src/HOLCF/Cfun.thy
author huffman
Thu Dec 20 03:06:20 2007 +0100 (2007-12-20)
changeset 25723 80c06e4d4db6
parent 25701 73fbe868b4e7
child 25786 6b3c79acac1f
permissions -rw-r--r--
move bottom-related stuff back into Pcpo.thy
huffman@15600
     1
(*  Title:      HOLCF/Cfun.thy
huffman@15576
     2
    ID:         $Id$
huffman@15576
     3
    Author:     Franz Regensburger
huffman@15576
     4
huffman@15576
     5
Definition of the type ->  of continuous functions.
huffman@15576
     6
*)
huffman@15576
     7
huffman@15576
     8
header {* The type of continuous functions *}
huffman@15576
     9
huffman@15577
    10
theory Cfun
huffman@16699
    11
imports Pcpodef
wenzelm@23152
    12
uses ("Tools/cont_proc.ML")
huffman@15577
    13
begin
huffman@15576
    14
huffman@15576
    15
defaultsort cpo
huffman@15576
    16
huffman@15589
    17
subsection {* Definition of continuous function type *}
huffman@15589
    18
huffman@16699
    19
lemma Ex_cont: "\<exists>f. cont f"
huffman@16699
    20
by (rule exI, rule cont_const)
huffman@16699
    21
huffman@16699
    22
lemma adm_cont: "adm cont"
huffman@16699
    23
by (rule admI, rule cont_lub_fun)
huffman@16699
    24
huffman@17817
    25
cpodef (CFun)  ('a, 'b) "->" (infixr "->" 0) = "{f::'a => 'b. cont f}"
huffman@16699
    26
by (simp add: Ex_cont adm_cont)
huffman@15576
    27
huffman@17816
    28
syntax (xsymbols)
huffman@17816
    29
  "->"     :: "[type, type] => type"      ("(_ \<rightarrow>/ _)" [1,0]0)
huffman@17816
    30
wenzelm@25131
    31
notation
wenzelm@25131
    32
  Rep_CFun  ("(_$/_)" [999,1000] 999)
huffman@15576
    33
wenzelm@25131
    34
notation (xsymbols)
wenzelm@25131
    35
  Rep_CFun  ("(_\<cdot>/_)" [999,1000] 999)
huffman@15576
    36
wenzelm@25131
    37
notation (HTML output)
wenzelm@25131
    38
  Rep_CFun  ("(_\<cdot>/_)" [999,1000] 999)
huffman@17816
    39
huffman@17832
    40
subsection {* Syntax for continuous lambda abstraction *}
huffman@17832
    41
huffman@18078
    42
syntax "_cabs" :: "'a"
huffman@18078
    43
huffman@18078
    44
parse_translation {*
huffman@18087
    45
(* rewrites (_cabs x t) => (Abs_CFun (%x. t)) *)
wenzelm@25131
    46
  [mk_binder_tr ("_cabs", @{const_syntax Abs_CFun})];
huffman@18078
    47
*}
huffman@17816
    48
huffman@17832
    49
text {* To avoid eta-contraction of body: *}
huffman@18087
    50
typed_print_translation {*
huffman@18078
    51
  let
huffman@18087
    52
    fun cabs_tr' _ _ [Abs abs] = let
huffman@18087
    53
          val (x,t) = atomic_abs_tr' abs
huffman@18087
    54
        in Syntax.const "_cabs" $ x $ t end
huffman@18087
    55
huffman@18087
    56
      | cabs_tr' _ T [t] = let
huffman@18087
    57
          val xT = domain_type (domain_type T);
huffman@18087
    58
          val abs' = ("x",xT,(incr_boundvars 1 t)$Bound 0);
huffman@18087
    59
          val (x,t') = atomic_abs_tr' abs';
huffman@18087
    60
        in Syntax.const "_cabs" $ x $ t' end;
huffman@18087
    61
wenzelm@25131
    62
  in [(@{const_syntax Abs_CFun}, cabs_tr')] end;
huffman@17816
    63
*}
huffman@17816
    64
huffman@18087
    65
text {* Syntax for nested abstractions *}
huffman@17832
    66
huffman@17832
    67
syntax
huffman@18078
    68
  "_Lambda" :: "[cargs, 'a] \<Rightarrow> logic"  ("(3LAM _./ _)" [1000, 10] 10)
huffman@17832
    69
huffman@17832
    70
syntax (xsymbols)
huffman@18078
    71
  "_Lambda" :: "[cargs, 'a] \<Rightarrow> logic" ("(3\<Lambda>_./ _)" [1000, 10] 10)
huffman@17832
    72
huffman@17816
    73
parse_ast_translation {*
huffman@18087
    74
(* rewrites (LAM x y z. t) => (_cabs x (_cabs y (_cabs z t))) *)
huffman@18078
    75
(* cf. Syntax.lambda_ast_tr from Syntax/syn_trans.ML *)
