haftmann@32139
|
1 |
(* Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel; Florian Haftmann, TU Muenchen *)
|
wenzelm@11979
|
2 |
|
haftmann@32139
|
3 |
header {* Complete lattices, with special focus on sets *}
|
haftmann@32077
|
4 |
|
haftmann@32139
|
5 |
theory Complete_Lattice
|
haftmann@32139
|
6 |
imports Set
|
haftmann@32139
|
7 |
begin
|
haftmann@32077
|
8 |
|
haftmann@32077
|
9 |
notation
|
haftmann@34007
|
10 |
less_eq (infix "\<sqsubseteq>" 50) and
|
haftmann@32077
|
11 |
less (infix "\<sqsubset>" 50) and
|
haftmann@34007
|
12 |
inf (infixl "\<sqinter>" 70) and
|
haftmann@34007
|
13 |
sup (infixl "\<squnion>" 65) and
|
haftmann@32678
|
14 |
top ("\<top>") and
|
haftmann@32678
|
15 |
bot ("\<bottom>")
|
haftmann@32077
|
16 |
|
haftmann@32139
|
17 |
|
haftmann@32879
|
18 |
subsection {* Syntactic infimum and supremum operations *}
|
haftmann@32879
|
19 |
|
haftmann@32879
|
20 |
class Inf =
|
haftmann@32879
|
21 |
fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
|
haftmann@32879
|
22 |
|
haftmann@32879
|
23 |
class Sup =
|
haftmann@32879
|
24 |
fixes Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
|
haftmann@32879
|
25 |
|
haftmann@32139
|
26 |
subsection {* Abstract complete lattices *}
|
haftmann@32139
|
27 |
|
haftmann@34007
|
28 |
class complete_lattice = bounded_lattice + Inf + Sup +
|
haftmann@32077
|
29 |
assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x"
|
haftmann@32077
|
30 |
and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A"
|
haftmann@32077
|
31 |
assumes Sup_upper: "x \<in> A \<Longrightarrow> x \<sqsubseteq> \<Squnion>A"
|
haftmann@32077
|
32 |
and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z) \<Longrightarrow> \<Squnion>A \<sqsubseteq> z"
|
haftmann@32077
|
33 |
begin
|
haftmann@32077
|
34 |
|
haftmann@32678
|
35 |
lemma dual_complete_lattice:
|
haftmann@43868
|
36 |
"class.complete_lattice Sup Inf (op \<ge>) (op >) sup inf \<top> \<bottom>"
|
haftmann@36635
|
37 |
by (auto intro!: class.complete_lattice.intro dual_bounded_lattice)
|
haftmann@34007
|
38 |
(unfold_locales, (fact bot_least top_greatest
|
haftmann@34007
|
39 |
Sup_upper Sup_least Inf_lower Inf_greatest)+)
|
haftmann@32678
|
40 |
|
haftmann@44040
|
41 |
definition INFI :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
|
haftmann@44040
|
42 |
INF_def: "INFI A f = \<Sqinter>(f ` A)"
|
haftmann@44040
|
43 |
|
haftmann@44040
|
44 |
definition SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
|
haftmann@44040
|
45 |
SUP_def: "SUPR A f = \<Squnion>(f ` A)"
|
haftmann@44040
|
46 |
|
haftmann@44040
|
47 |
text {*
|
haftmann@44040
|
48 |
Note: must use names @{const INFI} and @{const SUPR} here instead of
|
haftmann@44040
|
49 |
@{text INF} and @{text SUP} to allow the following syntax coexist
|
haftmann@44040
|
50 |
with the plain constant names.
