src/HOL/Enum.thy
author nipkow
Thu Jun 12 18:47:16 2014 +0200 (2014-06-12)
changeset 57247 8191ccf6a1bd
parent 55088 57c82e01022b
child 57818 51aa30c9ee4e
permissions -rw-r--r--
added [simp]
haftmann@31596
     1
(* Author: Florian Haftmann, TU Muenchen *)
haftmann@26348
     2
haftmann@26348
     3
header {* Finite types as explicit enumerations *}
haftmann@26348
     4
haftmann@26348
     5
theory Enum
haftmann@49972
     6
imports Map
haftmann@26348
     7
begin
haftmann@26348
     8
haftmann@26348
     9
subsection {* Class @{text enum} *}
haftmann@26348
    10
haftmann@29797
    11
class enum =
haftmann@26348
    12
  fixes enum :: "'a list"
bulwahn@41078
    13
  fixes enum_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
haftmann@49950
    14
  fixes enum_ex :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
haftmann@33635
    15
  assumes UNIV_enum: "UNIV = set enum"
haftmann@26444
    16
    and enum_distinct: "distinct enum"
haftmann@49950
    17
  assumes enum_all_UNIV: "enum_all P \<longleftrightarrow> Ball UNIV P"
haftmann@49950
    18
  assumes enum_ex_UNIV: "enum_ex P \<longleftrightarrow> Bex UNIV P" 
haftmann@49950
    19
   -- {* tailored towards simple instantiation *}
haftmann@26348
    20
begin
haftmann@26348
    21
haftmann@29797
    22
subclass finite proof
haftmann@29797
    23
qed (simp add: UNIV_enum)
haftmann@26444
    24
haftmann@49950
    25
lemma enum_UNIV:
haftmann@49950
    26
  "set enum = UNIV"
haftmann@49950
    27
  by (simp only: UNIV_enum)
haftmann@26444
    28
bulwahn@40683
    29
lemma in_enum: "x \<in> set enum"
haftmann@49950
    30
  by (simp add: enum_UNIV)
haftmann@26348
    31
haftmann@26348
    32
lemma enum_eq_I:
haftmann@26348
    33
  assumes "\<And>x. x \<in> set xs"
haftmann@26348
    34
  shows "set enum = set xs"
haftmann@26348
    35
proof -
haftmann@26348
    36
  from assms UNIV_eq_I have "UNIV = set xs" by auto
bulwahn@41078
    37
  with enum_UNIV show ?thesis by simp
haftmann@26348
    38
qed
haftmann@26348
    39
haftmann@49972
    40
lemma card_UNIV_length_enum:
haftmann@49972
    41
  "card (UNIV :: 'a set) = length enum"
haftmann@49972
    42
  by (simp add: UNIV_enum distinct_card enum_distinct)
haftmann@49972
    43
haftmann@49950
    44
lemma enum_all [simp]:
haftmann@49950
    45
  "enum_all = HOL.All"
haftmann@49950
    46
  by (simp add: fun_eq_iff enum_all_UNIV)
haftmann@49950
    47
haftmann@49950
    48
lemma enum_ex [simp]:
haftmann@49950
    49
  "enum_ex = HOL.Ex" 
haftmann@49950
    50
  by (simp add: fun_eq_iff enum_ex_UNIV)
haftmann@49950
    51
haftmann@26348
    52
end
haftmann@26348
    53
haftmann@26348
    54
haftmann@49949
    55
subsection {* Implementations using @{class enum} *}
haftmann@49949
    56
haftmann@49949
    57
subsubsection {* Unbounded operations and quantifiers *}
haftmann@49949
    58
haftmann@49949
    59
lemma Collect_code [code]:
haftmann@49949
    60
  "Collect P = set (filter P enum)"
haftmann@49950
    61
  by (simp add: enum_UNIV)
haftmann@49949
    62
bulwahn@50567
    63
lemma vimage_code [code]:
bulwahn@50567
    64
  "f -` B = set (filter (%x. f x : B) enum_class.enum)"
bulwahn@50567
    65
  unfolding vimage_def Collect_code ..
bulwahn@50567
    66
haftmann@49949
    67
definition card_UNIV :: "'a itself \<Rightarrow> nat"
haftmann@49949
    68
where
haftmann@49949
    69
  [code del]: "card_UNIV TYPE('a) = card (UNIV :: 'a set)"
haftmann@49949
    70
haftmann@49949
    71
lemma [code]:
haftmann@49949
    72
  "card_UNIV TYPE('a :: enum) = card (set (Enum.enum :: 'a list))"
haftmann@49949
    73
  by (simp only: card_UNIV_def enum_UNIV)
haftmann@49949
    74
haftmann@49949
    75
lemma all_code [code]: "(\<forall>x. P x) \<longleftrightarrow> enum_all P"
haftmann@49950
    76
  by simp
haftmann@49949
    77
haftmann@49949
    78
lemma exists_code [code]: "(\<exists>x. P x) \<longleftrightarrow> enum_ex P"
haftmann@49950
    79
  by simp
haftmann@49949
    80
haftmann@49949
    81
lemma exists1_code [code]: "(\<exists>!x. P x) \<longleftrightarrow> list_ex1 P enum"
haftmann@49950
    82
  by (auto simp add: list_ex1_iff enum_UNIV)
haftmann@49949
    83
haftmann@49949
    84
haftmann@49949
    85
subsubsection {* An executable choice operator *}
haftmann@49949
    86
haftmann@49949
    87
definition
haftmann@49949
    88
  [code del]: "enum_the = The"
haftmann@49949
    89
haftmann@49949
    90
lemma [code]:
haftmann@49949
    91
  "The P = (case filter P enum of [x] => x | _ => enum_the P)"
haftmann@49949
    92
proof -
haftmann@49949
    93
  {
haftmann@49949
    94
    fix a
haftmann@49949
    95
    assume filter_enum: "filter P enum = [a]"
haftmann@49949
    96
    have "The P = a"
haftmann@49949
    97
    proof (rule the_equality)
haftmann@49949
    98
      fix x
haftmann@49949
    99
      assume "P x"
haftmann@49949
   100
      show "x = a"
haftmann@49949
   101
      proof (rule ccontr)
haftmann@49949
   102
        assume "x \<noteq> a"