huffman@18078
    76
  let
huffman@18078
    77
    fun Lambda_ast_tr [pats, body] =
huffman@18078
    78
          Syntax.fold_ast_p "_cabs" (Syntax.unfold_ast "_cargs" pats, body)
huffman@18078
    79
      | Lambda_ast_tr asts = raise Syntax.AST ("Lambda_ast_tr", asts);
huffman@18078
    80
  in [("_Lambda", Lambda_ast_tr)] end;
huffman@17816
    81
*}
huffman@17816
    82
huffman@17816
    83
print_ast_translation {*
huffman@18087
    84
(* rewrites (_cabs x (_cabs y (_cabs z t))) => (LAM x y z. t) *)
huffman@18078
    85
(* cf. Syntax.abs_ast_tr' from Syntax/syn_trans.ML *)
huffman@18078
    86
  let
huffman@18078
    87
    fun cabs_ast_tr' asts =
huffman@18078
    88
      (case Syntax.unfold_ast_p "_cabs"
huffman@18078
    89
          (Syntax.Appl (Syntax.Constant "_cabs" :: asts)) of
huffman@18078
    90
        ([], _) => raise Syntax.AST ("cabs_ast_tr'", asts)
huffman@18078
    91
      | (xs, body) => Syntax.Appl
huffman@18078
    92
          [Syntax.Constant "_Lambda", Syntax.fold_ast "_cargs" xs, body]);
huffman@18078
    93
  in [("_cabs", cabs_ast_tr')] end;
huffman@17816
    94
*}
huffman@15641
    95
huffman@18087
    96
text {* Dummy patterns for continuous abstraction *}
huffman@18079
    97
translations
wenzelm@25131
    98
  "\<Lambda> _. t" => "CONST Abs_CFun (\<lambda> _. t)"
huffman@18087
    99
huffman@18079
   100
huffman@17832
   101
subsection {* Continuous function space is pointed *}
huffman@15589
   102
huffman@16098
   103
lemma UU_CFun: "\<bottom> \<in> CFun"
huffman@16098
   104
by (simp add: CFun_def inst_fun_pcpo cont_const)
huffman@16098
   105
huffman@16098
   106
instance "->" :: (cpo, pcpo) pcpo
huffman@16920
   107
by (rule typedef_pcpo [OF type_definition_CFun less_CFun_def UU_CFun])
huffman@16098
   108
huffman@16209
   109
lemmas Rep_CFun_strict =
huffman@16699
   110
  typedef_Rep_strict [OF type_definition_CFun less_CFun_def UU_CFun]
huffman@16209
   111
huffman@16209
   112
lemmas Abs_CFun_strict =
huffman@16699
   113
  typedef_Abs_strict [OF type_definition_CFun less_CFun_def UU_CFun]
huffman@16098
   114
huffman@17832
   115
text {* function application is strict in its first argument *}
huffman@17832
   116
huffman@17832
   117
lemma Rep_CFun_strict1 [simp]: "\<bottom>\<cdot>x = \<bottom>"
huffman@17832
   118
by (simp add: Rep_CFun_strict)
huffman@17832
   119
huffman@17832
   120
text {* for compatibility with old HOLCF-Version *}
huffman@17832
   121
lemma inst_cfun_pcpo: "\<bottom> = (\<Lambda> x. \<bottom>)"
huffman@17832
   122
by (simp add: inst_fun_pcpo [symmetric] Abs_CFun_strict)
huffman@17832
   123
huffman@17832
   124
subsection {* Basic properties of continuous functions *}
huffman@17832
   125
huffman@17832
   126
text {* Beta-equality for continuous functions *}
huffman@16209
   127
huffman@16209
   128
lemma Abs_CFun_inverse2: "cont f \<Longrightarrow> Rep_CFun (Abs_CFun f) = f"
huffman@16209
   129
by (simp add: Abs_CFun_inverse CFun_def)
huffman@16098
   130
huffman@16209
   131
lemma beta_cfun [simp]: "cont f \<Longrightarrow> (\<Lambda> x. f x)\<cdot>u = f u"
huffman@16209
   132
by (simp add: Abs_CFun_inverse2)
huffman@16209
   133
huffman@16209
   134
text {* Eta-equality for continuous functions *}
huffman@16209
   135
huffman@16209
   136
lemma eta_cfun: "(\<Lambda> x. f\<cdot>x) = f"
huffman@16209
   137
by (rule Rep_CFun_inverse)
huffman@16209
   138
huffman@16209
   139
text {* Extensionality for continuous functions *}
huffman@16209
   140
huffman@17832
   141
lemma expand_cfun_eq: "(f = g) = (\<forall>x. f\<cdot>x = g\<cdot>x)"
huffman@17832
   142
by (simp add: Rep_CFun_inject [symmetric] expand_fun_eq)
