src/HOL/Probability/Probability_Mass_Function.thy
author paulson <lp15@cam.ac.uk>
Tue Mar 17 12:23:56 2015 +0000 (2015-03-17)
changeset 59731 7fccaeec22f0
parent 59730 b7c394c7a619
parent 59681 f24ab09e4c37
child 60068 ef2123db900c
permissions -rw-r--r--
Merge
hoelzl@58606
     1
(*  Title:      HOL/Probability/Probability_Mass_Function.thy
lp15@59667
     2
    Author:     Johannes Hölzl, TU München
Andreas@59023
     3
    Author:     Andreas Lochbihler, ETH Zurich
Andreas@59023
     4
*)
hoelzl@58606
     5
hoelzl@59000
     6
section \<open> Probability mass function \<close>
hoelzl@59000
     7
hoelzl@58587
     8
theory Probability_Mass_Function
hoelzl@59000
     9
imports
hoelzl@59000
    10
  Giry_Monad
hoelzl@59000
    11
  "~~/src/HOL/Library/Multiset"
hoelzl@58587
    12
begin
hoelzl@58587
    13
hoelzl@59664
    14
lemma AE_emeasure_singleton:
hoelzl@59664
    15
  assumes x: "emeasure M {x} \<noteq> 0" and ae: "AE x in M. P x" shows "P x"
hoelzl@59664
    16
proof -
hoelzl@59664
    17
  from x have x_M: "{x} \<in> sets M"
hoelzl@59664
    18
    by (auto intro: emeasure_notin_sets)
hoelzl@59664
    19
  from ae obtain N where N: "{x\<in>space M. \<not> P x} \<subseteq> N" "emeasure M N = 0" "N \<in> sets M"
hoelzl@59664
    20
    by (auto elim: AE_E)
hoelzl@59664
    21
  { assume "\<not> P x"
hoelzl@59664
    22
    with x_M[THEN sets.sets_into_space] N have "emeasure M {x} \<le> emeasure M N"
hoelzl@59664
    23
      by (intro emeasure_mono) auto
hoelzl@59664
    24
    with x N have False
hoelzl@59664
    25
      by (auto simp: emeasure_le_0_iff) }
hoelzl@59664
    26
  then show "P x" by auto
hoelzl@59664
    27
qed
hoelzl@59664
    28
hoelzl@59664
    29
lemma AE_measure_singleton: "measure M {x} \<noteq> 0 \<Longrightarrow> AE x in M. P x \<Longrightarrow> P x"
hoelzl@59664
    30
  by (metis AE_emeasure_singleton measure_def emeasure_empty measure_empty)
hoelzl@59664
    31
hoelzl@59494
    32
lemma ereal_divide': "b \<noteq> 0 \<Longrightarrow> ereal (a / b) = ereal a / ereal b"
hoelzl@59494
    33
  using ereal_divide[of a b] by simp
hoelzl@59494
    34
hoelzl@59052
    35
lemma (in finite_measure) countable_support:
hoelzl@58587
    36
  "countable {x. measure M {x} \<noteq> 0}"
hoelzl@59000
    37
proof cases
hoelzl@59000
    38
  assume "measure M (space M) = 0"
hoelzl@59000
    39
  with bounded_measure measure_le_0_iff have "{x. measure M {x} \<noteq> 0} = {}"
hoelzl@59000
    40
    by auto
hoelzl@59000
    41
  then show ?thesis
hoelzl@59000
    42
    by simp
hoelzl@59000
    43
next
hoelzl@59000
    44
  let ?M = "measure M (space M)" and ?m = "\<lambda>x. measure M {x}"
hoelzl@59000
    45
  assume "?M \<noteq> 0"
hoelzl@59000
    46
  then have *: "{x. ?m x \<noteq> 0} = (\<Union>n. {x. ?M / Suc n < ?m x})"
hoelzl@59000
    47
    using reals_Archimedean[of "?m x / ?M" for x]
hoelzl@59000
    48
    by (auto simp: field_simps not_le[symmetric] measure_nonneg divide_le_0_iff measure_le_0_iff)
hoelzl@59000
    49
  have **: "\<And>n. finite {x. ?M / Suc n < ?m x}"
hoelzl@58587
    50
  proof (rule ccontr)
hoelzl@59000
    51
    fix n assume "infinite {x. ?M / Suc n < ?m x}" (is "infinite ?X")
hoelzl@58587
    52
    then obtain X where "finite X" "card X = Suc (Suc n)" "X \<subseteq> ?X"
hoelzl@58606
    53
      by (metis infinite_arbitrarily_large)
lp15@59667
    54
    from this(3) have *: "\<And>x. x \<in> X \<Longrightarrow> ?M / Suc n \<le> ?m x"
hoelzl@59000
    55
      by auto
hoelzl@58587
    56
    { fix x assume "x \<in> X"
hoelzl@59000
    57
      from `?M \<noteq> 0` *[OF this] have "?m x \<noteq> 0" by (auto simp: field_simps measure_le_0_iff)
hoelzl@58587
    58
      then have "{x} \<in> sets M" by (auto dest: measure_notin_sets) }
hoelzl@58587
    59
    note singleton_sets = this
hoelzl@59000
    60
    have "?M < (\<Sum>x\<in>X. ?M / Suc n)"
lp15@59667
    61
      using `?M \<noteq> 0`
hoelzl@59000
    62
      by (simp add: `card X = Suc (Suc n)` real_eq_of_nat[symmetric] real_of_nat_Suc field_simps less_le measure_nonneg)
hoelzl@58587
    63
    also have "\<dots> \<le> (\<Sum>x\<in>X. ?m x)"
hoelzl@58587
    64
      by (rule setsum_mono) fact
hoelzl@58587
    65
    also have "\<dots> = measure M (\<Union>x\<in>X. {x})"
hoelzl@58587
    66
      using singleton_sets `finite X`
hoelzl@58587
    67
      by (intro finite_measure_finite_Union[symmetric]) (auto simp: disjoint_family_on_def)
hoelzl@59000
    68
    finally have "?M < measure M (\<Union>x\<in>X. {x})" .
hoelzl@59000
    69
    moreover have "measure M (\<Union>x\<in>X. {x}) \<le> ?M"
hoelzl@59000
    70
      using singleton_sets[THEN sets.sets_into_space] by (intro finite_measure_mono) auto
hoelzl@59000
    71
    ultimately show False by simp
hoelzl@58587
    72
  qed
hoelzl@58587
    73
  show ?thesis
hoelzl@58587
    74
    unfolding * by (intro countable_UN countableI_type countable_finite[OF **])
hoelzl@58587
    75
qed
hoelzl@58587
    76
hoelzl@59000
    77
lemma (in finite_measure) AE_support_countable:
hoelzl@59000
    78
  assumes [simp]: "sets M = UNIV"
hoelzl@59000
    79
  shows "(AE x in M. measure M {x} \<noteq> 0) \<longleftrightarrow> (\<exists>S. countable S \<and> (AE x in M. x \<in> S))"
hoelzl@59000
    80
proof
hoelzl@59000
    81
  assume "\<exists>S. countable S \<and> (AE x in M. x \<in> S)"
hoelzl@59000
    82
  then obtain S where S[intro]: "countable S" and ae: "AE x in M. x \<in> S"
hoelzl@59000
    83
    by auto
lp15@59667
    84
  then have "emeasure M (\<Union>x\<in>{x\<in>S. emeasure M {x} \<noteq> 0}. {x}) =
hoelzl@59000
    85
    (\<integral>\<^sup>+ x. emeasure M {x} * indicator {x\<in>S. emeasure M {x} \<noteq> 0} x \<partial>count_space UNIV)"
hoelzl@59000
    86
    by (subst emeasure_UN_countable)
hoelzl@59000
    87
       (auto simp: disjoint_family_on_def nn_integral_restrict_space[symmetric] restrict_count_space)
hoelzl@59000
    88
  also have "\<dots> = (\<integral>\<^sup>+ x. emeasure M {x} * indicator S x \<partial>count_space UNIV)"
hoelzl@59000
    89
    by (auto intro!: nn_integral_cong split: split_indicator)
hoelzl@59000
    90
  also have "\<dots> = emeasure M (\<Union>x\<in>S. {x})"
hoelzl@59000
    91
    by (subst emeasure_UN_countable)
hoelzl@59000
    92
       (auto simp: disjoint_family_on_def nn_integral_restrict_space[symmetric] restrict_count_space)
hoelzl@59000
    93
  also have "\<dots> = emeasure M (space M)"
hoelzl@59000
    94
    using ae by (intro emeasure_eq_AE) auto
hoelzl@59000
    95
  finally have "emeasure M {x \<in> space M. x\<in>S \<and> emeasure M {x} \<noteq> 0} = emeasure M (space M)"
hoelzl@59000
    96
    by (simp add: emeasure_single_in_space cong: rev_conj_cong)
hoelzl@59000
    97
  with finite_measure_compl[of "{x \<in> space M. x\<in>S \<and> emeasure M {x} \<noteq> 0}"]
hoelzl@59000
    98
  have "AE x in M. x \<in> S \<and> emeasure M {x} \<noteq> 0"
hoelzl@59000
    99
    by (intro AE_I[OF order_refl]) (auto simp: emeasure_eq_measure set_diff_eq cong: conj_cong)
hoelzl@59000
   100
  then show "AE x in M. measure M {x} \<noteq> 0"
hoelzl@59000
   101
    by (auto simp: emeasure_eq_measure)
hoelzl@59000
   102
qed (auto intro!: exI[of _ "{x. measure M {x} \<noteq> 0}"] countable_support)
hoelzl@59000
   103
hoelzl@59664
   104
subsection \<open> PMF as measure \<close>
hoelzl@59000
   105
hoelzl@58587
   106
typedef 'a pmf = "{M :: 'a measure. prob_space M \<and> sets M = UNIV \<and> (AE x in M. measure M {x} \<noteq> 0)}"
hoelzl@58587
   107
  morphisms measure_pmf Abs_pmf
hoelzl@58606
   108
  by (intro exI[of _ "uniform_measure (count_space UNIV) {undefined}"])
hoelzl@58606
   109
     (auto intro!: prob_space_uniform_measure AE_uniform_measureI)
hoelzl@58587
   110
hoelzl@58587
   111
declare [[coercion measure_pmf]]
hoelzl@58587
   112
hoelzl@58587
   113
lemma prob_space_measure_pmf: "prob_space (measure_pmf p)"
hoelzl@58587
   114
  using pmf.measure_pmf[of p] by auto
hoelzl@58587
   115
hoelzl@58587
   116
interpretation measure_pmf!: prob_space "measure_pmf M" for M
hoelzl@58587
   117
  by (rule prob_space_measure_pmf)
hoelzl@58587
   118
hoelzl@59000
   119
interpretation measure_pmf!: subprob_space "measure_pmf M" for M
hoelzl@59000
   120
  by (rule prob_space_imp_subprob_space) unfold_locales
hoelzl@59000
   121
hoelzl@59048
   122
lemma subprob_space_measure_pmf: "subprob_space (measure_pmf x)"
hoelzl@59048
   123
  by unfold_locales
hoelzl@59048
   124
hoelzl@58587
   125
locale pmf_as_measure
hoelzl@58587
   126
begin
hoelzl@58587
   127
hoelzl@58587
   128
setup_lifting type_definition_pmf
hoelzl@58587
   129
hoelzl@58587
   130
end
hoelzl@58587
   131
hoelzl@58587
   132
context
hoelzl@58587
   133
begin
hoelzl@58587
   134
hoelzl@58587
   135
interpretation pmf_as_measure .
hoelzl@58587
   136
hoelzl@58587
   137
lemma sets_measure_pmf[simp]: "sets (measure_pmf p) = UNIV"
lp15@59667
   138
  by transfer blast
hoelzl@58587
   139
hoelzl@59048
   140
lemma sets_measure_pmf_count_space[measurable_cong]:
hoelzl@59048
   141
  "sets (measure_pmf M) = sets (count_space UNIV)"
hoelzl@59000
   142
  by simp
hoelzl@59000
   143
hoelzl@58587
   144
lemma space_measure_pmf[simp]: "space (measure_pmf p) = UNIV"
hoelzl@58587
   145
  using sets_eq_imp_space_eq[of "measure_pmf p" "count_space UNIV"] by simp
hoelzl@58587
   146
hoelzl@59048
   147
lemma measure_pmf_in_subprob_algebra[measurable (raw)]: "measure_pmf x \<in> space (subprob_algebra (count_space UNIV))"
hoelzl@59048
   148
  by (simp add: space_subprob_algebra subprob_space_measure_pmf)
hoelzl@59048
   149
hoelzl@58587
   150
lemma measurable_pmf_measure1[simp]: "measurable (M :: 'a pmf) N = UNIV \<rightarrow> space N"
hoelzl@58587
   151
  by (auto simp: measurable_def)
hoelzl@58587
   152
hoelzl@58587
   153
lemma measurable_pmf_measure2[simp]: "measurable N (M :: 'a pmf) = measurable N (count_space UNIV)"
hoelzl@58587
   154
  by (intro measurable_cong_sets) simp_all
hoelzl@58587
   155
hoelzl@59664
   156
lemma measurable_pair_restrict_pmf2:
hoelzl@59664
   157
  assumes "countable A"
hoelzl@59664
   158
  assumes [measurable]: "\<And>y. y \<in> A \<Longrightarrow> (\<lambda>x. f (x, y)) \<in> measurable M L"
hoelzl@59664
   159
  shows "f \<in> measurable (M \<Otimes>\<^sub>M restrict_space (measure_pmf N) A) L" (is "f \<in> measurable ?M _")
hoelzl@59664
   160
proof -
hoelzl@59664
   161
  have [measurable_cong]: "sets (restrict_space (count_space UNIV) A) = sets (count_space A)"
hoelzl@59664
   162
    by (simp add: restrict_count_space)
hoelzl@58587
   163
hoelzl@59664
   164
  show ?thesis
hoelzl@59664
   165
    by (intro measurable_compose_countable'[where f="\<lambda>a b. f (fst b, a)" and g=snd and I=A,
hoelzl@59664
   166
                                            unfolded pair_collapse] assms)
hoelzl@59664
   167
        measurable
hoelzl@59664
   168
qed
hoelzl@58587
   169
hoelzl@59664
   170
lemma measurable_pair_restrict_pmf1:
hoelzl@59664
   171
  assumes "countable A"
hoelzl@59664
   172
  assumes [measurable]: "\<And>x. x \<in> A \<Longrightarrow> (\<lambda>y. f (x, y)) \<in> measurable N L"
hoelzl@59664
   173
  shows "f \<in> measurable (restrict_space (measure_pmf M) A \<Otimes>\<^sub>M N) L"
hoelzl@59664
   174
proof -
hoelzl@59664
   175
  have [measurable_cong]: "sets (restrict_space (count_space UNIV) A) = sets (count_space A)"
hoelzl@59664
   176
    by (simp add: restrict_count_space)
hoelzl@59000
   177
hoelzl@59664
   178
  show ?thesis
hoelzl@59664
   179
    by (intro measurable_compose_countable'[where f="\<lambda>a b. f (a, snd b)" and g=fst and I=A,
hoelzl@59664
   180
                                            unfolded pair_collapse] assms)
hoelzl@59664
   181
        measurable
hoelzl@59664
   182
qed
hoelzl@59664
   183
hoelzl@59664
   184
lift_definition pmf :: "'a pmf \<Rightarrow> 'a \<Rightarrow> real" is "\<lambda>M x. measure M {x}" .
hoelzl@59664
   185
hoelzl@59664
   186
lift_definition set_pmf :: "'a pmf \<Rightarrow> 'a set" is "\<lambda>M. {x. measure M {x} \<noteq> 0}" .