haftmann@49949
   103
        from filter_enum obtain us vs
haftmann@49949
   104
          where enum_eq: "enum = us @ [a] @ vs"
haftmann@49949
   105
          and "\<forall> x \<in> set us. \<not> P x"
haftmann@49949
   106
          and "\<forall> x \<in> set vs. \<not> P x"
haftmann@49949
   107
          and "P a"
haftmann@49949
   108
          by (auto simp add: filter_eq_Cons_iff) (simp only: filter_empty_conv[symmetric])
haftmann@49949
   109
        with `P x` in_enum[of x, unfolded enum_eq] `x \<noteq> a` show "False" by auto
haftmann@49949
   110
      qed
haftmann@49949
   111
    next
haftmann@49949
   112
      from filter_enum show "P a" by (auto simp add: filter_eq_Cons_iff)
haftmann@49949
   113
    qed
haftmann@49949
   114
  }
haftmann@49949
   115
  from this show ?thesis
haftmann@49949
   116
    unfolding enum_the_def by (auto split: list.split)
haftmann@49949
   117
qed
haftmann@49949
   118
haftmann@54890
   119
declare [[code abort: enum_the]]
haftmann@52435
   120
haftmann@52435
   121
code_printing
haftmann@52435
   122
  constant enum_the \<rightharpoonup> (Eval) "(fn '_ => raise Match)"
haftmann@49949
   123
haftmann@49949
   124
haftmann@49949
   125
subsubsection {* Equality and order on functions *}
haftmann@26348
   126
haftmann@38857
   127
instantiation "fun" :: (enum, equal) equal
haftmann@26513
   128
begin
haftmann@26348
   129
haftmann@26513
   130
definition
haftmann@38857
   131
  "HOL.equal f g \<longleftrightarrow> (\<forall>x \<in> set enum. f x = g x)"
haftmann@26513
   132
haftmann@31464
   133
instance proof
haftmann@49950
   134
qed (simp_all add: equal_fun_def fun_eq_iff enum_UNIV)
haftmann@26513
   135
haftmann@26513
   136
end
haftmann@26348
   137
bulwahn@40898
   138
lemma [code]:
bulwahn@41078
   139
  "HOL.equal f g \<longleftrightarrow> enum_all (%x. f x = g x)"
haftmann@49950
   140
  by (auto simp add: equal fun_eq_iff)
bulwahn@40898
   141
haftmann@38857
   142
lemma [code nbe]:
haftmann@38857
   143
  "HOL.equal (f :: _ \<Rightarrow> _) f \<longleftrightarrow> True"
haftmann@38857
   144
  by (fact equal_refl)
haftmann@38857
   145
haftmann@28562
   146
lemma order_fun [code]:
haftmann@26348
   147
  fixes f g :: "'a\<Colon>enum \<Rightarrow> 'b\<Colon>order"
bulwahn@41078
   148
  shows "f \<le> g \<longleftrightarrow> enum_all (\<lambda>x. f x \<le> g x)"
bulwahn@41078
   149
    and "f < g \<longleftrightarrow> f \<le> g \<and> enum_ex (\<lambda>x. f x \<noteq> g x)"
haftmann@49950
   150
  by (simp_all add: fun_eq_iff le_fun_def order_less_le)
haftmann@26968
   151
haftmann@26968
   152
haftmann@49949
   153
subsubsection {* Operations on relations *}
haftmann@49949
   154
haftmann@49949
   155
lemma [code]:
haftmann@49949
   156
  "Id = image (\<lambda>x. (x, x)) (set Enum.enum)"
haftmann@49949
   157
  by (auto intro: imageI in_enum)
haftmann@26968
   158
blanchet@54148
   159
lemma tranclp_unfold [code]:
haftmann@49949
   160
  "tranclp r a b \<longleftrightarrow> (a, b) \<in> trancl {(x, y). r x y}"
haftmann@49949
   161
  by (simp add: trancl_def)
haftmann@49949
   162
blanchet@54148
   163
lemma rtranclp_rtrancl_eq [code]:
haftmann@49949
   164
  "rtranclp r x y \<longleftrightarrow> (x, y) \<in> rtrancl {(x, y). r x y}"
haftmann@49949
   165
  by (simp add: rtrancl_def)
haftmann@26968
   166
haftmann@49949
   167
lemma max_ext_eq [code]:
haftmann@49949
   168
  "max_ext R = {(X, Y). finite X \<and> finite Y \<and> Y \<noteq> {} \<and> (\<forall>x. x \<in> X \<longrightarrow> (\<exists>xa \<in> Y. (x, xa) \<in> R))}"
haftmann@49949
   169
  by (auto simp add: max_ext.simps)
haftmann@49949
   170
haftmann@49949
   171
lemma max_extp_eq [code]:
haftmann@49949
   172
  "max_extp r x y \<longleftrightarrow> (x, y) \<in> max_ext {(x, y). r x y}"
haftmann@49949
   173
  by (simp add: max_ext_def)
haftmann@26348
   174
haftmann@49949
   175
lemma mlex_eq [code]:
haftmann@49949
   176
  "f <*mlex*> R = {(x, y). f x < f y \<or> (f x \<le> f y \<and> (x, y) \<in> R)}"
haftmann@49949
   177
  by (auto simp add: mlex_prod_def)
haftmann@49949
   178
blanchet@55088
   179
blanchet@55088
   180
subsubsection {* Bounded accessible part *}
blanchet@55088
   181
blanchet@55088
   182
primrec bacc :: "('a \<times> 'a) set \<Rightarrow> nat \<Rightarrow> 'a set" 
blanchet@55088
   183
where
blanchet@55088
   184
  "bacc r 0 = {x. \<forall> y. (y, x) \<notin> r}"
blanchet@55088
   185
| "bacc r (Suc n) = (bacc r n \<union> {x. \<forall>y. (y, x) \<in> r \<longrightarrow> y \<in> bacc r n})"
blanchet@55088
   186
blanchet@55088
   187
lemma bacc_subseteq_acc:
blanchet@55088
   188
  "bacc r n \<subseteq> Wellfounded.acc r"
blanchet@55088
   189
  by (induct n) (auto intro: acc.intros)
blanchet@55088
   190
blanchet@55088
   191
lemma bacc_mono:
blanchet@55088
   192
  "n \<le> m \<Longrightarrow> bacc r n \<subseteq> bacc r m"
blanchet@55088
   193
  by (induct rule: dec_induct) auto
blanchet@55088
   194
  
blanchet@55088