huffman@17832
   143
huffman@16209
   144
lemma ext_cfun: "(\<And>x. f\<cdot>x = g\<cdot>x) \<Longrightarrow> f = g"
huffman@17832
   145
by (simp add: expand_cfun_eq)
huffman@17832
   146
huffman@17832
   147
text {* Extensionality wrt. ordering for continuous functions *}
huffman@15576
   148
huffman@17832
   149
lemma expand_cfun_less: "f \<sqsubseteq> g = (\<forall>x. f\<cdot>x \<sqsubseteq> g\<cdot>x)" 
huffman@17832
   150
by (simp add: less_CFun_def expand_fun_less)
huffman@17832
   151
huffman@17832
   152
lemma less_cfun_ext: "(\<And>x. f\<cdot>x \<sqsubseteq> g\<cdot>x) \<Longrightarrow> f \<sqsubseteq> g"
huffman@17832
   153
by (simp add: expand_cfun_less)
huffman@17832
   154
huffman@17832
   155
text {* Congruence for continuous function application *}
huffman@15589
   156
huffman@16209
   157
lemma cfun_cong: "\<lbrakk>f = g; x = y\<rbrakk> \<Longrightarrow> f\<cdot>x = g\<cdot>y"
huffman@15589
   158
by simp
huffman@15589
   159
huffman@16209
   160
lemma cfun_fun_cong: "f = g \<Longrightarrow> f\<cdot>x = g\<cdot>x"
huffman@15589
   161
by simp
huffman@15589
   162
huffman@16209
   163
lemma cfun_arg_cong: "x = y \<Longrightarrow> f\<cdot>x = f\<cdot>y"
huffman@15589
   164
by simp
huffman@15589
   165
huffman@16209
   166
subsection {* Continuity of application *}
huffman@15576
   167
huffman@16209
   168
lemma cont_Rep_CFun1: "cont (\<lambda>f. f\<cdot>x)"
huffman@18092
   169
by (rule cont_Rep_CFun [THEN cont2cont_fun])
huffman@15576
   170
huffman@16209
   171
lemma cont_Rep_CFun2: "cont (\<lambda>x. f\<cdot>x)"
huffman@18092
   172
apply (cut_tac x=f in Rep_CFun)
huffman@18092
   173
apply (simp add: CFun_def)
huffman@15576
   174
done
huffman@15576
   175
huffman@16209
   176
lemmas monofun_Rep_CFun = cont_Rep_CFun [THEN cont2mono]
huffman@16209
   177
lemmas contlub_Rep_CFun = cont_Rep_CFun [THEN cont2contlub]
huffman@15589
   178
huffman@16209
   179
lemmas monofun_Rep_CFun1 = cont_Rep_CFun1 [THEN cont2mono, standard]
huffman@16209
   180
lemmas contlub_Rep_CFun1 = cont_Rep_CFun1 [THEN cont2contlub, standard]
huffman@16209
   181
lemmas monofun_Rep_CFun2 = cont_Rep_CFun2 [THEN cont2mono, standard]
huffman@16209
   182
lemmas contlub_Rep_CFun2 = cont_Rep_CFun2 [THEN cont2contlub, standard]
huffman@16209
   183
huffman@16209
   184
text {* contlub, cont properties of @{term Rep_CFun} in each argument *}
huffman@16209
   185
huffman@16209
   186
lemma contlub_cfun_arg: "chain Y \<Longrightarrow> f\<cdot>(lub (range Y)) = (\<Squnion>i. f\<cdot>(Y i))"
huffman@16209
   187
by (rule contlub_Rep_CFun2 [THEN contlubE])
huffman@15576
   188
huffman@16209
   189
lemma cont_cfun_arg: "chain Y \<Longrightarrow> range (\<lambda>i. f\<cdot>(Y i)) <<| f\<cdot>(lub (range Y))"
huffman@16209
   190
by (rule cont_Rep_CFun2 [THEN contE])
huffman@16209
   191
huffman@16209
   192
lemma contlub_cfun_fun: "chain F \<Longrightarrow> lub (range F)\<cdot>x = (\<Squnion>i. F i\<cdot>x)"
huffman@16209
   193
by (rule contlub_Rep_CFun1 [THEN contlubE])
huffman@15576
   194
huffman@16209
   195
lemma cont_cfun_fun: "chain F \<Longrightarrow> range (\<lambda>i. F i\<cdot>x) <<| lub (range F)\<cdot>x"
huffman@16209
   196
by (rule cont_Rep_CFun1 [THEN contE])
huffman@15576
   197
huffman@16209
   198
text {* monotonicity of application *}
huffman@16209
   199
huffman@16209
   200
lemma monofun_cfun_fun: "f \<sqsubseteq> g \<Longrightarrow> f\<cdot>x \<sqsubseteq> g\<cdot>x"
huffman@17832
   201
by (simp add: expand_cfun_less)
huffman@15576
   202
huffman@16209
   203
lemma monofun_cfun_arg: "x \<sqsubseteq> y \<Longrightarrow> f\<cdot>x \<sqsubseteq> f\<cdot>y"
huffman@16209
   204