hoelzl@59664
   187
declare [[coercion set_pmf]]
hoelzl@58587
   188
hoelzl@58587
   189
lemma AE_measure_pmf: "AE x in (M::'a pmf). x \<in> M"
hoelzl@58587
   190
  by transfer simp
hoelzl@58587
   191
hoelzl@58587
   192
lemma emeasure_pmf_single_eq_zero_iff:
hoelzl@58587
   193
  fixes M :: "'a pmf"
hoelzl@58587
   194
  shows "emeasure M {y} = 0 \<longleftrightarrow> y \<notin> M"
hoelzl@58587
   195
  by transfer (simp add: finite_measure.emeasure_eq_measure[OF prob_space.finite_measure])
hoelzl@58587
   196
hoelzl@58587
   197
lemma AE_measure_pmf_iff: "(AE x in measure_pmf M. P x) \<longleftrightarrow> (\<forall>y\<in>M. P y)"
hoelzl@59664
   198
  using AE_measure_singleton[of M] AE_measure_pmf[of M]
hoelzl@59664
   199
  by (auto simp: set_pmf.rep_eq)
hoelzl@59664
   200
hoelzl@59664
   201
lemma countable_set_pmf [simp]: "countable (set_pmf p)"
hoelzl@59664
   202
  by transfer (metis prob_space.finite_measure finite_measure.countable_support)
hoelzl@59664
   203
hoelzl@59664
   204
lemma pmf_positive: "x \<in> set_pmf p \<Longrightarrow> 0 < pmf p x"
hoelzl@59664
   205
  by transfer (simp add: less_le measure_nonneg)
hoelzl@59664
   206
hoelzl@59664
   207
lemma pmf_nonneg: "0 \<le> pmf p x"
hoelzl@59664
   208
  by transfer (simp add: measure_nonneg)
hoelzl@59664
   209
hoelzl@59664
   210
lemma pmf_le_1: "pmf p x \<le> 1"
hoelzl@59664
   211
  by (simp add: pmf.rep_eq)
hoelzl@58587
   212
hoelzl@58587
   213
lemma set_pmf_not_empty: "set_pmf M \<noteq> {}"
hoelzl@58587
   214
  using AE_measure_pmf[of M] by (intro notI) simp
hoelzl@58587
   215
hoelzl@58587
   216
lemma set_pmf_iff: "x \<in> set_pmf M \<longleftrightarrow> pmf M x \<noteq> 0"
hoelzl@58587
   217
  by transfer simp
hoelzl@58587
   218
hoelzl@59664
   219
lemma set_pmf_eq: "set_pmf M = {x. pmf M x \<noteq> 0}"
hoelzl@59664
   220
  by (auto simp: set_pmf_iff)
hoelzl@59664
   221
hoelzl@59664
   222
lemma emeasure_pmf_single:
hoelzl@59664
   223
  fixes M :: "'a pmf"
hoelzl@59664
   224
  shows "emeasure M {x} = pmf M x"
hoelzl@59664
   225
  by transfer (simp add: finite_measure.emeasure_eq_measure[OF prob_space.finite_measure])
hoelzl@59664
   226
hoelzl@59000
   227
lemma emeasure_measure_pmf_finite: "finite S \<Longrightarrow> emeasure (measure_pmf M) S = (\<Sum>s\<in>S. pmf M s)"
hoelzl@59000
   228
  by (subst emeasure_eq_setsum_singleton) (auto simp: emeasure_pmf_single)
hoelzl@59000
   229
Andreas@59023
   230
lemma measure_measure_pmf_finite: "finite S \<Longrightarrow> measure (measure_pmf M) S = setsum (pmf M) S"
hoelzl@59425
   231
  using emeasure_measure_pmf_finite[of S M] by(simp add: measure_pmf.emeasure_eq_measure)
Andreas@59023
   232
hoelzl@59000
   233
lemma nn_integral_measure_pmf_support:
hoelzl@59000
   234
  fixes f :: "'a \<Rightarrow> ereal"
hoelzl@59000
   235
  assumes f: "finite A" and nn: "\<And>x. x \<in> A \<Longrightarrow> 0 \<le> f x" "\<And>x. x \<in> set_pmf M \<Longrightarrow> x \<notin> A \<Longrightarrow> f x = 0"
hoelzl@59000
   236
  shows "(\<integral>\<^sup>+x. f x \<partial>measure_pmf M) = (\<Sum>x\<in>A. f x * pmf M x)"
hoelzl@59000
   237
proof -
hoelzl@59000
   238
  have "(\<integral>\<^sup>+x. f x \<partial>M) = (\<integral>\<^sup>+x. f x * indicator A x \<partial>M)"
hoelzl@59000
   239
    using nn by (intro nn_integral_cong_AE) (auto simp: AE_measure_pmf_iff split: split_indicator)
hoelzl@59000
   240
  also have "\<dots> = (\<Sum>x\<in>A. f x * emeasure M {x})"
hoelzl@59000
   241
    using assms by (intro nn_integral_indicator_finite) auto
hoelzl@59000
   242
  finally show ?thesis
hoelzl@59000
   243
    by (simp add: emeasure_measure_pmf_finite)
hoelzl@59000
   244
qed
hoelzl@59000
   245
hoelzl@59000
   246
lemma nn_integral_measure_pmf_finite:
hoelzl@59000
   247
  fixes f :: "'a \<Rightarrow> ereal"
hoelzl@59000
   248
  assumes f: "finite (set_pmf M)" and nn: "\<And>x. x \<in> set_pmf M \<Longrightarrow> 0 \<le> f x"
hoelzl@59000
   249
  shows "(\<integral>\<^sup>+x. f x \<partial>measure_pmf M) = (\<Sum>x\<in>set_pmf M. f x * pmf M x)"
hoelzl@59000
   250
  using assms by (intro nn_integral_measure_pmf_support) auto
hoelzl@59000
   251
lemma integrable_measure_pmf_finite:
hoelzl@59000
   252
  fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
hoelzl@59000
   253
  shows "finite (set_pmf M) \<Longrightarrow> integrable M f"
hoelzl@59000
   254
  by (auto intro!: integrableI_bounded simp: nn_integral_measure_pmf_finite)
hoelzl@59000
   255
hoelzl@59000
   256
lemma integral_measure_pmf:
hoelzl@59000
   257
  assumes [simp]: "finite A" and "\<And>a. a \<in> set_pmf M \<Longrightarrow> f a \<noteq> 0 \<Longrightarrow> a \<in> A"
hoelzl@59000
   258
  shows "(\<integral>x. f x \<partial>measure_pmf M) = (\<Sum>a\<in>A. f a * pmf M a)"
hoelzl@59000
   259
proof -
hoelzl@59000
   260
  have "(\<integral>x. f x \<partial>measure_pmf M) = (\<integral>x. f x * indicator A x \<partial>measure_pmf M)"
hoelzl@59000
   261
    using assms(2) by (intro integral_cong_AE) (auto split: split_indicator simp: AE_measure_pmf_iff)
hoelzl@59000
   262
  also have "\<dots> = (\<Sum>a\<in>A. f a * pmf M a)"
hoelzl@59000
   263
    by (subst integral_indicator_finite_real) (auto simp: measure_def emeasure_measure_pmf_finite)
hoelzl@59000
   264
  finally show ?thesis .
hoelzl@59000
   265
qed
hoelzl@59000
   266
hoelzl@59000
   267
lemma integrable_pmf: "integrable (count_space X) (pmf M)"
hoelzl@59000
   268
proof -
hoelzl@59000
   269
  have " (\<integral>\<^sup>+ x. pmf M x \<partial>count_space X) = (\<integral>\<^sup>+ x. pmf M x \<partial>count_space (M \<inter> X))"
hoelzl@59000
   270
    by (auto simp add: nn_integral_count_space_indicator set_pmf_iff intro!: nn_integral_cong split: split_indicator)
hoelzl@59000
   271
  then have "integrable (count_space X) (pmf M) = integrable (count_space (M \<inter> X)) (pmf M)"
hoelzl@59000
   272
    by (simp add: integrable_iff_bounded pmf_nonneg)
hoelzl@59000
   273
  then show ?thesis
Andreas@59023
   274
    by (simp add: pmf.rep_eq measure_pmf.integrable_measure disjoint_family_on_def)
hoelzl@59000
   275
qed
hoelzl@59000
   276
hoelzl@59000
   277
lemma integral_pmf: "(\<integral>x. pmf M x \<partial>count_space X) = measure M X"
hoelzl@59000
   278
proof -
hoelzl@59000
   279
  have "(\<integral>x. pmf M x \<partial>count_space X) = (\<integral>\<^sup>+x. pmf M x \<partial>count_space X)"
hoelzl@59000
   280
    by (simp add: pmf_nonneg integrable_pmf nn_integral_eq_integral)
hoelzl@59000
   281
  also have "\<dots> = (\<integral>\<^sup>+x. emeasure M {x} \<partial>count_space (X \<inter> M))"
hoelzl@59000
   282
    by (auto intro!: nn_integral_cong_AE split: split_indicator
hoelzl@59000
   283
             simp: pmf.rep_eq measure_pmf.emeasure_eq_measure nn_integral_count_space_indicator
hoelzl@59000
   284
                   AE_count_space set_pmf_iff)
hoelzl@59000
   285
  also have "\<dots> = emeasure M (X \<inter> M)"
hoelzl@59000
   286
    by (rule emeasure_countable_singleton[symmetric]) (auto intro: countable_set_pmf)
hoelzl@59000
   287
  also have "\<dots> = emeasure M X"
hoelzl@59000
   288
    by (auto intro!: emeasure_eq_AE simp: AE_measure_pmf_iff)
hoelzl@59000
   289
  finally show ?thesis
hoelzl@59000
   290
    by (simp add: measure_pmf.emeasure_eq_measure)
hoelzl@59000
   291
qed
hoelzl@59000
   292
hoelzl@59000
   293
lemma integral_pmf_restrict:
hoelzl@59000
   294
  "(f::'a \<Rightarrow> 'b::{banach, second_countable_topology}) \<in> borel_measurable (count_space UNIV) \<Longrightarrow>
hoelzl@59000
   295
    (\<integral>x. f x \<partial>measure_pmf M) = (\<integral>x. f x \<partial>restrict_space M M)"
hoelzl@59000
   296
  by (auto intro!: integral_cong_AE simp add: integral_restrict_space AE_measure_pmf_iff)
hoelzl@59000
   297
hoelzl@58587
   298
lemma emeasure_pmf: "emeasure (M::'a pmf) M = 1"
hoelzl@58587
   299
proof -
hoelzl@58587
   300
  have "emeasure (M::'a pmf) M = emeasure (M::'a pmf) (space M)"
hoelzl@58587
   301
    by (intro emeasure_eq_AE) (simp_all add: AE_measure_pmf)
hoelzl@58587
   302
  then show ?thesis
hoelzl@58587
   303
    using measure_pmf.emeasure_space_1 by simp
hoelzl@58587
   304
qed
hoelzl@58587
   305
Andreas@59490
   306
lemma emeasure_pmf_UNIV [simp]: "emeasure (measure_pmf M) UNIV = 1"
Andreas@59490
   307
using measure_pmf.emeasure_space_1[of M] by simp
Andreas@59490
   308
Andreas@59023
   309
lemma in_null_sets_measure_pmfI:
Andreas@59023
   310
  "A \<inter> set_pmf p = {} \<Longrightarrow> A \<in> null_sets (measure_pmf p)"
Andreas@59023
   311
using emeasure_eq_0_AE[where ?P="\<lambda>x. x \<in> A" and M="measure_pmf p"]
Andreas@59023
   312
by(auto simp add: null_sets_def AE_measure_pmf_iff)
Andreas@59023
   313
hoelzl@59664
   314
lemma measure_subprob: "measure_pmf M \<in> space (subprob_algebra (count_space UNIV))"
hoelzl@59664
   315
  by (simp add: space_subprob_algebra subprob_space_measure_pmf)
hoelzl@59664
   316
hoelzl@59664
   317
subsection \<open> Monad Interpretation \<close>
hoelzl@59664
   318
hoelzl@59664
   319
lemma measurable_measure_pmf[measurable]:
hoelzl@59664
   320
  "(\<lambda>x. measure_pmf (M x)) \<in> measurable (count_space UNIV) (subprob_algebra (count_space UNIV))"
hoelzl@59664
   321
  by (auto simp: space_subprob_algebra intro!: prob_space_imp_subprob_space) unfold_locales
hoelzl@59664
   322
hoelzl@59664
   323
lemma bind_measure_pmf_cong:
hoelzl@59664
   324
  assumes "\<And>x. A x \<in> space (subprob_algebra N)" "\<And>x. B x \<in> space (subprob_algebra N)"
hoelzl@59664
   325
  assumes "\<And>i. i \<in> set_pmf x \<Longrightarrow> A i = B i"
hoelzl@59664
   326
  shows "bind (measure_pmf x) A = bind (measure_pmf x) B"
hoelzl@59664
   327
proof (rule measure_eqI)
hoelzl@59664
   328
  show "sets (measure_pmf x \<guillemotright>= A) = sets (measure_pmf x \<guillemotright>= B)"
hoelzl@59664
   329
    using assms by (subst (1 2) sets_bind) (auto simp: space_subprob_algebra)
hoelzl@59664
   330
next
hoelzl@59664
   331
  fix X assume "X \<in> sets (measure_pmf x \<guillemotright>= A)"
hoelzl@59664
   332
  then have X: "X \<in> sets N"
hoelzl@59664
   333
    using assms by (subst (asm) sets_bind) (auto simp: space_subprob_algebra)
hoelzl@59664
   334
  show "emeasure (measure_pmf x \<guillemotright>= A) X = emeasure (measure_pmf x \<guillemotright>= B) X"
hoelzl@59664
   335
    using assms
hoelzl@59664
   336
    by (subst (1 2) emeasure_bind[where N=N, OF _ _ X])
hoelzl@59664
   337
       (auto intro!: nn_integral_cong_AE simp: AE_measure_pmf_iff)
hoelzl@59664
   338
qed
hoelzl@59664
   339
hoelzl@59664
   340
lift_definition bind_pmf :: "'a pmf \<Rightarrow> ('a \<Rightarrow> 'b pmf ) \<Rightarrow> 'b pmf" is bind
hoelzl@59664
   341
proof (clarify, intro conjI)
hoelzl@59664
   342
  fix f :: "'a measure" and g :: "'a \<Rightarrow> 'b measure"
hoelzl@59664
   343
  assume "prob_space f"
hoelzl@59664
   344
  then interpret f: prob_space f .
hoelzl@59664
   345
  assume "sets f = UNIV" and ae_f: "AE x in f. measure f {x} \<noteq> 0"
hoelzl@59664
   346
  then have s_f[simp]: "sets f = sets (count_space UNIV)"
hoelzl@59664
   347
    by simp
hoelzl@59664
   348
  assume g: "\<And>x. prob_space (g x) \<and> sets (g x) = UNIV \<and> (AE y in g x. measure (g x) {y} \<noteq> 0)"
hoelzl@59664
   349
  then have g: "\<And>x. prob_space (g x)" and s_g[simp]: "\<And>x. sets (g x) = sets (count_space UNIV)"
hoelzl@59664
   350
    and ae_g: "\<And>x. AE y in g x. measure (g x) {y} \<noteq> 0"
hoelzl@59664
   351
    by auto
hoelzl@59664
   352
hoelzl@59664
   353
  have [measurable]: "g \<in> measurable f (subprob_algebra (count_space UNIV))"
hoelzl@59664
   354
    by (auto simp: measurable_def space_subprob_algebra prob_space_imp_subprob_space g)
lp15@59667
   355
hoelzl@59664
   356
  show "prob_space (f \<guillemotright>= g)"
hoelzl@59664
   357
    using g by (intro f.prob_space_bind[where S="count_space UNIV"]) auto
lp15@59667
   358
  then interpret fg: prob_space "f \<guillemotright>= g" .