|
haftmann@44040
|
51 |
*}
|
haftmann@44040
|
52 |
|
haftmann@44040
|
53 |
end
|
haftmann@44040
|
54 |
|
haftmann@44040
|
55 |
syntax
|
haftmann@44040
|
56 |
"_INF1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3INF _./ _)" [0, 10] 10)
|
haftmann@44040
|
57 |
"_INF" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3INF _:_./ _)" [0, 0, 10] 10)
|
haftmann@44040
|
58 |
"_SUP1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3SUP _./ _)" [0, 10] 10)
|
haftmann@44040
|
59 |
"_SUP" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3SUP _:_./ _)" [0, 0, 10] 10)
|
haftmann@44040
|
60 |
|
haftmann@44040
|
61 |
syntax (xsymbols)
|
haftmann@44040
|
62 |
"_INF1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sqinter>_./ _)" [0, 10] 10)
|
haftmann@44040
|
63 |
"_INF" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
|
haftmann@44040
|
64 |
"_SUP1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Squnion>_./ _)" [0, 10] 10)
|
haftmann@44040
|
65 |
"_SUP" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
|
haftmann@44040
|
66 |
|
haftmann@44040
|
67 |
translations
|
haftmann@44040
|
68 |
"INF x y. B" == "INF x. INF y. B"
|
haftmann@44040
|
69 |
"INF x. B" == "CONST INFI CONST UNIV (%x. B)"
|
haftmann@44040
|
70 |
"INF x. B" == "INF x:CONST UNIV. B"
|
haftmann@44040
|
71 |
"INF x:A. B" == "CONST INFI A (%x. B)"
|
haftmann@44040
|
72 |
"SUP x y. B" == "SUP x. SUP y. B"
|
haftmann@44040
|
73 |
"SUP x. B" == "CONST SUPR CONST UNIV (%x. B)"
|
haftmann@44040
|
74 |
"SUP x. B" == "SUP x:CONST UNIV. B"
|
haftmann@44040
|
75 |
"SUP x:A. B" == "CONST SUPR A (%x. B)"
|
haftmann@44040
|
76 |
|
haftmann@44040
|
77 |
print_translation {*
|
haftmann@44040
|
78 |
[Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"},
|
haftmann@44040
|
79 |
Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"}]
|
haftmann@44040
|
80 |
*} -- {* to avoid eta-contraction of body *}
|
haftmann@44040
|
81 |
|
haftmann@44040
|
82 |
context complete_lattice
|
haftmann@44040
|
83 |
begin
|
haftmann@32077
|
84 |
|
haftmann@44040
|
85 |
lemma INF_foundation_dual [no_atp]:
|
haftmann@44040
|
86 |
"complete_lattice.SUPR Inf = INFI"
|
haftmann@44040
|
87 |
proof (rule ext)+
|
haftmann@44040
|
88 |
interpret dual: complete_lattice Sup Inf "op \<ge>" "op >" sup inf \<top> \<bottom>
|
haftmann@44040
|
89 |
by (fact dual_complete_lattice)
|
haftmann@44040
|
90 |
fix f :: "'b \<Rightarrow> 'a" and A
|
haftmann@44040
|
91 |
show "complete_lattice.SUPR Inf A f = (\<Sqinter>a\<in>A. f a)"
|
haftmann@44040
|
92 |
by (simp only: dual.SUP_def INF_def)
|
haftmann@44040
|
93 |
qed
|
haftmann@44040
|
94 |
|
haftmann@44040
|
95 |
lemma SUP_foundation_dual [no_atp]:
|
haftmann@44040
|
96 |
"complete_lattice.INFI Sup = SUPR"
|
haftmann@44040
|
97 |
proof (rule ext)+
|
haftmann@44040
|
98 |
interpret dual: complete_lattice Sup Inf "op \<ge>" "op >" sup inf \<top> \<bottom>
|
haftmann@44040
|
99 |
by (fact dual_complete_lattice)
|
haftmann@44040
|
100 |
fix f :: "'b \<Rightarrow> 'a" and A
|
haftmann@44040
|
101 |
show "complete_lattice.INFI Sup A f = (\<Squnion>a\<in>A. f a)"
|
haftmann@44040
|
102 |
by (simp only: dual.INF_def SUP_def)
|
haftmann@44040
|
103 |
qed
|
haftmann@44040
|
104 |
|
haftmann@44040
|
105 |
lemma INF_leI: "i \<in> A \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<sqsubseteq> f i"
|
haftmann@44040
|
106 |
by (auto simp add: INF_def intro: Inf_lower)
|
haftmann@44040
|
107 |
|
haftmann@44040
|
108 |
lemma le_SUP_I: "i \<in> A \<Longrightarrow> f i \<sqsubseteq> (\<Squnion>i\<in>A. f i)"
|
haftmann@44040
|