   195
lemma bacc_upper_bound:
blanchet@55088
   196
  "bacc (r :: ('a \<times> 'a) set)  (card (UNIV :: 'a::finite set)) = (\<Union>n. bacc r n)"
blanchet@55088
   197
proof -
blanchet@55088
   198
  have "mono (bacc r)" unfolding mono_def by (simp add: bacc_mono)
blanchet@55088
   199
  moreover have "\<forall>n. bacc r n = bacc r (Suc n) \<longrightarrow> bacc r (Suc n) = bacc r (Suc (Suc n))" by auto
blanchet@55088
   200
  moreover have "finite (range (bacc r))" by auto
blanchet@55088
   201
  ultimately show ?thesis
blanchet@55088
   202
   by (intro finite_mono_strict_prefix_implies_finite_fixpoint)
blanchet@55088
   203
     (auto intro: finite_mono_remains_stable_implies_strict_prefix)
blanchet@55088
   204
qed
blanchet@55088
   205
blanchet@55088
   206
lemma acc_subseteq_bacc:
blanchet@55088
   207
  assumes "finite r"
blanchet@55088
   208
  shows "Wellfounded.acc r \<subseteq> (\<Union>n. bacc r n)"
blanchet@55088
   209
proof
blanchet@55088
   210
  fix x
blanchet@55088
   211
  assume "x : Wellfounded.acc r"
blanchet@55088
   212
  then have "\<exists> n. x : bacc r n"
blanchet@55088
   213
  proof (induct x arbitrary: rule: acc.induct)
blanchet@55088
   214
    case (accI x)
blanchet@55088
   215
    then have "\<forall>y. \<exists> n. (y, x) \<in> r --> y : bacc r n" by simp
blanchet@55088
   216
    from choice[OF this] obtain n where n: "\<forall>y. (y, x) \<in> r \<longrightarrow> y \<in> bacc r (n y)" ..
blanchet@55088
   217
    obtain n where "\<And>y. (y, x) : r \<Longrightarrow> y : bacc r n"
blanchet@55088
   218
    proof
blanchet@55088
   219
      fix y assume y: "(y, x) : r"
blanchet@55088
   220
      with n have "y : bacc r (n y)" by auto
blanchet@55088
   221
      moreover have "n y <= Max ((%(y, x). n y) ` r)"
blanchet@55088
   222
        using y `finite r` by (auto intro!: Max_ge)
blanchet@55088
   223
      note bacc_mono[OF this, of r]
blanchet@55088
   224
      ultimately show "y : bacc r (Max ((%(y, x). n y) ` r))" by auto
blanchet@55088
   225
    qed
blanchet@55088
   226
    then show ?case
blanchet@55088
   227
      by (auto simp add: Let_def intro!: exI[of _ "Suc n"])
blanchet@55088
   228
  qed
blanchet@55088
   229
  then show "x : (UN n. bacc r n)" by auto
blanchet@55088
   230
qed
blanchet@55088
   231
blanchet@55088
   232
lemma acc_bacc_eq:
blanchet@55088
   233
  fixes A :: "('a :: finite \<times> 'a) set"
blanchet@55088
   234
  assumes "finite A"
blanchet@55088
   235
  shows "Wellfounded.acc A = bacc A (card (UNIV :: 'a set))"
blanchet@55088
   236
  using assms by (metis acc_subseteq_bacc bacc_subseteq_acc bacc_upper_bound order_eq_iff)
blanchet@55088
   237
haftmann@49949
   238
lemma [code]:
haftmann@49949
   239
  fixes xs :: "('a::finite \<times> 'a) list"
haftmann@54295
   240
  shows "Wellfounded.acc (set xs) = bacc (set xs) (card_UNIV TYPE('a))"
haftmann@49949
   241
  by (simp add: card_UNIV_def acc_bacc_eq)
haftmann@49949
   242
haftmann@26348
   243
haftmann@49949
   244
subsection {* Default instances for @{class enum} *}
haftmann@26348
   245
haftmann@26444
   246
lemma map_of_zip_enum_is_Some:
haftmann@26444
   247
  assumes "length ys = length (enum \<Colon> 'a\<Colon>enum list)"
haftmann@26444
   248
  shows "\<exists>y. map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x = Some y"
haftmann@26444
   249
proof -
haftmann@26444
   250
  from assms have "x \<in> set (enum \<Colon> 'a\<Colon>enum list) \<longleftrightarrow>
haftmann@26444
   251
    (\<exists>y. map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x = Some y)"
haftmann@26444
   252
    by (auto intro!: map_of_zip_is_Some)
bulwahn@41078
   253
  then show ?thesis using enum_UNIV by auto
haftmann@26444
   254
qed
haftmann@26444
   255
haftmann@26444
   256
lemma map_of_zip_enum_inject:
haftmann@26444
   257
  fixes xs ys :: "'b\<Colon>enum list"
haftmann@26444
   258
  assumes length: "length xs = length (enum \<Colon> 'a\<Colon>enum list)"
haftmann@26444
   259
      "length ys = length (enum \<Colon> 'a\<Colon>enum list)"
haftmann@26444
   260
    and map_of: "the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) xs) = the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys)"
haftmann@26444
   261
  shows "xs = ys"
haftmann@26444
   262
proof -
haftmann@26444
   263
  have "map_of (zip (enum \<Colon> 'a list) xs) = map_of (zip (enum \<Colon> 'a list) ys)"
haftmann@26444
   264
  proof
haftmann@26444
   265
    fix x :: 'a
haftmann@26444
   266
    from length map_of_zip_enum_is_Some obtain y1 y2
haftmann@26444
   267
      where "map_of (zip (enum \<Colon> 'a list) xs) x = Some y1"
haftmann@26444
   268
        and "map_of (zip (enum \<Colon> 'a list) ys) x = Some y2" by blast
wenzelm@47230
   269
    moreover from map_of
wenzelm@47230
   270
      have "the (map_of (zip (enum \<Colon> 'a\<Colon>enum list) xs) x) = the (map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x)"
haftmann@26444
   271
