src/Pure/sorts.ML
author wenzelm
Fri Dec 29 17:24:44 2006 +0100 (2006-12-29)
changeset 21933 819ef284720b
parent 21926 1091904ddb19
child 22181 39104d1c43ca
permissions -rw-r--r--
classes: more direct way to achieve topological sorting;
renamed classes to all_classes;
added minimal_classes;
renamed project to subalgebra, tuned;
wenzelm@2956
     1
(*  Title:      Pure/sorts.ML
wenzelm@2956
     2
    ID:         $Id$
wenzelm@2956
     3
    Author:     Markus Wenzel and Stefan Berghofer, TU Muenchen
wenzelm@2956
     4
wenzelm@19514
     5
The order-sorted algebra of type classes.
wenzelm@19529
     6
wenzelm@19529
     7
Classes denote (possibly empty) collections of types that are
wenzelm@19529
     8
partially ordered by class inclusion. They are represented
wenzelm@19529
     9
symbolically by strings.
wenzelm@19529
    10
wenzelm@19529
    11
Sorts are intersections of finitely many classes. They are represented
wenzelm@19529
    12
by lists of classes.  Normal forms of sorts are sorted lists of
wenzelm@19529
    13
minimal classes (wrt. current class inclusion).
wenzelm@2956
    14
*)
wenzelm@2956
    15
wenzelm@2956
    16
signature SORTS =
wenzelm@2956
    17
sig
wenzelm@16598
    18
  val eq_set: sort list * sort list -> bool
wenzelm@16598
    19
  val union: sort list -> sort list -> sort list
wenzelm@16598
    20
  val subtract: sort list -> sort list -> sort list
wenzelm@19463
    21
  val remove_sort: sort -> sort list -> sort list
wenzelm@16598
    22
  val insert_sort: sort -> sort list -> sort list
wenzelm@16598
    23
  val insert_typ: typ -> sort list -> sort list
wenzelm@16598
    24
  val insert_typs: typ list -> sort list -> sort list
wenzelm@16598
    25
  val insert_term: term -> sort list -> sort list
wenzelm@16598
    26
  val insert_terms: term list -> sort list -> sort list
wenzelm@19645
    27
  type algebra
wenzelm@19645
    28
  val rep_algebra: algebra ->
wenzelm@20573
    29
   {classes: serial Graph.T,
wenzelm@19645
    30
    arities: (class * (class * sort list)) list Symtab.table}
wenzelm@21933
    31
  val all_classes: algebra -> class list
wenzelm@21933
    32
  val minimal_classes: algebra -> class list
wenzelm@19645
    33
  val super_classes: algebra -> class -> class list
wenzelm@19645
    34
  val class_less: algebra -> class * class -> bool
wenzelm@19645
    35
  val class_le: algebra -> class * class -> bool
wenzelm@19645
    36
  val sort_eq: algebra -> sort * sort -> bool
wenzelm@19645
    37
  val sort_le: algebra -> sort * sort -> bool
wenzelm@19645
    38
  val sorts_le: algebra -> sort list * sort list -> bool
wenzelm@19645
    39
  val inter_sort: algebra -> sort * sort -> sort
wenzelm@19645
    40
  val certify_class: algebra -> class -> class    (*exception TYPE*)
wenzelm@19645
    41
  val certify_sort: algebra -> sort -> sort       (*exception TYPE*)
wenzelm@19645
    42
  val add_class: Pretty.pp -> class * class list -> algebra -> algebra
wenzelm@19645
    43
  val add_classrel: Pretty.pp -> class * class -> algebra -> algebra
wenzelm@19645
    44
  val add_arities: Pretty.pp -> string * (class * sort list) list -> algebra -> algebra
wenzelm@19645
    45
  val empty_algebra: algebra
wenzelm@19645
    46
  val merge_algebra: Pretty.pp -> algebra * algebra -> algebra
wenzelm@21933
    47