by (rule monofun_Rep_CFun2 [THEN monofunE])
huffman@15576
   205
huffman@16209
   206
lemma monofun_cfun: "\<lbrakk>f \<sqsubseteq> g; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> f\<cdot>x \<sqsubseteq> g\<cdot>y"
huffman@16209
   207
by (rule trans_less [OF monofun_cfun_fun monofun_cfun_arg])
huffman@15576
   208
huffman@16209
   209
text {* ch2ch - rules for the type @{typ "'a -> 'b"} *}
huffman@15576
   210
huffman@16209
   211
lemma chain_monofun: "chain Y \<Longrightarrow> chain (\<lambda>i. f\<cdot>(Y i))"
huffman@16209
   212
by (erule monofun_Rep_CFun2 [THEN ch2ch_monofun])
huffman@16209
   213
huffman@16209
   214
lemma ch2ch_Rep_CFunR: "chain Y \<Longrightarrow> chain (\<lambda>i. f\<cdot>(Y i))"
huffman@16209
   215
by (rule monofun_Rep_CFun2 [THEN ch2ch_monofun])
huffman@15576
   216
huffman@16209
   217
lemma ch2ch_Rep_CFunL: "chain F \<Longrightarrow> chain (\<lambda>i. (F i)\<cdot>x)"
huffman@16209
   218
by (rule monofun_Rep_CFun1 [THEN ch2ch_monofun])
huffman@15576
   219
huffman@18076
   220
lemma ch2ch_Rep_CFun [simp]:
huffman@18076
   221
  "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> chain (\<lambda>i. (F i)\<cdot>(Y i))"
huffman@15576
   222
apply (rule chainI)
huffman@16209
   223
apply (rule monofun_cfun)
huffman@16209
   224
apply (erule chainE)
huffman@15576
   225
apply (erule chainE)
huffman@15576
   226
done
huffman@15576
   227
huffman@18092
   228
lemma ch2ch_LAM: "\<lbrakk>\<And>x. chain (\<lambda>i. S i x); \<And>i. cont (\<lambda>x. S i x)\<rbrakk>
huffman@18092
   229
    \<Longrightarrow> chain (\<lambda>i. \<Lambda> x. S i x)"
huffman@18092
   230
by (simp add: chain_def expand_cfun_less)
huffman@18092
   231
huffman@16209
   232
text {* contlub, cont properties of @{term Rep_CFun} in both arguments *}
huffman@15576
   233
huffman@16209
   234
lemma contlub_cfun: 
huffman@16209
   235
  "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> (\<Squnion>i. F i)\<cdot>(\<Squnion>i. Y i) = (\<Squnion>i. F i\<cdot>(Y i))"
huffman@18076
   236
by (simp add: contlub_cfun_fun contlub_cfun_arg diag_lub)
huffman@15576
   237
huffman@16209
   238
lemma cont_cfun: 
huffman@16209
   239
  "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> range (\<lambda>i. F i\<cdot>(Y i)) <<| (\<Squnion>i. F i)\<cdot>(\<Squnion>i. Y i)"
huffman@16209
   240
apply (rule thelubE)
huffman@16209
   241
apply (simp only: ch2ch_Rep_CFun)
huffman@16209
   242
apply (simp only: contlub_cfun)
huffman@16209
   243
done
huffman@16209
   244
huffman@18092
   245
lemma contlub_LAM:
huffman@18092
   246
  "\<lbrakk>\<And>x. chain (\<lambda>i. F i x); \<And>i. cont (\<lambda>x. F i x)\<rbrakk>
huffman@18092
   247
    \<Longrightarrow> (\<Lambda> x. \<Squnion>i. F i x) = (\<Squnion>i. \<Lambda> x. F i x)"
huffman@18092
   248
apply (simp add: thelub_CFun ch2ch_LAM)
huffman@18092
   249
apply (simp add: Abs_CFun_inverse2)
huffman@18092
   250
apply (simp add: thelub_fun ch2ch_lambda)
huffman@18092
   251
done
huffman@18092
   252
huffman@16209
   253
text {* strictness *}
huffman@16209
   254
huffman@16209
   255
lemma strictI: "f\<cdot>x = \<bottom> \<Longrightarrow> f\<cdot>\<bottom> = \<bottom>"
huffman@16209
   256
apply (rule UU_I)
huffman@15576
   257
apply (erule subst)
huffman@15576
   258
apply (rule minimal [THEN monofun_cfun_arg])
huffman@15576
   259
done
huffman@15576
   260
huffman@16209
   261
text {* the lub of a chain of continous functions is monotone *}
huffman@15576
   262
huffman@16209
   263
lemma lub_cfun_mono: "chain F \<Longrightarrow> monofun (\<lambda>x. \<Squnion>i. F i\<cdot>x)"
huffman@16209
   264
apply (drule ch2ch_monofun [OF monofun_Rep_CFun])
huffman@16209
   265