hoelzl@59664
   359
  show [simp]: "sets (f \<guillemotright>= g) = UNIV"
hoelzl@59664
   360
    using sets_eq_imp_space_eq[OF s_f]
hoelzl@59664
   361
    by (subst sets_bind[where N="count_space UNIV"]) auto
hoelzl@59664
   362
  show "AE x in f \<guillemotright>= g. measure (f \<guillemotright>= g) {x} \<noteq> 0"
hoelzl@59664
   363
    apply (simp add: fg.prob_eq_0 AE_bind[where B="count_space UNIV"])
hoelzl@59664
   364
    using ae_f
hoelzl@59664
   365
    apply eventually_elim
hoelzl@59664
   366
    using ae_g
hoelzl@59664
   367
    apply eventually_elim
hoelzl@59664
   368
    apply (auto dest: AE_measure_singleton)
hoelzl@59664
   369
    done
hoelzl@59664
   370
qed
hoelzl@59664
   371
hoelzl@59664
   372
lemma ereal_pmf_bind: "pmf (bind_pmf N f) i = (\<integral>\<^sup>+x. pmf (f x) i \<partial>measure_pmf N)"
hoelzl@59664
   373
  unfolding pmf.rep_eq bind_pmf.rep_eq
hoelzl@59664
   374
  by (auto simp: measure_pmf.measure_bind[where N="count_space UNIV"] measure_subprob measure_nonneg
hoelzl@59664
   375
           intro!: nn_integral_eq_integral[symmetric] measure_pmf.integrable_const_bound[where B=1])
hoelzl@59664
   376
hoelzl@59664
   377
lemma pmf_bind: "pmf (bind_pmf N f) i = (\<integral>x. pmf (f x) i \<partial>measure_pmf N)"
hoelzl@59664
   378
  using ereal_pmf_bind[of N f i]
hoelzl@59664
   379
  by (subst (asm) nn_integral_eq_integral)
hoelzl@59664
   380
     (auto simp: pmf_nonneg pmf_le_1
hoelzl@59664
   381
           intro!: nn_integral_eq_integral[symmetric] measure_pmf.integrable_const_bound[where B=1])
hoelzl@59664
   382
hoelzl@59664
   383
lemma bind_pmf_const[simp]: "bind_pmf M (\<lambda>x. c) = c"
hoelzl@59664
   384
  by transfer (simp add: bind_const' prob_space_imp_subprob_space)
hoelzl@59664
   385
hoelzl@59665
   386
lemma set_bind_pmf[simp]: "set_pmf (bind_pmf M N) = (\<Union>M\<in>set_pmf M. set_pmf (N M))"
lp15@59667
   387
  unfolding set_pmf_eq ereal_eq_0(1)[symmetric] ereal_pmf_bind
hoelzl@59664
   388
  by (auto simp add: nn_integral_0_iff_AE AE_measure_pmf_iff set_pmf_eq not_le less_le pmf_nonneg)
hoelzl@59664
   389
hoelzl@59664
   390
lemma bind_pmf_cong:
hoelzl@59664
   391
  assumes "p = q"
hoelzl@59664
   392
  shows "(\<And>x. x \<in> set_pmf q \<Longrightarrow> f x = g x) \<Longrightarrow> bind_pmf p f = bind_pmf q g"
hoelzl@59664
   393
  unfolding `p = q`[symmetric] measure_pmf_inject[symmetric] bind_pmf.rep_eq
hoelzl@59664
   394
  by (auto simp: AE_measure_pmf_iff Pi_iff space_subprob_algebra subprob_space_measure_pmf
hoelzl@59664
   395
                 sets_bind[where N="count_space UNIV"] emeasure_bind[where N="count_space UNIV"]
hoelzl@59664
   396
           intro!: nn_integral_cong_AE measure_eqI)
hoelzl@59664
   397
hoelzl@59664
   398
lemma bind_pmf_cong_simp:
hoelzl@59664
   399
  "p = q \<Longrightarrow> (\<And>x. x \<in> set_pmf q =simp=> f x = g x) \<Longrightarrow> bind_pmf p f = bind_pmf q g"
hoelzl@59664
   400
  by (simp add: simp_implies_def cong: bind_pmf_cong)
hoelzl@59664
   401
hoelzl@59664
   402
lemma measure_pmf_bind: "measure_pmf (bind_pmf M f) = (measure_pmf M \<guillemotright>= (\<lambda>x. measure_pmf (f x)))"
hoelzl@59664
   403
  by transfer simp
hoelzl@59664
   404
hoelzl@59664
   405
lemma nn_integral_bind_pmf[simp]: "(\<integral>\<^sup>+x. f x \<partial>bind_pmf M N) = (\<integral>\<^sup>+x. \<integral>\<^sup>+y. f y \<partial>N x \<partial>M)"
hoelzl@59664
   406
  using measurable_measure_pmf[of N]
hoelzl@59664
   407
  unfolding measure_pmf_bind
hoelzl@59664
   408
  apply (subst (1 3) nn_integral_max_0[symmetric])
hoelzl@59664
   409
  apply (intro nn_integral_bind[where B="count_space UNIV"])
hoelzl@59664
   410
  apply auto
hoelzl@59664
   411
  done
hoelzl@59664
   412
hoelzl@59664
   413
lemma emeasure_bind_pmf[simp]: "emeasure (bind_pmf M N) X = (\<integral>\<^sup>+x. emeasure (N x) X \<partial>M)"
hoelzl@59664
   414
  using measurable_measure_pmf[of N]
hoelzl@59664
   415
  unfolding measure_pmf_bind
hoelzl@59664
   416
  by (subst emeasure_bind[where N="count_space UNIV"]) auto
lp15@59667
   417
hoelzl@59664
   418
lift_definition return_pmf :: "'a \<Rightarrow> 'a pmf" is "return (count_space UNIV)"
hoelzl@59664
   419
  by (auto intro!: prob_space_return simp: AE_return measure_return)
hoelzl@59664
   420
hoelzl@59664
   421
lemma bind_return_pmf: "bind_pmf (return_pmf x) f = f x"
hoelzl@59664
   422
  by transfer
hoelzl@59664
   423
     (auto intro!: prob_space_imp_subprob_space bind_return[where N="count_space UNIV"]
hoelzl@59664
   424
           simp: space_subprob_algebra)
hoelzl@59664
   425
hoelzl@59665
   426
lemma set_return_pmf[simp]: "set_pmf (return_pmf x) = {x}"
hoelzl@59664
   427
  by transfer (auto simp add: measure_return split: split_indicator)
hoelzl@59664
   428
hoelzl@59664
   429
lemma bind_return_pmf': "bind_pmf N return_pmf = N"
hoelzl@59664
   430
proof (transfer, clarify)
hoelzl@59664
   431
  fix N :: "'a measure" assume "sets N = UNIV" then show "N \<guillemotright>= return (count_space UNIV) = N"
hoelzl@59664
   432
    by (subst return_sets_cong[where N=N]) (simp_all add: bind_return')
hoelzl@59664
   433
qed
hoelzl@59664
   434
hoelzl@59664
   435
lemma bind_assoc_pmf: "bind_pmf (bind_pmf A B) C = bind_pmf A (\<lambda>x. bind_pmf (B x) C)"
hoelzl@59664
   436
  by transfer
hoelzl@59664
   437
     (auto intro!: bind_assoc[where N="count_space UNIV" and R="count_space UNIV"]
hoelzl@59664
   438
           simp: measurable_def space_subprob_algebra prob_space_imp_subprob_space)
hoelzl@59664
   439
hoelzl@59664
   440
definition "map_pmf f M = bind_pmf M (\<lambda>x. return_pmf (f x))"
hoelzl@59664
   441
hoelzl@59664
   442
lemma map_bind_pmf: "map_pmf f (bind_pmf M g) = bind_pmf M (\<lambda>x. map_pmf f (g x))"
hoelzl@59664
   443
  by (simp add: map_pmf_def bind_assoc_pmf)
hoelzl@59664
   444
hoelzl@59664
   445
lemma bind_map_pmf: "bind_pmf (map_pmf f M) g = bind_pmf M (\<lambda>x. g (f x))"
hoelzl@59664
   446
  by (simp add: map_pmf_def bind_assoc_pmf bind_return_pmf)
hoelzl@59664
   447
hoelzl@59664
   448
lemma map_pmf_transfer[transfer_rule]:
hoelzl@59664
   449
  "rel_fun op = (rel_fun cr_pmf cr_pmf) (\<lambda>f M. distr M (count_space UNIV) f) map_pmf"
hoelzl@59664
   450
proof -
hoelzl@59664
   451
  have "rel_fun op = (rel_fun pmf_as_measure.cr_pmf pmf_as_measure.cr_pmf)
hoelzl@59664
   452
     (\<lambda>f M. M \<guillemotright>= (return (count_space UNIV) o f)) map_pmf"
lp15@59667
   453
    unfolding map_pmf_def[abs_def] comp_def by transfer_prover
hoelzl@59664
   454
  then show ?thesis
hoelzl@59664
   455
    by (force simp: rel_fun_def cr_pmf_def bind_return_distr)
hoelzl@59664
   456
qed
hoelzl@59664
   457
hoelzl@59664
   458
lemma map_pmf_rep_eq:
hoelzl@59664
   459
  "measure_pmf (map_pmf f M) = distr (measure_pmf M) (count_space UNIV) f"
hoelzl@59664
   460
  unfolding map_pmf_def bind_pmf.rep_eq comp_def return_pmf.rep_eq
hoelzl@59664
   461
  using bind_return_distr[of M f "count_space UNIV"] by (simp add: comp_def)
hoelzl@59664
   462
hoelzl@58587
   463
lemma map_pmf_id[simp]: "map_pmf id = id"
hoelzl@58587
   464
  by (rule, transfer) (auto simp: emeasure_distr measurable_def intro!: measure_eqI)
hoelzl@58587
   465
hoelzl@59053
   466
lemma map_pmf_ident[simp]: "map_pmf (\<lambda>x. x) = (\<lambda>x. x)"
hoelzl@59053
   467
  using map_pmf_id unfolding id_def .
hoelzl@59053
   468
hoelzl@58587
   469
lemma map_pmf_compose: "map_pmf (f \<circ> g) = map_pmf f \<circ> map_pmf g"
lp15@59667
   470
  by (rule, transfer) (simp add: distr_distr[symmetric, where N="count_space UNIV"] measurable_def)
hoelzl@58587
   471
hoelzl@59000
   472
lemma map_pmf_comp: "map_pmf f (map_pmf g M) = map_pmf (\<lambda>x. f (g x)) M"
hoelzl@59000
   473
  using map_pmf_compose[of f g] by (simp add: comp_def)
hoelzl@59000
   474
hoelzl@59664
   475
lemma map_pmf_cong: "p = q \<Longrightarrow> (\<And>x. x \<in> set_pmf q \<Longrightarrow> f x = g x) \<Longrightarrow> map_pmf f p = map_pmf g q"
hoelzl@59664
   476
  unfolding map_pmf_def by (rule bind_pmf_cong) auto
hoelzl@59664
   477
hoelzl@59664
   478
lemma pmf_set_map: "set_pmf \<circ> map_pmf f = op ` f \<circ> set_pmf"
hoelzl@59665
   479
  by (auto simp add: comp_def fun_eq_iff map_pmf_def)
hoelzl@59664
   480
hoelzl@59665
   481
lemma set_map_pmf[simp]: "set_pmf (map_pmf f M) = f`set_pmf M"
hoelzl@59664
   482
  using pmf_set_map[of f] by (auto simp: comp_def fun_eq_iff)
hoelzl@58587
   483
hoelzl@59002
   484
lemma emeasure_map_pmf[simp]: "emeasure (map_pmf f M) X = emeasure M (f -` X)"
hoelzl@59664
   485
  unfolding map_pmf_rep_eq by (subst emeasure_distr) auto
hoelzl@59002
   486
hoelzl@59002
   487
lemma nn_integral_map_pmf[simp]: "(\<integral>\<^sup>+x. f x \<partial>map_pmf g M) = (\<integral>\<^sup>+x. f (g x) \<partial>M)"
hoelzl@59664
   488
  unfolding map_pmf_rep_eq by (intro nn_integral_distr) auto
hoelzl@59002
   489
Andreas@59023
   490
lemma ereal_pmf_map: "pmf (map_pmf f p) x = (\<integral>\<^sup>+ y. indicator (f -` {x}) y \<partial>measure_pmf p)"
hoelzl@59664
   491
proof (transfer fixing: f x)
Andreas@59023
   492
  fix p :: "'b measure"
Andreas@59023
   493
  presume "prob_space p"
Andreas@59023
   494
  then interpret prob_space p .
Andreas@59023
   495
  presume "sets p = UNIV"
Andreas@59023
   496
  then show "ereal (measure (distr p (count_space UNIV) f) {x}) = integral\<^sup>N p (indicator (f -` {x}))"
Andreas@59023
   497
    by(simp add: measure_distr measurable_def emeasure_eq_measure)
Andreas@59023
   498
qed simp_all
Andreas@59023
   499
Andreas@59023
   500
lemma nn_integral_pmf: "(\<integral>\<^sup>+ x. pmf p x \<partial>count_space A) = emeasure (measure_pmf p) A"
Andreas@59023
   501
proof -
Andreas@59023
   502
  have "(\<integral>\<^sup>+ x. pmf p x \<partial>count_space A) = (\<integral>\<^sup>+ x. pmf p x \<partial>count_space (A \<inter> set_pmf p))"
Andreas@59023
   503
    by(auto simp add: nn_integral_count_space_indicator indicator_def set_pmf_iff intro: nn_integral_cong)
Andreas@59023
   504
  also have "\<dots> = emeasure (measure_pmf p) (\<Union>x\<in>A \<inter> set_pmf p. {x})"
Andreas@59023
   505
    by(subst emeasure_UN_countable)(auto simp add: emeasure_pmf_single disjoint_family_on_def)
Andreas@59023
   506
  also have "\<dots> = emeasure (measure_pmf p) ((\<Union>x\<in>A \<inter> set_pmf p. {x}) \<union> {x. x \<in> A \<and> x \<notin> set_pmf p})"
Andreas@59023
   507
    by(rule emeasure_Un_null_set[symmetric])(auto intro: in_null_sets_measure_pmfI)
Andreas@59023
   508
  also have "\<dots> = emeasure (measure_pmf p) A"
Andreas@59023
   509
    by(auto intro: arg_cong2[where f=emeasure])
Andreas@59023
   510
  finally show ?thesis .
Andreas@59023
   511
qed
Andreas@59023
   512
hoelzl@59664
   513
lemma map_return_pmf: "map_pmf f (return_pmf x) = return_pmf (f x)"
hoelzl@59664
   514
  by transfer (simp add: distr_return)
hoelzl@59664
   515
hoelzl@59664
   516
lemma map_pmf_const[simp]: "map_pmf (\<lambda>_. c) M = return_pmf c"
hoelzl@59664
   517
  by transfer (auto simp: prob_space.distr_const)
hoelzl@59664
   518
hoelzl@59664
   519
lemma pmf_return: "pmf (return_pmf x) y = indicator {y} x"
hoelzl@59664
   520
  by transfer (simp add: measure_return)
hoelzl@59664
   521
hoelzl@59664
   522
lemma nn_integral_return_pmf[simp]: "0 \<le> f x \<Longrightarrow> (\<integral>\<^sup>+x. f x \<partial>return_pmf x) = f x"
hoelzl@59664
   523
  unfolding return_pmf.rep_eq by (intro nn_integral_return) auto
hoelzl@59664
   524
hoelzl@59664
   525
lemma emeasure_return_pmf[simp]: "emeasure (return_pmf x) X = indicator X x"
hoelzl@59664
   526
  unfolding return_pmf.rep_eq by (intro emeasure_return) auto
hoelzl@59664
   527
hoelzl@59664
   528
lemma return_pmf_inj[simp]: "return_pmf x = return_pmf y \<longleftrightarrow> x = y"
hoelzl@59664
   529
  by (metis insertI1 set_return_pmf singletonD)
hoelzl@59664
   530
hoelzl@59665
   531
lemma map_pmf_eq_return_pmf_iff:
hoelzl@59665
   532
  "map_pmf f p = return_pmf x \<longleftrightarrow> (\<forall>y \<in> set_pmf p. f y = x)"
hoelzl@59665
   533
proof
hoelzl@59665
   534
  assume "map_pmf f p = return_pmf x"
hoelzl@59665
   535
  then have "set_pmf (map_pmf f p) = set_pmf (return_pmf x)" by simp
hoelzl@59665
   536
  then show "\<forall>y \<in> set_pmf p. f y = x" by auto
hoelzl@59665
   537
next
hoelzl@59665
   538
  assume "\<forall>y \<in> set_pmf p. f y = x"
hoelzl@59665
   539
  then show "map_pmf f p = return_pmf x"
hoelzl@59665
   540
    unfolding map_pmf_const[symmetric, of _ p] by (intro map_pmf_cong) auto
hoelzl@59665
   541
qed
hoelzl@59665
   542
hoelzl@59664
   543
definition "pair_pmf A B = bind_pmf A (\<lambda>x. bind_pmf B (\<lambda>y. return_pmf (x, y)))"
hoelzl@59664
   544
hoelzl@59664
   545
lemma pmf_pair: "pmf (pair_pmf M N) (a, b) = pmf M a * pmf N b"
hoelzl@59664
   546
  unfolding pair_pmf_def pmf_bind pmf_return
hoelzl@59664
   547
  apply (subst integral_measure_pmf[where A="{b}"])
hoelzl@59664
   548
  apply (auto simp: indicator_eq_0_iff)
hoelzl@59664
   549
  apply (subst integral_measure_pmf[where A="{a}"])
hoelzl@59664
   550
  apply (auto simp: indicator_eq_0_iff setsum_nonneg_eq_0_iff pmf_nonneg)
hoelzl@59664
   551
  done
hoelzl@59664
   552
hoelzl@59665
   553
lemma set_pair_pmf[simp]: "set_pmf (pair_pmf A B) = set_pmf A \<times> set_pmf B"
hoelzl@59664
   554
  unfolding pair_pmf_def set_bind_pmf set_return_pmf by auto
hoelzl@59664
   555
hoelzl@59664
   556
lemma measure_pmf_in_subprob_space[measurable (raw)]:
hoelzl@59664
   557
  "measure_pmf M \<in> space (subprob_algebra (count_space UNIV))"
hoelzl@59664
   558
  by (simp add: space_subprob_algebra) intro_locales
hoelzl@59664
   559
hoelzl@59664
   560
lemma nn_integral_pair_pmf': "(\<integral>\<^sup>+x. f x \<partial>pair_pmf A B) = (\<integral>\<^sup>+a. \<integral>\<^sup>+b. f (a, b) \<partial>B \<partial>A)"
hoelzl@59664
   561
proof -
hoelzl@59664
   562
  have "(\<integral>\<^sup>+x. f x \<partial>pair_pmf A B) = (\<integral>\<^sup>+x. max 0 (f x) * indicator (A \<times> B) x \<partial>pair_pmf A B)"
hoelzl@59664
   563
    by (subst nn_integral_max_0[symmetric])
hoelzl@59665
   564
       (auto simp: AE_measure_pmf_iff intro!: nn_integral_cong_AE)
hoelzl@59664
   565
  also have "\<dots> = (\<integral>\<^sup>+a. \<integral>\<^sup>+b. max 0 (f (a, b)) * indicator (A \<times> B) (a, b) \<partial>B \<partial>A)"
hoelzl@59664
   566
    by (simp add: pair_pmf_def)
hoelzl@59664
   567
  also have "\<dots> = (\<integral>\<^sup>+a. \<integral>\<^sup>+b. max 0 (f (a, b)) \<partial>B \<partial>A)"
hoelzl@59664
   568
    by (auto intro!: nn_integral_cong_AE simp: AE_measure_pmf_iff)
hoelzl@59664
   569
  finally show ?thesis
hoelzl@59664
   570
    unfolding nn_integral_max_0 .