  val subalgebra: Pretty.pp -> (class -> bool) -> algebra -> (sort -> sort) * algebra
wenzelm@19578
    48
  type class_error
wenzelm@19578
    49
  val class_error: Pretty.pp -> class_error -> 'a
wenzelm@19578
    50
  exception CLASS_ERROR of class_error
wenzelm@19645
    51
  val mg_domain: algebra -> string -> sort -> sort list   (*exception CLASS_ERROR*)
wenzelm@19645
    52
  val of_sort: algebra -> typ * sort -> bool
wenzelm@19645
    53
  val of_sort_derivation: Pretty.pp -> algebra ->
wenzelm@19529
    54
    {classrel: 'a * class -> class -> 'a,
wenzelm@19529
    55
     constructor: string -> ('a * class) list list -> class -> 'a,
wenzelm@19584
    56
     variable: typ -> ('a * class) list} ->
wenzelm@19584
    57
    typ * sort -> 'a list   (*exception CLASS_ERROR*)
wenzelm@19645
    58
  val witness_sorts: algebra -> string list -> sort list -> sort list -> (typ * sort) list
wenzelm@2956
    59
end;
wenzelm@2956
    60
wenzelm@20573
    61
structure Sorts: SORTS =
wenzelm@2956
    62
struct
wenzelm@2956
    63
wenzelm@19514
    64
wenzelm@19529
    65
(** ordered lists of sorts **)
wenzelm@14782
    66
wenzelm@16598
    67
val eq_set = OrdList.eq_set Term.sort_ord;
wenzelm@16598
    68
val op union = OrdList.union Term.sort_ord;
wenzelm@16598
    69
val subtract = OrdList.subtract Term.sort_ord;
wenzelm@14782
    70
wenzelm@19463
    71
val remove_sort = OrdList.remove Term.sort_ord;
wenzelm@16598
    72
val insert_sort = OrdList.insert Term.sort_ord;
wenzelm@14782
    73
wenzelm@16598
    74
fun insert_typ (TFree (_, S)) Ss = insert_sort S Ss
wenzelm@16598
    75
  | insert_typ (TVar (_, S)) Ss = insert_sort S Ss
wenzelm@16598
    76
  | insert_typ (Type (_, Ts)) Ss = insert_typs Ts Ss
wenzelm@16598
    77
and insert_typs [] Ss = Ss
wenzelm@16598
    78
  | insert_typs (T :: Ts) Ss = insert_typs Ts (insert_typ T Ss);
wenzelm@14782
    79
wenzelm@16598
    80
fun insert_term (Const (_, T)) Ss = insert_typ T Ss
wenzelm@16598
    81
  | insert_term (Free (_, T)) Ss = insert_typ T Ss
wenzelm@16598
    82
  | insert_term (Var (_, T)) Ss = insert_typ T Ss
wenzelm@16598
    83
  | insert_term (Bound _) Ss = Ss
wenzelm@16598
    84
  | insert_term (Abs (_, T, t)) Ss = insert_term t (insert_typ T Ss)
wenzelm@16598
    85
  | insert_term (t $ u) Ss = insert_term t (insert_term u Ss);
wenzelm@14782
    86
wenzelm@16598
    87
fun insert_terms [] Ss = Ss
wenzelm@16598
    88
  | insert_terms (t :: ts) Ss = insert_terms ts (insert_term t Ss);
wenzelm@14782
    89
wenzelm@14782
    90
wenzelm@19529
    91
wenzelm@19529
    92
(** order-sorted algebra **)
wenzelm@2956
    93
wenzelm@2956
    94
(*
wenzelm@14782
    95
  classes: graph representing class declarations together with proper
wenzelm@14782
    96
    subclass relation, which needs to be transitive and acyclic.
wenzelm@2956
    97
wenzelm@14782
    98
  arities: table of association lists of all type arities; (t, ars)
wenzelm@19531
    99
    means that type constructor t has the arities ars; an element
wenzelm@19531
   100
    (c, (c0, Ss)) of ars represents the arity t::(Ss)c being derived
wenzelm@19531
   101
    via c0 <= c.  "Coregularity" of the arities structure requires
wenzelm@19531
   102
    that for any two declarations t::(Ss1)c1 and t::(Ss2)c2 such that
wenzelm@19531
   103
    c1 <= c2 holds Ss1 <= Ss2.