apply (simp add: thelub_fun [symmetric])
huffman@16209
   266
apply (erule monofun_lub_fun)
huffman@16209
   267
apply (simp add: monofun_Rep_CFun2)
huffman@15576
   268
done
huffman@15576
   269
huffman@16386
   270
text {* a lemma about the exchange of lubs for type @{typ "'a -> 'b"} *}
huffman@15576
   271
huffman@16699
   272
lemma ex_lub_cfun:
huffman@16699
   273
  "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> (\<Squnion>j. \<Squnion>i. F j\<cdot>(Y i)) = (\<Squnion>i. \<Squnion>j. F j\<cdot>(Y i))"
huffman@18076
   274
by (simp add: diag_lub)
huffman@15576
   275
huffman@15589
   276
text {* the lub of a chain of cont. functions is continuous *}
huffman@15576
   277
huffman@16209
   278
lemma cont_lub_cfun: "chain F \<Longrightarrow> cont (\<lambda>x. \<Squnion>i. F i\<cdot>x)"
huffman@16209
   279
apply (rule cont2cont_lub)
huffman@16209
   280
apply (erule monofun_Rep_CFun [THEN ch2ch_monofun])
huffman@16209
   281
apply (rule cont_Rep_CFun2)
huffman@15576
   282
done
huffman@15576
   283
huffman@15589
   284
text {* type @{typ "'a -> 'b"} is chain complete *}
huffman@15576
   285
huffman@16920
   286
lemma lub_cfun: "chain F \<Longrightarrow> range F <<| (\<Lambda> x. \<Squnion>i. F i\<cdot>x)"
huffman@16920
   287
by (simp only: contlub_cfun_fun [symmetric] eta_cfun thelubE)
huffman@15576
   288
huffman@16920
   289
lemma thelub_cfun: "chain F \<Longrightarrow> lub (range F) = (\<Lambda> x. \<Squnion>i. F i\<cdot>x)"
huffman@16920
   290
by (rule lub_cfun [THEN thelubI])
huffman@15576
   291
huffman@17832
   292
subsection {* Continuity simplification procedure *}
huffman@15589
   293
huffman@15589
   294
text {* cont2cont lemma for @{term Rep_CFun} *}
huffman@15576
   295
huffman@16209
   296
lemma cont2cont_Rep_CFun:
huffman@16209
   297
  "\<lbrakk>cont f; cont t\<rbrakk> \<Longrightarrow> cont (\<lambda>x. (f x)\<cdot>(t x))"
huffman@16209
   298
by (best intro: cont2cont_app2 cont_const cont_Rep_CFun cont_Rep_CFun2)
huffman@15576
   299
huffman@15589
   300
text {* cont2mono Lemma for @{term "%x. LAM y. c1(x)(y)"} *}
huffman@15576
   301
huffman@15576
   302
lemma cont2mono_LAM:
huffman@15576
   303
assumes p1: "!!x. cont(c1 x)"
huffman@15576
   304
assumes p2: "!!y. monofun(%x. c1 x y)"
huffman@15576
   305
shows "monofun(%x. LAM y. c1 x y)"
huffman@16209
   306
apply (rule monofunI)
huffman@16209
   307
apply (rule less_cfun_ext)
huffman@16209
   308
apply (simp add: p1)
huffman@16209
   309
apply (erule p2 [THEN monofunE])
huffman@15576
   310
done
huffman@15576
   311
huffman@15589
   312
text {* cont2cont Lemma for @{term "%x. LAM y. c1 x y"} *}
huffman@15576
   313
huffman@15576
   314
lemma cont2cont_LAM:
huffman@15576
   315
assumes p1: "!!x. cont(c1 x)"
huffman@15576
   316
assumes p2: "!!y. cont(%x. c1 x y)"
huffman@15576
   317
shows "cont(%x. LAM y. c1 x y)"
huffman@16098
   318
apply (rule cont_Abs_CFun)
huffman@16098
   319
apply (simp add: p1 CFun_def)
huffman@17832
   320
apply (simp add: p2 cont2cont_lambda)
huffman@15576
   321
done
huffman@15576
   322
huffman@16386
   323
text {* continuity simplification procedure *}
huffman@15576
   324
huffman@16055
   325
lemmas cont_lemmas1 =
huffman@16055
   326
  cont_const cont_id cont_Rep_CFun2 cont2cont_Rep_CFun cont2cont_LAM
huffman@16055
   327
wenzelm@23152
   328
use "Tools/cont_proc.ML";
huffman@16386
   329
setup ContProc.setup;
huffman@15576
   330
huffman@15576
   331
(*val cont_tac = (fn i => (resolve_tac cont_lemmas i));*)
huffman@15576
   332
(*val cont_tacR = (fn i => (REPEAT (cont_tac i)));*)
huffman@15576
   333
huffman@17832
   334
subsection {* Miscellaneous *}
huffman@17832
   335
huffman@17832
   336