hoelzl@59664
   571
qed
hoelzl@59664
   572
hoelzl@59664
   573
lemma bind_pair_pmf:
hoelzl@59664
   574
  assumes M[measurable]: "M \<in> measurable (count_space UNIV \<Otimes>\<^sub>M count_space UNIV) (subprob_algebra N)"
hoelzl@59664
   575
  shows "measure_pmf (pair_pmf A B) \<guillemotright>= M = (measure_pmf A \<guillemotright>= (\<lambda>x. measure_pmf B \<guillemotright>= (\<lambda>y. M (x, y))))"
hoelzl@59664
   576
    (is "?L = ?R")
hoelzl@59664
   577
proof (rule measure_eqI)
hoelzl@59664
   578
  have M'[measurable]: "M \<in> measurable (pair_pmf A B) (subprob_algebra N)"
hoelzl@59664
   579
    using M[THEN measurable_space] by (simp_all add: space_pair_measure)
hoelzl@59664
   580
hoelzl@59664
   581
  note measurable_bind[where N="count_space UNIV", measurable]
hoelzl@59664
   582
  note measure_pmf_in_subprob_space[simp]
hoelzl@59664
   583
hoelzl@59664
   584
  have sets_eq_N: "sets ?L = N"
hoelzl@59664
   585
    by (subst sets_bind[OF sets_kernel[OF M']]) auto
hoelzl@59664
   586
  show "sets ?L = sets ?R"
hoelzl@59664
   587
    using measurable_space[OF M]
hoelzl@59664
   588
    by (simp add: sets_eq_N space_pair_measure space_subprob_algebra)
hoelzl@59664
   589
  fix X assume "X \<in> sets ?L"
hoelzl@59664
   590
  then have X[measurable]: "X \<in> sets N"
hoelzl@59664
   591
    unfolding sets_eq_N .
hoelzl@59664
   592
  then show "emeasure ?L X = emeasure ?R X"
hoelzl@59664
   593
    apply (simp add: emeasure_bind[OF _ M' X])
hoelzl@59664
   594
    apply (simp add: nn_integral_bind[where B="count_space UNIV"] pair_pmf_def measure_pmf_bind[of A]
hoelzl@59665
   595
                     nn_integral_measure_pmf_finite emeasure_nonneg pmf_return one_ereal_def[symmetric])
hoelzl@59664
   596
    apply (subst emeasure_bind[OF _ _ X])
hoelzl@59664
   597
    apply measurable
hoelzl@59664
   598
    apply (subst emeasure_bind[OF _ _ X])
hoelzl@59664
   599
    apply measurable
hoelzl@59664
   600
    done
hoelzl@59664
   601
qed
hoelzl@59664
   602
hoelzl@59664
   603
lemma map_fst_pair_pmf: "map_pmf fst (pair_pmf A B) = A"
hoelzl@59664
   604
  by (simp add: pair_pmf_def map_pmf_def bind_assoc_pmf bind_return_pmf bind_return_pmf')
hoelzl@59664
   605
hoelzl@59664
   606
lemma map_snd_pair_pmf: "map_pmf snd (pair_pmf A B) = B"
hoelzl@59664
   607
  by (simp add: pair_pmf_def map_pmf_def bind_assoc_pmf bind_return_pmf bind_return_pmf')
hoelzl@59664
   608
hoelzl@59664
   609
lemma nn_integral_pmf':
hoelzl@59664
   610
  "inj_on f A \<Longrightarrow> (\<integral>\<^sup>+x. pmf p (f x) \<partial>count_space A) = emeasure p (f ` A)"
hoelzl@59664
   611
  by (subst nn_integral_bij_count_space[where g=f and B="f`A"])
hoelzl@59664
   612
     (auto simp: bij_betw_def nn_integral_pmf)
hoelzl@59664
   613
hoelzl@59664
   614
lemma pmf_le_0_iff[simp]: "pmf M p \<le> 0 \<longleftrightarrow> pmf M p = 0"
hoelzl@59664
   615
  using pmf_nonneg[of M p] by simp
hoelzl@59664
   616
hoelzl@59664
   617
lemma min_pmf_0[simp]: "min (pmf M p) 0 = 0" "min 0 (pmf M p) = 0"
hoelzl@59664
   618
  using pmf_nonneg[of M p] by simp_all
hoelzl@59664
   619
hoelzl@59664
   620
lemma pmf_eq_0_set_pmf: "pmf M p = 0 \<longleftrightarrow> p \<notin> set_pmf M"
hoelzl@59664
   621
  unfolding set_pmf_iff by simp
hoelzl@59664
   622
hoelzl@59664
   623
lemma pmf_map_inj: "inj_on f (set_pmf M) \<Longrightarrow> x \<in> set_pmf M \<Longrightarrow> pmf (map_pmf f M) (f x) = pmf M x"
hoelzl@59664
   624
  by (auto simp: pmf.rep_eq map_pmf_rep_eq measure_distr AE_measure_pmf_iff inj_onD
hoelzl@59664
   625
           intro!: measure_pmf.finite_measure_eq_AE)
hoelzl@59664
   626
hoelzl@59664
   627
subsection \<open> PMFs as function \<close>
hoelzl@59000
   628
hoelzl@58587
   629
context
hoelzl@58587
   630
  fixes f :: "'a \<Rightarrow> real"
hoelzl@58587
   631
  assumes nonneg: "\<And>x. 0 \<le> f x"
hoelzl@58587
   632
  assumes prob: "(\<integral>\<^sup>+x. f x \<partial>count_space UNIV) = 1"
hoelzl@58587
   633
begin
hoelzl@58587
   634
hoelzl@58587
   635
lift_definition embed_pmf :: "'a pmf" is "density (count_space UNIV) (ereal \<circ> f)"
hoelzl@58587
   636
proof (intro conjI)
hoelzl@58587
   637
  have *[simp]: "\<And>x y. ereal (f y) * indicator {x} y = ereal (f x) * indicator {x} y"
hoelzl@58587
   638
    by (simp split: split_indicator)
hoelzl@58587
   639
  show "AE x in density (count_space UNIV) (ereal \<circ> f).
hoelzl@58587
   640
    measure (density (count_space UNIV) (ereal \<circ> f)) {x} \<noteq> 0"
hoelzl@59092
   641
    by (simp add: AE_density nonneg measure_def emeasure_density max_def)
hoelzl@58587
   642
  show "prob_space (density (count_space UNIV) (ereal \<circ> f))"
hoelzl@58587
   643
    by default (simp add: emeasure_density prob)
hoelzl@58587
   644
qed simp
hoelzl@58587
   645
hoelzl@58587
   646
lemma pmf_embed_pmf: "pmf embed_pmf x = f x"
hoelzl@58587
   647
proof transfer
hoelzl@58587
   648
  have *[simp]: "\<And>x y. ereal (f y) * indicator {x} y = ereal (f x) * indicator {x} y"
hoelzl@58587
   649
    by (simp split: split_indicator)
hoelzl@58587
   650
  fix x show "measure (density (count_space UNIV) (ereal \<circ> f)) {x} = f x"
hoelzl@59092
   651
    by transfer (simp add: measure_def emeasure_density nonneg max_def)
hoelzl@58587
   652
qed
hoelzl@58587
   653
hoelzl@58587
   654
end
hoelzl@58587
   655
hoelzl@58587
   656
lemma embed_pmf_transfer:
hoelzl@58730
   657
  "rel_fun (eq_onp (\<lambda>f. (\<forall>x. 0 \<le> f x) \<and> (\<integral>\<^sup>+x. ereal (f x) \<partial>count_space UNIV) = 1)) pmf_as_measure.cr_pmf (\<lambda>f. density (count_space UNIV) (ereal \<circ> f)) embed_pmf"
hoelzl@58587
   658
  by (auto simp: rel_fun_def eq_onp_def embed_pmf.transfer)
hoelzl@58587
   659
hoelzl@59000
   660
lemma measure_pmf_eq_density: "measure_pmf p = density (count_space UNIV) (pmf p)"
hoelzl@59000
   661
proof (transfer, elim conjE)
hoelzl@59000
   662
  fix M :: "'a measure" assume [simp]: "sets M = UNIV" and ae: "AE x in M. measure M {x} \<noteq> 0"
hoelzl@59000
   663
  assume "prob_space M" then interpret prob_space M .
hoelzl@59000
   664
  show "M = density (count_space UNIV) (\<lambda>x. ereal (measure M {x}))"
hoelzl@59000
   665
  proof (rule measure_eqI)
hoelzl@59000
   666
    fix A :: "'a set"
lp15@59667
   667
    have "(\<integral>\<^sup>+ x. ereal (measure M {x}) * indicator A x \<partial>count_space UNIV) =
hoelzl@59000
   668
      (\<integral>\<^sup>+ x. emeasure M {x} * indicator (A \<inter> {x. measure M {x} \<noteq> 0}) x \<partial>count_space UNIV)"
hoelzl@59000
   669
      by (auto intro!: nn_integral_cong simp: emeasure_eq_measure split: split_indicator)
hoelzl@59000
   670
    also have "\<dots> = (\<integral>\<^sup>+ x. emeasure M {x} \<partial>count_space (A \<inter> {x. measure M {x} \<noteq> 0}))"
hoelzl@59000
   671
      by (subst nn_integral_restrict_space[symmetric]) (auto simp: restrict_count_space)
hoelzl@59000
   672
    also have "\<dots> = emeasure M (\<Union>x\<in>(A \<inter> {x. measure M {x} \<noteq> 0}). {x})"
hoelzl@59000
   673
      by (intro emeasure_UN_countable[symmetric] countable_Int2 countable_support)
hoelzl@59000
   674
         (auto simp: disjoint_family_on_def)
hoelzl@59000
   675
    also have "\<dots> = emeasure M A"
hoelzl@59000
   676
      using ae by (intro emeasure_eq_AE) auto
hoelzl@59000
   677
    finally show " emeasure M A = emeasure (density (count_space UNIV) (\<lambda>x. ereal (measure M {x}))) A"
hoelzl@59000
   678
      using emeasure_space_1 by (simp add: emeasure_density)
hoelzl@59000
   679
  qed simp
hoelzl@59000
   680
qed
hoelzl@59000
   681
hoelzl@58587
   682
lemma td_pmf_embed_pmf:
hoelzl@58587
   683
  "type_definition pmf embed_pmf {f::'a \<Rightarrow> real. (\<forall>x. 0 \<le> f x) \<and> (\<integral>\<^sup>+x. ereal (f x) \<partial>count_space UNIV) = 1}"
hoelzl@58587
   684
  unfolding type_definition_def
hoelzl@58587
   685
proof safe
hoelzl@58587
   686
  fix p :: "'a pmf"
hoelzl@58587
   687
  have "(\<integral>\<^sup>+ x. 1 \<partial>measure_pmf p) = 1"
hoelzl@58587
   688
    using measure_pmf.emeasure_space_1[of p] by simp
hoelzl@58587
   689
  then show *: "(\<integral>\<^sup>+ x. ereal (pmf p x) \<partial>count_space UNIV) = 1"
hoelzl@58587
   690
    by (simp add: measure_pmf_eq_density nn_integral_density pmf_nonneg del: nn_integral_const)
hoelzl@58587
   691
hoelzl@58587
   692
  show "embed_pmf (pmf p) = p"
hoelzl@58587
   693
    by (intro measure_pmf_inject[THEN iffD1])
hoelzl@58587
   694
       (simp add: * embed_pmf.rep_eq pmf_nonneg measure_pmf_eq_density[of p] comp_def)
hoelzl@58587
   695
next
hoelzl@58587
   696
  fix f :: "'a \<Rightarrow> real" assume "\<forall>x. 0 \<le> f x" "(\<integral>\<^sup>+x. f x \<partial>count_space UNIV) = 1"
hoelzl@58587
   697
  then show "pmf (embed_pmf f) = f"
hoelzl@58587
   698
    by (auto intro!: pmf_embed_pmf)
hoelzl@58587
   699
qed (rule pmf_nonneg)
hoelzl@58587
   700
hoelzl@58587
   701
end
hoelzl@58587
   702
hoelzl@58587
   703
locale pmf_as_function
hoelzl@58587
   704
begin
hoelzl@58587
   705
hoelzl@58587
   706
setup_lifting td_pmf_embed_pmf
hoelzl@58587
   707
lp15@59667
   708
lemma set_pmf_transfer[transfer_rule]:
hoelzl@58730
   709
  assumes "bi_total A"
lp15@59667
   710
  shows "rel_fun (pcr_pmf A) (rel_set A) (\<lambda>f. {x. f x \<noteq> 0}) set_pmf"
hoelzl@58730
   711
  using `bi_total A`
hoelzl@58730
   712
  by (auto simp: pcr_pmf_def cr_pmf_def rel_fun_def rel_set_def bi_total_def Bex_def set_pmf_iff)
hoelzl@58730
   713
     metis+
hoelzl@58730
   714
hoelzl@59000
   715
end
hoelzl@59000
   716
hoelzl@59000
   717
context
hoelzl@59000
   718
begin
hoelzl@59000
   719
hoelzl@59000
   720
interpretation pmf_as_function .
hoelzl@59000
   721
hoelzl@59000
   722
lemma pmf_eqI: "(\<And>i. pmf M i = pmf N i) \<Longrightarrow> M = N"
hoelzl@59000
   723
  by transfer auto
hoelzl@59000
   724
hoelzl@59000
   725
lemma pmf_eq_iff: "M = N \<longleftrightarrow> (\<forall>i. pmf M i = pmf N i)"
hoelzl@59000
   726
  by (auto intro: pmf_eqI)
hoelzl@59000
   727
hoelzl@59664
   728
lemma bind_commute_pmf: "bind_pmf A (\<lambda>x. bind_pmf B (C x)) = bind_pmf B (\<lambda>y. bind_pmf A (\<lambda>x. C x y))"
hoelzl@59664
   729
  unfolding pmf_eq_iff pmf_bind
hoelzl@59664
   730
proof
hoelzl@59664
   731
  fix i
hoelzl@59664
   732
  interpret B: prob_space "restrict_space B B"
hoelzl@59664
   733
    by (intro prob_space_restrict_space measure_pmf.emeasure_eq_1_AE)
hoelzl@59664
   734
       (auto simp: AE_measure_pmf_iff)
hoelzl@59664
   735
  interpret A: prob_space "restrict_space A A"
hoelzl@59664
   736
    by (intro prob_space_restrict_space measure_pmf.emeasure_eq_1_AE)
hoelzl@59664
   737
       (auto simp: AE_measure_pmf_iff)
hoelzl@59664
   738
hoelzl@59664
   739
  interpret AB: pair_prob_space "restrict_space A A" "restrict_space B B"
hoelzl@59664
   740
    by unfold_locales
hoelzl@59664
   741
hoelzl@59664
   742
  have "(\<integral> x. \<integral> y. pmf (C x y) i \<partial>B \<partial>A) = (\<integral> x. (\<integral> y. pmf (C x y) i \<partial>restrict_space B B) \<partial>A)"
hoelzl@59664
   743
    by (rule integral_cong) (auto intro!: integral_pmf_restrict)
hoelzl@59664
   744
  also have "\<dots> = (\<integral> x. (\<integral> y. pmf (C x y) i \<partial>restrict_space B B) \<partial>restrict_space A A)"
hoelzl@59664
   745
    by (intro integral_pmf_restrict B.borel_measurable_lebesgue_integral measurable_pair_restrict_pmf2
hoelzl@59664
   746
              countable_set_pmf borel_measurable_count_space)
hoelzl@59664
   747
  also have "\<dots> = (\<integral> y. \<integral> x. pmf (C x y) i \<partial>restrict_space A A \<partial>restrict_space B B)"
hoelzl@59664
   748
    by (rule AB.Fubini_integral[symmetric])
hoelzl@59664
   749
       (auto intro!: AB.integrable_const_bound[where B=1] measurable_pair_restrict_pmf2
hoelzl@59664
   750
             simp: pmf_nonneg pmf_le_1 measurable_restrict_space1)
hoelzl@59664
   751
  also have "\<dots> = (\<integral> y. \<integral> x. pmf (C x y) i \<partial>restrict_space A A \<partial>B)"
hoelzl@59664
   752
    by (intro integral_pmf_restrict[symmetric] A.borel_measurable_lebesgue_integral measurable_pair_restrict_pmf2
hoelzl@59664
   753
              countable_set_pmf borel_measurable_count_space)
hoelzl@59664
   754
  also have "\<dots> = (\<integral> y. \<integral> x. pmf (C x y) i \<partial>A \<partial>B)"
hoelzl@59664
   755
    by (rule integral_cong) (auto intro!: integral_pmf_restrict[symmetric])
hoelzl@59664
   756
  finally show "(\<integral> x. \<integral> y. pmf (C x y) i \<partial>B \<partial>A) = (\<integral> y. \<integral> x. pmf (C x y) i \<partial>A \<partial>B)" .