wenzelm@2956
   104
*)
wenzelm@2956
   105
wenzelm@19645
   106
datatype algebra = Algebra of
wenzelm@20573
   107
 {classes: serial Graph.T,
wenzelm@19645
   108
  arities: (class * (class * sort list)) list Symtab.table};
wenzelm@19645
   109
wenzelm@19645
   110
fun rep_algebra (Algebra args) = args;
wenzelm@19645
   111
wenzelm@19645
   112
val classes_of = #classes o rep_algebra;
wenzelm@19645
   113
val arities_of = #arities o rep_algebra;
wenzelm@19645
   114
wenzelm@19645
   115
fun make_algebra (classes, arities) =
wenzelm@19645
   116
  Algebra {classes = classes, arities = arities};
wenzelm@19645
   117
wenzelm@19645
   118
fun map_classes f (Algebra {classes, arities}) = make_algebra (f classes, arities);
wenzelm@19645
   119
fun map_arities f (Algebra {classes, arities}) = make_algebra (classes, f arities);
wenzelm@19645
   120
wenzelm@19645
   121
wenzelm@19645
   122
(* classes *)
wenzelm@19645
   123
wenzelm@21933
   124
fun all_classes (Algebra {classes, ...}) = Graph.all_preds classes (Graph.maximals classes);
wenzelm@21933
   125
wenzelm@21933
   126
val minimal_classes = Graph.minimals o classes_of;
wenzelm@19645
   127
val super_classes = Graph.imm_succs o classes_of;
wenzelm@2956
   128
wenzelm@2956
   129
wenzelm@19529
   130
(* class relations *)
wenzelm@2956
   131
wenzelm@19645
   132
val class_less = Graph.is_edge o classes_of;
wenzelm@19645
   133
fun class_le algebra (c1, c2) = c1 = c2 orelse class_less algebra (c1, c2);
wenzelm@2956
   134
wenzelm@2956
   135
wenzelm@19529
   136
(* sort relations *)
wenzelm@2956
   137
wenzelm@19645
   138
fun sort_le algebra (S1, S2) =
wenzelm@19645
   139
  forall (fn c2 => exists (fn c1 => class_le algebra (c1, c2)) S1) S2;
wenzelm@2956
   140
wenzelm@19645
   141
fun sorts_le algebra (Ss1, Ss2) =
wenzelm@19645
   142
  ListPair.all (sort_le algebra) (Ss1, Ss2);
wenzelm@2956
   143
wenzelm@19645
   144
fun sort_eq algebra (S1, S2) =
wenzelm@19645
   145
  sort_le algebra (S1, S2) andalso sort_le algebra (S2, S1);
wenzelm@2956
   146
wenzelm@2956
   147
wenzelm@19529
   148
(* intersection *)
wenzelm@2956
   149
wenzelm@19645
   150
fun inter_class algebra c S =
wenzelm@2956
   151
  let
wenzelm@2956
   152
    fun intr [] = [c]
wenzelm@2956
   153
      | intr (S' as c' :: c's) =
wenzelm@19645
   154
          if class_le algebra (c', c) then S'
wenzelm@19645
   155
          else if class_le algebra (c, c') then intr c's
wenzelm@2956
   156
          else c' :: intr c's
wenzelm@2956
   157
  in intr S end;
wenzelm@2956
   158
wenzelm@19645
   159
fun inter_sort algebra (S1, S2) =
wenzelm@19645
   160
  sort_strings (fold (inter_class algebra) S1 S2);
wenzelm@2956
   161
wenzelm@2956
   162
wenzelm@19645
   163
(* normal form *)
wenzelm@2956
   164
wenzelm@19529
   165
fun norm_sort _ [] = []
wenzelm@19529
   166
  | norm_sort _ (S as [_]) = S
wenzelm@19645
   167
  | norm_sort algebra S =
wenzelm@19645
   168
      filter (fn c => not (exists (fn c' => class_less algebra (c', c)) S)) S
wenzelm@19529
   169
      |> sort_distinct string_ord;
wenzelm@2990
   170
wenzelm@2990
   171
wenzelm@19645
   172
(* certify *)
wenzelm@19645
   173
wenzelm@19645
   174
fun certify_class algebra c =
wenzelm@19645
   175
  if can (Graph.get_node (classes_of algebra)) c then c
wenzelm@19645
   176