text {* Monotonicity of @{term Abs_CFun} *}
huffman@15576
   337
huffman@17832
   338
lemma semi_monofun_Abs_CFun:
huffman@17832
   339
  "\<lbrakk>cont f; cont g; f \<sqsubseteq> g\<rbrakk> \<Longrightarrow> Abs_CFun f \<sqsubseteq> Abs_CFun g"
huffman@17832
   340
by (simp add: less_CFun_def Abs_CFun_inverse2)
huffman@15576
   341
huffman@15589
   342
text {* some lemmata for functions with flat/chfin domain/range types *}
huffman@15576
   343
huffman@15576
   344
lemma chfin_Rep_CFunR: "chain (Y::nat => 'a::cpo->'b::chfin)  
huffman@15576
   345
      ==> !s. ? n. lub(range(Y))$s = Y n$s"
huffman@15576
   346
apply (rule allI)
huffman@15576
   347
apply (subst contlub_cfun_fun)
huffman@15576
   348
apply assumption
huffman@15576
   349
apply (fast intro!: thelubI chfin lub_finch2 chfin2finch ch2ch_Rep_CFunL)
huffman@15576
   350
done
huffman@15576
   351
huffman@18089
   352
lemma adm_chfindom: "adm (\<lambda>(u::'a::cpo \<rightarrow> 'b::chfin). P(u\<cdot>s))"
huffman@18089
   353
by (rule adm_subst, simp, rule adm_chfin)
huffman@18089
   354
huffman@16085
   355
subsection {* Continuous injection-retraction pairs *}
huffman@15589
   356
huffman@16085
   357
text {* Continuous retractions are strict. *}
huffman@15576
   358
huffman@16085
   359
lemma retraction_strict:
huffman@16085
   360
  "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> f\<cdot>\<bottom> = \<bottom>"
huffman@15576
   361
apply (rule UU_I)
huffman@16085
   362
apply (drule_tac x="\<bottom>" in spec)
huffman@16085
   363
apply (erule subst)
huffman@16085
   364
apply (rule monofun_cfun_arg)
huffman@16085
   365
apply (rule minimal)
huffman@15576
   366
done
huffman@15576
   367
huffman@16085
   368
lemma injection_eq:
huffman@16085
   369
  "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> (g\<cdot>x = g\<cdot>y) = (x = y)"
huffman@16085
   370
apply (rule iffI)
huffman@16085
   371
apply (drule_tac f=f in cfun_arg_cong)
huffman@16085
   372
apply simp
huffman@16085
   373
apply simp
huffman@15576
   374
done
huffman@15576
   375
huffman@16314
   376
lemma injection_less:
huffman@16314
   377
  "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> (g\<cdot>x \<sqsubseteq> g\<cdot>y) = (x \<sqsubseteq> y)"
huffman@16314
   378
apply (rule iffI)
huffman@16314
   379
apply (drule_tac f=f in monofun_cfun_arg)
huffman@16314
   380
apply simp
huffman@16314
   381
apply (erule monofun_cfun_arg)
huffman@16314
   382
done
huffman@16314
   383
huffman@16085
   384
lemma injection_defined_rev:
huffman@16085
   385
  "\<lbrakk>\<forall>x. f\<cdot>(g\<cdot>x) = x; g\<cdot>z = \<bottom>\<rbrakk> \<Longrightarrow> z = \<bottom>"
huffman@16085
   386
apply (drule_tac f=f in cfun_arg_cong)
huffman@16085
   387
apply (simp add: retraction_strict)
huffman@15576
   388
done
huffman@15576
   389
huffman@16085
   390
lemma injection_defined:
huffman@16085
   391
  "\<lbrakk>\<forall>x. f\<cdot>(g\<cdot>x) = x; z \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> g\<cdot>z \<noteq> \<bottom>"
huffman@16085
   392
by (erule contrapos_nn, rule injection_defined_rev)
huffman@16085
   393
huffman@16085
   394
text {* propagation of flatness and chain-finiteness by retractions *}
huffman@16085
   395
huffman@16085
   396
lemma chfin2chfin:
huffman@16085
   397
  "\<forall>y. (f::'a::chfin \<rightarrow> 'b)\<cdot>(g\<cdot>y) = y
huffman@16085
   398
    \<Longrightarrow> \<forall>Y::nat \<Rightarrow> 'b. chain Y \<longrightarrow> (\<exists>n. max_in_chain n Y)"
huffman@16085
   399
apply clarify
huffman@16085
   400
apply (drule_tac f=g in chain_monofun)
huffman@16085
   401
apply (drule chfin [rule_format])
huffman@16085
   402
