelm@23252
   706
     if not(is_add r) then
wenzelm@23252
   707
      let val th1 = inst_thm [(ca,l),(cb,r)] pthm_09
wenzelm@23252
   708
      in transitive th1 (polynomial_monomial_mul_conv(concl th1))
wenzelm@23252
   709
      end
wenzelm@23252
   710
     else
wenzelm@23252
   711
       let val (a,b) = dest_add l
wenzelm@23252
   712
           val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_10
wenzelm@23252
   713
           val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   714
           val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   715
           val th2 = Drule.arg_cong_rule tm3 (polynomial_monomial_mul_conv tm4)
wenzelm@23252
   716
           val th3 = transitive th1 (combination th2 (pmul tm2))
wenzelm@23252
   717
       in transitive th3 (polynomial_add_conv (concl th3))
wenzelm@23252
   718
       end
wenzelm@23252
   719
   end
wenzelm@23252
   720
 in fn tm =>
wenzelm@23252
   721
   let val (l,r) = dest_mul tm
wenzelm@23252
   722
   in
wenzelm@23252
   723
    if l aconvc zero_tm then inst_thm [(ca,r)] pthm_11
wenzelm@23252
   724
    else if r aconvc zero_tm then inst_thm [(ca,l)] pthm_12
wenzelm@23252
   725
    else if l aconvc one_tm then inst_thm [(ca,r)] pthm_13
wenzelm@23252
   726
    else if r aconvc one_tm then inst_thm [(ca,l)] pthm_14
wenzelm@23252
   727
    else pmul tm
wenzelm@23252
   728
   end
wenzelm@23252
   729
 end;
wenzelm@23252
   730
wenzelm@23252
   731
(* Power of polynomial (optimized for the monomial and trivial cases).       *)
wenzelm@23252
   732
wenzelm@23580
   733
fun num_conv n =
wenzelm@23580
   734
  nat_add_conv (Thm.capply @{cterm Suc} (Numeral.mk_cnumber @{ctyp nat} (dest_numeral n - 1)))
wenzelm@23580
   735
  |> Thm.symmetric;
wenzelm@23252
   736
wenzelm@23252
   737
wenzelm@23252
   738
val polynomial_pow_conv =
wenzelm@23252
   739
 let
wenzelm@23252
   740
  fun ppow tm =
wenzelm@23252
   741
    let val (l,n) = dest_pow tm
wenzelm@23252
   742
    in
wenzelm@23252
   743
     if n aconvc zeron_tm then inst_thm [(cx,l)] pthm_35
wenzelm@23252
   744
     else if n aconvc onen_tm then inst_thm [(cx,l)] pthm_36
wenzelm@23252
   745
     else
wenzelm@23252
   746
         let val th1 = num_conv n
wenzelm@23252
   747
             val th2 = inst_thm [(cx,l),(cq,Thm.dest_arg (concl th1))] pthm_38
wenzelm@23252
   748
             val (tm1,tm2) = Thm.dest_comb(concl th2)
wenzelm@23252
   749
             val th3 = transitive th2 (Drule.arg_cong_rule tm1 (ppow tm2))
wenzelm@23252
   750
             val th4 = transitive (Drule.arg_cong_rule (Thm.dest_fun tm) th1) th3
wenzelm@23252
   751
         in transitive th4 (polynomial_mul_conv (concl th4))
wenzelm@23252
   752
         end
wenzelm@23252
   753
    end
wenzelm@23252
   754
 in fn tm =>
wenzelm@23252
   755
       if is_add(Thm.dest_arg1 tm) then ppow tm else monomial_pow_conv tm
wenzelm@23252
   756
 end;
wenzelm@23252
   757
wenzelm@23252
   758
(* Negation.                                                                 *)
wenzelm@23252
   759
wenzelm@23580
   760
fun polynomial_neg_conv tm =
wenzelm@23252
   761
   let val (l,r) = Thm.dest_comb tm in
wenzelm@23252
   762
        if not (l aconvc neg_tm) then raise CTERM ("polynomial_neg_conv",[tm]) else
wenzelm@23252
   763
        let val th1 = inst_thm [(cx',r)] neg_mul
haftmann@36709
   764
            val th2 = transitive th1 (Conv.arg1_conv semiring_mul_conv (concl th1))
wenzelm@23252
   765
        in transitive th2 (polynomial_monomial_mul_conv (concl th2))
wenzelm@23252
   766
        end
wenzelm@23252
   767
   end;
wenzelm@23252
   768
wenzelm@23252
   769
wenzelm@23252
   770
(* Subtraction.                                                              *)
wenzelm@23580
   771
fun polynomial_sub_conv tm =
wenzelm@23252
   772
  let val (l,r) = dest_sub tm
wenzelm@23252
   773
      val th1 = inst_thm [(cx',l),(cy',r)] sub_add
wenzelm@23252
   774
      val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   775
      val th2 = Drule.arg_cong_rule tm1 (polynomial_neg_conv tm2)
