src/HOL/Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML
author blanchet
Thu Apr 29 10:25:26 2010 +0200 (2010-04-29)
changeset 36556 81dc2c20f052
parent 36555 8ff45c2076da
child 36557 3c2438efe224
permissions -rw-r--r--
use readable names in "debug" mode for type vars + don't pipe facts using "using" but rather give them directly to metis (works better with type variables)
blanchet@35826
     1
(*  Title:      HOL/Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML
wenzelm@33310
     2
    Author:     Lawrence C Paulson and Claire Quigley, Cambridge University Computer Laboratory
blanchet@36392
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@21978
     4
wenzelm@33310
     5
Transfer of proofs from external provers.
wenzelm@33310
     6
*)
wenzelm@33310
     7
blanchet@35826
     8
signature SLEDGEHAMMER_PROOF_RECONSTRUCT =
paulson@24425
     9
sig
blanchet@36281
    10
  type minimize_command = string list -> string
blanchet@36393
    11
  type name_pool = Sledgehammer_FOL_Clause.name_pool
blanchet@36281
    12
paulson@25492
    13
  val chained_hint: string
paulson@24425
    14
  val invert_const: string -> string
paulson@24425
    15
  val invert_type_const: string -> string
wenzelm@33243
    16
  val num_typargs: theory -> string -> int
paulson@24425
    17
  val make_tvar: string -> typ
paulson@24425
    18
  val strip_prefix: string -> string -> string option
blanchet@36063
    19
  val metis_line: int -> int -> string list -> string
blanchet@36223
    20
  val metis_proof_text:
blanchet@36287
    21
    minimize_command * string * string vector * thm * int
blanchet@36281
    22
    -> string * string list
blanchet@36223
    23
  val isar_proof_text:
blanchet@36488
    24
    name_pool option * bool * int * Proof.context * int list list
blanchet@36287
    25
    -> minimize_command * string * string vector * thm * int
blanchet@36287
    26
    -> string * string list
blanchet@36223
    27
  val proof_text:
blanchet@36488
    28
    bool -> name_pool option * bool * int * Proof.context * int list list
blanchet@36287
    29
    -> minimize_command * string * string vector * thm * int
blanchet@36287
    30
    -> string * string list
paulson@24425
    31
end;
paulson@21978
    32
blanchet@35826
    33
structure Sledgehammer_Proof_Reconstruct : SLEDGEHAMMER_PROOF_RECONSTRUCT =
paulson@21978
    34
struct
paulson@21978
    35
blanchet@36478
    36
open Sledgehammer_Util
blanchet@35865
    37
open Sledgehammer_FOL_Clause
blanchet@35865
    38
open Sledgehammer_Fact_Preprocessor
paulson@21978
    39
blanchet@36281
    40
type minimize_command = string list -> string
blanchet@36281
    41
blanchet@36291
    42
fun is_ident_char c = Char.isAlphaNum c orelse c = #"_"
blanchet@36392
    43
fun is_head_digit s = Char.isDigit (String.sub (s, 0))
blanchet@36291
    44
blanchet@36551
    45
(* Hack: Could return false positives (e.g., a user happens to declare a
blanchet@36551
    46
   constant called "SomeTheory.sko_means_shoe_in_$wedish". *)
blanchet@36551
    47
val is_skolem_const_name =
blanchet@36551
    48
  Long_Name.base_name
blanchet@36551
    49
  #> String.isPrefix skolem_prefix andf String.isSubstring skolem_infix
blanchet@36551
    50
blanchet@36402
    51
fun is_axiom_clause_number thm_names num = num <= Vector.length thm_names
blanchet@36551
    52
val index_in_shape = find_index o exists o curry (op =)
blanchet@36291
    53
blanchet@36393
    54
fun ugly_name NONE s = s
blanchet@36393
    55
  | ugly_name (SOME the_pool) s =
blanchet@36393
    56
    case Symtab.lookup (snd the_pool) s of
blanchet@36393
    57
      SOME s' => s'
blanchet@36393
    58
    | NONE => s
blanchet@36393
    59
blanchet@36491
    60
fun smart_lambda v t =
blanchet@36551
    61
  Abs (case v of
blanchet@36551
    62
         Const (s, _) =>
blanchet@36551
    63
         List.last (space_explode skolem_infix (Long_Name.base_name s))
blanchet@36551
    64
       | Var ((s, _), _) => s
blanchet@36551
    65
       | Free (s, _) => s
blanchet@36551
    66
       | _ => "", fastype_of v, abstract_over (v, t))
blanchet@36491
    67
fun forall_of v t = HOLogic.all_const (fastype_of v) $ smart_lambda v t
blanchet@36491
    68
blanchet@36491
    69
datatype ('a, 'b, 'c, 'd, 'e) raw_step =
blanchet@36491
    70
  Definition of 'a * 'b * 'c |
blanchet@36491
    71
  Inference of 'a * 'd * 'e list
blanchet@36491
    72
paulson@21978
    73
(**** PARSING OF TSTP FORMAT ****)
paulson@21978
    74
blanchet@36548
    75
fun strip_spaces_in_list [] = ""
blanchet@36548
    76
  | strip_spaces_in_list [c1] = if Char.isSpace c1 then "" else str c1
blanchet@36548
    77
  | strip_spaces_in_list [c1, c2] =
blanchet@36548
    78
    strip_spaces_in_list [c1] ^ strip_spaces_in_list [c2]
blanchet@36548
    79
  | strip_spaces_in_list (c1 :: c2 :: c3 :: cs) =
blanchet@36548
    80
    if Char.isSpace c1 then
blanchet@36548
    81
      strip_spaces_in_list (c2 :: c3 :: cs)
blanchet@36548
    82
    else if Char.isSpace c2 then
blanchet@36548
    83
      if Char.isSpace c3 then
blanchet@36548
    84
        strip_spaces_in_list (c1 :: c3 :: cs)
blanchet@36548
    85
      else
blanchet@36548
    86
        str c1 ^ (if forall is_ident_char [c1, c3] then " " else "") ^
blanchet@36548
    87
        strip_spaces_in_list (c3 :: cs)
blanchet@36548
    88
    else
blanchet@36548
    89
      str c1 ^ strip_spaces_in_list (c2 :: c3 :: cs)
blanchet@36548
    90
val strip_spaces = strip_spaces_in_list o String.explode
blanchet@36548
    91
blanchet@36291
    92
(* Syntax trees, either term list or formulae *)
blanchet@36486
    93
datatype node = IntLeaf of int | StrNode of string * node list
paulson@21978
    94
blanchet@36548
    95
fun str_leaf s = StrNode (s, [])
paulson@21978
    96
blanchet@36486
    97
fun scons (x, y) = StrNode ("cons", [x, y])
blanchet@36548
    98
val slist_of = List.foldl scons (str_leaf "nil")
paulson@21978
    99
paulson@21978
   100
(*Strings enclosed in single quotes, e.g. filenames*)
blanchet@36392
   101
val parse_quoted = $$ "'" |-- Scan.repeat (~$$ "'") --| $$ "'" >> implode;
paulson@21978
   102
paulson@21978
   103
(*Integer constants, typically proof line numbers*)
blanchet@36392
   104
val parse_integer = Scan.many1 is_head_digit >> (the o Int.fromString o implode)
paulson@21978
   105
blanchet@36548
   106
val parse_dollar_name =
blanchet@36548
   107