109 |
by (auto simp add: SUP_def intro: Sup_upper)
|
haftmann@44040
|
110 |
|
haftmann@44040
|
111 |
lemma le_INF_I: "(\<And>i. i \<in> A \<Longrightarrow> u \<sqsubseteq> f i) \<Longrightarrow> u \<sqsubseteq> (\<Sqinter>i\<in>A. f i)"
|
haftmann@44040
|
112 |
by (auto simp add: INF_def intro: Inf_greatest)
|
haftmann@44040
|
113 |
|
haftmann@44040
|
114 |
lemma SUP_leI: "(\<And>i. i \<in> A \<Longrightarrow> f i \<sqsubseteq> u) \<Longrightarrow> (\<Squnion>i\<in>A. f i) \<sqsubseteq> u"
|
haftmann@44040
|
115 |
by (auto simp add: SUP_def intro: Sup_least)
|
haftmann@44040
|
116 |
|
haftmann@44040
|
117 |
lemma Inf_lower2: "u \<in> A \<Longrightarrow> u \<sqsubseteq> v \<Longrightarrow> \<Sqinter>A \<sqsubseteq> v"
|
haftmann@44040
|
118 |
using Inf_lower [of u A] by auto
|
haftmann@44040
|
119 |
|
haftmann@44040
|
120 |
lemma INF_leI2: "i \<in> A \<Longrightarrow> f i \<sqsubseteq> u \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<sqsubseteq> u"
|
haftmann@44040
|
121 |
using INF_leI [of i A f] by auto
|
haftmann@44040
|
122 |
|
haftmann@44040
|
123 |
lemma Sup_upper2: "u \<in> A \<Longrightarrow> v \<sqsubseteq> u \<Longrightarrow> v \<sqsubseteq> \<Squnion>A"
|
haftmann@44040
|
124 |
using Sup_upper [of u A] by auto
|
haftmann@44040
|
125 |
|
haftmann@44040
|
126 |
lemma le_SUP_I2: "i \<in> A \<Longrightarrow> u \<sqsubseteq> f i \<Longrightarrow> u \<sqsubseteq> (\<Squnion>i\<in>A. f i)"
|
haftmann@44040
|
127 |
using le_SUP_I [of i A f] by auto
|
haftmann@44040
|
128 |
|
haftmann@44040
|
129 |
lemma le_Inf_iff: "b \<sqsubseteq> \<Sqinter>A \<longleftrightarrow> (\<forall>a\<in>A. b \<sqsubseteq> a)"
|
haftmann@44040
|
130 |
by (auto intro: Inf_greatest dest: Inf_lower)
|
haftmann@44040
|
131 |
|
haftmann@44082
|
132 |
lemma le_INF_iff: "u \<sqsubseteq> (\<Sqinter>i\<in>A. f i) \<longleftrightarrow> (\<forall>i\<in>A. u \<sqsubseteq> f i)"
|
haftmann@44040
|
133 |
by (auto simp add: INF_def le_Inf_iff)
|
haftmann@44040
|
134 |
|
haftmann@44040
|
135 |
lemma Sup_le_iff: "\<Squnion>A \<sqsubseteq> b \<longleftrightarrow> (\<forall>a\<in>A. a \<sqsubseteq> b)"
|
haftmann@44040
|
136 |
by (auto intro: Sup_least dest: Sup_upper)
|
haftmann@44040
|
137 |
|
haftmann@44082
|
138 |
lemma SUP_le_iff: "(\<Squnion>i\<in>A. f i) \<sqsubseteq> u \<longleftrightarrow> (\<forall>i\<in>A. f i \<sqsubseteq> u)"
|
haftmann@44040
|
139 |
by (auto simp add: SUP_def Sup_le_iff)
|
haftmann@32077
|
140 |
|
haftmann@41080
|
141 |
lemma Inf_empty [simp]:
|
haftmann@34007
|
142 |
"\<Sqinter>{} = \<top>"
|
haftmann@34007
|
143 |
by (auto intro: antisym Inf_greatest)
|
haftmann@32077
|
144 |
|
haftmann@44040
|
145 |
lemma INF_empty: "(\<Sqinter>x\<in>{}. f x) = \<top>"
|
haftmann@44040
|
146 |
by (simp add: INF_def)
|
haftmann@44040
|
147 |
|
haftmann@41080
|
148 |
lemma Sup_empty [simp]:
|
haftmann@34007
|
149 |
"\<Squnion>{} = \<bottom>"
|
haftmann@34007
|
150 |
by (auto intro: antisym Sup_least)
|
haftmann@32077
|
151 |
|
haftmann@44040
|
152 |
lemma SUP_empty: "(\<Squnion>x\<in>{}. f x) = \<bottom>"
|
haftmann@44040
|
153 |
by (simp add: SUP_def)
|
haftmann@44040
|
154 |
|
haftmann@41080
|
155 |
lemma Inf_UNIV [simp]:
|
haftmann@41080
|
156 |
"\<Sqinter>UNIV = \<bottom>"
|
haftmann@44040
|
157 |
by (auto intro!: antisym Inf_lower)
|
haftmann@41080
|
158 |
|
haftmann@41080
|
159 |
lemma Sup_UNIV [simp]:
|
haftmann@41080
|
160 |
"\<Squnion>UNIV = \<top>"
|
haftmann@44040
|
161 |
by (auto intro!: antisym Sup_upper)
|
haftmann@41080
|
162 |
|
haftmann@44082
|
163 |