wenzelm@23252
   776
  in transitive th1 (transitive th2 (polynomial_add_conv (concl th2)))
wenzelm@23252
   777
  end;
wenzelm@23252
   778
wenzelm@23252
   779
(* Conversion from HOL term.                                                 *)
wenzelm@23252
   780
wenzelm@23252
   781
fun polynomial_conv tm =
chaieb@23407
   782
 if is_semiring_constant tm then semiring_add_conv tm
chaieb@23407
   783
 else if not(is_comb tm) then reflexive tm
wenzelm@23252
   784
 else
wenzelm@23252
   785
  let val (lopr,r) = Thm.dest_comb tm
wenzelm@23252
   786
  in if lopr aconvc neg_tm then
wenzelm@23252
   787
       let val th1 = Drule.arg_cong_rule lopr (polynomial_conv r)
wenzelm@23252
   788
       in transitive th1 (polynomial_neg_conv (concl th1))
wenzelm@23252
   789
       end
chaieb@30866
   790
     else if lopr aconvc inverse_tm then
chaieb@30866
   791
       let val th1 = Drule.arg_cong_rule lopr (polynomial_conv r)
chaieb@30866
   792
       in transitive th1 (semiring_mul_conv (concl th1))
chaieb@30866
   793
       end
wenzelm@23252
   794
     else
wenzelm@23252
   795
       if not(is_comb lopr) then reflexive tm
wenzelm@23252
   796
       else
wenzelm@23252
   797
         let val (opr,l) = Thm.dest_comb lopr
wenzelm@23252
   798
         in if opr aconvc pow_tm andalso is_numeral r
wenzelm@23252
   799
            then
wenzelm@23252
   800
              let val th1 = Drule.fun_cong_rule (Drule.arg_cong_rule opr (polynomial_conv l)) r
wenzelm@23252
   801
              in transitive th1 (polynomial_pow_conv (concl th1))
wenzelm@23252
   802
              end
chaieb@30866
   803
         else if opr aconvc divide_tm 
chaieb@30866
   804
            then
chaieb@30866
   805
              let val th1 = combination (Drule.arg_cong_rule opr (polynomial_conv l)) 
chaieb@30866
   806
                                        (polynomial_conv r)
haftmann@36709
   807
                  val th2 = (Conv.rewr_conv divide_inverse then_conv polynomial_mul_conv)
chaieb@30866
   808
                              (Thm.rhs_of th1)
chaieb@30866
   809
              in transitive th1 th2
chaieb@30866
   810
              end
wenzelm@23252
   811
            else
wenzelm@23252
   812
              if opr aconvc add_tm orelse opr aconvc mul_tm orelse opr aconvc sub_tm
wenzelm@23252
   813
              then
wenzelm@23252
   814
               let val th1 = combination (Drule.arg_cong_rule opr (polynomial_conv l)) (polynomial_conv r)
wenzelm@23252
   815
                   val f = if opr aconvc add_tm then polynomial_add_conv
wenzelm@23252
   816
                      else if opr aconvc mul_tm then polynomial_mul_conv
wenzelm@23252
   817
                      else polynomial_sub_conv
wenzelm@23252
   818
               in transitive th1 (f (concl th1))
wenzelm@23252
   819
               end
wenzelm@23252
   820
              else reflexive tm
wenzelm@23252
   821
         end
wenzelm@23252
   822
  end;
wenzelm@23252
   823
 in
wenzelm@23252
   824
   {main = polynomial_conv,
wenzelm@23252
   825
    add = polynomial_add_conv,
wenzelm@23252
   826
    mul = polynomial_mul_conv,
wenzelm@23252
   827
    pow = polynomial_pow_conv,
wenzelm@23252
   828
    neg = polynomial_neg_conv,
wenzelm@23252
   829
    sub = polynomial_sub_conv}
wenzelm@23252
   830
 end
wenzelm@23252
   831
end;
wenzelm@23252
   832
wenzelm@35410
   833
val nat_exp_ss =
wenzelm@35410
   834
  HOL_basic_ss addsimps (@{thms nat_number} @ @{thms nat_arith} @ @{thms arith_simps} @ @{thms rel_simps})
wenzelm@35410
   835
    addsimps [@{thm Let_def}, @{thm if_False}, @{thm if_True}, @{thm Nat.add_0}, @{thm add_Suc}];
wenzelm@23252
   836
wenzelm@35408
   837
fun simple_cterm_ord t u = Term_Ord.term_ord (term_of t, term_of u) = LESS;
chaieb@27222
   838
haftmann@36710
   839
haftmann@36710
   840
(* various normalizing conversions *)
haftmann@36710
   841
chaieb@30866
   842
fun semiring_normalizers_ord_wrapper ctxt ({vars, semiring, ring, field, idom, ideal}, 
chaieb@23407
   843