  Scan.repeat ($$ "$") -- Symbol.scan_id >> (fn (ss, s) => implode ss ^ s)
blanchet@36548
   108
blanchet@36369
   109
(* needed for SPASS's output format *)
blanchet@36548
   110
fun repair_name _ "$true" = "c_True"
blanchet@36548
   111
  | repair_name _ "$false" = "c_False"
blanchet@36548
   112
  | repair_name _ "$$e" = "c_equal" (* seen in Vampire proofs *)
blanchet@36548
   113
  | repair_name _ "equal" = "c_equal" (* probably not needed *)
blanchet@36393
   114
  | repair_name pool s = ugly_name pool s
blanchet@36392
   115
(* Generalized first-order terms, which include file names, numbers, etc. *)
blanchet@36393
   116
(* The "x" argument is not strictly necessary, but without it Poly/ML loops
blanchet@36393
   117
   forever at compile time. *)
blanchet@36393
   118
fun parse_term pool x =
blanchet@36548
   119
     (parse_quoted >> str_leaf
blanchet@36486
   120
   || parse_integer >> IntLeaf
blanchet@36548
   121
   || (parse_dollar_name >> repair_name pool)
blanchet@36486
   122
      -- Scan.optional ($$ "(" |-- parse_terms pool --| $$ ")") [] >> StrNode
blanchet@36393
   123
   || $$ "(" |-- parse_term pool --| $$ ")"
blanchet@36393
   124
   || $$ "[" |-- Scan.optional (parse_terms pool) [] --| $$ "]" >> slist_of) x
blanchet@36393
   125
and parse_terms pool x =
blanchet@36393
   126
  (parse_term pool ::: Scan.repeat ($$ "," |-- parse_term pool)) x
paulson@21978
   127
blanchet@36486
   128
fun negate_node u = StrNode ("c_Not", [u])
blanchet@36486
   129
fun equate_nodes u1 u2 = StrNode ("c_equal", [u1, u2])
paulson@21978
   130
blanchet@36392
   131
(* Apply equal or not-equal to a term. *)
blanchet@36486
   132
fun repair_predicate_term (u, NONE) = u
blanchet@36486
   133
  | repair_predicate_term (u1, SOME (NONE, u2)) = equate_nodes u1 u2
blanchet@36486
   134
  | repair_predicate_term (u1, SOME (SOME _, u2)) =
blanchet@36486
   135
    negate_node (equate_nodes u1 u2)
blanchet@36393
   136
fun parse_predicate_term pool =
blanchet@36393
   137
  parse_term pool -- Scan.option (Scan.option ($$ "!") --| $$ "="
blanchet@36393
   138
                                  -- parse_term pool)
blanchet@36393
   139
  >> repair_predicate_term
blanchet@36393
   140
fun parse_literal pool x =
blanchet@36486
   141
  ($$ "~" |-- parse_literal pool >> negate_node || parse_predicate_term pool) x
blanchet@36393
   142
fun parse_literals pool =
blanchet@36393
   143
  parse_literal pool ::: Scan.repeat ($$ "|" |-- parse_literal pool)
blanchet@36548
   144
fun parse_parenthesized_literals pool =
blanchet@36548
   145
  $$ "(" |-- parse_literals pool --| $$ ")" || parse_literals pool
blanchet@36393
   146
fun parse_clause pool =
blanchet@36548
   147
  parse_parenthesized_literals pool
blanchet@36548
   148
    ::: Scan.repeat ($$ "|" |-- parse_parenthesized_literals pool)
blanchet@36548
   149
  >> List.concat
blanchet@36291
   150
blanchet@36486
   151
fun ints_of_node (IntLeaf n) = cons n
blanchet@36486
   152
  | ints_of_node (StrNode (_, us)) = fold ints_of_node us
blanchet@36392
   153
val parse_tstp_annotations =
blanchet@36393
   154
  Scan.optional ($$ "," |-- parse_term NONE
blanchet@36393
   155
                   --| Scan.option ($$ "," |-- parse_terms NONE)
blanchet@36486
   156
                 >> (fn source => ints_of_node source [])) []
blanchet@36486
   157
blanchet@36486
   158
fun parse_definition pool =
blanchet@36486
   159
  $$ "(" |-- parse_literal NONE --| Scan.this_string "<=>"
blanchet@36486
   160
  -- parse_clause pool --| $$ ")"
blanchet@36291
   161
blanchet@36486
   162
(* Syntax: cnf(<num>, <formula_role>, <cnf_formula> <annotations>).
blanchet@36486
   163
   The <num> could be an identifier, but we assume integers. *)
blanchet@36486
   164
fun finish_tstp_definition_line (num, (u, us)) = Definition (num, u, us)
blanchet@36486
   165
fun finish_tstp_inference_line ((num, us), deps) = Inference (num, us, deps)
blanchet@36393
   166
fun parse_tstp_line pool =
blanchet@36486
   167
     ((Scan.this_string "fof" -- $$ "(") |-- parse_integer --| $$ ","
blanchet@36486
   168
       --| Scan.this_string "definition" --| $$ "," -- parse_definition pool
blanchet@36486
   169
       --| parse_tstp_annotations --| $$ ")" --| $$ "."
blanchet@36486
   170
      >> finish_tstp_definition_line)
blanchet@36486
   171
  || ((Scan.this_string "cnf" -- $$ "(") |-- parse_integer --| $$ ","
blanchet@36486
   172
       --| Symbol.scan_id --| $$ "," -- parse_clause pool
blanchet@36486
   173
       -- parse_tstp_annotations --| $$ ")" --| $$ "."
blanchet@36486
   174
      >> finish_tstp_inference_line)
blanchet@36291
   175
blanchet@36291
   176
(**** PARSING OF SPASS OUTPUT ****)
blanchet@36291
   177
blanchet@36392
   178
(* SPASS returns clause references of the form "x.y". We ignore "y", whose role
blanchet@36392
   179
   is not clear anyway. *)
blanchet@36392
   180
val parse_dot_name = parse_integer --| $$ "." --| parse_integer
paulson@21978
   181
blanchet@36392
   182
val parse_spass_annotations =
blanchet@36392
   183
  Scan.optional ($$ ":" |-- Scan.repeat (parse_dot_name
blanchet@36392
   184
                                         --| Scan.option ($$ ","))) []
blanchet@36291
   185
blanchet@36392
   186
(* It is not clear why some literals are followed by sequences of stars. We
blanchet@36392
   187
   ignore them. *)
blanchet@36393
   188
fun parse_starred_predicate_term pool =
blanchet@36393
   189
  parse_predicate_term pool --| Scan.repeat ($$ "*" || $$ " ")
blanchet@36291
   190
blanchet@36393
   191
fun parse_horn_clause pool =
blanchet@36393
   192
  Scan.repeat (parse_starred_predicate_term pool) --| $$ "-" --| $$ ">"
blanchet@36393
   193
  -- Scan.repeat (parse_starred_predicate_term pool)
blanchet@36548
   194
  >> (fn ([], []) => [str_leaf "c_False"]
blanchet@36486
   195
       | (clauses1, clauses2) => map negate_node clauses1 @ clauses2)
paulson@21978
   196
blanchet@36486
   197
(* Syntax: <num>[0:<inference><annotations>] ||
blanchet@36393
   198
           <cnf_formulas> -> <cnf_formulas>. *)
blanchet@36486
   199
fun finish_spass_line ((num, deps), us) = Inference (num, us, deps)
blanchet@36402
   200
fun parse_spass_line pool =
blanchet@36392
   201
  parse_integer --| $$ "[" --| $$ "0" --| $$ ":" --| Symbol.scan_id
blanchet@36392
   202
  -- parse_spass_annotations --| $$ "]" --| $$ "|" --| $$ "|"
blanchet@36393
   203
  -- parse_horn_clause pool --| $$ "."