hoelzl@59664
   757
qed
hoelzl@59664
   758
hoelzl@59664
   759
lemma pair_map_pmf1: "pair_pmf (map_pmf f A) B = map_pmf (apfst f) (pair_pmf A B)"
hoelzl@59664
   760
proof (safe intro!: pmf_eqI)
hoelzl@59664
   761
  fix a :: "'a" and b :: "'b"
hoelzl@59664
   762
  have [simp]: "\<And>c d. indicator (apfst f -` {(a, b)}) (c, d) = indicator (f -` {a}) c * (indicator {b} d::ereal)"
hoelzl@59664
   763
    by (auto split: split_indicator)
hoelzl@59664
   764
hoelzl@59664
   765
  have "ereal (pmf (pair_pmf (map_pmf f A) B) (a, b)) =
hoelzl@59664
   766
         ereal (pmf (map_pmf (apfst f) (pair_pmf A B)) (a, b))"
hoelzl@59664
   767
    unfolding pmf_pair ereal_pmf_map
hoelzl@59664
   768
    by (simp add: nn_integral_pair_pmf' max_def emeasure_pmf_single nn_integral_multc pmf_nonneg
hoelzl@59664
   769
                  emeasure_map_pmf[symmetric] del: emeasure_map_pmf)
hoelzl@59664
   770
  then show "pmf (pair_pmf (map_pmf f A) B) (a, b) = pmf (map_pmf (apfst f) (pair_pmf A B)) (a, b)"
hoelzl@59664
   771
    by simp
hoelzl@59664
   772
qed
hoelzl@59664
   773
hoelzl@59664
   774
lemma pair_map_pmf2: "pair_pmf A (map_pmf f B) = map_pmf (apsnd f) (pair_pmf A B)"
hoelzl@59664
   775
proof (safe intro!: pmf_eqI)
hoelzl@59664
   776
  fix a :: "'a" and b :: "'b"
hoelzl@59664
   777
  have [simp]: "\<And>c d. indicator (apsnd f -` {(a, b)}) (c, d) = indicator {a} c * (indicator (f -` {b}) d::ereal)"
hoelzl@59664
   778
    by (auto split: split_indicator)
hoelzl@59664
   779
hoelzl@59664
   780
  have "ereal (pmf (pair_pmf A (map_pmf f B)) (a, b)) =
hoelzl@59664
   781
         ereal (pmf (map_pmf (apsnd f) (pair_pmf A B)) (a, b))"
hoelzl@59664
   782
    unfolding pmf_pair ereal_pmf_map
hoelzl@59664
   783
    by (simp add: nn_integral_pair_pmf' max_def emeasure_pmf_single nn_integral_cmult nn_integral_multc pmf_nonneg
hoelzl@59664
   784
                  emeasure_map_pmf[symmetric] del: emeasure_map_pmf)
hoelzl@59664
   785
  then show "pmf (pair_pmf A (map_pmf f B)) (a, b) = pmf (map_pmf (apsnd f) (pair_pmf A B)) (a, b)"
hoelzl@59664
   786
    by simp
hoelzl@59664
   787
qed
hoelzl@59664
   788
hoelzl@59664
   789
lemma map_pair: "map_pmf (\<lambda>(a, b). (f a, g b)) (pair_pmf A B) = pair_pmf (map_pmf f A) (map_pmf g B)"
hoelzl@59664
   790
  by (simp add: pair_map_pmf2 pair_map_pmf1 map_pmf_comp split_beta')
hoelzl@59664
   791
hoelzl@59000
   792
end
hoelzl@59000
   793
hoelzl@59664
   794
subsection \<open> Conditional Probabilities \<close>
hoelzl@59664
   795
hoelzl@59670
   796
lemma measure_pmf_zero_iff: "measure (measure_pmf p) s = 0 \<longleftrightarrow> set_pmf p \<inter> s = {}"
hoelzl@59670
   797
  by (subst measure_pmf.prob_eq_0) (auto simp: AE_measure_pmf_iff)
hoelzl@59670
   798
hoelzl@59664
   799
context
hoelzl@59664
   800
  fixes p :: "'a pmf" and s :: "'a set"
hoelzl@59664
   801
  assumes not_empty: "set_pmf p \<inter> s \<noteq> {}"
hoelzl@59664
   802
begin
hoelzl@59664
   803
hoelzl@59664
   804
interpretation pmf_as_measure .
hoelzl@59664
   805
hoelzl@59664
   806
lemma emeasure_measure_pmf_not_zero: "emeasure (measure_pmf p) s \<noteq> 0"
hoelzl@59664
   807
proof
hoelzl@59664
   808
  assume "emeasure (measure_pmf p) s = 0"
hoelzl@59664
   809
  then have "AE x in measure_pmf p. x \<notin> s"
hoelzl@59664
   810
    by (rule AE_I[rotated]) auto
hoelzl@59664
   811
  with not_empty show False
hoelzl@59664
   812
    by (auto simp: AE_measure_pmf_iff)
hoelzl@59664
   813
qed
hoelzl@59664
   814
hoelzl@59664
   815
lemma measure_measure_pmf_not_zero: "measure (measure_pmf p) s \<noteq> 0"
hoelzl@59664
   816
  using emeasure_measure_pmf_not_zero unfolding measure_pmf.emeasure_eq_measure by simp
hoelzl@59664
   817
hoelzl@59664
   818
lift_definition cond_pmf :: "'a pmf" is
hoelzl@59664
   819
  "uniform_measure (measure_pmf p) s"
hoelzl@59664
   820
proof (intro conjI)
hoelzl@59664
   821
  show "prob_space (uniform_measure (measure_pmf p) s)"
hoelzl@59664
   822
    by (intro prob_space_uniform_measure) (auto simp: emeasure_measure_pmf_not_zero)
hoelzl@59664
   823
  show "AE x in uniform_measure (measure_pmf p) s. measure (uniform_measure (measure_pmf p) s) {x} \<noteq> 0"
hoelzl@59664
   824
    by (simp add: emeasure_measure_pmf_not_zero measure_measure_pmf_not_zero AE_uniform_measure
hoelzl@59664
   825
                  AE_measure_pmf_iff set_pmf.rep_eq)
hoelzl@59664
   826
qed simp
hoelzl@59664
   827
hoelzl@59664
   828
lemma pmf_cond: "pmf cond_pmf x = (if x \<in> s then pmf p x / measure p s else 0)"
hoelzl@59664
   829
  by transfer (simp add: emeasure_measure_pmf_not_zero pmf.rep_eq)
hoelzl@59664
   830
hoelzl@59665
   831
lemma set_cond_pmf[simp]: "set_pmf cond_pmf = set_pmf p \<inter> s"
hoelzl@59664
   832
  by (auto simp add: set_pmf_iff pmf_cond measure_measure_pmf_not_zero split: split_if_asm)
hoelzl@59664
   833
hoelzl@59664
   834
end
hoelzl@59664
   835
hoelzl@59664
   836
lemma cond_map_pmf:
hoelzl@59664
   837
  assumes "set_pmf p \<inter> f -` s \<noteq> {}"
hoelzl@59664
   838
  shows "cond_pmf (map_pmf f p) s = map_pmf f (cond_pmf p (f -` s))"
hoelzl@59664
   839
proof -
hoelzl@59664
   840
  have *: "set_pmf (map_pmf f p) \<inter> s \<noteq> {}"
hoelzl@59665
   841
    using assms by auto
hoelzl@59664
   842
  { fix x
hoelzl@59664
   843
    have "ereal (pmf (map_pmf f (cond_pmf p (f -` s))) x) =
hoelzl@59664
   844
      emeasure p (f -` s \<inter> f -` {x}) / emeasure p (f -` s)"
hoelzl@59664
   845
      unfolding ereal_pmf_map cond_pmf.rep_eq[OF assms] by (simp add: nn_integral_uniform_measure)
hoelzl@59664
   846
    also have "f -` s \<inter> f -` {x} = (if x \<in> s then f -` {x} else {})"
hoelzl@59664
   847
      by auto
hoelzl@59664
   848
    also have "emeasure p (if x \<in> s then f -` {x} else {}) / emeasure p (f -` s) =
hoelzl@59664
   849
      ereal (pmf (cond_pmf (map_pmf f p) s) x)"
hoelzl@59664
   850
      using measure_measure_pmf_not_zero[OF *]
hoelzl@59664
   851
      by (simp add: pmf_cond[OF *] ereal_divide' ereal_pmf_map measure_pmf.emeasure_eq_measure[symmetric]
hoelzl@59664
   852
               del: ereal_divide)
hoelzl@59664
   853
    finally have "ereal (pmf (cond_pmf (map_pmf f p) s) x) = ereal (pmf (map_pmf f (cond_pmf p (f -` s))) x)"
hoelzl@59664
   854
      by simp }
hoelzl@59664
   855
  then show ?thesis
hoelzl@59664
   856
    by (intro pmf_eqI) simp
hoelzl@59664
   857
qed
hoelzl@59664
   858
hoelzl@59664
   859
lemma bind_cond_pmf_cancel:
hoelzl@59670
   860
  assumes [simp]: "\<And>x. x \<in> set_pmf p \<Longrightarrow> set_pmf q \<inter> {y. R x y} \<noteq> {}"
hoelzl@59670
   861
  assumes [simp]: "\<And>y. y \<in> set_pmf q \<Longrightarrow> set_pmf p \<inter> {x. R x y} \<noteq> {}"
hoelzl@59670
   862
  assumes [simp]: "\<And>x y. x \<in> set_pmf p \<Longrightarrow> y \<in> set_pmf q \<Longrightarrow> R x y \<Longrightarrow> measure q {y. R x y} = measure p {x. R x y}"
hoelzl@59670
   863
  shows "bind_pmf p (\<lambda>x. cond_pmf q {y. R x y}) = q"
hoelzl@59664
   864
proof (rule pmf_eqI)
hoelzl@59670
   865
  fix i
hoelzl@59670
   866
  have "ereal (pmf (bind_pmf p (\<lambda>x. cond_pmf q {y. R x y})) i) =
hoelzl@59670
   867
    (\<integral>\<^sup>+x. ereal (pmf q i / measure p {x. R x i}) * ereal (indicator {x. R x i} x) \<partial>p)"
hoelzl@59670
   868
    by (auto simp add: ereal_pmf_bind AE_measure_pmf_iff pmf_cond pmf_eq_0_set_pmf intro!: nn_integral_cong_AE)
hoelzl@59670
   869
  also have "\<dots> = (pmf q i * measure p {x. R x i}) / measure p {x. R x i}"
hoelzl@59670
   870
    by (simp add: pmf_nonneg measure_nonneg zero_ereal_def[symmetric] ereal_indicator
hoelzl@59670
   871
                  nn_integral_cmult measure_pmf.emeasure_eq_measure)
hoelzl@59670
   872
  also have "\<dots> = pmf q i"
hoelzl@59670
   873
    by (cases "pmf q i = 0") (simp_all add: pmf_eq_0_set_pmf measure_measure_pmf_not_zero)
hoelzl@59670
   874
  finally show "pmf (bind_pmf p (\<lambda>x. cond_pmf q {y. R x y})) i = pmf q i"
hoelzl@59670
   875
    by simp
hoelzl@59664
   876
qed
hoelzl@59664
   877
hoelzl@59664
   878
subsection \<open> Relator \<close>
hoelzl@59664
   879
hoelzl@59664
   880
inductive rel_pmf :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a pmf \<Rightarrow> 'b pmf \<Rightarrow> bool"
hoelzl@59664
   881
for R p q
hoelzl@59664
   882
where
lp15@59667
   883
  "\<lbrakk> \<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> R x y;
hoelzl@59664
   884
     map_pmf fst pq = p; map_pmf snd pq = q \<rbrakk>
hoelzl@59664
   885
  \<Longrightarrow> rel_pmf R p q"
hoelzl@59664
   886
hoelzl@59681
   887
lemma rel_pmfI:
hoelzl@59681
   888
  assumes R: "rel_set R (set_pmf p) (set_pmf q)"
hoelzl@59681
   889
  assumes eq: "\<And>x y. x \<in> set_pmf p \<Longrightarrow> y \<in> set_pmf q \<Longrightarrow> R x y \<Longrightarrow>
hoelzl@59681
   890
    measure p {x. R x y} = measure q {y. R x y}"
hoelzl@59681
   891
  shows "rel_pmf R p q"
hoelzl@59681
   892
proof
hoelzl@59681
   893
  let ?pq = "bind_pmf p (\<lambda>x. bind_pmf (cond_pmf q {y. R x y}) (\<lambda>y. return_pmf (x, y)))"
hoelzl@59681
   894
  have "\<And>x. x \<in> set_pmf p \<Longrightarrow> set_pmf q \<inter> {y. R x y} \<noteq> {}"
hoelzl@59681
   895
    using R by (auto simp: rel_set_def)
hoelzl@59681
   896
  then show "\<And>x y. (x, y) \<in> set_pmf ?pq \<Longrightarrow> R x y"
hoelzl@59681
   897
    by auto
hoelzl@59681
   898
  show "map_pmf fst ?pq = p"
hoelzl@59681
   899
    by (simp add: map_bind_pmf map_return_pmf bind_return_pmf')
hoelzl@59681
   900
hoelzl@59681
   901
  show "map_pmf snd ?pq = q"
hoelzl@59681
   902
    using R eq
hoelzl@59681
   903
    apply (simp add: bind_cond_pmf_cancel map_bind_pmf map_return_pmf bind_return_pmf')
hoelzl@59681
   904
    apply (rule bind_cond_pmf_cancel)
hoelzl@59681
   905
    apply (auto simp: rel_set_def)
hoelzl@59681
   906
    done
hoelzl@59681
   907
qed
hoelzl@59681
   908
hoelzl@59681
   909
lemma rel_pmf_imp_rel_set: "rel_pmf R p q \<Longrightarrow> rel_set R (set_pmf p) (set_pmf q)"
hoelzl@59681
   910
  by (force simp add: rel_pmf.simps rel_set_def)
hoelzl@59681
   911
hoelzl@59681
   912
lemma rel_pmfD_measure:
hoelzl@59681
   913
  assumes rel_R: "rel_pmf R p q" and R: "\<And>a b. R a b \<Longrightarrow> R a y \<longleftrightarrow> R x b"
hoelzl@59681
   914
  assumes "x \<in> set_pmf p" "y \<in> set_pmf q"
hoelzl@59681
   915
  shows "measure p {x. R x y} = measure q {y. R x y}"
hoelzl@59681
   916
proof -
hoelzl@59681
   917
  from rel_R obtain pq where pq: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> R x y"
hoelzl@59681
   918
    and eq: "p = map_pmf fst pq" "q = map_pmf snd pq"
hoelzl@59681
   919
    by (auto elim: rel_pmf.cases)
hoelzl@59681
   920
  have "measure p {x. R x y} = measure pq {x. R (fst x) y}"
hoelzl@59681
   921
    by (simp add: eq map_pmf_rep_eq measure_distr)
hoelzl@59681
   922
  also have "\<dots> = measure pq {y. R x (snd y)}"
hoelzl@59681
   923
    by (intro measure_pmf.finite_measure_eq_AE)
hoelzl@59681
   924
       (auto simp: AE_measure_pmf_iff R dest!: pq)
hoelzl@59681
   925
  also have "\<dots> = measure q {y. R x y}"
hoelzl@59681
   926
    by (simp add: eq map_pmf_rep_eq measure_distr)
hoelzl@59681
   927
  finally show "measure p {x. R x y} = measure q {y. R x y}" .