  else raise TYPE ("Undeclared class: " ^ quote c, [], []);
wenzelm@19645
   177
wenzelm@19645
   178
fun certify_sort classes = norm_sort classes o map (certify_class classes);
wenzelm@19645
   179
wenzelm@19645
   180
wenzelm@2956
   181
wenzelm@19529
   182
(** build algebras **)
wenzelm@19514
   183
wenzelm@19514
   184
(* classes *)
wenzelm@19514
   185
wenzelm@19514
   186
fun err_dup_classes cs =
wenzelm@19514
   187
  error ("Duplicate declaration of class(es): " ^ commas_quote cs);
wenzelm@19514
   188
wenzelm@19514
   189
fun err_cyclic_classes pp css =
wenzelm@19514
   190
  error (cat_lines (map (fn cs =>
wenzelm@19514
   191
    "Cycle in class relation: " ^ Pretty.string_of_classrel pp cs) css));
wenzelm@19514
   192
wenzelm@19645
   193
fun add_class pp (c, cs) = map_classes (fn classes =>
wenzelm@19514
   194
  let
wenzelm@20573
   195
    val classes' = classes |> Graph.new_node (c, serial ())
wenzelm@19514
   196
      handle Graph.DUP dup => err_dup_classes [dup];
wenzelm@19514
   197
    val classes'' = classes' |> fold Graph.add_edge_trans_acyclic (map (pair c) cs)
wenzelm@19514
   198
      handle Graph.CYCLES css => err_cyclic_classes pp css;
wenzelm@19645
   199
  in classes'' end);
wenzelm@19514
   200
wenzelm@19514
   201
wenzelm@19514
   202
(* arities *)
wenzelm@19514
   203
wenzelm@19514
   204
local
wenzelm@19514
   205
wenzelm@19514
   206
fun for_classes _ NONE = ""
wenzelm@19514
   207
  | for_classes pp (SOME (c1, c2)) =
wenzelm@19514
   208
      " for classes " ^ Pretty.string_of_classrel pp [c1, c2];
wenzelm@19514
   209
wenzelm@19514
   210
fun err_conflict pp t cc (c, Ss) (c', Ss') =
wenzelm@19514
   211
  error ("Conflict of type arities" ^ for_classes pp cc ^ ":\n  " ^
wenzelm@19514
   212
    Pretty.string_of_arity pp (t, Ss, [c]) ^ " and\n  " ^
wenzelm@19514
   213
    Pretty.string_of_arity pp (t, Ss', [c']));
wenzelm@19514
   214
wenzelm@19645
   215
fun coregular pp algebra t (c, (c0, Ss)) ars =
wenzelm@19514
   216
  let
wenzelm@19524
   217
    fun conflict (c', (_, Ss')) =
wenzelm@19645
   218
      if class_le algebra (c, c') andalso not (sorts_le algebra (Ss, Ss')) then
wenzelm@19514
   219
        SOME ((c, c'), (c', Ss'))
wenzelm@19645
   220
      else if class_le algebra (c', c) andalso not (sorts_le algebra (Ss', Ss)) then
wenzelm@19514
   221
        SOME ((c', c), (c', Ss'))
wenzelm@19514
   222
      else NONE;
wenzelm@19514
   223
  in
wenzelm@19514
   224
    (case get_first conflict ars of
wenzelm@19514
   225
      SOME ((c1, c2), (c', Ss')) => err_conflict pp t (SOME (c1, c2)) (c, Ss) (c', Ss')
wenzelm@19524
   226
    | NONE => (c, (c0, Ss)) :: ars)
wenzelm@19514
   227
  end;
wenzelm@19514
   228
wenzelm@19645
   229
fun complete algebra (c0, Ss) = map (rpair (c0, Ss)) (c0 :: super_classes algebra c0);
wenzelm@19645
   230
wenzelm@19645
   231
fun insert pp algebra t (c, (c0, Ss)) ars =
wenzelm@19514
   232
  (case AList.lookup (op =) ars c of
wenzelm@19645
   233
    NONE => coregular pp algebra t (c, (c0, Ss)) ars
wenzelm@19524
   234
  | SOME (_, Ss') =>
wenzelm@19645
   235
      if sorts_le algebra (Ss, Ss') then ars
wenzelm@19645
   236
      else if sorts_le algebra (Ss', Ss) then
wenzelm@19645
   237
        coregular pp algebra t (c, (c0, Ss))
wenzelm@19524
   238
          (filter_out (fn (c'', (_, Ss'')) => c = c'' andalso Ss'' = Ss') ars)