blanchet@36486
   204
  >> finish_spass_line
blanchet@36291
   205
blanchet@36548
   206
fun parse_line pool = parse_tstp_line pool || parse_spass_line pool
blanchet@36548
   207
fun parse_lines pool = Scan.repeat1 (parse_line pool)
blanchet@36548
   208
fun parse_proof pool =
blanchet@36548
   209
  fst o Scan.finite Symbol.stopper
blanchet@36548
   210
            (Scan.error (!! (fn _ => raise Fail "unrecognized ATP output")
blanchet@36548
   211
                            (parse_lines pool)))
blanchet@36548
   212
  o explode o strip_spaces
paulson@21978
   213
paulson@21978
   214
(**** INTERPRETATION OF TSTP SYNTAX TREES ****)
paulson@21978
   215
blanchet@36486
   216
exception NODE of node
paulson@21978
   217
paulson@21978
   218
(*If string s has the prefix s1, return the result of deleting it.*)
wenzelm@23139
   219
fun strip_prefix s1 s =
immler@31038
   220
  if String.isPrefix s1 s
blanchet@35865
   221
  then SOME (undo_ascii_of (String.extract (s, size s1, NONE)))
paulson@21978
   222
  else NONE;
paulson@21978
   223
paulson@21978
   224
(*Invert the table of translations between Isabelle and ATPs*)
paulson@21978
   225
val type_const_trans_table_inv =
blanchet@35865
   226
      Symtab.make (map swap (Symtab.dest type_const_trans_table));
paulson@21978
   227
paulson@21978
   228
fun invert_type_const c =
paulson@21978
   229
    case Symtab.lookup type_const_trans_table_inv c of
paulson@21978
   230
        SOME c' => c'
paulson@21978
   231
      | NONE => c;
paulson@21978
   232
blanchet@36285
   233
fun make_tvar s = TVar (("'" ^ s, 0), HOLogic.typeS);
blanchet@36285
   234
fun make_tparam s = TypeInfer.param 0 (s, HOLogic.typeS)
paulson@21978
   235
fun make_var (b,T) = Var((b,0),T);
paulson@21978
   236
paulson@21978
   237
(*Type variables are given the basic sort, HOL.type. Some will later be constrained
paulson@21978
   238
  by information from type literals, or by type inference.*)
blanchet@36486
   239
fun type_of_node (u as IntLeaf _) = raise NODE u
blanchet@36486
   240
  | type_of_node (u as StrNode (a, us)) =
blanchet@36486
   241
    let val Ts = map type_of_node us in
blanchet@36486
   242
      case strip_prefix tconst_prefix a of
blanchet@36486
   243
        SOME b => Type (invert_type_const b, Ts)
blanchet@36486
   244
      | NONE =>
blanchet@36486
   245
        if not (null us) then
blanchet@36486
   246
          raise NODE u  (*only tconsts have type arguments*)
blanchet@36486
   247
        else case strip_prefix tfree_prefix a of
blanchet@36486
   248
          SOME b => TFree ("'" ^ b, HOLogic.typeS)
blanchet@36486
   249
        | NONE =>
blanchet@36486
   250
          case strip_prefix tvar_prefix a of
blanchet@36486
   251
            SOME b => make_tvar b
blanchet@36486
   252
          | NONE => make_tparam a  (* Variable from the ATP, say "X1" *)
blanchet@36486
   253
    end
paulson@21978
   254
paulson@21978
   255
(*Invert the table of translations between Isabelle and ATPs*)
paulson@21978
   256
val const_trans_table_inv =
blanchet@36402
   257
  Symtab.update ("fequal", @{const_name "op ="})
blanchet@36402
   258
                (Symtab.make (map swap (Symtab.dest const_trans_table)))
paulson@21978
   259
blanchet@36402
   260
fun invert_const c = c |> Symtab.lookup const_trans_table_inv |> the_default c
paulson@21978
   261
paulson@21978
   262
(*The number of type arguments of a constant, zero if it's monomorphic*)
paulson@21978
   263
fun num_typargs thy s = length (Sign.const_typargs thy (s, Sign.the_const_type thy s));
paulson@21978
   264
paulson@21978
   265
(*Generates a constant, given its type arguments*)
paulson@21978
   266
fun const_of thy (a,Ts) = Const(a, Sign.const_instance thy (a,Ts));
paulson@21978
   267
blanchet@36486
   268
fun fix_atp_variable_name s =
blanchet@36486
   269
  let
blanchet@36486
   270
    fun subscript_name s n = s ^ nat_subscript n
blanchet@36486
   271
    val s = String.map Char.toLower s
blanchet@36486
   272
  in
blanchet@36486
   273
    case space_explode "_" s of
blanchet@36486
   274
      [_] => (case take_suffix Char.isDigit (String.explode s) of
blanchet@36486
   275
                (cs1 as _ :: _, cs2 as _ :: _) =>
blanchet@36486
   276
                subscript_name (String.implode cs1)
blanchet@36486
   277
                               (the (Int.fromString (String.implode cs2)))
blanchet@36486
   278
              | (_, _) => s)
blanchet@36486
   279
    | [s1, s2] => (case Int.fromString s2 of
blanchet@36486
   280
                     SOME n => subscript_name s1 n
blanchet@36486
   281
                   | NONE => s)
blanchet@36486
   282
    | _ => s
blanchet@36486
   283
  end
blanchet@36486
   284
paulson@21978
   285
(*First-order translation. No types are known for variables. HOLogic.typeT should allow
paulson@21978
   286
  them to be inferred.*)
blanchet@36486
   287
fun term_of_node args thy u =
blanchet@36486
   288
  case u of
blanchet@36486
   289
    IntLeaf _ => raise NODE u
blanchet@36486
   290
  | StrNode ("hBOOL", [u]) => term_of_node [] thy u  (* ignore hBOOL *)
blanchet@36486
   291
  | StrNode ("hAPP", [u1, u2]) => term_of_node (u2 :: args) thy u1
blanchet@36486
   292
  | StrNode (a, us) =>
blanchet@36486
   293
    case strip_prefix const_prefix a of
blanchet@36486
   294
      SOME "equal" =>
blanchet@36486
   295
      list_comb (Const (@{const_name "op ="}, HOLogic.typeT),
blanchet@36486
   296
                 map (term_of_node [] thy) us)
blanchet@36486
   297
    | SOME b =>
blanchet@36486
   298
      let
blanchet@36486
   299
        val c = invert_const b
blanchet@36486
   300
        val nterms = length us - num_typargs thy c
blanchet@36486
   301
        val ts = map (term_of_node [] thy) (take nterms us @ args)
blanchet@36486
   302
        (*Extra args from hAPP come AFTER any arguments given directly to the
blanchet@36486
   303
          constant.*)
blanchet@36486
   304
        val Ts = map type_of_node (drop nterms us)
blanchet@36486
   305
      in list_comb(const_of thy (c, Ts), ts) end
blanchet@36486
   306
    | NONE => (*a variable, not a constant*)
blanchet@36486
   307
      let
blanchet@36486
   308
        val opr =
blanchet@36486
   309
          (* a Free variable is typically a Skolem function *)
blanchet@36486
   310
          case strip_prefix fixed_var_prefix a of
blanchet@36486
   311
            SOME b => Free (b, HOLogic.typeT)
blanchet@36486
   312
          | NONE =>
blanchet@36486
   313
            case strip_prefix schematic_var_prefix a of
blanchet@36486
   314
              SOME b => make_var (b, HOLogic.typeT)
blanchet@36486
   315
            | NONE =>
blanchet@36486
   316
              (* Variable from the ATP, say "X1" *)
blanchet@36486
   317
              make_var (fix_atp_variable_name a, HOLogic.typeT)
blanchet@36486
   318
      in list_comb (opr, map (term_of_node [] thy) (us @ args)) end
paulson@21978
   319
blanchet@36392
   320
(* Type class literal applied to a type. Returns triple of polarity, class,
blanchet@36392
   321
   type. *)
blanchet@36486
   322
fun constraint_of_node pos (StrNode ("c_Not", [u])) =
blanchet@36486
   323
    constraint_of_node (not pos) u
blanchet@36486
   324
  | constraint_of_node pos u = case u of
blanchet@36486
   325
        IntLeaf _ => raise NODE u
blanchet@36486
   326
      | StrNode (a, us) =>
blanchet@36486
   327
            (case (strip_prefix class_prefix a, map type_of_node us) of
blanchet@36486
   328
                 (SOME b, [T]) => (pos, b, T)
blanchet@36486
   329
               | _ => raise NODE u)
paulson@21978
   330
paulson@21978
   331
(** Accumulate type constraints in a clause: negative type literals **)
paulson@21978
   332
blanchet@36485
   333
fun add_var (key, z)  = Vartab.map_default (key, []) (cons z)
paulson@21978
   334
blanchet@36485
   335
fun add_constraint ((false, cl, TFree(a,_)), vt) = add_var ((a,~1),cl) vt
blanchet@36485
   336
  | add_constraint ((false, cl, TVar(ix,_)), vt) = add_var (ix,cl) vt
paulson@21978
   337
  | add_constraint (_, vt) = vt;
paulson@21978
   338
blanchet@36491
   339
fun is_positive_literal (@{const Not} $ _) = false
blanchet@36402
   340
  | is_positive_literal t = true
blanchet@36402
   341
blanchet@36485
   342
fun negate_term thy (Const (@{const_name All}, T) $ Abs (s, T', t')) =
blanchet@36402
   343
    Const (@{const_name Ex}, T) $ Abs (s, T', negate_term thy t')
blanchet@36402
   344
  | negate_term thy (Const (@{const_name Ex}, T) $ Abs (s, T', t')) =
blanchet@36402
   345
    Const (@{const_name All}, T) $ Abs (s, T', negate_term thy t')
blanchet@36402
   346
  | negate_term thy (@{const "op -->"} $ t1 $ t2) =
blanchet@36402
   347
    @{const "op &"} $ t1 $ negate_term thy t2
blanchet@36402
   348
  | negate_term thy (@{const "op &"} $ t1 $ t2) =
blanchet@36402
   349
    @{const "op |"} $ negate_term thy t1 $ negate_term thy t2
blanchet@36402
   350
  | negate_term thy (@{const "op |"} $ t1 $ t2) =
blanchet@36402
   351
    @{const "op &"} $ negate_term thy t1 $ negate_term thy t2
blanchet@36486
   352
  | negate_term _ (@{const Not} $ t) = t
blanchet@36486
   353
  | negate_term _ t = @{const Not} $ t
blanchet@36402
   354
blanchet@36402
   355
fun clause_for_literals _ [] = HOLogic.false_const
blanchet@36402
   356
  | clause_for_literals _ [lit] = lit
blanchet@36402
   357
  | clause_for_literals thy lits =
blanchet@36402
   358
    case List.partition is_positive_literal lits of
blanchet@36402
   359
      (pos_lits as _ :: _, neg_lits as _ :: _) =>
blanchet@36402
   360
      @{const "op -->"}
blanchet@36402
   361
          $ foldr1 HOLogic.mk_conj (map (negate_term thy) neg_lits)
blanchet@36402
   362
          $ foldr1 HOLogic.mk_disj pos_lits
blanchet@36402
   363
    | _ => foldr1 HOLogic.mk_disj lits
blanchet@36402
   364
blanchet@36402
   365
(* Final treatment of the list of "real" literals from a clause.