hoelzl@59681
   928
qed
hoelzl@59681
   929
hoelzl@59681
   930
lemma rel_pmf_iff_measure:
hoelzl@59681
   931
  assumes "symp R" "transp R"
hoelzl@59681
   932
  shows "rel_pmf R p q \<longleftrightarrow>
hoelzl@59681
   933
    rel_set R (set_pmf p) (set_pmf q) \<and>
hoelzl@59681
   934
    (\<forall>x\<in>set_pmf p. \<forall>y\<in>set_pmf q. R x y \<longrightarrow> measure p {x. R x y} = measure q {y. R x y})"
hoelzl@59681
   935
  by (safe intro!: rel_pmf_imp_rel_set rel_pmfI)
hoelzl@59681
   936
     (auto intro!: rel_pmfD_measure dest: sympD[OF \<open>symp R\<close>] transpD[OF \<open>transp R\<close>])
hoelzl@59681
   937
hoelzl@59681
   938
lemma quotient_rel_set_disjoint:
hoelzl@59681
   939
  "equivp R \<Longrightarrow> C \<in> UNIV // {(x, y). R x y} \<Longrightarrow> rel_set R A B \<Longrightarrow> A \<inter> C = {} \<longleftrightarrow> B \<inter> C = {}"
hoelzl@59681
   940
  using in_quotient_imp_closed[of UNIV "{(x, y). R x y}" C] 
hoelzl@59681
   941
  by (auto 0 0 simp: equivp_equiv rel_set_def set_eq_iff elim: equivpE)
hoelzl@59681
   942
     (blast dest: equivp_symp)+
hoelzl@59681
   943
hoelzl@59681
   944
lemma quotientD: "equiv X R \<Longrightarrow> A \<in> X // R \<Longrightarrow> x \<in> A \<Longrightarrow> A = R `` {x}"
hoelzl@59681
   945
  by (metis Image_singleton_iff equiv_class_eq_iff quotientE)
hoelzl@59681
   946
hoelzl@59681
   947
lemma rel_pmf_iff_equivp:
hoelzl@59681
   948
  assumes "equivp R"
hoelzl@59681
   949
  shows "rel_pmf R p q \<longleftrightarrow> (\<forall>C\<in>UNIV // {(x, y). R x y}. measure p C = measure q C)"
hoelzl@59681
   950
    (is "_ \<longleftrightarrow>   (\<forall>C\<in>_//?R. _)")
hoelzl@59681
   951
proof (subst rel_pmf_iff_measure, safe)
hoelzl@59681
   952
  show "symp R" "transp R"
hoelzl@59681
   953
    using assms by (auto simp: equivp_reflp_symp_transp)
hoelzl@59681
   954
next
hoelzl@59681
   955
  fix C assume C: "C \<in> UNIV // ?R" and R: "rel_set R (set_pmf p) (set_pmf q)"
hoelzl@59681
   956
  assume eq: "\<forall>x\<in>set_pmf p. \<forall>y\<in>set_pmf q. R x y \<longrightarrow> measure p {x. R x y} = measure q {y. R x y}"
hoelzl@59681
   957
  
hoelzl@59681
   958
  show "measure p C = measure q C"
hoelzl@59681
   959
  proof cases
hoelzl@59681
   960
    assume "p \<inter> C = {}"
hoelzl@59681
   961
    moreover then have "q \<inter> C = {}"  
hoelzl@59681
   962
      using quotient_rel_set_disjoint[OF assms C R] by simp
hoelzl@59681
   963
    ultimately show ?thesis
hoelzl@59681
   964
      unfolding measure_pmf_zero_iff[symmetric] by simp
hoelzl@59681
   965
  next
hoelzl@59681
   966
    assume "p \<inter> C \<noteq> {}"
hoelzl@59681
   967
    moreover then have "q \<inter> C \<noteq> {}"  
hoelzl@59681
   968
      using quotient_rel_set_disjoint[OF assms C R] by simp
hoelzl@59681
   969
    ultimately obtain x y where in_set: "x \<in> set_pmf p" "y \<in> set_pmf q" and in_C: "x \<in> C" "y \<in> C"
hoelzl@59681
   970
      by auto
hoelzl@59681
   971
    then have "R x y"
hoelzl@59681
   972
      using in_quotient_imp_in_rel[of UNIV ?R C x y] C assms
hoelzl@59681
   973
      by (simp add: equivp_equiv)
hoelzl@59681
   974
    with in_set eq have "measure p {x. R x y} = measure q {y. R x y}"
hoelzl@59681
   975
      by auto
hoelzl@59681
   976
    moreover have "{y. R x y} = C"
hoelzl@59681
   977
      using assms `x \<in> C` C quotientD[of UNIV ?R C x] by (simp add: equivp_equiv)
hoelzl@59681
   978
    moreover have "{x. R x y} = C"
hoelzl@59681
   979
      using assms `y \<in> C` C quotientD[of UNIV "?R" C y] sympD[of R]
hoelzl@59681
   980
      by (auto simp add: equivp_equiv elim: equivpE)
hoelzl@59681
   981
    ultimately show ?thesis
hoelzl@59681
   982
      by auto
hoelzl@59681
   983
  qed
hoelzl@59681
   984
next
hoelzl@59681
   985
  assume eq: "\<forall>C\<in>UNIV // ?R. measure p C = measure q C"
hoelzl@59681
   986
  show "rel_set R (set_pmf p) (set_pmf q)"
hoelzl@59681
   987
    unfolding rel_set_def
hoelzl@59681
   988
  proof safe
hoelzl@59681
   989
    fix x assume x: "x \<in> set_pmf p"
hoelzl@59681
   990
    have "{y. R x y} \<in> UNIV // ?R"
hoelzl@59681
   991
      by (auto simp: quotient_def)
hoelzl@59681
   992
    with eq have *: "measure q {y. R x y} = measure p {y. R x y}"
hoelzl@59681
   993
      by auto
hoelzl@59681
   994
    have "measure q {y. R x y} \<noteq> 0"
hoelzl@59681
   995
      using x assms unfolding * by (auto simp: measure_pmf_zero_iff set_eq_iff dest: equivp_reflp)
hoelzl@59681
   996
    then show "\<exists>y\<in>set_pmf q. R x y"
hoelzl@59681
   997
      unfolding measure_pmf_zero_iff by auto
hoelzl@59681
   998
  next
hoelzl@59681
   999
    fix y assume y: "y \<in> set_pmf q"
hoelzl@59681
  1000
    have "{x. R x y} \<in> UNIV // ?R"
hoelzl@59681
  1001
      using assms by (auto simp: quotient_def dest: equivp_symp)
hoelzl@59681
  1002
    with eq have *: "measure p {x. R x y} = measure q {x. R x y}"
hoelzl@59681
  1003
      by auto
hoelzl@59681
  1004
    have "measure p {x. R x y} \<noteq> 0"
hoelzl@59681
  1005
      using y assms unfolding * by (auto simp: measure_pmf_zero_iff set_eq_iff dest: equivp_reflp)
hoelzl@59681
  1006
    then show "\<exists>x\<in>set_pmf p. R x y"
hoelzl@59681
  1007
      unfolding measure_pmf_zero_iff by auto
hoelzl@59681
  1008
  qed
hoelzl@59681
  1009
hoelzl@59681
  1010
  fix x y assume "x \<in> set_pmf p" "y \<in> set_pmf q" "R x y"
hoelzl@59681
  1011
  have "{y. R x y} \<in> UNIV // ?R" "{x. R x y} = {y. R x y}"
hoelzl@59681
  1012
    using assms `R x y` by (auto simp: quotient_def dest: equivp_symp equivp_transp)
hoelzl@59681
  1013
  with eq show "measure p {x. R x y} = measure q {y. R x y}"
hoelzl@59681
  1014
    by auto
hoelzl@59681
  1015
qed
hoelzl@59681
  1016
hoelzl@59664
  1017
bnf pmf: "'a pmf" map: map_pmf sets: set_pmf bd : "natLeq" rel: rel_pmf
hoelzl@59664
  1018
proof -
hoelzl@59664
  1019
  show "map_pmf id = id" by (rule map_pmf_id)
lp15@59667
  1020
  show "\<And>f g. map_pmf (f \<circ> g) = map_pmf f \<circ> map_pmf g" by (rule map_pmf_compose)
hoelzl@59664
  1021
  show "\<And>f g::'a \<Rightarrow> 'b. \<And>p. (\<And>x. x \<in> set_pmf p \<Longrightarrow> f x = g x) \<Longrightarrow> map_pmf f p = map_pmf g p"
hoelzl@59664
  1022
    by (intro map_pmf_cong refl)
hoelzl@59664
  1023
hoelzl@59664
  1024
  show "\<And>f::'a \<Rightarrow> 'b. set_pmf \<circ> map_pmf f = op ` f \<circ> set_pmf"
hoelzl@59664
  1025
    by (rule pmf_set_map)
hoelzl@59664
  1026
hoelzl@59664
  1027
  { fix p :: "'s pmf"
hoelzl@59664
  1028
    have "(card_of (set_pmf p), card_of (UNIV :: nat set)) \<in> ordLeq"
hoelzl@59664
  1029
      by (rule card_of_ordLeqI[where f="to_nat_on (set_pmf p)"])
hoelzl@59664
  1030
         (auto intro: countable_set_pmf)
hoelzl@59664
  1031
    also have "(card_of (UNIV :: nat set), natLeq) \<in> ordLeq"
hoelzl@59664
  1032
      by (metis Field_natLeq card_of_least natLeq_Well_order)
hoelzl@59664
  1033
    finally show "(card_of (set_pmf p), natLeq) \<in> ordLeq" . }
hoelzl@59664
  1034
hoelzl@59664
  1035
  show "\<And>R. rel_pmf R =
hoelzl@59664
  1036
         (BNF_Def.Grp {x. set_pmf x \<subseteq> {(x, y). R x y}} (map_pmf fst))\<inverse>\<inverse> OO
hoelzl@59664
  1037
         BNF_Def.Grp {x. set_pmf x \<subseteq> {(x, y). R x y}} (map_pmf snd)"
hoelzl@59664
  1038
     by (auto simp add: fun_eq_iff BNF_Def.Grp_def OO_def rel_pmf.simps)
hoelzl@59664
  1039
hoelzl@59664
  1040
  { fix p :: "'a pmf" and f :: "'a \<Rightarrow> 'b" and g x
hoelzl@59664
  1041
    assume p: "\<And>z. z \<in> set_pmf p \<Longrightarrow> f z = g z"
hoelzl@59664
  1042
      and x: "x \<in> set_pmf p"
hoelzl@59664
  1043
    thus "f x = g x" by simp }
hoelzl@59664
  1044
hoelzl@59681
  1045
  fix R :: "'a \<Rightarrow> 'b \<Rightarrow> bool" and S :: "'b \<Rightarrow> 'c \<Rightarrow> bool"
hoelzl@59664
  1046
  { fix p q r
hoelzl@59664
  1047
    assume pq: "rel_pmf R p q"
hoelzl@59664
  1048
      and qr:"rel_pmf S q r"
hoelzl@59664
  1049
    from pq obtain pq where pq: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> R x y"
hoelzl@59664
  1050
      and p: "p = map_pmf fst pq" and q: "q = map_pmf snd pq" by cases auto
hoelzl@59664
  1051
    from qr obtain qr where qr: "\<And>y z. (y, z) \<in> set_pmf qr \<Longrightarrow> S y z"
hoelzl@59664
  1052
      and q': "q = map_pmf fst qr" and r: "r = map_pmf snd qr" by cases auto
hoelzl@59664
  1053
hoelzl@59670
  1054
    def pr \<equiv> "bind_pmf pq (\<lambda>xy. bind_pmf (cond_pmf qr {yz. fst yz = snd xy}) (\<lambda>yz. return_pmf (fst xy, snd yz)))"
hoelzl@59670
  1055
    have pr_welldefined: "\<And>y. y \<in> q \<Longrightarrow> qr \<inter> {yz. fst yz = y} \<noteq> {}"
hoelzl@59665
  1056
      by (force simp: q')
hoelzl@59664
  1057
hoelzl@59664
  1058
    have "rel_pmf (R OO S) p r"
hoelzl@59664
  1059
    proof (rule rel_pmf.intros)
hoelzl@59664
  1060
      fix x z assume "(x, z) \<in> pr"
hoelzl@59664
  1061
      then have "\<exists>y. (x, y) \<in> pq \<and> (y, z) \<in> qr"
hoelzl@59665
  1062
        by (auto simp: q pr_welldefined pr_def split_beta)
hoelzl@59664
  1063
      with pq qr show "(R OO S) x z"
hoelzl@59664
  1064
        by blast
hoelzl@59664
  1065
    next
hoelzl@59670
  1066
      have "map_pmf snd pr = map_pmf snd (bind_pmf q (\<lambda>y. cond_pmf qr {yz. fst yz = y}))"
hoelzl@59670
  1067
        by (simp add: pr_def q split_beta bind_map_pmf map_pmf_def[symmetric] map_bind_pmf map_return_pmf map_pmf_comp)
hoelzl@59664
  1068
      then show "map_pmf snd pr = r"
hoelzl@59670
  1069
        unfolding r q' bind_map_pmf by (subst (asm) bind_cond_pmf_cancel) (auto simp: eq_commute)
hoelzl@59670
  1070
    qed (simp add: pr_def map_bind_pmf split_beta map_return_pmf map_pmf_def[symmetric] p map_pmf_comp) }
hoelzl@59664
  1071
  then show "rel_pmf R OO rel_pmf S \<le> rel_pmf (R OO S)"
hoelzl@59664
  1072
    by(auto simp add: le_fun_def)
hoelzl@59664
  1073
qed (fact natLeq_card_order natLeq_cinfinite)+
hoelzl@59664
  1074
hoelzl@59665
  1075
lemma rel_pmf_conj[simp]:
hoelzl@59665
  1076
  "rel_pmf (\<lambda>x y. P \<and> Q x y) x y \<longleftrightarrow> P \<and> rel_pmf Q x y"
hoelzl@59665
  1077
  "rel_pmf (\<lambda>x y. Q x y \<and> P) x y \<longleftrightarrow> P \<and> rel_pmf Q x y"
hoelzl@59665
  1078
  using set_pmf_not_empty by (fastforce simp: pmf.in_rel subset_eq)+
hoelzl@59665
  1079
hoelzl@59665
  1080
lemma rel_pmf_top[simp]: "rel_pmf top = top"
hoelzl@59665
  1081
  by (auto simp: pmf.in_rel[abs_def] fun_eq_iff map_fst_pair_pmf map_snd_pair_pmf
hoelzl@59665
  1082
           intro: exI[of _ "pair_pmf x y" for x y])
hoelzl@59665
  1083
hoelzl@59664
  1084
lemma rel_pmf_return_pmf1: "rel_pmf R (return_pmf x) M \<longleftrightarrow> (\<forall>a\<in>M. R x a)"
hoelzl@59664
  1085
proof safe
hoelzl@59664
  1086
  fix a assume "a \<in> M" "rel_pmf R (return_pmf x) M"
hoelzl@59664
  1087
  then obtain pq where *: "\<And>a b. (a, b) \<in> set_pmf pq \<Longrightarrow> R a b"
hoelzl@59664
  1088
    and eq: "return_pmf x = map_pmf fst pq" "M = map_pmf snd pq"
hoelzl@59664
  1089
    by (force elim: rel_pmf.cases)
hoelzl@59664
  1090
  moreover have "set_pmf (return_pmf x) = {x}"
hoelzl@59665
  1091
    by simp
hoelzl@59664
  1092
  with `a \<in> M` have "(x, a) \<in> pq"
hoelzl@59665
  1093
    by (force simp: eq)
hoelzl@59664
  1094
  with * show "R x a"
hoelzl@59664
  1095
    by auto
hoelzl@59664
  1096
qed (auto intro!: rel_pmf.intros[where pq="pair_pmf (return_pmf x) M"]
hoelzl@59665
  1097
          simp: map_fst_pair_pmf map_snd_pair_pmf)
hoelzl@59664
  1098
hoelzl@59664
  1099
lemma rel_pmf_return_pmf2: "rel_pmf R M (return_pmf x) \<longleftrightarrow> (\<forall>a\<in>M. R a x)"
hoelzl@59664
  1100
  by (subst pmf.rel_flip[symmetric]) (simp add: rel_pmf_return_pmf1)
hoelzl@59664
  1101
hoelzl@59664
  1102
lemma rel_return_pmf[simp]: "rel_pmf R (return_pmf x1) (return_pmf x2) = R x1 x2"
hoelzl@59664
  1103
  unfolding rel_pmf_return_pmf2 set_return_pmf by simp
hoelzl@59664
  1104
hoelzl@59664
  1105
lemma rel_pmf_False[simp]: "rel_pmf (\<lambda>x y. False) x y = False"
hoelzl@59664
  1106
  unfolding pmf.in_rel fun_eq_iff using set_pmf_not_empty by fastforce
hoelzl@59664
  1107
hoelzl@59664
  1108
lemma rel_pmf_rel_prod:
hoelzl@59664
  1109
  "rel_pmf (rel_prod R S) (pair_pmf A A') (pair_pmf B B') \<longleftrightarrow> rel_pmf R A B \<and> rel_pmf S A' B'"
hoelzl@59664
  1110
proof safe
hoelzl@59664
  1111
  assume "rel_pmf (rel_prod R S) (pair_pmf A A') (pair_pmf B B')"
hoelzl@59664
  1112
  then obtain pq where pq: "\<And>a b c d. ((a, c), (b, d)) \<in> set_pmf pq \<Longrightarrow> R a b \<and> S c d"
hoelzl@59664
  1113
    and eq: "map_pmf fst pq = pair_pmf A A'" "map_pmf snd pq = pair_pmf B B'"
hoelzl@59664
  1114
    by (force elim: rel_pmf.cases)
hoelzl@59664
  1115
  show "rel_pmf R A B"
hoelzl@59664
  1116
  proof (rule rel_pmf.intros)
hoelzl@59664
  1117
    let ?f = "\<lambda>(a, b). (fst a, fst b)"
hoelzl@59664
  1118
    have [simp]: "(\<lambda>x. fst (?f x)) = fst o fst" "(\<lambda>x. snd (?f x)) = fst o snd"
hoelzl@59664
  1119
      by auto
hoelzl@59664
  1120
hoelzl@59664
  1121
    show "map_pmf fst (map_pmf ?f pq) = A"
hoelzl@59664
  1122
      by (simp add: map_pmf_comp pmf.map_comp[symmetric] eq map_fst_pair_pmf)
hoelzl@59664
  1123
    show "map_pmf snd (map_pmf ?f pq) = B"
hoelzl@59664
  1124
      by (simp add: map_pmf_comp pmf.map_comp[symmetric] eq map_fst_pair_pmf)
hoelzl@59664
  1125
hoelzl@59664
  1126
    fix a b assume "(a, b) \<in> set_pmf (map_pmf ?f pq)"
hoelzl@59664
  1127
    then obtain c d where "((a, c), (b, d)) \<in> set_pmf pq"
hoelzl@59665
  1128
      by auto
hoelzl@59664
  1129
    from pq[OF this] show "R a b" ..