      by (auto dest: fun_cong)
haftmann@26444
   272
    ultimately show "map_of (zip (enum \<Colon> 'a\<Colon>enum list) xs) x = map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x"
haftmann@26444
   273
      by simp
haftmann@26444
   274
  qed
haftmann@26444
   275
  with length enum_distinct show "xs = ys" by (rule map_of_zip_inject)
haftmann@26444
   276
qed
haftmann@26444
   277
haftmann@49950
   278
definition all_n_lists :: "(('a :: enum) list \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> bool"
bulwahn@41078
   279
where
haftmann@49950
   280
  "all_n_lists P n \<longleftrightarrow> (\<forall>xs \<in> set (List.n_lists n enum). P xs)"
bulwahn@41078
   281
bulwahn@41078
   282
lemma [code]:
haftmann@49950
   283
  "all_n_lists P n \<longleftrightarrow> (if n = 0 then P [] else enum_all (%x. all_n_lists (%xs. P (x # xs)) (n - 1)))"
haftmann@49950
   284
  unfolding all_n_lists_def enum_all
haftmann@49950
   285
  by (cases n) (auto simp add: enum_UNIV)
bulwahn@41078
   286
haftmann@49950
   287
definition ex_n_lists :: "(('a :: enum) list \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> bool"
bulwahn@41078
   288
where
haftmann@49950
   289
  "ex_n_lists P n \<longleftrightarrow> (\<exists>xs \<in> set (List.n_lists n enum). P xs)"
bulwahn@41078
   290
bulwahn@41078
   291
lemma [code]:
haftmann@49950
   292
  "ex_n_lists P n \<longleftrightarrow> (if n = 0 then P [] else enum_ex (%x. ex_n_lists (%xs. P (x # xs)) (n - 1)))"
haftmann@49950
   293
  unfolding ex_n_lists_def enum_ex
haftmann@49950
   294
  by (cases n) (auto simp add: enum_UNIV)
bulwahn@41078
   295
haftmann@26444
   296
instantiation "fun" :: (enum, enum) enum
haftmann@26444
   297
begin
haftmann@26444
   298
haftmann@26444
   299
definition
haftmann@49948
   300
  "enum = map (\<lambda>ys. the o map_of (zip (enum\<Colon>'a list) ys)) (List.n_lists (length (enum\<Colon>'a\<Colon>enum list)) enum)"
haftmann@26444
   301
bulwahn@41078
   302
definition
bulwahn@41078
   303
  "enum_all P = all_n_lists (\<lambda>bs. P (the o map_of (zip enum bs))) (length (enum :: 'a list))"
bulwahn@41078
   304
bulwahn@41078
   305
definition
bulwahn@41078
   306
  "enum_ex P = ex_n_lists (\<lambda>bs. P (the o map_of (zip enum bs))) (length (enum :: 'a list))"
bulwahn@41078
   307
haftmann@26444
   308
instance proof
haftmann@26444
   309
  show "UNIV = set (enum \<Colon> ('a \<Rightarrow> 'b) list)"
haftmann@26444
   310
  proof (rule UNIV_eq_I)
haftmann@26444
   311
    fix f :: "'a \<Rightarrow> 'b"
haftmann@26444
   312
    have "f = the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) (map f enum))"
bulwahn@40683
   313
      by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum)
haftmann@26444
   314
    then show "f \<in> set enum"
bulwahn@40683
   315
      by (auto simp add: enum_fun_def set_n_lists intro: in_enum)
haftmann@26444
   316
  qed
haftmann@26444
   317
next
haftmann@26444
   318
  from map_of_zip_enum_inject
haftmann@26444
   319
  show "distinct (enum \<Colon> ('a \<Rightarrow> 'b) list)"
haftmann@26444
   320
    by (auto intro!: inj_onI simp add: enum_fun_def
haftmann@49950
   321
      distinct_map distinct_n_lists enum_distinct set_n_lists)
bulwahn@41078
   322
next
bulwahn@41078
   323
  fix P
haftmann@49950
   324
  show "enum_all (P :: ('a \<Rightarrow> 'b) \<Rightarrow> bool) = Ball UNIV P"
bulwahn@41078
   325
  proof
bulwahn@41078
   326
    assume "enum_all P"
haftmann@49950
   327
    show "Ball UNIV P"
bulwahn@41078
   328
    proof
bulwahn@41078
   329
      fix f :: "'a \<Rightarrow> 'b"
bulwahn@41078
   330
      have f: "f = the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) (map f enum))"
bulwahn@41078
   331
        by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum)
bulwahn@41078
   332
      from `enum_all P` have "P (the \<circ> map_of (zip enum (map f enum)))"
bulwahn@41078
   333
        unfolding enum_all_fun_def all_n_lists_def
bulwahn@41078
   334
        apply (simp add: set_n_lists)
bulwahn@41078
   335
        apply (erule_tac x="map f enum" in allE)
bulwahn@41078
   336
        apply (auto intro!: in_enum)
bulwahn@41078
   337
        done
bulwahn@41078
   338
      from this f show "P f" by auto
bulwahn@41078
   339
    qed
bulwahn@41078
   340
  next
haftmann@49950
   341
    assume "Ball UNIV P"
bulwahn@41078
   342
    from this show "enum_all P"
bulwahn@41078
   343
      unfolding enum_all_fun_def all_n_lists_def by auto
bulwahn@41078
   344
  qed
bulwahn@41078
   345
next
bulwahn@41078
   346
  fix P
haftmann@49950
   347
  show "enum_ex (P :: ('a \<Rightarrow> 'b) \<Rightarrow> bool) = Bex UNIV P"
bulwahn@41078
   348
  proof
bulwahn@41078
   349
    assume "enum_ex P"
haftmann@49950
   350
    from this show "Bex UNIV P"
bulwahn@41078
   351
      unfolding enum_ex_fun_def ex_n_lists_def by auto
bulwahn@41078
   352
  next
haftmann@49950
   353
    assume "Bex UNIV P"
bulwahn@41078
   354
    from this obtain f where "P f" ..