blanchet@36402
   366
   No "real" literals means only type information. *)
blanchet@36402
   367
fun finish_clause _ [] = HOLogic.true_const
blanchet@36402
   368
  | finish_clause thy lits =
blanchet@36402
   369
    lits |> filter_out (curry (op =) HOLogic.false_const) |> rev
blanchet@36402
   370
         |> clause_for_literals thy
paulson@22491
   371
paulson@21978
   372
(*Accumulate sort constraints in vt, with "real" literals in lits.*)
blanchet@36486
   373
fun lits_of_nodes thy (vt, lits) [] = (vt, finish_clause thy lits)
blanchet@36486
   374
  | lits_of_nodes thy (vt, lits) (u :: us) =
blanchet@36486
   375
    lits_of_nodes thy (add_constraint (constraint_of_node true u, vt), lits) us
blanchet@36486
   376
    handle NODE _ => lits_of_nodes thy (vt, term_of_node [] thy u :: lits) us
paulson@21978
   377
paulson@21978
   378
(*Update TVars/TFrees with detected sort constraints.*)
blanchet@36393
   379
fun repair_sorts vt =
blanchet@36556
   380
  let
blanchet@36556
   381
    fun do_type (Type (a, Ts)) = Type (a, map do_type Ts)
blanchet@36556
   382
      | do_type (TVar (xi, s)) = TVar (xi, the_default s (Vartab.lookup vt xi))
blanchet@36556
   383
      | do_type (TFree (x, s)) =
blanchet@36556
   384
        TFree (x, the_default s (Vartab.lookup vt (x, ~1)))
blanchet@36556
   385
    fun do_term (Const (a, T)) = Const (a, do_type T)
blanchet@36556
   386
      | do_term (Free (a, T)) = Free (a, do_type T)
blanchet@36556
   387
      | do_term (Var (xi, T)) = Var (xi, do_type T)
blanchet@36556
   388
      | do_term (t as Bound _) = t
blanchet@36556
   389
      | do_term (Abs (a, T, t)) = Abs (a, do_type T, do_term t)
blanchet@36556
   390
      | do_term (t1 $ t2) = do_term t1 $ do_term t2
blanchet@36556
   391
  in not (Vartab.is_empty vt) ? do_term end
blanchet@36551
   392
blanchet@36551
   393
fun unskolemize_term t =
blanchet@36551
   394
  fold forall_of (Term.add_consts t []
blanchet@36551
   395
                 |> filter (is_skolem_const_name o fst) |> map Const) t
paulson@21978
   396
blanchet@36555
   397
val combinator_table =
blanchet@36555
   398
  [(@{const_name COMBI}, @{thm COMBI_def_raw}),
blanchet@36555
   399
   (@{const_name COMBK}, @{thm COMBK_def_raw}),
blanchet@36555
   400
   (@{const_name COMBB}, @{thm COMBB_def_raw}),
blanchet@36555
   401
   (@{const_name COMBC}, @{thm COMBC_def_raw}),
blanchet@36555
   402
   (@{const_name COMBS}, @{thm COMBS_def_raw})]
blanchet@36555
   403
blanchet@36555
   404
fun uncombine_term (t1 $ t2) = betapply (pairself uncombine_term (t1, t2))
blanchet@36555
   405
  | uncombine_term (Abs (s, T, t')) = Abs (s, T, uncombine_term t')
blanchet@36555
   406
  | uncombine_term (t as Const (x as (s, _))) =
blanchet@36555
   407
    (case AList.lookup (op =) combinator_table s of
blanchet@36555
   408
       SOME thm => thm |> prop_of |> specialize_type @{theory} x |> Logic.dest_equals |> snd
blanchet@36555
   409
     | NONE => t)
blanchet@36555
   410
  | uncombine_term t = t
blanchet@36555
   411
blanchet@36486
   412
(* Interpret a list of syntax trees as a clause, given by "real" literals and
blanchet@36486
   413
   sort constraints. "vt" holds the initial sort constraints, from the
blanchet@36486
   414
   conjecture clauses. *)
blanchet@36486
   415
fun clause_of_nodes ctxt vt us =
blanchet@36551
   416
  let val (vt, t) = lits_of_nodes (ProofContext.theory_of ctxt) (vt, []) us in
blanchet@36551
   417
    t |> repair_sorts vt
blanchet@36291
   418
  end
blanchet@36556
   419
fun check_formula ctxt =
blanchet@36486
   420
  TypeInfer.constrain HOLogic.boolT
blanchet@36486
   421
  #> Syntax.check_term (ProofContext.set_mode ProofContext.mode_schematic ctxt)
paulson@21978
   422
blanchet@36486
   423
(** Global sort constraints on TFrees (from tfree_tcs) are positive unit
blanchet@36486
   424
    clauses. **)
paulson@21978
   425
blanchet@36486
   426
fun add_tfree_constraint (true, cl, TFree (a, _)) = add_var ((a, ~1), cl)
blanchet@36486
   427
  | add_tfree_constraint _ = I
paulson@21978
   428
fun tfree_constraints_of_clauses vt [] = vt
blanchet@36486
   429
  | tfree_constraints_of_clauses vt ([lit] :: uss) =
blanchet@36486
   430
    (tfree_constraints_of_clauses (add_tfree_constraint
blanchet@36486
   431
                                          (constraint_of_node true lit) vt) uss
blanchet@36486
   432
     handle NODE _ => (* Not a positive type constraint? Ignore the literal. *)
blanchet@36486
   433
     tfree_constraints_of_clauses vt uss)
blanchet@36486
   434
  | tfree_constraints_of_clauses vt (_ :: uss) =
blanchet@36486
   435
    tfree_constraints_of_clauses vt uss
paulson@21978
   436
paulson@21978
   437
paulson@21978
   438
(**** Translation of TSTP files to Isar Proofs ****)
paulson@21978
   439
blanchet@36486
   440
fun unvarify_term (Var ((s, 0), T)) = Free (s, T)
blanchet@36486
   441
  | unvarify_term t = raise TERM ("unvarify_term: non-Var", [t])
paulson@21978
   442
blanchet@36486
   443
fun clauses_in_lines (Definition (_, u, us)) = u :: us
blanchet@36486
   444
  | clauses_in_lines (Inference (_, us, _)) = us
paulson@21978
   445
blanchet@36486
   446
fun decode_line vt (Definition (num, u, us)) ctxt =
blanchet@36486
   447
    let
blanchet@36551
   448
      val t1 = clause_of_nodes ctxt vt [u]
blanchet@36551
   449
      val vars = snd (strip_comb t1)
blanchet@36486
   450
      val frees = map unvarify_term vars
blanchet@36486
   451
      val unvarify_args = subst_atomic (vars ~~ frees)
blanchet@36551
   452
      val t2 = clause_of_nodes ctxt vt us
blanchet@36551
   453
      val (t1, t2) =
blanchet@36551
   454
        HOLogic.eq_const HOLogic.typeT $ t1 $ t2
blanchet@36556
   455
        |> unvarify_args |> uncombine_term |> check_formula ctxt
blanchet@36555
   456
        |> HOLogic.dest_eq
blanchet@36486
   457
    in
blanchet@36551
   458
      (Definition (num, t1, t2),
blanchet@36551
   459
       fold Variable.declare_term (maps OldTerm.term_frees [t1, t2]) ctxt)
blanchet@36486
   460
    end
blanchet@36486
   461
  | decode_line vt (Inference (num, us, deps)) ctxt =
blanchet@36551
   462
    let
blanchet@36555
   463
      val t = us |> clause_of_nodes ctxt vt
blanchet@36556
   464
                 |> unskolemize_term |> uncombine_term |> check_formula ctxt
blanchet@36551
   465
    in
blanchet@36551
   466
      (Inference (num, t, deps),
blanchet@36551
   467
       fold Variable.declare_term (OldTerm.term_frees t) ctxt)
blanchet@36486
   468
    end
blanchet@36486
   469
fun decode_lines ctxt lines =
blanchet@36486
   470
  let
blanchet@36486
   471
    val vt = tfree_constraints_of_clauses Vartab.empty
blanchet@36486
   472
                                          (map clauses_in_lines lines)
blanchet@36486
   473
  in #1 (fold_map (decode_line vt) lines ctxt) end
paulson@21978
   474
blanchet@36486
   475
fun aint_inference _ (Definition _) = true
blanchet@36486
   476
  | aint_inference t (Inference (_, t', _)) = not (t aconv t')
blanchet@36486
   477
blanchet@36486
   478
(* No "real" literals means only type information (tfree_tcs, clsrel, or
blanchet@36486
   479
   clsarity). *)
blanchet@36486
   480
val is_only_type_information = curry (op aconv) HOLogic.true_const
blanchet@36486
   481
blanchet@36486
   482
fun replace_one_dep (old, new) dep = if dep = old then new else [dep]
blanchet@36486
   483
fun replace_deps_in_line _ (line as Definition _) = line
blanchet@36486
   484
  | replace_deps_in_line p (Inference (num, t, deps)) =
blanchet@36486
   485
    Inference (num, t, fold (union (op =) o replace_one_dep p) deps [])
paulson@21978