wenzelm@19514
   239
      else err_conflict pp t NONE (c, Ss) (c, Ss'));
wenzelm@19514
   240
wenzelm@19645
   241
fun insert_ars pp algebra (t, ars) arities =
wenzelm@19645
   242
  let val ars' =
wenzelm@19645
   243
    Symtab.lookup_list arities t
wenzelm@19645
   244
    |> fold_rev (fold_rev (insert pp algebra t)) (map (complete algebra) ars)
wenzelm@19645
   245
  in Symtab.update (t, ars') arities end;
wenzelm@19514
   246
wenzelm@19514
   247
in
wenzelm@19514
   248
wenzelm@19645
   249
fun add_arities pp arg algebra = algebra |> map_arities (insert_ars pp algebra arg);
wenzelm@19514
   250
wenzelm@19645
   251
fun add_arities_table pp algebra =
wenzelm@19645
   252
  Symtab.fold (fn (t, ars) => insert_ars pp algebra (t, map snd ars));
wenzelm@19514
   253
wenzelm@19514
   254
end;
wenzelm@19514
   255
wenzelm@19529
   256
wenzelm@19645
   257
(* classrel *)
wenzelm@19645
   258
wenzelm@19645
   259
fun rebuild_arities pp algebra = algebra |> map_arities (fn arities =>
wenzelm@19645
   260
  Symtab.empty
wenzelm@19645
   261
  |> add_arities_table pp algebra arities);
wenzelm@19645
   262
wenzelm@19645
   263
fun add_classrel pp rel = rebuild_arities pp o map_classes (fn classes =>
wenzelm@19645
   264
  classes |> Graph.add_edge_trans_acyclic rel
wenzelm@19645
   265
    handle Graph.CYCLES css => err_cyclic_classes pp css);
wenzelm@19645
   266
wenzelm@19645
   267
wenzelm@19645
   268
(* empty and merge *)
wenzelm@19645
   269
wenzelm@19645
   270
val empty_algebra = make_algebra (Graph.empty, Symtab.empty);
wenzelm@19645
   271
wenzelm@19645
   272
fun merge_algebra pp
wenzelm@19645
   273
   (Algebra {classes = classes1, arities = arities1},
wenzelm@19645
   274
    Algebra {classes = classes2, arities = arities2}) =
wenzelm@19645
   275
  let
wenzelm@19645
   276
    val classes' = Graph.merge_trans_acyclic (op =) (classes1, classes2)
wenzelm@19645
   277
      handle Graph.DUPS cs => err_dup_classes cs
wenzelm@19645
   278
          | Graph.CYCLES css => err_cyclic_classes pp css;
wenzelm@19645
   279
    val algebra0 = make_algebra (classes', Symtab.empty);
wenzelm@19645
   280
    val arities' = Symtab.empty
wenzelm@19645
   281
      |> add_arities_table pp algebra0 arities1
wenzelm@19645
   282
      |> add_arities_table pp algebra0 arities2;
wenzelm@19645
   283
  in make_algebra (classes', arities') end;
wenzelm@19645
   284
wenzelm@21933
   285
wenzelm@21933
   286
(* subalgebra *)
wenzelm@21933
   287
wenzelm@21933
   288
fun subalgebra pp P (algebra as Algebra {classes, arities}) =
haftmann@19952
   289
  let
wenzelm@21933
   290
    val restrict_sort = norm_sort algebra o filter P o Graph.all_succs classes;
wenzelm@21933
   291
    fun restrict_arity (c, (_, Ss)) =
wenzelm@21933
   292
      if P c then SOME (c, (c, map restrict_sort Ss)) else NONE;
wenzelm@21933
   293
    val classes' = classes |> Graph.subgraph P;
wenzelm@21933
   294
    val arities' = arities |> (Symtab.map o map_filter) restrict_arity;
wenzelm@21933
   295
  in (restrict_sort, rebuild_arities pp (make_algebra (classes', arities'))) end;
haftmann@20465
   296
wenzelm@19645
   297
wenzelm@19529
   298
wenzelm@19529
   299
(** sorts of types **)
wenzelm@19529
   300
wenzelm@19578
   301
(* errors *)
wenzelm@19578
   302
wenzelm@19578
   303