apply (unfold max_in_chain_def)
huffman@16085
   403
apply (simp add: injection_eq)
huffman@16085
   404
done
huffman@16085
   405
huffman@16085
   406
lemma flat2flat:
huffman@16085
   407
  "\<forall>y. (f::'a::flat \<rightarrow> 'b::pcpo)\<cdot>(g\<cdot>y) = y
huffman@16085
   408
    \<Longrightarrow> \<forall>x y::'b. x \<sqsubseteq> y \<longrightarrow> x = \<bottom> \<or> x = y"
huffman@16085
   409
apply clarify
huffman@16209
   410
apply (drule_tac f=g in monofun_cfun_arg)
huffman@16085
   411
apply (drule ax_flat [rule_format])
huffman@16085
   412
apply (erule disjE)
huffman@16085
   413
apply (simp add: injection_defined_rev)
huffman@16085
   414
apply (simp add: injection_eq)
huffman@15576
   415
done
huffman@15576
   416
huffman@15589
   417
text {* a result about functions with flat codomain *}
huffman@15576
   418
huffman@16085
   419
lemma flat_eqI: "\<lbrakk>(x::'a::flat) \<sqsubseteq> y; x \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> x = y"
huffman@16085
   420
by (drule ax_flat [rule_format], simp)
huffman@16085
   421
huffman@16085
   422
lemma flat_codom:
huffman@16085
   423
  "f\<cdot>x = (c::'b::flat) \<Longrightarrow> f\<cdot>\<bottom> = \<bottom> \<or> (\<forall>z. f\<cdot>z = c)"
huffman@16085
   424
apply (case_tac "f\<cdot>x = \<bottom>")
huffman@15576
   425
apply (rule disjI1)
huffman@15576
   426
apply (rule UU_I)
huffman@16085
   427
apply (erule_tac t="\<bottom>" in subst)
huffman@15576
   428
apply (rule minimal [THEN monofun_cfun_arg])
huffman@16085
   429
apply clarify
huffman@16085
   430
apply (rule_tac a = "f\<cdot>\<bottom>" in refl [THEN box_equals])
huffman@16085
   431
apply (erule minimal [THEN monofun_cfun_arg, THEN flat_eqI])
huffman@16085
   432
apply (erule minimal [THEN monofun_cfun_arg, THEN flat_eqI])
huffman@15589
   433
done
huffman@15589
   434
huffman@15589
   435
huffman@15589
   436
subsection {* Identity and composition *}
huffman@15589
   437
wenzelm@25135
   438
definition
wenzelm@25135
   439
  ID :: "'a \<rightarrow> 'a" where
wenzelm@25135
   440
  "ID = (\<Lambda> x. x)"
wenzelm@25135
   441
wenzelm@25135
   442
definition
wenzelm@25135
   443
  cfcomp  :: "('b \<rightarrow> 'c) \<rightarrow> ('a \<rightarrow> 'b) \<rightarrow> 'a \<rightarrow> 'c" where
wenzelm@25135
   444
  oo_def: "cfcomp = (\<Lambda> f g x. f\<cdot>(g\<cdot>x))"
huffman@15589
   445
wenzelm@25131
   446
abbreviation
wenzelm@25131
   447
  cfcomp_syn :: "['b \<rightarrow> 'c, 'a \<rightarrow> 'b] \<Rightarrow> 'a \<rightarrow> 'c"  (infixr "oo" 100)  where
wenzelm@25131
   448
  "f oo g == cfcomp\<cdot>f\<cdot>g"
huffman@15589
   449
huffman@16085
   450
lemma ID1 [simp]: "ID\<cdot>x = x"
huffman@16085
   451
by (simp add: ID_def)
huffman@15576
   452
huffman@16085
   453
lemma cfcomp1: "(f oo g) = (\<Lambda> x. f\<cdot>(g\<cdot>x))"
huffman@15589
   454
by (simp add: oo_def)
huffman@15576
   455
huffman@16085
   456
lemma cfcomp2 [simp]: "(f oo g)\<cdot>x = f\<cdot>(g\<cdot>x)"
huffman@15589
   457
by (simp add: cfcomp1)
huffman@15576
   458
huffman@19709
   459
lemma cfcomp_strict [simp]: "\<bottom> oo f = \<bottom>"
huffman@19709
   460
by (simp add: expand_cfun_eq)
huffman@19709
   461
huffman@15589
   462
text {*
huffman@15589
   463
  Show that interpretation of (pcpo,@{text "_->_"}) is a category.
huffman@15589
   464
  The class of objects is interpretation of syntactical class pcpo.
huffman@15589
   465
  The class of arrows  between objects @{typ 'a} and @{typ 'b} is interpret. of @{typ "'a -> 'b"}.
huffman@15589
   466
  The identity arrow is interpretation of @{term ID}.
huffman@15589
   467
  The composition of f and g is interpretation of @{text "oo"}.