   486
paulson@22491
   487
(*Discard axioms; consolidate adjacent lines that prove the same clause, since they differ
paulson@22491
   488
  only in type information.*)
blanchet@36551
   489
fun add_line _ _ (line as Definition _) lines = line :: lines
blanchet@36551
   490
  | add_line conjecture_shape thm_names (Inference (num, t, [])) lines =
blanchet@36551
   491
    (* No dependencies: axiom, conjecture clause, or internal axioms
blanchet@36551
   492
       (Vampire). *)
blanchet@36486
   493
    if is_axiom_clause_number thm_names num then
blanchet@36486
   494
      (* Axioms are not proof lines. *)
blanchet@36486
   495
      if is_only_type_information t then
blanchet@36486
   496
        map (replace_deps_in_line (num, [])) lines
blanchet@36486
   497
      (* Is there a repetition? If so, replace later line by earlier one. *)
blanchet@36486
   498
      else case take_prefix (aint_inference t) lines of
blanchet@36486
   499
        (_, []) => lines (*no repetition of proof line*)
blanchet@36486
   500
      | (pre, Inference (num', _, _) :: post) =>
blanchet@36486
   501
        pre @ map (replace_deps_in_line (num', [num])) post
blanchet@36551
   502
    else if index_in_shape num conjecture_shape >= 0 then
blanchet@36486
   503
      Inference (num, t, []) :: lines
blanchet@36551
   504
    else
blanchet@36551
   505
      lines
blanchet@36551
   506
  | add_line _ _ (Inference (num, t, deps)) lines =
blanchet@36486
   507
    (* Type information will be deleted later; skip repetition test. *)
blanchet@36486
   508
    if is_only_type_information t then
blanchet@36486
   509
      Inference (num, t, deps) :: lines
blanchet@36486
   510
    (* Is there a repetition? If so, replace later line by earlier one. *)
blanchet@36486
   511
    else case take_prefix (aint_inference t) lines of
blanchet@36486
   512
      (* FIXME: Doesn't this code risk conflating proofs involving different
blanchet@36486
   513
         types?? *)
blanchet@36486
   514
       (_, []) => Inference (num, t, deps) :: lines
blanchet@36486
   515
     | (pre, Inference (num', t', _) :: post) =>
blanchet@36486
   516
       Inference (num, t', deps) ::
blanchet@36486
   517
       pre @ map (replace_deps_in_line (num', [num])) post
paulson@22044
   518
blanchet@36486
   519
(* Recursively delete empty lines (type information) from the proof. *)
blanchet@36486
   520
fun add_nontrivial_line (Inference (num, t, [])) lines =
blanchet@36486
   521
    if is_only_type_information t then delete_dep num lines
blanchet@36486
   522
    else Inference (num, t, []) :: lines
blanchet@36486
   523
  | add_nontrivial_line line lines = line :: lines
blanchet@36395
   524
and delete_dep num lines =
blanchet@36486
   525
  fold_rev add_nontrivial_line (map (replace_deps_in_line (num, [])) lines) []
blanchet@36486
   526
blanchet@36551
   527
(* FIXME: this seems not to have worked and is obsolete anyway *)
blanchet@36486
   528
fun is_bad_free (Free (a, _)) = String.isPrefix skolem_prefix a
blanchet@36486
   529
  | is_bad_free _ = false
paulson@22470
   530
blanchet@36486
   531
fun add_desired_line _ _ (line as Definition _) (j, lines) = (j, line :: lines)
blanchet@36486
   532
  | add_desired_line ctxt _ (Inference (num, t, [])) (j, lines) =
blanchet@36486
   533
    (j, Inference (num, t, []) :: lines)  (* conjecture clauses must be kept *)
blanchet@36486
   534
  | add_desired_line ctxt shrink_factor (Inference (num, t, deps)) (j, lines) =
blanchet@36402
   535
    (j + 1,
blanchet@36486
   536
     if is_only_type_information t orelse
blanchet@36486
   537
        not (null (Term.add_tvars t [])) orelse
blanchet@36486
   538
        exists_subterm is_bad_free t orelse
blanchet@36474
   539
        (length deps < 2 orelse j mod shrink_factor <> 0) then
blanchet@36486
   540
       map (replace_deps_in_line (num, deps)) lines  (* delete line *)
blanchet@36402
   541
     else
blanchet@36486
   542
       Inference (num, t, deps) :: lines)
paulson@21978
   543
blanchet@36402
   544
(** EXTRACTING LEMMAS **)
paulson@21979
   545
blanchet@36223
   546
(* A list consisting of the first number in each line is returned.
blanchet@36395
   547
   TSTP: Interesting lines have the form "cnf(108, axiom, ...)", where the
blanchet@36223
   548
   number (108) is extracted.
blanchet@36395
   549
   SPASS: Lines have the form "108[0:Inp] ...", where the first number (108) is
blanchet@36223
   550
   extracted. *)
blanchet@36402
   551
fun extract_clause_numbers_in_atp_proof atp_proof =
blanchet@35865
   552
  let
blanchet@36395
   553
    val tokens_of = String.tokens (not o is_ident_char)
blanchet@36402
   554
    fun extract_num ("cnf" :: num :: "axiom" :: _) = Int.fromString num
blanchet@36402
   555
      | extract_num ("cnf" :: num :: "negated_conjecture" :: _) =
blanchet@36402
   556
        Int.fromString num
blanchet@36395
   557
      | extract_num (num :: "0" :: "Inp" :: _) = Int.fromString num
blanchet@36395
   558
      | extract_num _ = NONE
blanchet@36402
   559
  in atp_proof |> split_lines |> map_filter (extract_num o tokens_of) end
wenzelm@33310
   560
  
blanchet@36395
   561
(* Used to label theorems chained into the Sledgehammer call (or rather
blanchet@36395
   562
   goal?) *)
blanchet@36395
   563
val chained_hint = "sledgehammer_chained"
blanchet@35865
   564
blanchet@36063
   565
fun apply_command _ 1 = "by "
blanchet@36063
   566
  | apply_command 1 _ = "apply "
blanchet@36063
   567
  | apply_command i _ = "prefer " ^ string_of_int i ^ " apply "
blanchet@36063
   568
fun metis_command i n [] =
blanchet@36063
   569
    apply_command i n ^ "metis"
blanchet@36063
   570
  | metis_command i n xs =
blanchet@36063
   571
    apply_command i n ^ "(metis " ^ space_implode " " xs ^ ")"
blanchet@36063
   572
fun metis_line i n xs =
blanchet@36063
   573
  "Try this command: " ^
blanchet@36063
   574
  Markup.markup Markup.sendback (metis_command i n xs) ^ ".\n" 
blanchet@36281
   575
fun minimize_line _ [] = ""
blanchet@36281
   576
  | minimize_line minimize_command facts =
blanchet@36281
   577
    case minimize_command facts of
blanchet@36281
   578
      "" => ""
blanchet@36281
   579
    | command =>
blanchet@36065
   580
      "To minimize the number of lemmas, try this command: " ^
blanchet@36281
   581
      Markup.markup Markup.sendback command ^ ".\n"
immler@31840
   582
blanchet@36402
   583
fun metis_proof_text (minimize_command, atp_proof, thm_names, goal, i) =
blanchet@36063
   584
  let
blanchet@36231
   585
    val lemmas =
blanchet@36402
   586
      atp_proof |> extract_clause_numbers_in_atp_proof
blanchet@36402
   587
                |> filter (is_axiom_clause_number thm_names)
blanchet@36402
   588
                |> map (fn i => Vector.sub (thm_names, i - 1))
blanchet@36402
   589
                |> filter_out (fn s => s = "??.unknown" orelse s = chained_hint)
blanchet@36402
   590
                |> sort_distinct string_ord
blanchet@36063
   591
    val n = Logic.count_prems (prop_of goal)
blanchet@36395
   592
  in (metis_line i n lemmas ^ minimize_line minimize_command lemmas, lemmas) end
immler@31037
   593
blanchet@36486
   594
(** Isar proof construction and manipulation **)
blanchet@36486
   595
blanchet@36486
   596
fun merge_fact_sets (ls1, ss1) (ls2, ss2) =
blanchet@36486
   597
  (union (op =) ls1 ls2, union (op =) ss1 ss2)
blanchet@36402
   598
blanchet@36402
   599
type label = string * int
blanchet@36402
   600
type facts = label list * string list
blanchet@36402
   601
blanchet@36402
   602
datatype qualifier = Show | Then | Moreover | Ultimately