hoelzl@59664
  1130
  qed
hoelzl@59664
  1131
  show "rel_pmf S A' B'"
hoelzl@59664
  1132
  proof (rule rel_pmf.intros)
hoelzl@59664
  1133
    let ?f = "\<lambda>(a, b). (snd a, snd b)"
hoelzl@59664
  1134
    have [simp]: "(\<lambda>x. fst (?f x)) = snd o fst" "(\<lambda>x. snd (?f x)) = snd o snd"
hoelzl@59664
  1135
      by auto
hoelzl@59664
  1136
hoelzl@59664
  1137
    show "map_pmf fst (map_pmf ?f pq) = A'"
hoelzl@59664
  1138
      by (simp add: map_pmf_comp pmf.map_comp[symmetric] eq map_snd_pair_pmf)
hoelzl@59664
  1139
    show "map_pmf snd (map_pmf ?f pq) = B'"
hoelzl@59664
  1140
      by (simp add: map_pmf_comp pmf.map_comp[symmetric] eq map_snd_pair_pmf)
hoelzl@59664
  1141
hoelzl@59664
  1142
    fix c d assume "(c, d) \<in> set_pmf (map_pmf ?f pq)"
hoelzl@59664
  1143
    then obtain a b where "((a, c), (b, d)) \<in> set_pmf pq"
hoelzl@59665
  1144
      by auto
hoelzl@59664
  1145
    from pq[OF this] show "S c d" ..
hoelzl@59664
  1146
  qed
hoelzl@59664
  1147
next
hoelzl@59664
  1148
  assume "rel_pmf R A B" "rel_pmf S A' B'"
hoelzl@59664
  1149
  then obtain Rpq Spq
hoelzl@59664
  1150
    where Rpq: "\<And>a b. (a, b) \<in> set_pmf Rpq \<Longrightarrow> R a b"
hoelzl@59664
  1151
        "map_pmf fst Rpq = A" "map_pmf snd Rpq = B"
hoelzl@59664
  1152
      and Spq: "\<And>a b. (a, b) \<in> set_pmf Spq \<Longrightarrow> S a b"
hoelzl@59664
  1153
        "map_pmf fst Spq = A'" "map_pmf snd Spq = B'"
hoelzl@59664
  1154
    by (force elim: rel_pmf.cases)
hoelzl@59664
  1155
hoelzl@59664
  1156
  let ?f = "(\<lambda>((a, c), (b, d)). ((a, b), (c, d)))"
hoelzl@59664
  1157
  let ?pq = "map_pmf ?f (pair_pmf Rpq Spq)"
hoelzl@59664
  1158
  have [simp]: "(\<lambda>x. fst (?f x)) = (\<lambda>(a, b). (fst a, fst b))" "(\<lambda>x. snd (?f x)) = (\<lambda>(a, b). (snd a, snd b))"
hoelzl@59664
  1159
    by auto
hoelzl@59664
  1160
hoelzl@59664
  1161
  show "rel_pmf (rel_prod R S) (pair_pmf A A') (pair_pmf B B')"
hoelzl@59664
  1162
    by (rule rel_pmf.intros[where pq="?pq"])
hoelzl@59665
  1163
       (auto simp: map_snd_pair_pmf map_fst_pair_pmf map_pmf_comp Rpq Spq
hoelzl@59664
  1164
                   map_pair)
hoelzl@59664
  1165
qed
hoelzl@59664
  1166
lp15@59667
  1167
lemma rel_pmf_reflI:
hoelzl@59664
  1168
  assumes "\<And>x. x \<in> set_pmf p \<Longrightarrow> P x x"
hoelzl@59664
  1169
  shows "rel_pmf P p p"
hoelzl@59665
  1170
  by (rule rel_pmf.intros[where pq="map_pmf (\<lambda>x. (x, x)) p"])
hoelzl@59665
  1171
     (auto simp add: pmf.map_comp o_def assms)
hoelzl@59664
  1172
hoelzl@59664
  1173
context
hoelzl@59664
  1174
begin
hoelzl@59664
  1175
hoelzl@59664
  1176
interpretation pmf_as_measure .
hoelzl@59664
  1177
hoelzl@59664
  1178
definition "join_pmf M = bind_pmf M (\<lambda>x. x)"
hoelzl@59664
  1179
hoelzl@59664
  1180
lemma bind_eq_join_pmf: "bind_pmf M f = join_pmf (map_pmf f M)"
hoelzl@59664
  1181
  unfolding join_pmf_def bind_map_pmf ..
hoelzl@59664
  1182
hoelzl@59664
  1183
lemma join_eq_bind_pmf: "join_pmf M = bind_pmf M id"
hoelzl@59664
  1184
  by (simp add: join_pmf_def id_def)
hoelzl@59664
  1185
hoelzl@59664
  1186
lemma pmf_join: "pmf (join_pmf N) i = (\<integral>M. pmf M i \<partial>measure_pmf N)"
hoelzl@59664
  1187
  unfolding join_pmf_def pmf_bind ..
hoelzl@59664
  1188
hoelzl@59664
  1189
lemma ereal_pmf_join: "ereal (pmf (join_pmf N) i) = (\<integral>\<^sup>+M. pmf M i \<partial>measure_pmf N)"
hoelzl@59664
  1190
  unfolding join_pmf_def ereal_pmf_bind ..
hoelzl@59664
  1191
hoelzl@59665
  1192
lemma set_pmf_join_pmf[simp]: "set_pmf (join_pmf f) = (\<Union>p\<in>set_pmf f. set_pmf p)"
hoelzl@59665
  1193
  by (simp add: join_pmf_def)
hoelzl@59664
  1194
hoelzl@59664
  1195
lemma join_return_pmf: "join_pmf (return_pmf M) = M"
hoelzl@59664
  1196
  by (simp add: integral_return pmf_eq_iff pmf_join return_pmf.rep_eq)
hoelzl@59664
  1197
hoelzl@59664
  1198
lemma map_join_pmf: "map_pmf f (join_pmf AA) = join_pmf (map_pmf (map_pmf f) AA)"
hoelzl@59664
  1199
  by (simp add: join_pmf_def map_pmf_def bind_assoc_pmf bind_return_pmf)
hoelzl@59664
  1200
hoelzl@59664
  1201
lemma join_map_return_pmf: "join_pmf (map_pmf return_pmf A) = A"
hoelzl@59664
  1202
  by (simp add: join_pmf_def map_pmf_def bind_assoc_pmf bind_return_pmf bind_return_pmf')
hoelzl@59664
  1203
hoelzl@59664
  1204
end
hoelzl@59664
  1205
hoelzl@59664
  1206
lemma rel_pmf_joinI:
hoelzl@59664
  1207
  assumes "rel_pmf (rel_pmf P) p q"
hoelzl@59664
  1208
  shows "rel_pmf P (join_pmf p) (join_pmf q)"
hoelzl@59664
  1209
proof -
hoelzl@59664
  1210
  from assms obtain pq where p: "p = map_pmf fst pq"
hoelzl@59664
  1211
    and q: "q = map_pmf snd pq"
hoelzl@59664
  1212
    and P: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> rel_pmf P x y"
hoelzl@59664
  1213
    by cases auto
lp15@59667
  1214
  from P obtain PQ
hoelzl@59664
  1215
    where PQ: "\<And>x y a b. \<lbrakk> (x, y) \<in> set_pmf pq; (a, b) \<in> set_pmf (PQ x y) \<rbrakk> \<Longrightarrow> P a b"
hoelzl@59664
  1216
    and x: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> map_pmf fst (PQ x y) = x"
hoelzl@59664
  1217
    and y: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> map_pmf snd (PQ x y) = y"
hoelzl@59664
  1218
    by(metis rel_pmf.simps)
hoelzl@59664
  1219
hoelzl@59664
  1220
  let ?r = "bind_pmf pq (\<lambda>(x, y). PQ x y)"
hoelzl@59665
  1221
  have "\<And>a b. (a, b) \<in> set_pmf ?r \<Longrightarrow> P a b" by (auto intro: PQ)
hoelzl@59664
  1222
  moreover have "map_pmf fst ?r = join_pmf p" "map_pmf snd ?r = join_pmf q"
hoelzl@59664
  1223
    by (simp_all add: p q x y join_pmf_def map_bind_pmf bind_map_pmf split_def cong: bind_pmf_cong)
hoelzl@59664
  1224
  ultimately show ?thesis ..
hoelzl@59664
  1225
qed
hoelzl@59664
  1226
hoelzl@59664
  1227
lemma rel_pmf_bindI:
hoelzl@59664
  1228
  assumes pq: "rel_pmf R p q"
hoelzl@59664
  1229
  and fg: "\<And>x y. R x y \<Longrightarrow> rel_pmf P (f x) (g y)"
hoelzl@59664
  1230
  shows "rel_pmf P (bind_pmf p f) (bind_pmf q g)"
hoelzl@59664
  1231
  unfolding bind_eq_join_pmf
hoelzl@59664
  1232
  by (rule rel_pmf_joinI)
hoelzl@59664
  1233
     (auto simp add: pmf.rel_map intro: pmf.rel_mono[THEN le_funD, THEN le_funD, THEN le_boolD, THEN mp, OF _ pq] fg)
hoelzl@59664
  1234
hoelzl@59664
  1235
text {*
hoelzl@59664
  1236
  Proof that @{const rel_pmf} preserves orders.
lp15@59667
  1237
  Antisymmetry proof follows Thm. 1 in N. Saheb-Djahromi, Cpo's of measures for nondeterminism,
lp15@59667
  1238
  Theoretical Computer Science 12(1):19--37, 1980,
hoelzl@59664
  1239
  @{url "http://dx.doi.org/10.1016/0304-3975(80)90003-1"}
hoelzl@59664
  1240
*}
hoelzl@59664
  1241
lp15@59667
  1242
lemma
hoelzl@59664
  1243
  assumes *: "rel_pmf R p q"
hoelzl@59664
  1244
  and refl: "reflp R" and trans: "transp R"
hoelzl@59664
  1245
  shows measure_Ici: "measure p {y. R x y} \<le> measure q {y. R x y}" (is ?thesis1)
hoelzl@59664
  1246
  and measure_Ioi: "measure p {y. R x y \<and> \<not> R y x} \<le> measure q {y. R x y \<and> \<not> R y x}" (is ?thesis2)
hoelzl@59664
  1247
proof -
hoelzl@59664
  1248
  from * obtain pq
hoelzl@59664
  1249
    where pq: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> R x y"
hoelzl@59664
  1250
    and p: "p = map_pmf fst pq"
hoelzl@59664
  1251
    and q: "q = map_pmf snd pq"
hoelzl@59664
  1252
    by cases auto
hoelzl@59664
  1253
  show ?thesis1 ?thesis2 unfolding p q map_pmf_rep_eq using refl trans
hoelzl@59664
  1254
    by(auto 4 3 simp add: measure_distr reflpD AE_measure_pmf_iff intro!: measure_pmf.finite_measure_mono_AE dest!: pq elim: transpE)
hoelzl@59664
  1255
qed
hoelzl@59664
  1256
hoelzl@59664
  1257
lemma rel_pmf_inf:
hoelzl@59664
  1258
  fixes p q :: "'a pmf"
hoelzl@59664
  1259
  assumes 1: "rel_pmf R p q"
hoelzl@59664
  1260
  assumes 2: "rel_pmf R q p"
hoelzl@59664
  1261
  and refl: "reflp R" and trans: "transp R"
hoelzl@59664
  1262
  shows "rel_pmf (inf R R\<inverse>\<inverse>) p q"
hoelzl@59681
  1263
proof (subst rel_pmf_iff_equivp, safe)
hoelzl@59681
  1264
  show "equivp (inf R R\<inverse>\<inverse>)"
hoelzl@59681
  1265
    using trans refl by (auto simp: equivp_reflp_symp_transp intro: sympI transpI reflpI dest: transpD reflpD)
hoelzl@59681
  1266
  
hoelzl@59681
  1267
  fix C assume "C \<in> UNIV // {(x, y). inf R R\<inverse>\<inverse> x y}"
hoelzl@59681
  1268
  then obtain x where C: "C = {y. R x y \<and> R y x}"
hoelzl@59681
  1269
    by (auto elim: quotientE)
hoelzl@59681
  1270
hoelzl@59670
  1271
  let ?R = "\<lambda>x y. R x y \<and> R y x"
hoelzl@59670
  1272
  let ?\<mu>R = "\<lambda>y. measure q {x. ?R x y}"
hoelzl@59681
  1273
  have "measure p {y. ?R x y} = measure p ({y. R x y} - {y. R x y \<and> \<not> R y x})"
hoelzl@59681
  1274
    by(auto intro!: arg_cong[where f="measure p"])
hoelzl@59681
  1275
  also have "\<dots> = measure p {y. R x y} - measure p {y. R x y \<and> \<not> R y x}"
hoelzl@59681
  1276
    by (rule measure_pmf.finite_measure_Diff) auto
hoelzl@59681
  1277
  also have "measure p {y. R x y \<and> \<not> R y x} = measure q {y. R x y \<and> \<not> R y x}"
hoelzl@59681
  1278
    using 1 2 refl trans by(auto intro!: Orderings.antisym measure_Ioi)
hoelzl@59681
  1279
  also have "measure p {y. R x y} = measure q {y. R x y}"
hoelzl@59681
  1280
    using 1 2 refl trans by(auto intro!: Orderings.antisym measure_Ici)
hoelzl@59681
  1281
  also have "measure q {y. R x y} - measure q {y. R x y \<and> \<not> R y x} =
hoelzl@59681
  1282
    measure q ({y. R x y} - {y. R x y \<and> \<not> R y x})"
hoelzl@59681
  1283
    by(rule measure_pmf.finite_measure_Diff[symmetric]) auto
hoelzl@59681
  1284
  also have "\<dots> = ?\<mu>R x"
hoelzl@59681
  1285
    by(auto intro!: arg_cong[where f="measure q"])
hoelzl@59681
  1286
  finally show "measure p C = measure q C"
hoelzl@59681
  1287
    by (simp add: C conj_commute)
hoelzl@59664
  1288
qed
hoelzl@59664
  1289
hoelzl@59664
  1290
lemma rel_pmf_antisym:
hoelzl@59664
  1291
  fixes p q :: "'a pmf"
hoelzl@59664
  1292
  assumes 1: "rel_pmf R p q"
hoelzl@59664
  1293
  assumes 2: "rel_pmf R q p"
hoelzl@59664
  1294
  and refl: "reflp R" and trans: "transp R" and antisym: "antisymP R"
hoelzl@59664
  1295
  shows "p = q"
hoelzl@59664
  1296
proof -
hoelzl@59664
  1297
  from 1 2 refl trans have "rel_pmf (inf R R\<inverse>\<inverse>) p q" by(rule rel_pmf_inf)
hoelzl@59664
  1298
  also have "inf R R\<inverse>\<inverse> = op ="
hoelzl@59665
  1299
    using refl antisym by (auto intro!: ext simp add: reflpD dest: antisymD)
hoelzl@59664
  1300
  finally show ?thesis unfolding pmf.rel_eq .