bulwahn@41078
   355
    have f: "f = the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) (map f enum))"
bulwahn@41078
   356
      by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum) 
bulwahn@41078
   357
    from `P f` this have "P (the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) (map f enum)))"
bulwahn@41078
   358
      by auto
bulwahn@41078
   359
    from  this show "enum_ex P"
bulwahn@41078
   360
      unfolding enum_ex_fun_def ex_n_lists_def
bulwahn@41078
   361
      apply (auto simp add: set_n_lists)
bulwahn@41078
   362
      apply (rule_tac x="map f enum" in exI)
bulwahn@41078
   363
      apply (auto intro!: in_enum)
bulwahn@41078
   364
      done
bulwahn@41078
   365
  qed
haftmann@26444
   366
qed
haftmann@26444
   367
haftmann@26444
   368
end
haftmann@26444
   369
haftmann@38857
   370
lemma enum_fun_code [code]: "enum = (let enum_a = (enum \<Colon> 'a\<Colon>{enum, equal} list)
haftmann@49948
   371
  in map (\<lambda>ys. the o map_of (zip enum_a ys)) (List.n_lists (length enum_a) enum))"
haftmann@28245
   372
  by (simp add: enum_fun_def Let_def)
haftmann@26444
   373
bulwahn@41078
   374
lemma enum_all_fun_code [code]:
bulwahn@41078
   375
  "enum_all P = (let enum_a = (enum :: 'a::{enum, equal} list)
bulwahn@41078
   376
   in all_n_lists (\<lambda>bs. P (the o map_of (zip enum_a bs))) (length enum_a))"
haftmann@49950
   377
  by (simp only: enum_all_fun_def Let_def)
bulwahn@41078
   378
bulwahn@41078
   379
lemma enum_ex_fun_code [code]:
bulwahn@41078
   380
  "enum_ex P = (let enum_a = (enum :: 'a::{enum, equal} list)
bulwahn@41078
   381
   in ex_n_lists (\<lambda>bs. P (the o map_of (zip enum_a bs))) (length enum_a))"
haftmann@49950
   382
  by (simp only: enum_ex_fun_def Let_def)
haftmann@45963
   383
haftmann@45963
   384
instantiation set :: (enum) enum
haftmann@45963
   385
begin
haftmann@45963
   386
haftmann@45963
   387
definition
haftmann@45963
   388
  "enum = map set (sublists enum)"
haftmann@45963
   389
haftmann@45963
   390
definition
haftmann@45963
   391
  "enum_all P \<longleftrightarrow> (\<forall>A\<in>set enum. P (A::'a set))"
haftmann@45963
   392
haftmann@45963
   393
definition
haftmann@45963
   394
  "enum_ex P \<longleftrightarrow> (\<exists>A\<in>set enum. P (A::'a set))"
haftmann@45963
   395
haftmann@45963
   396
instance proof
haftmann@45963
   397
qed (simp_all add: enum_set_def enum_all_set_def enum_ex_set_def sublists_powset distinct_set_sublists
haftmann@45963
   398
  enum_distinct enum_UNIV)
huffman@29024
   399
huffman@29024
   400
end
huffman@29024
   401
haftmann@49950
   402
instantiation unit :: enum
haftmann@49950
   403
begin
haftmann@49950
   404
haftmann@49950
   405
definition
haftmann@49950
   406
  "enum = [()]"
haftmann@49950
   407
haftmann@49950
   408
definition
haftmann@49950
   409
  "enum_all P = P ()"
haftmann@49950
   410
haftmann@49950
   411
definition
haftmann@49950
   412
  "enum_ex P = P ()"
haftmann@49950
   413
haftmann@49950
   414
instance proof
haftmann@49950
   415
qed (auto simp add: enum_unit_def enum_all_unit_def enum_ex_unit_def)
haftmann@49950
   416
haftmann@49950
   417
end
haftmann@49950
   418
haftmann@49950
   419
instantiation bool :: enum
haftmann@49950
   420
begin
haftmann@49950
   421
haftmann@49950
   422
definition
haftmann@49950
   423
  "enum = [False, True]"
haftmann@49950
   424
haftmann@49950
   425
definition
haftmann@49950
   426
  "enum_all P \<longleftrightarrow> P False \<and> P True"
haftmann@49950
   427
haftmann@49950
   428
definition
haftmann@49950
   429
  "enum_ex P \<longleftrightarrow> P False \<or> P True"
haftmann@49950
   430
haftmann@49950
   431
instance proof
haftmann@49950
   432
qed (simp_all only: enum_bool_def enum_all_bool_def enum_ex_bool_def UNIV_bool, simp_all)
haftmann@49950
   433
haftmann@49950
   434
end
haftmann@49950
   435
haftmann@49950
   436
instantiation prod :: (enum, enum) enum
haftmann@49950
   437
begin
haftmann@49950
   438
haftmann@49950
   439
definition
haftmann@49950
   440
  "enum = List.product enum enum"