blanchet@36291
   603
blanchet@36402
   604
datatype step =
blanchet@36478
   605
  Fix of (string * typ) list |
blanchet@36486
   606
  Let of term * term |
blanchet@36402
   607
  Assume of label * term |
blanchet@36402
   608
  Have of qualifier list * label * term * byline
blanchet@36402
   609
and byline =
blanchet@36402
   610
  Facts of facts |
blanchet@36402
   611
  CaseSplit of step list list * facts
blanchet@36402
   612
blanchet@36402
   613
val raw_prefix = "X"
blanchet@36402
   614
val assum_prefix = "A"
blanchet@36402
   615
val fact_prefix = "F"
blanchet@36402
   616
blanchet@36475
   617
fun add_fact_from_dep thm_names num =
blanchet@36475
   618
  if is_axiom_clause_number thm_names num then
blanchet@36480
   619
    apsnd (insert (op =) (Vector.sub (thm_names, num - 1)))
blanchet@36475
   620
  else
blanchet@36480
   621
    apfst (insert (op =) (raw_prefix, num))
blanchet@36402
   622
blanchet@36491
   623
fun forall_vars t = fold_rev forall_of (map Var (Term.add_vars t [])) t
blanchet@36491
   624
blanchet@36486
   625
fun step_for_line _ _ (Definition (num, t1, t2)) = Let (t1, t2)
blanchet@36486
   626
  | step_for_line _ _ (Inference (num, t, [])) = Assume ((raw_prefix, num), t)
blanchet@36486
   627
  | step_for_line thm_names j (Inference (num, t, deps)) =
blanchet@36486
   628
    Have (if j = 1 then [Show] else [], (raw_prefix, num),
blanchet@36491
   629
          forall_vars t,
blanchet@36475
   630
          Facts (fold (add_fact_from_dep thm_names) deps ([], [])))
blanchet@36291
   631
blanchet@36551
   632
fun proof_from_atp_proof pool ctxt shrink_factor atp_proof conjecture_shape
blanchet@36551
   633
                         thm_names frees =
blanchet@36402
   634
  let
blanchet@36486
   635
    val lines =
blanchet@36548
   636
      atp_proof ^ "$" (* the $ sign is a dummy token *)
blanchet@36548
   637
      |> parse_proof pool
blanchet@36486
   638
      |> decode_lines ctxt
blanchet@36551
   639
      |> rpair [] |-> fold_rev (add_line conjecture_shape thm_names)
blanchet@36486
   640
      |> rpair [] |-> fold_rev add_nontrivial_line
blanchet@36486
   641
      |> rpair (0, []) |-> fold_rev (add_desired_line ctxt shrink_factor)
blanchet@36486
   642
      |> snd
blanchet@36402
   643
  in
blanchet@36402
   644
    (if null frees then [] else [Fix frees]) @
blanchet@36486
   645
    map2 (step_for_line thm_names) (length lines downto 1) lines
blanchet@36402
   646
  end
blanchet@36402
   647
blanchet@36402
   648
val indent_size = 2
blanchet@36402
   649
val no_label = ("", ~1)
blanchet@36402
   650
blanchet@36402
   651
fun no_show qs = not (member (op =) qs Show)
blanchet@36402
   652
blanchet@36402
   653
(* When redirecting proofs, we keep information about the labels seen so far in
blanchet@36402
   654
   the "backpatches" data structure. The first component indicates which facts
blanchet@36402
   655
   should be associated with forthcoming proof steps. The second component is a
blanchet@36402
   656
   pair ("keep_ls", "drop_ls"), where "keep_ls" are the labels to keep and
blanchet@36402
   657
   "drop_ls" are those that should be dropped in a case split. *)
blanchet@36402
   658
type backpatches = (label * facts) list * (label list * label list)
blanchet@36402
   659
blanchet@36556
   660
fun used_labels_of_step (Have (_, _, _, by)) =
blanchet@36402
   661
    (case by of
blanchet@36402
   662
       Facts (ls, _) => ls
blanchet@36556
   663
     | CaseSplit (proofs, (ls, _)) =>
blanchet@36556
   664
       fold (union (op =) o used_labels_of) proofs ls)
blanchet@36556
   665
  | used_labels_of_step _ = []
blanchet@36556
   666
and used_labels_of proof = fold (union (op =) o used_labels_of_step) proof []
blanchet@36402
   667
blanchet@36402
   668
fun new_labels_of_step (Fix _) = []
blanchet@36486
   669
  | new_labels_of_step (Let _) = []
blanchet@36402
   670
  | new_labels_of_step (Assume (l, _)) = [l]
blanchet@36402
   671
  | new_labels_of_step (Have (_, l, _, _)) = [l]
blanchet@36402
   672
val new_labels_of = maps new_labels_of_step
blanchet@36402
   673
blanchet@36402
   674
val join_proofs =
blanchet@36402
   675
  let
blanchet@36402
   676
    fun aux _ [] = NONE
blanchet@36402
   677
      | aux proof_tail (proofs as (proof1 :: _)) =
blanchet@36402
   678
        if exists null proofs then
blanchet@36402
   679
          NONE
blanchet@36402
   680
        else if forall (curry (op =) (hd proof1) o hd) (tl proofs) then
blanchet@36402
   681
          aux (hd proof1 :: proof_tail) (map tl proofs)
blanchet@36402
   682
        else case hd proof1 of
blanchet@36402
   683
          Have ([], l, t, by) =>
blanchet@36402
   684
          if forall (fn Have ([], l', t', _) :: _ => (l, t) = (l', t')
blanchet@36402
   685
                      | _ => false) (tl proofs) andalso
blanchet@36402
   686
             not (exists (member (op =) (maps new_labels_of proofs))
blanchet@36556
   687
                         (used_labels_of proof_tail)) then
blanchet@36402
   688
            SOME (l, t, map rev proofs, proof_tail)
blanchet@36402
   689
          else
blanchet@36402
   690
            NONE
blanchet@36402
   691
        | _ => NONE
blanchet@36402
   692
  in aux [] o map rev end
blanchet@36402
   693
blanchet@36402
   694
fun case_split_qualifiers proofs =
blanchet@36402
   695
  case length proofs of
blanchet@36402
   696
    0 => []
blanchet@36402
   697
  | 1 => [Then]
blanchet@36402
   698
  | _ => [Ultimately]
blanchet@36402
   699
blanchet@36491
   700
fun redirect_proof thy conjecture_shape hyp_ts concl_t proof =
wenzelm@33310
   701
  let
blanchet@36402
   702
    val concl_ls = map (pair raw_prefix) (List.last conjecture_shape)
blanchet@36551
   703
    fun find_hyp num = nth hyp_ts (index_in_shape num conjecture_shape)
blanchet@36402
   704
    fun first_pass ([], contra) = ([], contra)
blanchet@36491
   705
      | first_pass ((step as Fix _) :: proof, contra) =
blanchet@36491
   706
        first_pass (proof, contra) |>> cons step
blanchet@36491
   707
      | first_pass ((step as Let _) :: proof, contra) =
blanchet@36491
   708
        first_pass (proof, contra) |>> cons step
blanchet@36551
   709
      | first_pass ((step as Assume (l as (_, num), t)) :: proof, contra) =
blanchet@36402
   710
        if member (op =) concl_ls l then
blanchet@36491
   711
          first_pass (proof, contra ||> cons step)
blanchet@36402
   712
        else
blanchet@36551
   713
          first_pass (proof, contra) |>> cons (Assume (l, find_hyp num))
blanchet@36491
   714
      | first_pass ((step as Have (qs, l, t, Facts (ls, ss))) :: proof,
blanchet@36491
   715
                    contra) =
blanchet@36402
   716
        if exists (member (op =) (fst contra)) ls then
blanchet@36491
   717
          first_pass (proof, contra |>> cons l ||> cons step)
blanchet@36402
   718
        else
blanchet@36491
   719
          first_pass (proof, contra) |>> cons step
blanchet@36402
   720
      | first_pass _ = raise Fail "malformed proof"
blanchet@36402
   721
    val (proof_top, (contra_ls, contra_proof)) =
blanchet@36402
   722
      first_pass (proof, (concl_ls, []))
blanchet@36402
   723
    val backpatch_label = the_default ([], []) oo AList.lookup (op =) o fst
blanchet@36402
   724
    fun backpatch_labels patches ls =
blanchet@36402
   725
      fold merge_fact_sets (map (backpatch_label patches) ls) ([], [])
blanchet@36402
   726
    fun second_pass end_qs ([], assums, patches) =
blanchet@36402
   727
        ([Have (end_qs, no_label,
blanchet@36402
   728
                if length assums < length concl_ls then
blanchet@36491