hoelzl@59664
  1301
qed
hoelzl@59664
  1302
hoelzl@59664
  1303
lemma reflp_rel_pmf: "reflp R \<Longrightarrow> reflp (rel_pmf R)"
hoelzl@59664
  1304
by(blast intro: reflpI rel_pmf_reflI reflpD)
hoelzl@59664
  1305
hoelzl@59664
  1306
lemma antisymP_rel_pmf:
hoelzl@59664
  1307
  "\<lbrakk> reflp R; transp R; antisymP R \<rbrakk>
hoelzl@59664
  1308
  \<Longrightarrow> antisymP (rel_pmf R)"
hoelzl@59664
  1309
by(rule antisymI)(blast intro: rel_pmf_antisym)
hoelzl@59664
  1310
hoelzl@59664
  1311
lemma transp_rel_pmf:
hoelzl@59664
  1312
  assumes "transp R"
hoelzl@59664
  1313
  shows "transp (rel_pmf R)"
hoelzl@59664
  1314
proof (rule transpI)
hoelzl@59664
  1315
  fix x y z
hoelzl@59664
  1316
  assume "rel_pmf R x y" and "rel_pmf R y z"
hoelzl@59664
  1317
  hence "rel_pmf (R OO R) x z" by (simp add: pmf.rel_compp relcompp.relcompI)
hoelzl@59664
  1318
  thus "rel_pmf R x z"
hoelzl@59664
  1319
    using assms by (metis (no_types) pmf.rel_mono rev_predicate2D transp_relcompp_less_eq)
hoelzl@59664
  1320
qed
hoelzl@59664
  1321
hoelzl@59664
  1322
subsection \<open> Distributions \<close>
hoelzl@59664
  1323
hoelzl@59000
  1324
context
hoelzl@59000
  1325
begin
hoelzl@59000
  1326
hoelzl@59000
  1327
interpretation pmf_as_function .
hoelzl@59000
  1328
hoelzl@59093
  1329
subsubsection \<open> Bernoulli Distribution \<close>
hoelzl@59093
  1330
hoelzl@59000
  1331
lift_definition bernoulli_pmf :: "real \<Rightarrow> bool pmf" is
hoelzl@59000
  1332
  "\<lambda>p b. ((\<lambda>p. if b then p else 1 - p) \<circ> min 1 \<circ> max 0) p"
hoelzl@59000
  1333
  by (auto simp: nn_integral_count_space_finite[where A="{False, True}"] UNIV_bool
hoelzl@59000
  1334
           split: split_max split_min)
hoelzl@59000
  1335
hoelzl@59000
  1336
lemma pmf_bernoulli_True[simp]: "0 \<le> p \<Longrightarrow> p \<le> 1 \<Longrightarrow> pmf (bernoulli_pmf p) True = p"
hoelzl@59000
  1337
  by transfer simp
hoelzl@59000
  1338
hoelzl@59000
  1339
lemma pmf_bernoulli_False[simp]: "0 \<le> p \<Longrightarrow> p \<le> 1 \<Longrightarrow> pmf (bernoulli_pmf p) False = 1 - p"
hoelzl@59000
  1340
  by transfer simp
hoelzl@59000
  1341
hoelzl@59000
  1342
lemma set_pmf_bernoulli: "0 < p \<Longrightarrow> p < 1 \<Longrightarrow> set_pmf (bernoulli_pmf p) = UNIV"
hoelzl@59000
  1343
  by (auto simp add: set_pmf_iff UNIV_bool)
hoelzl@59000
  1344
lp15@59667
  1345
lemma nn_integral_bernoulli_pmf[simp]:
hoelzl@59002
  1346
  assumes [simp]: "0 \<le> p" "p \<le> 1" "\<And>x. 0 \<le> f x"
hoelzl@59002
  1347
  shows "(\<integral>\<^sup>+x. f x \<partial>bernoulli_pmf p) = f True * p + f False * (1 - p)"
hoelzl@59002
  1348
  by (subst nn_integral_measure_pmf_support[of UNIV])
hoelzl@59002
  1349
     (auto simp: UNIV_bool field_simps)
hoelzl@59002
  1350
lp15@59667
  1351
lemma integral_bernoulli_pmf[simp]:
hoelzl@59002
  1352
  assumes [simp]: "0 \<le> p" "p \<le> 1"
hoelzl@59002
  1353
  shows "(\<integral>x. f x \<partial>bernoulli_pmf p) = f True * p + f False * (1 - p)"
hoelzl@59002
  1354
  by (subst integral_measure_pmf[of UNIV]) (auto simp: UNIV_bool)
hoelzl@59002
  1355
Andreas@59525
  1356
lemma pmf_bernoulli_half [simp]: "pmf (bernoulli_pmf (1 / 2)) x = 1 / 2"
Andreas@59525
  1357
by(cases x) simp_all
Andreas@59525
  1358
Andreas@59525
  1359
lemma measure_pmf_bernoulli_half: "measure_pmf (bernoulli_pmf (1 / 2)) = uniform_count_measure UNIV"
Andreas@59525
  1360
by(rule measure_eqI)(simp_all add: nn_integral_pmf[symmetric] emeasure_uniform_count_measure nn_integral_count_space_finite sets_uniform_count_measure)
Andreas@59525
  1361
hoelzl@59093
  1362
subsubsection \<open> Geometric Distribution \<close>
hoelzl@59093
  1363
hoelzl@59000
  1364
lift_definition geometric_pmf :: "nat pmf" is "\<lambda>n. 1 / 2^Suc n"
hoelzl@59000
  1365
proof
hoelzl@59000
  1366
  note geometric_sums[of "1 / 2"]
hoelzl@59000
  1367
  note sums_mult[OF this, of "1 / 2"]
hoelzl@59000
  1368
  from sums_suminf_ereal[OF this]
hoelzl@59000
  1369
  show "(\<integral>\<^sup>+ x. ereal (1 / 2 ^ Suc x) \<partial>count_space UNIV) = 1"
hoelzl@59000
  1370
    by (simp add: nn_integral_count_space_nat field_simps)
hoelzl@59000
  1371
qed simp
hoelzl@59000
  1372
hoelzl@59000
  1373
lemma pmf_geometric[simp]: "pmf geometric_pmf n = 1 / 2^Suc n"
hoelzl@59000
  1374
  by transfer rule
hoelzl@59000
  1375
hoelzl@59002
  1376
lemma set_pmf_geometric[simp]: "set_pmf geometric_pmf = UNIV"
hoelzl@59000
  1377
  by (auto simp: set_pmf_iff)
hoelzl@59000
  1378
hoelzl@59093
  1379
subsubsection \<open> Uniform Multiset Distribution \<close>
hoelzl@59093
  1380
hoelzl@59000
  1381
context
hoelzl@59000
  1382
  fixes M :: "'a multiset" assumes M_not_empty: "M \<noteq> {#}"
hoelzl@59000
  1383
begin
hoelzl@59000
  1384
hoelzl@59000
  1385
lift_definition pmf_of_multiset :: "'a pmf" is "\<lambda>x. count M x / size M"
hoelzl@59000
  1386
proof
lp15@59667
  1387
  show "(\<integral>\<^sup>+ x. ereal (real (count M x) / real (size M)) \<partial>count_space UNIV) = 1"
hoelzl@59000
  1388
    using M_not_empty
hoelzl@59000
  1389
    by (simp add: zero_less_divide_iff nn_integral_count_space nonempty_has_size
hoelzl@59000
  1390
                  setsum_divide_distrib[symmetric])
hoelzl@59000
  1391
       (auto simp: size_multiset_overloaded_eq intro!: setsum.cong)
hoelzl@59000
  1392
qed simp
hoelzl@59000
  1393
hoelzl@59000
  1394
lemma pmf_of_multiset[simp]: "pmf pmf_of_multiset x = count M x / size M"
hoelzl@59000
  1395
  by transfer rule
hoelzl@59000
  1396
hoelzl@59000
  1397
lemma set_pmf_of_multiset[simp]: "set_pmf pmf_of_multiset = set_of M"
hoelzl@59000
  1398
  by (auto simp: set_pmf_iff)
hoelzl@59000
  1399
hoelzl@59000
  1400
end
hoelzl@59000
  1401
hoelzl@59093
  1402
subsubsection \<open> Uniform Distribution \<close>
hoelzl@59093
  1403
hoelzl@59000
  1404
context
hoelzl@59000
  1405
  fixes S :: "'a set" assumes S_not_empty: "S \<noteq> {}" and S_finite: "finite S"
hoelzl@59000
  1406
begin
hoelzl@59000
  1407
hoelzl@59000
  1408
lift_definition pmf_of_set :: "'a pmf" is "\<lambda>x. indicator S x / card S"
hoelzl@59000
  1409
proof
lp15@59667
  1410
  show "(\<integral>\<^sup>+ x. ereal (indicator S x / real (card S)) \<partial>count_space UNIV) = 1"
hoelzl@59000
  1411
    using S_not_empty S_finite by (subst nn_integral_count_space'[of S]) auto
hoelzl@59000
  1412
qed simp
hoelzl@59000
  1413
hoelzl@59000
  1414
lemma pmf_of_set[simp]: "pmf pmf_of_set x = indicator S x / card S"
hoelzl@59000
  1415
  by transfer rule
hoelzl@59000
  1416
hoelzl@59000
  1417
lemma set_pmf_of_set[simp]: "set_pmf pmf_of_set = S"
hoelzl@59000
  1418
  using S_finite S_not_empty by (auto simp: set_pmf_iff)
hoelzl@59000
  1419
hoelzl@59002
  1420
lemma emeasure_pmf_of_set[simp]: "emeasure pmf_of_set S = 1"
hoelzl@59002
  1421
  by (rule measure_pmf.emeasure_eq_1_AE) (auto simp: AE_measure_pmf_iff)
hoelzl@59002
  1422
hoelzl@59000
  1423
end
hoelzl@59000
  1424
hoelzl@59093
  1425
subsubsection \<open> Poisson Distribution \<close>
hoelzl@59093
  1426
hoelzl@59093
  1427
context
hoelzl@59093
  1428
  fixes rate :: real assumes rate_pos: "0 < rate"
hoelzl@59093
  1429
begin
hoelzl@59093
  1430
hoelzl@59093
  1431
lift_definition poisson_pmf :: "nat pmf" is "\<lambda>k. rate ^ k / fact k * exp (-rate)"
lp15@59730
  1432
proof  (* by Manuel Eberl *)
hoelzl@59093
  1433
  have summable: "summable (\<lambda>x::nat. rate ^ x / fact x)" using summable_exp
haftmann@59557
  1434
    by (simp add: field_simps divide_inverse [symmetric])
hoelzl@59093
  1435
  have "(\<integral>\<^sup>+(x::nat). rate ^ x / fact x * exp (-rate) \<partial>count_space UNIV) =
hoelzl@59093
  1436
          exp (-rate) * (\<integral>\<^sup>+(x::nat). rate ^ x / fact x \<partial>count_space UNIV)"
hoelzl@59093
  1437
    by (simp add: field_simps nn_integral_cmult[symmetric])
hoelzl@59093
  1438
  also from rate_pos have "(\<integral>\<^sup>+(x::nat). rate ^ x / fact x \<partial>count_space UNIV) = (\<Sum>x. rate ^ x / fact x)"
hoelzl@59093
  1439
    by (simp_all add: nn_integral_count_space_nat suminf_ereal summable suminf_ereal_finite)
hoelzl@59093
  1440
  also have "... = exp rate" unfolding exp_def
lp15@59730
  1441
    by (simp add: field_simps divide_inverse [symmetric])
hoelzl@59093
  1442
  also have "ereal (exp (-rate)) * ereal (exp rate) = 1"
hoelzl@59093
  1443
    by (simp add: mult_exp_exp)
lp15@59730
  1444
  finally show "(\<integral>\<^sup>+ x. ereal (rate ^ x / (fact x) * exp (- rate)) \<partial>count_space UNIV) = 1" .
hoelzl@59093
  1445
qed (simp add: rate_pos[THEN less_imp_le])
hoelzl@59093
  1446
hoelzl@59093
  1447
lemma pmf_poisson[simp]: "pmf poisson_pmf k = rate ^ k / fact k * exp (-rate)"
hoelzl@59093
  1448
  by transfer rule
hoelzl@59093
  1449
hoelzl@59093
  1450
lemma set_pmf_poisson[simp]: "set_pmf poisson_pmf = UNIV"
hoelzl@59093
  1451
  using rate_pos by (auto simp: set_pmf_iff)
hoelzl@59093
  1452
hoelzl@59000
  1453
end
hoelzl@59000
  1454
hoelzl@59093
  1455
subsubsection \<open> Binomial Distribution \<close>
hoelzl@59093
  1456
hoelzl@59093
  1457
context
hoelzl@59093
  1458
  fixes n :: nat and p :: real assumes p_nonneg: "0 \<le> p" and p_le_1: "p \<le> 1"
hoelzl@59093
  1459
begin
hoelzl@59093
  1460
hoelzl@59093
  1461
lift_definition binomial_pmf :: "nat pmf" is "\<lambda>k. (n choose k) * p^k * (1 - p)^(n - k)"
hoelzl@59093
  1462
proof
hoelzl@59093
  1463
  have "(\<integral>\<^sup>+k. ereal (real (n choose k) * p ^ k * (1 - p) ^ (n - k)) \<partial>count_space UNIV) =
hoelzl@59093
  1464
    ereal (\<Sum>k\<le>n. real (n choose k) * p ^ k * (1 - p) ^ (n - k))"
hoelzl@59093
  1465
    using p_le_1 p_nonneg by (subst nn_integral_count_space') auto
hoelzl@59093
  1466
  also have "(\<Sum>k\<le>n. real (n choose k) * p ^ k * (1 - p) ^ (n - k)) = (p + (1 - p)) ^ n"
hoelzl@59093
  1467
    by (subst binomial_ring) (simp add: atLeast0AtMost real_of_nat_def)
hoelzl@59093
  1468
  finally show "(\<integral>\<^sup>+ x. ereal (real (n choose x) * p ^ x * (1 - p) ^ (n - x)) \<partial>count_space UNIV) = 1"
hoelzl@59093
  1469
    by simp
hoelzl@59093
  1470
qed (insert p_nonneg p_le_1, simp)
hoelzl@59093
  1471
hoelzl@59093
  1472
lemma pmf_binomial[simp]: "pmf binomial_pmf k = (n choose k) * p^k * (1 - p)^(n - k)"
hoelzl@59093
  1473
  by transfer rule
hoelzl@59093
  1474
hoelzl@59093
  1475
lemma set_pmf_binomial_eq: "set_pmf binomial_pmf = (if p = 0 then {0} else if p = 1 then {n} else {.. n})"
hoelzl@59093
  1476
  using p_nonneg p_le_1 unfolding set_eq_iff set_pmf_iff pmf_binomial by (auto simp: set_pmf_iff)
hoelzl@59093
  1477
hoelzl@59093
  1478
end
hoelzl@59093
  1479
hoelzl@59093
  1480
end
hoelzl@59093
  1481
hoelzl@59093
  1482
lemma set_pmf_binomial_0[simp]: "set_pmf (binomial_pmf n 0) = {0}"
hoelzl@59093
  1483
  by (simp add: set_pmf_binomial_eq)
hoelzl@59093
  1484
hoelzl@59093
  1485
lemma set_pmf_binomial_1[simp]: "set_pmf (binomial_pmf n 1) = {n}"
hoelzl@59093
  1486
  by (simp add: set_pmf_binomial_eq)
hoelzl@59093
  1487
hoelzl@59093
  1488
lemma set_pmf_binomial[simp]: "0 < p \<Longrightarrow> p < 1 \<Longrightarrow> set_pmf (binomial_pmf n p) = {..n}"
hoelzl@59093
  1489
  by (simp add: set_pmf_binomial_eq)
hoelzl@59093
  1490
hoelzl@59000
  1491
end