haftmann@49950
   441
haftmann@49950
   442
definition
haftmann@49950
   443
  "enum_all P = enum_all (%x. enum_all (%y. P (x, y)))"
haftmann@49950
   444
haftmann@49950
   445
definition
haftmann@49950
   446
  "enum_ex P = enum_ex (%x. enum_ex (%y. P (x, y)))"
haftmann@49950
   447
haftmann@49950
   448
 
haftmann@49950
   449
instance by default
nipkow@57247
   450
  (simp_all add: enum_prod_def distinct_product
haftmann@49950
   451
    enum_UNIV enum_distinct enum_all_prod_def enum_ex_prod_def)
haftmann@49950
   452
haftmann@49950
   453
end
haftmann@49950
   454
haftmann@49950
   455
instantiation sum :: (enum, enum) enum
haftmann@49950
   456
begin
haftmann@49950
   457
haftmann@49950
   458
definition
haftmann@49950
   459
  "enum = map Inl enum @ map Inr enum"
haftmann@49950
   460
haftmann@49950
   461
definition
haftmann@49950
   462
  "enum_all P \<longleftrightarrow> enum_all (\<lambda>x. P (Inl x)) \<and> enum_all (\<lambda>x. P (Inr x))"
haftmann@49950
   463
haftmann@49950
   464
definition
haftmann@49950
   465
  "enum_ex P \<longleftrightarrow> enum_ex (\<lambda>x. P (Inl x)) \<or> enum_ex (\<lambda>x. P (Inr x))"
haftmann@49950
   466
haftmann@49950
   467
instance proof
haftmann@49950
   468
qed (simp_all only: enum_sum_def enum_all_sum_def enum_ex_sum_def UNIV_sum,
haftmann@49950
   469
  auto simp add: enum_UNIV distinct_map enum_distinct)
haftmann@49950
   470
haftmann@49950
   471
end
haftmann@49950
   472
haftmann@49950
   473
instantiation option :: (enum) enum
haftmann@49950
   474
begin
haftmann@49950
   475
haftmann@49950
   476
definition
haftmann@49950
   477
  "enum = None # map Some enum"
haftmann@49950
   478
haftmann@49950
   479
definition
haftmann@49950
   480
  "enum_all P \<longleftrightarrow> P None \<and> enum_all (\<lambda>x. P (Some x))"
haftmann@49950
   481
haftmann@49950
   482
definition
haftmann@49950
   483
  "enum_ex P \<longleftrightarrow> P None \<or> enum_ex (\<lambda>x. P (Some x))"
haftmann@49950
   484
haftmann@49950
   485
instance proof
haftmann@49950
   486
qed (simp_all only: enum_option_def enum_all_option_def enum_ex_option_def UNIV_option_conv,
haftmann@49950
   487
  auto simp add: distinct_map enum_UNIV enum_distinct)
haftmann@49950
   488
haftmann@49950
   489
end
haftmann@49950
   490
haftmann@45963
   491
bulwahn@40647
   492
subsection {* Small finite types *}
bulwahn@40647
   493
bulwahn@40647
   494
text {* We define small finite types for the use in Quickcheck *}
bulwahn@40647
   495
wenzelm@53015
   496
datatype finite_1 = a\<^sub>1
bulwahn@40647
   497
wenzelm@53015
   498
notation (output) a\<^sub>1  ("a\<^sub>1")
bulwahn@40900
   499
haftmann@49950
   500
lemma UNIV_finite_1:
wenzelm@53015
   501
  "UNIV = {a\<^sub>1}"
haftmann@49950
   502
  by (auto intro: finite_1.exhaust)
haftmann@49950
   503
bulwahn@40647
   504
instantiation finite_1 :: enum
bulwahn@40647
   505
begin
bulwahn@40647
   506
bulwahn@40647
   507
definition
wenzelm@53015
   508
  "enum = [a\<^sub>1]"
bulwahn@40647
   509
bulwahn@41078
   510
definition
wenzelm@53015
   511
  "enum_all P = P a\<^sub>1"
bulwahn@41078
   512
bulwahn@41078
   513
definition
wenzelm@53015
   514
  "enum_ex P = P a\<^sub>1"
bulwahn@41078
   515
bulwahn@40647
   516
instance proof
haftmann@49950
   517
qed (simp_all only: enum_finite_1_def enum_all_finite_1_def enum_ex_finite_1_def UNIV_finite_1, simp_all)
bulwahn@40647
   518
huffman@29024
   519
end
bulwahn@40647
   520
bulwahn@40651
   521
instantiation finite_1 :: linorder
bulwahn@40651
   522
begin
bulwahn@40651
   523
haftmann@49950
   524
definition less_finite_1 :: "finite_1 \<Rightarrow> finite_1 \<Rightarrow> bool"
haftmann@49950
   525
where
haftmann@49950
   526
  "x < (y :: finite_1) \<longleftrightarrow> False"
haftmann@49950
   527
bulwahn@40651
   528
definition less_eq_finite_1 :: "finite_1 \<Rightarrow> finite_1 \<Rightarrow> bool"
bulwahn@40651
   529
where
haftmann@49950
   530
  "x \<le> (y :: finite_1) \<longleftrightarrow> True"
bulwahn@40651
   531
bulwahn@40651
   532
instance
bulwahn@40651
   533