                                     {conv, dest_const, mk_const, is_const}) ord =
wenzelm@23252
   844
  let
wenzelm@23252
   845
    val pow_conv =
haftmann@36709
   846
      Conv.arg_conv (Simplifier.rewrite nat_exp_ss)
wenzelm@23252
   847
      then_conv Simplifier.rewrite
wenzelm@23252
   848
        (HOL_basic_ss addsimps [nth (snd semiring) 31, nth (snd semiring) 34])
chaieb@23330
   849
      then_conv conv ctxt
chaieb@23330
   850
    val dat = (is_const, conv ctxt, conv ctxt, pow_conv)
chaieb@30866
   851
  in semiring_normalizers_conv vars semiring ring field dat ord end;
chaieb@27222
   852
chaieb@30866
   853
fun semiring_normalize_ord_wrapper ctxt ({vars, semiring, ring, field, idom, ideal}, {conv, dest_const, mk_const, is_const}) ord =
chaieb@30866
   854
 #main (semiring_normalizers_ord_wrapper ctxt ({vars = vars, semiring = semiring, ring = ring, field = field, idom = idom, ideal = ideal},{conv = conv, dest_const = dest_const, mk_const = mk_const, is_const = is_const}) ord);
wenzelm@23252
   855
chaieb@23407
   856
fun semiring_normalize_wrapper ctxt data = 
chaieb@23407
   857
  semiring_normalize_ord_wrapper ctxt data simple_cterm_ord;
chaieb@23407
   858
chaieb@23407
   859
fun semiring_normalize_ord_conv ctxt ord tm =
haftmann@36700
   860
  (case match ctxt tm of
wenzelm@23252
   861
    NONE => reflexive tm
chaieb@23407
   862
  | SOME res => semiring_normalize_ord_wrapper ctxt res ord tm);
chaieb@23407
   863
 
chaieb@23407
   864
fun semiring_normalize_conv ctxt = semiring_normalize_ord_conv ctxt simple_cterm_ord;
wenzelm@23252
   865
haftmann@36708
   866
haftmann@36708
   867
(** Isar setup **)
haftmann@36708
   868
haftmann@36708
   869
local
haftmann@36708
   870
haftmann@36708
   871
fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K ();
haftmann@36708
   872
fun keyword2 k1 k2 = Scan.lift (Args.$$$ k1 -- Args.$$$ k2 -- Args.colon) >> K ();
haftmann@36708
   873
fun keyword3 k1 k2 k3 =
haftmann@36708
   874
  Scan.lift (Args.$$$ k1 -- Args.$$$ k2 -- Args.$$$ k3 -- Args.colon) >> K ();
haftmann@36708
   875
haftmann@36708
   876
val opsN = "ops";
haftmann@36708
   877
val rulesN = "rules";
haftmann@36708
   878
haftmann@36708
   879
val normN = "norm";
haftmann@36708
   880
val constN = "const";
haftmann@36708
   881
val delN = "del";
haftmann@36700
   882
haftmann@36708
   883
val any_keyword =
haftmann@36708
   884
  keyword2 semiringN opsN || keyword2 semiringN rulesN ||
haftmann@36708
   885
  keyword2 ringN opsN || keyword2 ringN rulesN ||
haftmann@36708
   886
  keyword2 fieldN opsN || keyword2 fieldN rulesN ||
haftmann@36708
   887
  keyword2 idomN rulesN || keyword2 idealN rulesN;
haftmann@36708
   888
haftmann@36708
   889
val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat;
haftmann@36708
   890
val terms = thms >> map Drule.dest_term;
haftmann@36708
   891
haftmann@36708
   892
fun optional scan = Scan.optional scan [];
haftmann@36708
   893
haftmann@36708
   894
in
haftmann@36708
   895
haftmann@36708
   896
val setup =
haftmann@36708
   897
  Attrib.setup @{binding normalizer}
haftmann@36708
   898
    (Scan.lift (Args.$$$ delN >> K del) ||
haftmann@36708
   899
      ((keyword2 semiringN opsN |-- terms) --
haftmann@36708
   900
       (keyword2 semiringN rulesN |-- thms)) --
haftmann@36708
   901
      (optional (keyword2 ringN opsN |-- terms) --
haftmann@36708
   902
       optional (keyword2 ringN rulesN |-- thms)) --
haftmann@36708
   903
      (optional (keyword2 fieldN opsN |-- terms) --
haftmann@36708
   904
       optional (keyword2 fieldN rulesN |-- thms)) --
haftmann@36708
   905
      optional (keyword2 idomN rulesN |-- thms) --
haftmann@36708
   906
      optional (keyword2 idealN rulesN |-- thms)
haftmann@36708
   907
      >> (fn ((((sr, r), f), id), idl) => 
haftmann@36708
   908
             add {semiring = sr, ring = r, field = f, idom = id, ideal = idl}))
haftmann@36708
   909
    "semiring normalizer data";
haftmann@36700
   910
wenzelm@23252
   911
end;
haftmann@36708
   912
haftmann@36708
   913
end;