   729
                  clause_for_literals thy (map (negate_term thy o fst) assums)
blanchet@36402
   730
                else
blanchet@36402
   731
                  concl_t,
blanchet@36402
   732
                Facts (backpatch_labels patches (map snd assums)))], patches)
blanchet@36402
   733
      | second_pass end_qs (Assume (l, t) :: proof, assums, patches) =
blanchet@36402
   734
        second_pass end_qs (proof, (t, l) :: assums, patches)
blanchet@36402
   735
      | second_pass end_qs (Have (qs, l, t, Facts (ls, ss)) :: proof, assums,
blanchet@36402
   736
                            patches) =
blanchet@36402
   737
        if member (op =) (snd (snd patches)) l andalso
blanchet@36402
   738
           not (AList.defined (op =) (fst patches) l) then
blanchet@36402
   739
          second_pass end_qs (proof, assums, patches ||> apsnd (append ls))
blanchet@36402
   740
        else
blanchet@36402
   741
          (case List.partition (member (op =) contra_ls) ls of
blanchet@36402
   742
             ([contra_l], co_ls) =>
blanchet@36402
   743
             if no_show qs then
blanchet@36402
   744
               second_pass end_qs
blanchet@36402
   745
                           (proof, assums,
blanchet@36402
   746
                            patches |>> cons (contra_l, (l :: co_ls, ss)))
blanchet@36402
   747
               |>> cons (if member (op =) (fst (snd patches)) l then
blanchet@36491
   748
                           Assume (l, negate_term thy t)
blanchet@36402
   749
                         else
blanchet@36491
   750
                           Have (qs, l, negate_term thy t,
blanchet@36402
   751
                                 Facts (backpatch_label patches l)))
blanchet@36402
   752
             else
blanchet@36402
   753
               second_pass end_qs (proof, assums,
blanchet@36402
   754
                                   patches |>> cons (contra_l, (co_ls, ss)))
blanchet@36402
   755
           | (contra_ls as _ :: _, co_ls) =>
blanchet@36402
   756
             let
blanchet@36402
   757
               val proofs =
blanchet@36402
   758
                 map_filter
blanchet@36402
   759
                     (fn l =>
blanchet@36402
   760
                         if member (op =) concl_ls l then
blanchet@36402
   761
                           NONE
blanchet@36402
   762
                         else
blanchet@36402
   763
                           let
blanchet@36402
   764
                             val drop_ls = filter (curry (op <>) l) contra_ls
blanchet@36402
   765
                           in
blanchet@36402
   766
                             second_pass []
blanchet@36402
   767
                                 (proof, assums,
blanchet@36402
   768
                                  patches ||> apfst (insert (op =) l)
blanchet@36402
   769
                                          ||> apsnd (union (op =) drop_ls))
blanchet@36402
   770
                             |> fst |> SOME
blanchet@36402
   771
                           end) contra_ls
blanchet@36402
   772
               val facts = (co_ls, [])
blanchet@36402
   773
             in
blanchet@36402
   774
               (case join_proofs proofs of
blanchet@36402
   775
                  SOME (l, t, proofs, proof_tail) =>
blanchet@36402
   776
                  Have (case_split_qualifiers proofs @
blanchet@36402
   777
                        (if null proof_tail then end_qs else []), l, t,
blanchet@36402
   778
                        CaseSplit (proofs, facts)) :: proof_tail
blanchet@36402
   779
                | NONE =>
blanchet@36402
   780
                  [Have (case_split_qualifiers proofs @ end_qs, no_label,
blanchet@36402
   781
                         concl_t, CaseSplit (proofs, facts))],
blanchet@36402
   782
                patches)
blanchet@36402
   783
             end
blanchet@36402
   784
           | _ => raise Fail "malformed proof")
blanchet@36402
   785
       | second_pass _ _ = raise Fail "malformed proof"
blanchet@36486
   786
    val proof_bottom =
blanchet@36486
   787
      second_pass [Show] (contra_proof, [], ([], ([], []))) |> fst
blanchet@36402
   788
  in proof_top @ proof_bottom end
blanchet@36402
   789
blanchet@36402
   790
val kill_duplicate_assumptions_in_proof =
blanchet@36402
   791
  let
blanchet@36402
   792
    fun relabel_facts subst =
blanchet@36402
   793
      apfst (map (fn l => AList.lookup (op =) subst l |> the_default l))
blanchet@36491
   794
    fun do_step (step as Assume (l, t)) (proof, subst, assums) =
blanchet@36402
   795
        (case AList.lookup (op aconv) assums t of
blanchet@36402
   796
           SOME l' => (proof, (l', l) :: subst, assums)
blanchet@36491
   797
         | NONE => (step :: proof, subst, (t, l) :: assums))
blanchet@36402
   798
      | do_step (Have (qs, l, t, by)) (proof, subst, assums) =
blanchet@36402
   799
        (Have (qs, l, t,
blanchet@36402
   800
               case by of
blanchet@36402
   801
                 Facts facts => Facts (relabel_facts subst facts)
blanchet@36402
   802
               | CaseSplit (proofs, facts) =>
blanchet@36402
   803
                 CaseSplit (map do_proof proofs, relabel_facts subst facts)) ::
blanchet@36402
   804
         proof, subst, assums)
blanchet@36491
   805
      | do_step step (proof, subst, assums) = (step :: proof, subst, assums)
blanchet@36402
   806
    and do_proof proof = fold do_step proof ([], [], []) |> #1 |> rev
blanchet@36402
   807
  in do_proof end
blanchet@36402
   808
blanchet@36402
   809
val then_chain_proof =
blanchet@36402
   810
  let
blanchet@36402
   811
    fun aux _ [] = []
blanchet@36491
   812
      | aux _ ((step as Assume (l, _)) :: proof) = step :: aux l proof
blanchet@36402
   813
      | aux l' (Have (qs, l, t, by) :: proof) =
blanchet@36402
   814
        (case by of
blanchet@36402
   815
           Facts (ls, ss) =>
blanchet@36402
   816
           Have (if member (op =) ls l' then
blanchet@36402
   817
                   (Then :: qs, l, t,
blanchet@36402
   818
                    Facts (filter_out (curry (op =) l') ls, ss))
blanchet@36402
   819
                 else
blanchet@36402
   820
                   (qs, l, t, Facts (ls, ss)))
blanchet@36402
   821
         | CaseSplit (proofs, facts) =>
blanchet@36402
   822
           Have (qs, l, t, CaseSplit (map (aux no_label) proofs, facts))) ::
blanchet@36402
   823
        aux l proof
blanchet@36491
   824
      | aux _ (step :: proof) = step :: aux no_label proof
blanchet@36402
   825
  in aux no_label end
blanchet@36402
   826
blanchet@36402
   827
fun kill_useless_labels_in_proof proof =
blanchet@36402
   828
  let
blanchet@36556
   829
    val used_ls = used_labels_of proof
blanchet@36402
   830
    fun do_label l = if member (op =) used_ls l then l else no_label
blanchet@36556
   831
    fun do_step (Assume (l, t)) = Assume (do_label l, t)
blanchet@36556
   832
      | do_step (Have (qs, l, t, by)) =
blanchet@36402
   833
        Have (qs, do_label l, t,
blanchet@36402
   834
              case by of
blanchet@36402
   835
                CaseSplit (proofs, facts) =>
blanchet@36556
   836
                CaseSplit (map (map do_step) proofs, facts)
blanchet@36402
   837
              | _ => by)
blanchet@36556
   838
      | do_step step = step
blanchet@36556
   839
  in map do_step proof end
blanchet@36402
   840
blanchet@36402
   841
fun prefix_for_depth n = replicate_string (n + 1)
blanchet@36402
   842
blanchet@36402
   843
val relabel_proof =
blanchet@36402
   844
  let
blanchet@36402
   845
    fun aux _ _ _ [] = []
blanchet@36402
   846