apply (intro_classes)
bulwahn@40651
   534
apply (auto simp add: less_finite_1_def less_eq_finite_1_def)
bulwahn@40651
   535
apply (metis finite_1.exhaust)
bulwahn@40651
   536
done
bulwahn@40651
   537
bulwahn@40651
   538
end
bulwahn@40651
   539
wenzelm@53015
   540
hide_const (open) a\<^sub>1
bulwahn@40657
   541
wenzelm@53015
   542
datatype finite_2 = a\<^sub>1 | a\<^sub>2
bulwahn@40647
   543
wenzelm@53015
   544
notation (output) a\<^sub>1  ("a\<^sub>1")
wenzelm@53015
   545
notation (output) a\<^sub>2  ("a\<^sub>2")
bulwahn@40900
   546
haftmann@49950
   547
lemma UNIV_finite_2:
wenzelm@53015
   548
  "UNIV = {a\<^sub>1, a\<^sub>2}"
haftmann@49950
   549
  by (auto intro: finite_2.exhaust)
haftmann@49950
   550
bulwahn@40647
   551
instantiation finite_2 :: enum
bulwahn@40647
   552
begin
bulwahn@40647
   553
bulwahn@40647
   554
definition
wenzelm@53015
   555
  "enum = [a\<^sub>1, a\<^sub>2]"
bulwahn@40647
   556
bulwahn@41078
   557
definition
wenzelm@53015
   558
  "enum_all P \<longleftrightarrow> P a\<^sub>1 \<and> P a\<^sub>2"
bulwahn@41078
   559
bulwahn@41078
   560
definition
wenzelm@53015
   561
  "enum_ex P \<longleftrightarrow> P a\<^sub>1 \<or> P a\<^sub>2"
bulwahn@41078
   562
bulwahn@40647
   563
instance proof
haftmann@49950
   564
qed (simp_all only: enum_finite_2_def enum_all_finite_2_def enum_ex_finite_2_def UNIV_finite_2, simp_all)
bulwahn@40647
   565
bulwahn@40647
   566
end
bulwahn@40647
   567
bulwahn@40651
   568
instantiation finite_2 :: linorder
bulwahn@40651
   569
begin
bulwahn@40651
   570
bulwahn@40651
   571
definition less_finite_2 :: "finite_2 \<Rightarrow> finite_2 \<Rightarrow> bool"
bulwahn@40651
   572
where
wenzelm@53015
   573
  "x < y \<longleftrightarrow> x = a\<^sub>1 \<and> y = a\<^sub>2"
bulwahn@40651
   574
bulwahn@40651
   575
definition less_eq_finite_2 :: "finite_2 \<Rightarrow> finite_2 \<Rightarrow> bool"
bulwahn@40651
   576
where
haftmann@49950
   577
  "x \<le> y \<longleftrightarrow> x = y \<or> x < (y :: finite_2)"
bulwahn@40651
   578
bulwahn@40651
   579
instance
bulwahn@40651
   580
apply (intro_classes)
bulwahn@40651
   581
apply (auto simp add: less_finite_2_def less_eq_finite_2_def)
haftmann@49950
   582
apply (metis finite_2.nchotomy)+
bulwahn@40651
   583
done
bulwahn@40651
   584
bulwahn@40651
   585
end
bulwahn@40651
   586
wenzelm@53015
   587
hide_const (open) a\<^sub>1 a\<^sub>2
bulwahn@40657
   588
wenzelm@53015
   589
datatype finite_3 = a\<^sub>1 | a\<^sub>2 | a\<^sub>3
bulwahn@40647
   590
wenzelm@53015
   591
notation (output) a\<^sub>1  ("a\<^sub>1")
wenzelm@53015
   592
notation (output) a\<^sub>2  ("a\<^sub>2")
wenzelm@53015
   593
notation (output) a\<^sub>3  ("a\<^sub>3")
bulwahn@40900
   594
haftmann@49950
   595
lemma UNIV_finite_3:
wenzelm@53015
   596
  "UNIV = {a\<^sub>1, a\<^sub>2, a\<^sub>3}"
haftmann@49950
   597
  by (auto intro: finite_3.exhaust)
haftmann@49950
   598
bulwahn@40647
   599
instantiation finite_3 :: enum
bulwahn@40647
   600
begin
bulwahn@40647
   601
bulwahn@40647
   602
definition
wenzelm@53015
   603
  "enum = [a\<^sub>1, a\<^sub>2, a\<^sub>3]"
bulwahn@40647
   604
bulwahn@41078
   605
definition
wenzelm@53015
   606
  "enum_all P \<longleftrightarrow> P a\<^sub>1 \<and> P a\<^sub>2 \<and> P a\<^sub>3"
bulwahn@41078
   607
bulwahn@41078
   608
definition
wenzelm@53015
   609
  "enum_ex P \<longleftrightarrow> P a\<^sub>1 \<or> P a\<^sub>2 \<or> P a\<^sub>3"
bulwahn@41078
   610
bulwahn@40647
   611
instance proof
haftmann@49950
   612
qed (simp_all only: enum_finite_3_def enum_all_finite_3_def enum_ex_finite_3_def UNIV_finite_3, simp_all)
bulwahn@40647
   613
bulwahn@40647
   614
end
bulwahn@40647
   615
bulwahn@40651
   616
instantiation finite_3 :: linorder
bulwahn@40651
   617
begin
bulwahn@40651
   618
bulwahn@40651
   619
definition less_finite_3 :: "finite_3 \<Rightarrow> finite_3 \<Rightarrow> bool"
bulwahn@40651
   620
where
wenzelm@53015
   621
  "x < y = (case x of a\<^sub>1 \<Rightarrow> y \<noteq> a\<^sub>1 | a\<^sub>2 \<Rightarrow> y = a\<^sub>3 | a\<^sub>3 \<Rightarrow> False)"