datatype class_error = NoClassrel of class * class | NoArity of string * class;
wenzelm@19529
   304
wenzelm@19578
   305
fun class_error pp (NoClassrel (c1, c2)) =
wenzelm@19578
   306
      error ("No class relation " ^ Pretty.string_of_classrel pp [c1, c2])
wenzelm@19578
   307
  | class_error pp (NoArity (a, c)) =
wenzelm@19578
   308
      error ("No type arity " ^ Pretty.string_of_arity pp (a, [], [c]));
wenzelm@19529
   309
wenzelm@19578
   310
exception CLASS_ERROR of class_error;
wenzelm@19578
   311
wenzelm@19578
   312
wenzelm@19578
   313
(* mg_domain *)
wenzelm@19529
   314
wenzelm@19645
   315
fun mg_domain algebra a S =
wenzelm@19529
   316
  let
wenzelm@19645
   317
    val arities = arities_of algebra;
wenzelm@19529
   318
    fun dom c =
wenzelm@19529
   319
      (case AList.lookup (op =) (Symtab.lookup_list arities a) c of
wenzelm@19578
   320
        NONE => raise CLASS_ERROR (NoArity (a, c))
wenzelm@19529
   321
      | SOME (_, Ss) => Ss);
wenzelm@19645
   322
    fun dom_inter c Ss = ListPair.map (inter_sort algebra) (dom c, Ss);
wenzelm@19529
   323
  in
wenzelm@19529
   324
    (case S of
wenzelm@19529
   325
      [] => raise Fail "Unknown domain of empty intersection"
wenzelm@19529
   326
    | c :: cs => fold dom_inter cs (dom c))
wenzelm@19529
   327
  end;
wenzelm@19529
   328
wenzelm@19529
   329
wenzelm@19529
   330
(* of_sort *)
wenzelm@19529
   331
wenzelm@19645
   332
fun of_sort algebra =
wenzelm@19529
   333
  let
wenzelm@19529
   334
    fun ofS (_, []) = true
wenzelm@19645
   335
      | ofS (TFree (_, S), S') = sort_le algebra (S, S')
wenzelm@19645
   336
      | ofS (TVar (_, S), S') = sort_le algebra (S, S')
wenzelm@19529
   337
      | ofS (Type (a, Ts), S) =
wenzelm@19645
   338
          let val Ss = mg_domain algebra a S in
wenzelm@19529
   339
            ListPair.all ofS (Ts, Ss)
wenzelm@19578
   340
          end handle CLASS_ERROR _ => false;
wenzelm@19529
   341
  in ofS end;
wenzelm@19529
   342
wenzelm@19529
   343
wenzelm@19529
   344
(* of_sort_derivation *)
wenzelm@19529
   345
wenzelm@19645
   346
fun of_sort_derivation pp algebra {classrel, constructor, variable} =
wenzelm@19529
   347
  let
wenzelm@19645
   348
    val {classes, arities} = rep_algebra algebra;
haftmann@19952
   349
    fun weaken_path (x, c1 :: c2 :: cs) =
haftmann@19952
   350
          weaken_path (classrel (x, c1) c2, c2 :: cs)
wenzelm@19578
   351
      | weaken_path (x, _) = x;
wenzelm@19578
   352
    fun weaken (x, c1) c2 =
wenzelm@19578
   353
      (case Graph.irreducible_paths classes (c1, c2) of
wenzelm@19578
   354
        [] => raise CLASS_ERROR (NoClassrel (c1, c2))
wenzelm@19578
   355
      | cs :: _ => weaken_path (x, cs));
wenzelm@19578
   356
wenzelm@19529
   357
    fun weakens S1 S2 = S2 |> map (fn c2 =>
wenzelm@19645
   358
      (case S1 |> find_first (fn (_, c1) => class_le algebra (c1, c2)) of
wenzelm@19529
   359
        SOME d1 => weaken d1 c2
wenzelm@19529
   360
      | NONE => error ("Cannot derive subsort relation " ^
wenzelm@19529
   361
          Pretty.string_of_sort pp (map #2 S1) ^ " < " ^ Pretty.string_of_sort pp S2)));
wenzelm@19529
   362
wenzelm@19529
   363
    fun derive _ [] = []
wenzelm@19529
   364
      | derive (Type (a, Ts)) S =
wenzelm@19529
   365
          let
wenzelm@19645
   366
            val Ss = mg_domain algebra a S;