      | aux subst depth (next_assum, next_fact) (Assume (l, t) :: proof) =
blanchet@36402
   847
        if l = no_label then
blanchet@36402
   848
          Assume (l, t) :: aux subst depth (next_assum, next_fact) proof
blanchet@36402
   849
        else
blanchet@36402
   850
          let val l' = (prefix_for_depth depth assum_prefix, next_assum) in
blanchet@36402
   851
            Assume (l', t) ::
blanchet@36402
   852
            aux ((l, l') :: subst) depth (next_assum + 1, next_fact) proof
blanchet@36402
   853
          end
blanchet@36402
   854
      | aux subst depth (next_assum, next_fact) (Have (qs, l, t, by) :: proof) =
blanchet@36402
   855
        let
blanchet@36402
   856
          val (l', subst, next_fact) =
blanchet@36402
   857
            if l = no_label then
blanchet@36402
   858
              (l, subst, next_fact)
blanchet@36402
   859
            else
blanchet@36402
   860
              let
blanchet@36402
   861
                val l' = (prefix_for_depth depth fact_prefix, next_fact)
blanchet@36402
   862
              in (l', (l, l') :: subst, next_fact + 1) end
blanchet@36486
   863
          val relabel_facts = apfst (map_filter (AList.lookup (op =) subst))
blanchet@36402
   864
          val by =
blanchet@36402
   865
            case by of
blanchet@36402
   866
              Facts facts => Facts (relabel_facts facts)
blanchet@36402
   867
            | CaseSplit (proofs, facts) =>
blanchet@36402
   868
              CaseSplit (map (aux subst (depth + 1) (1, 1)) proofs,
blanchet@36402
   869
                         relabel_facts facts)
blanchet@36402
   870
        in
blanchet@36402
   871
          Have (qs, l', t, by) ::
blanchet@36402
   872
          aux subst depth (next_assum, next_fact) proof
blanchet@36402
   873
        end
blanchet@36491
   874
      | aux subst depth nextp (step :: proof) =
blanchet@36491
   875
        step :: aux subst depth nextp proof
blanchet@36402
   876
  in aux [] 0 (1, 1) end
blanchet@36402
   877
blanchet@36488
   878
fun string_for_proof ctxt i n =
blanchet@36402
   879
  let
blanchet@36478
   880
    fun fix_print_mode f =
blanchet@36478
   881
      PrintMode.setmp (filter (curry (op =) Symbol.xsymbolsN)
blanchet@36478
   882
                      (print_mode_value ())) f
blanchet@36402
   883
    fun do_indent ind = replicate_string (ind * indent_size) " "
blanchet@36478
   884
    fun do_free (s, T) =
blanchet@36478
   885
      maybe_quote s ^ " :: " ^
blanchet@36478
   886
      maybe_quote (fix_print_mode (Syntax.string_of_typ ctxt) T)
blanchet@36551
   887
    fun do_raw_label (s, num) = s ^ string_of_int num
blanchet@36402
   888
    fun do_label l = if l = no_label then "" else do_raw_label l ^ ": "
blanchet@36402
   889
    fun do_have qs =
blanchet@36402
   890
      (if member (op =) qs Moreover then "moreover " else "") ^
blanchet@36402
   891
      (if member (op =) qs Ultimately then "ultimately " else "") ^
blanchet@36402
   892
      (if member (op =) qs Then then
blanchet@36402
   893
         if member (op =) qs Show then "thus" else "hence"
blanchet@36402
   894
       else
blanchet@36402
   895
         if member (op =) qs Show then "show" else "have")
blanchet@36478
   896
    val do_term = maybe_quote o fix_print_mode (Syntax.string_of_term ctxt)
blanchet@36556
   897
    fun do_facts ([], []) = "by metis"
blanchet@36556
   898
      | do_facts (ls, ss) =
blanchet@36556
   899
        "by (metis " ^ space_implode " " (map do_raw_label ls @ ss) ^ ")"
blanchet@36478
   900
    and do_step ind (Fix xs) =
blanchet@36478
   901
        do_indent ind ^ "fix " ^ space_implode " and " (map do_free xs) ^ "\n"
blanchet@36486
   902
      | do_step ind (Let (t1, t2)) =
blanchet@36486
   903
        do_indent ind ^ "let " ^ do_term t1 ^ " = " ^ do_term t2 ^ "\n"
blanchet@36402
   904
      | do_step ind (Assume (l, t)) =
blanchet@36402
   905
        do_indent ind ^ "assume " ^ do_label l ^ do_term t ^ "\n"
blanchet@36402
   906
      | do_step ind (Have (qs, l, t, Facts facts)) =
blanchet@36402
   907
        do_indent ind ^ do_have qs ^ " " ^
blanchet@36479
   908
        do_label l ^ do_term t ^ " " ^ do_facts facts ^ "\n"
blanchet@36402
   909
      | do_step ind (Have (qs, l, t, CaseSplit (proofs, facts))) =
blanchet@36402
   910
        space_implode (do_indent ind ^ "moreover\n")
blanchet@36402
   911
                      (map (do_block ind) proofs) ^
blanchet@36479
   912
        do_indent ind ^ do_have qs ^ " " ^ do_label l ^ do_term t ^ " " ^
blanchet@36478
   913
        do_facts facts ^ "\n"
blanchet@36402
   914
    and do_steps prefix suffix ind steps =
blanchet@36402
   915
      let val s = implode (map (do_step ind) steps) in
blanchet@36402
   916
        replicate_string (ind * indent_size - size prefix) " " ^ prefix ^
blanchet@36402
   917
        String.extract (s, ind * indent_size,
blanchet@36402
   918
                        SOME (size s - ind * indent_size - 1)) ^
blanchet@36402
   919
        suffix ^ "\n"
blanchet@36402
   920
      end
blanchet@36402
   921
    and do_block ind proof = do_steps "{ " " }" (ind + 1) proof
blanchet@36480
   922
    (* One-step proofs are pointless; better use the Metis one-liner. *)
blanchet@36480
   923
    and do_proof [_] = ""
blanchet@36480
   924
      | do_proof proof =
blanchet@36480
   925
        (if i <> 1 then "prefer " ^ string_of_int i ^ "\n" else "") ^
blanchet@36480
   926
        do_indent 0 ^ "proof -\n" ^
blanchet@36480
   927
        do_steps "" "" 1 proof ^
blanchet@36480
   928
        do_indent 0 ^ (if n <> 1 then "next" else "qed") ^ "\n"
blanchet@36488
   929
  in do_proof end
blanchet@36402
   930
blanchet@36488
   931
fun isar_proof_text (pool, debug, shrink_factor, ctxt, conjecture_shape)
blanchet@36402
   932
                    (minimize_command, atp_proof, thm_names, goal, i) =
blanchet@36402
   933
  let
blanchet@36402
   934
    val thy = ProofContext.theory_of ctxt
blanchet@36402
   935
    val (frees, hyp_ts, concl_t) = strip_subgoal goal i
blanchet@36402
   936
    val n = Logic.count_prems (prop_of goal)
blanchet@36223
   937
    val (one_line_proof, lemma_names) =
blanchet@36402
   938
      metis_proof_text (minimize_command, atp_proof, thm_names, goal, i)
blanchet@36283
   939
    fun isar_proof_for () =
blanchet@36551
   940
      case proof_from_atp_proof pool ctxt shrink_factor atp_proof
blanchet@36551
   941
                                conjecture_shape thm_names frees
blanchet@36491
   942
           |> redirect_proof thy conjecture_shape hyp_ts concl_t
blanchet@36402
   943
           |> kill_duplicate_assumptions_in_proof
blanchet@36402
   944
           |> then_chain_proof
blanchet@36402
   945
           |> kill_useless_labels_in_proof
blanchet@36402
   946
           |> relabel_proof
blanchet@36488
   947
           |> string_for_proof ctxt i n of
blanchet@36283
   948
        "" => ""
blanchet@36402
   949
      | proof => "\nStructured proof:\n" ^ Markup.markup Markup.sendback proof
blanchet@35868
   950
    val isar_proof =
blanchet@36402
   951
      if debug then
blanchet@36283
   952
        isar_proof_for ()
blanchet@36283
   953
      else
blanchet@36283
   954
        try isar_proof_for ()
blanchet@36287
   955
        |> the_default "Warning: The Isar proof construction failed.\n"
blanchet@36283
   956
  in (one_line_proof ^ isar_proof, lemma_names) end
paulson@21978
   957
blanchet@36422
   958
fun proof_text isar_proof isar_params =
blanchet@36422
   959
  if isar_proof then isar_proof_text isar_params else metis_proof_text
blanchet@36223
   960
immler@31038
   961
end;