bulwahn@40651
   622
bulwahn@40651
   623
definition less_eq_finite_3 :: "finite_3 \<Rightarrow> finite_3 \<Rightarrow> bool"
bulwahn@40651
   624
where
haftmann@49950
   625
  "x \<le> y \<longleftrightarrow> x = y \<or> x < (y :: finite_3)"
bulwahn@40651
   626
bulwahn@40651
   627
instance proof (intro_classes)
bulwahn@40651
   628
qed (auto simp add: less_finite_3_def less_eq_finite_3_def split: finite_3.split_asm)
bulwahn@40651
   629
bulwahn@40651
   630
end
bulwahn@40651
   631
wenzelm@53015
   632
hide_const (open) a\<^sub>1 a\<^sub>2 a\<^sub>3
bulwahn@40657
   633
wenzelm@53015
   634
datatype finite_4 = a\<^sub>1 | a\<^sub>2 | a\<^sub>3 | a\<^sub>4
bulwahn@40647
   635
wenzelm@53015
   636
notation (output) a\<^sub>1  ("a\<^sub>1")
wenzelm@53015
   637
notation (output) a\<^sub>2  ("a\<^sub>2")
wenzelm@53015
   638
notation (output) a\<^sub>3  ("a\<^sub>3")
wenzelm@53015
   639
notation (output) a\<^sub>4  ("a\<^sub>4")
bulwahn@40900
   640
haftmann@49950
   641
lemma UNIV_finite_4:
wenzelm@53015
   642
  "UNIV = {a\<^sub>1, a\<^sub>2, a\<^sub>3, a\<^sub>4}"
haftmann@49950
   643
  by (auto intro: finite_4.exhaust)
haftmann@49950
   644
bulwahn@40647
   645
instantiation finite_4 :: enum
bulwahn@40647
   646
begin
bulwahn@40647
   647
bulwahn@40647
   648
definition
wenzelm@53015
   649
  "enum = [a\<^sub>1, a\<^sub>2, a\<^sub>3, a\<^sub>4]"
bulwahn@40647
   650
bulwahn@41078
   651
definition
wenzelm@53015
   652
  "enum_all P \<longleftrightarrow> P a\<^sub>1 \<and> P a\<^sub>2 \<and> P a\<^sub>3 \<and> P a\<^sub>4"
bulwahn@41078
   653
bulwahn@41078
   654
definition
wenzelm@53015
   655
  "enum_ex P \<longleftrightarrow> P a\<^sub>1 \<or> P a\<^sub>2 \<or> P a\<^sub>3 \<or> P a\<^sub>4"
bulwahn@41078
   656
bulwahn@40647
   657
instance proof
haftmann@49950
   658
qed (simp_all only: enum_finite_4_def enum_all_finite_4_def enum_ex_finite_4_def UNIV_finite_4, simp_all)
bulwahn@40647
   659
bulwahn@40647
   660
end
bulwahn@40647
   661
wenzelm@53015
   662
hide_const (open) a\<^sub>1 a\<^sub>2 a\<^sub>3 a\<^sub>4
bulwahn@40651
   663
bulwahn@40651
   664
wenzelm@53015
   665
datatype finite_5 = a\<^sub>1 | a\<^sub>2 | a\<^sub>3 | a\<^sub>4 | a\<^sub>5
bulwahn@40647
   666
wenzelm@53015
   667
notation (output) a\<^sub>1  ("a\<^sub>1")
wenzelm@53015
   668
notation (output) a\<^sub>2  ("a\<^sub>2")
wenzelm@53015
   669
notation (output) a\<^sub>3  ("a\<^sub>3")
wenzelm@53015
   670
notation (output) a\<^sub>4  ("a\<^sub>4")
wenzelm@53015
   671
notation (output) a\<^sub>5  ("a\<^sub>5")
bulwahn@40900
   672
haftmann@49950
   673
lemma UNIV_finite_5:
wenzelm@53015
   674
  "UNIV = {a\<^sub>1, a\<^sub>2, a\<^sub>3, a\<^sub>4, a\<^sub>5}"
haftmann@49950
   675
  by (auto intro: finite_5.exhaust)
haftmann@49950
   676
bulwahn@40647
   677
instantiation finite_5 :: enum
bulwahn@40647
   678
begin
bulwahn@40647
   679
bulwahn@40647
   680
definition
wenzelm@53015
   681
  "enum = [a\<^sub>1, a\<^sub>2, a\<^sub>3, a\<^sub>4, a\<^sub>5]"
bulwahn@40647
   682
bulwahn@41078
   683
definition
wenzelm@53015
   684
  "enum_all P \<longleftrightarrow> P a\<^sub>1 \<and> P a\<^sub>2 \<and> P a\<^sub>3 \<and> P a\<^sub>4 \<and> P a\<^sub>5"
bulwahn@41078
   685
bulwahn@41078
   686
definition
wenzelm@53015
   687
  "enum_ex P \<longleftrightarrow> P a\<^sub>1 \<or> P a\<^sub>2 \<or> P a\<^sub>3 \<or> P a\<^sub>4 \<or> P a\<^sub>5"
bulwahn@41078
   688
bulwahn@40647
   689
instance proof
haftmann@49950
   690
qed (simp_all only: enum_finite_5_def enum_all_finite_5_def enum_ex_finite_5_def UNIV_finite_5, simp_all)
bulwahn@40647
   691
bulwahn@40647
   692
end
bulwahn@40647
   693
wenzelm@53015
   694
hide_const (open) a\<^sub>1 a\<^sub>2 a\<^sub>3 a\<^sub>4 a\<^sub>5
bulwahn@46352
   695
haftmann@49948
   696
bulwahn@46352
   697
subsection {* Closing up *}
bulwahn@40657
   698
bulwahn@41085
   699
hide_type (open) finite_1 finite_2 finite_3 finite_4 finite_5
haftmann@49948
   700
hide_const (open) enum enum_all enum_ex all_n_lists ex_n_lists ntrancl
bulwahn@40647
   701
bulwahn@40647
   702
end