wenzelm@19529
   367
            val dom = map2 (fn T => fn S => derive T S ~~ S) Ts Ss;
wenzelm@19529
   368
          in
wenzelm@19529
   369
            S |> map (fn c =>
wenzelm@19529
   370
              let
wenzelm@19529
   371
                val (c0, Ss') = the (AList.lookup (op =) (Symtab.lookup_list arities a) c);
wenzelm@19529
   372
                val dom' = map2 (fn d => fn S' => weakens d S' ~~ S') dom Ss';
wenzelm@19529
   373
              in weaken (constructor a dom' c0, c0) c end)
wenzelm@19529
   374
          end
wenzelm@19529
   375
      | derive T S = weakens (variable T) S;
wenzelm@19529
   376
  in uncurry derive end;
wenzelm@19529
   377
wenzelm@19529
   378
wenzelm@19529
   379
(* witness_sorts *)
wenzelm@19529
   380
wenzelm@19645
   381
fun witness_sorts algebra types hyps sorts =
wenzelm@19529
   382
  let
wenzelm@19645
   383
    fun le S1 S2 = sort_le algebra (S1, S2);
wenzelm@19529
   384
    fun get_solved S2 (T, S1) = if le S1 S2 then SOME (T, S2) else NONE;
wenzelm@19529
   385
    fun get_hyp S2 S1 = if le S1 S2 then SOME (TFree ("'hyp", S1), S2) else NONE;
wenzelm@19645
   386
    fun mg_dom t S = SOME (mg_domain algebra t S) handle CLASS_ERROR _ => NONE;
wenzelm@19529
   387
wenzelm@19578
   388
    fun witn_sort _ [] solved_failed = (SOME (propT, []), solved_failed)
wenzelm@19578
   389
      | witn_sort path S (solved, failed) =
wenzelm@19578
   390
          if exists (le S) failed then (NONE, (solved, failed))
wenzelm@19529
   391
          else
wenzelm@19529
   392
            (case get_first (get_solved S) solved of
wenzelm@19578
   393
              SOME w => (SOME w, (solved, failed))
wenzelm@19529
   394
            | NONE =>
wenzelm@19529
   395
                (case get_first (get_hyp S) hyps of
wenzelm@19578
   396
                  SOME w => (SOME w, (w :: solved, failed))
wenzelm@19584
   397
                | NONE => witn_types path types S (solved, failed)))
wenzelm@19529
   398
wenzelm@19578
   399
    and witn_sorts path x = fold_map (witn_sort path) x
wenzelm@19529
   400
wenzelm@19578
   401
    and witn_types _ [] S (solved, failed) = (NONE, (solved, S :: failed))
wenzelm@19578
   402
      | witn_types path (t :: ts) S solved_failed =
wenzelm@19529
   403
          (case mg_dom t S of
wenzelm@19529
   404
            SOME SS =>
wenzelm@19529
   405
              (*do not descend into stronger args (achieving termination)*)
wenzelm@19529
   406
              if exists (fn D => le D S orelse exists (le D) path) SS then
wenzelm@19578
   407
                witn_types path ts S solved_failed
wenzelm@19529
   408
              else
wenzelm@19578
   409
                let val (ws, (solved', failed')) = witn_sorts (S :: path) SS solved_failed in
wenzelm@19529
   410
                  if forall is_some ws then
wenzelm@19529
   411
                    let val w = (Type (t, map (#1 o the) ws), S)
wenzelm@19578
   412
                    in (SOME w, (w :: solved', failed')) end
wenzelm@19578
   413
                  else witn_types path ts S (solved', failed')
wenzelm@19529
   414
                end
wenzelm@19578
   415
          | NONE => witn_types path ts S solved_failed);
wenzelm@19529
   416
wenzelm@19584
   417
  in map_filter I (#1 (witn_sorts [] sorts ([], []))) end;
wenzelm@19529
   418
wenzelm@19514
   419
end;