huffman@15589
   468
*}
huffman@15576
   469
huffman@16085
   470
lemma ID2 [simp]: "f oo ID = f"
huffman@15589
   471
by (rule ext_cfun, simp)
huffman@15576
   472
huffman@16085
   473
lemma ID3 [simp]: "ID oo f = f"
huffman@15589
   474
by (rule ext_cfun, simp)
huffman@15576
   475
huffman@15576
   476
lemma assoc_oo: "f oo (g oo h) = (f oo g) oo h"
huffman@15589
   477
by (rule ext_cfun, simp)
huffman@15576
   478
huffman@16085
   479
huffman@16085
   480
subsection {* Strictified functions *}
huffman@16085
   481
huffman@16085
   482
defaultsort pcpo
huffman@16085
   483
wenzelm@25131
   484
definition
wenzelm@25131
   485
  strictify  :: "('a \<rightarrow> 'b) \<rightarrow> 'a \<rightarrow> 'b" where
wenzelm@25131
   486
  "strictify = (\<Lambda> f x. if x = \<bottom> then \<bottom> else f\<cdot>x)"
huffman@16085
   487
huffman@16085
   488
text {* results about strictify *}
huffman@16085
   489
huffman@17815
   490
lemma cont_strictify1: "cont (\<lambda>f. if x = \<bottom> then \<bottom> else f\<cdot>x)"
huffman@17815
   491
by (simp add: cont_if)
huffman@16085
   492
huffman@17815
   493
lemma monofun_strictify2: "monofun (\<lambda>x. if x = \<bottom> then \<bottom> else f\<cdot>x)"
huffman@17815
   494
apply (rule monofunI)
huffman@17815
   495
apply (auto simp add: monofun_cfun_arg eq_UU_iff [symmetric])
huffman@16085
   496
done
huffman@16085
   497
huffman@17815
   498
(*FIXME: long proof*)
huffman@25723
   499
lemma contlub_strictify2: "contlub (\<lambda>x. if x = \<bottom> then \<bottom> else f\<cdot>x)"
huffman@16209
   500
apply (rule contlubI)
huffman@16085
   501
apply (case_tac "lub (range Y) = \<bottom>")
huffman@16699
   502
apply (drule (1) chain_UU_I)
huffman@18076
   503
apply simp
huffman@17815
   504
apply (simp del: if_image_distrib)
huffman@17815
   505
apply (simp only: contlub_cfun_arg)
huffman@16085
   506
apply (rule lub_equal2)
huffman@16085
   507
apply (rule chain_mono2 [THEN exE])
huffman@16085
   508
apply (erule chain_UU_I_inverse2)
huffman@16085
   509
apply (assumption)
huffman@17815
   510
apply (rule_tac x=x in exI, clarsimp)
huffman@16085
   511
apply (erule chain_monofun)
huffman@17815
   512
apply (erule monofun_strictify2 [THEN ch2ch_monofun])
huffman@16085
   513
done
huffman@16085
   514
huffman@17815
   515
lemmas cont_strictify2 =
huffman@17815
   516
  monocontlub2cont [OF monofun_strictify2 contlub_strictify2, standard]
huffman@17815
   517
huffman@17815
   518
lemma strictify_conv_if: "strictify\<cdot>f\<cdot>x = (if x = \<bottom> then \<bottom> else f\<cdot>x)"
huffman@17815
   519
by (unfold strictify_def, simp add: cont_strictify1 cont_strictify2)
huffman@16085
   520
huffman@16085
   521
lemma strictify1 [simp]: "strictify\<cdot>f\<cdot>\<bottom> = \<bottom>"
huffman@17815
   522
by (simp add: strictify_conv_if)
huffman@16085
   523
huffman@16085
   524
lemma strictify2 [simp]: "x \<noteq> \<bottom> \<Longrightarrow> strictify\<cdot>f\<cdot>x = f\<cdot>x"
huffman@17815
   525
by (simp add: strictify_conv_if)
huffman@16085
   526
huffman@17816
   527
subsection {* Continuous let-bindings *}
huffman@17816
   528
wenzelm@25131
   529
definition
wenzelm@25131
   530
  CLet :: "'a \<rightarrow> ('a \<rightarrow> 'b) \<rightarrow> 'b" where
wenzelm@25131
   531
  "CLet = (\<Lambda> s f. f\<cdot>s)"
huffman@17816
   532
huffman@17816
   533
syntax
huffman@17816
   534
  "_CLet" :: "[letbinds, 'a] => 'a" ("(Let (_)/ in (_))" 10)
huffman@17816
   535
huffman@17816
   536
translations
huffman@17816
   537
  "_CLet (_binds b bs) e" == "_CLet b (_CLet bs e)"
wenzelm@25131
   538
  "Let x = a in e" == "CONST CLet\<cdot>a\<cdot>(\<Lambda> x. e)"
huffman@17816
   539
huffman@15576
   540
end