lemma Inf_insert (*[simp]*): "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A"
|
haftmann@32077
|
164 |
by (auto intro: le_infI le_infI1 le_infI2 antisym Inf_greatest Inf_lower)
|
haftmann@32077
|
165 |
|
haftmann@44040
|
166 |
lemma INF_insert: "(\<Sqinter>x\<in>insert a A. f x) = f a \<sqinter> INFI A f"
|
haftmann@44040
|
167 |
by (simp add: INF_def Inf_insert)
|
haftmann@44040
|
168 |
|
haftmann@44082
|
169 |
lemma Sup_insert (*[simp]*): "\<Squnion>insert a A = a \<squnion> \<Squnion>A"
|
haftmann@32077
|
170 |
by (auto intro: le_supI le_supI1 le_supI2 antisym Sup_least Sup_upper)
|
haftmann@32077
|
171 |
|
haftmann@44040
|
172 |
lemma SUP_insert: "(\<Squnion>x\<in>insert a A. f x) = f a \<squnion> SUPR A f"
|
haftmann@44040
|
173 |
by (simp add: SUP_def Sup_insert)
|
haftmann@44040
|
174 |
|
haftmann@44040
|
175 |
lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<sqsubseteq> a}"
|
haftmann@44040
|
176 |
by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
|
haftmann@44040
|
177 |
|
haftmann@44040
|
178 |
lemma Sup_Inf: "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<sqsubseteq> b}"
|
haftmann@44040
|
179 |
by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
|
haftmann@44040
|
180 |
|
haftmann@43899
|
181 |
lemma Inf_superset_mono: "B \<subseteq> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> \<Sqinter>B"
|
haftmann@43899
|
182 |
by (auto intro: Inf_greatest Inf_lower)
|
haftmann@43899
|
183 |
|
haftmann@43899
|
184 |
lemma Sup_subset_mono: "A \<subseteq> B \<Longrightarrow> \<Squnion>A \<sqsubseteq> \<Squnion>B"
|
haftmann@43899
|
185 |
by (auto intro: Sup_least Sup_upper)
|
haftmann@43899
|
186 |
|
haftmann@44041
|
187 |
lemma INF_cong:
|
haftmann@44041
|
188 |
"A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Sqinter>x\<in>A. C x) = (\<Sqinter>x\<in>B. D x)"
|
haftmann@44041
|
189 |
by (simp add: INF_def image_def)
|
haftmann@44041
|
190 |
|
haftmann@44041
|
191 |
lemma SUP_cong:
|
haftmann@44041
|
192 |
"A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Squnion>x\<in>A. C x) = (\<Squnion>x\<in>B. D x)"
|
haftmann@44041
|
193 |
by (simp add: SUP_def image_def)
|
haftmann@44041
|
194 |
|
hoelzl@38705
|
195 |
lemma Inf_mono:
|
hoelzl@41971
|
196 |
assumes "\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. a \<sqsubseteq> b"
|
haftmann@43741
|
197 |
shows "\<Sqinter>A \<sqsubseteq> \<Sqinter>B"
|
hoelzl@38705
|
198 |
proof (rule Inf_greatest)
|
hoelzl@38705
|
199 |
fix b assume "b \<in> B"
|
hoelzl@41971
|
200 |
with assms obtain a where "a \<in> A" and "a \<sqsubseteq> b" by blast
|
haftmann@43741
|
201 |
from `a \<in> A` have "\<Sqinter>A \<sqsubseteq> a" by (rule Inf_lower)
|
haftmann@43741
|
202 |
with `a \<sqsubseteq> b` show "\<Sqinter>A \<sqsubseteq> b" by auto
|
hoelzl@38705
|
203 |
qed
|
hoelzl@38705
|
204 |
|
haftmann@44041
|
205 |
lemma INF_mono:
|
haftmann@44041
|
206 |
"(\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<sqsubseteq> g m) \<Longrightarrow> (\<Sqinter>n\<in>A. f n) \<sqsubseteq> (\<Sqinter>n\<in>B. g n)"
|
haftmann@44041
|
207 |
by (force intro!: Inf_mono simp: INF_def)
|
haftmann@44041
|
208 |
|
haftmann@41082
|
209 |
lemma Sup_mono:
|
hoelzl@41971
|
210 |
assumes "\<And>a. a \<in> A \<Longrightarrow> \<exists>b\<in>B. a \<sqsubseteq> b"
|
haftmann@43741
|
211 |
shows "\<Squnion>A \<sqsubseteq> \<Squnion>B"
|
haftmann@41082
|
212 |
proof (rule Sup_least)
|
haftmann@41082
|
213 |
fix a assume "a \<in> A"
|
hoelzl@41971
|
214 |
with assms obtain b where "b \<in> B" and "a \<sqsubseteq> b" by blast
|
haftmann@43741
|
215 |
from `b \<in> B` have "b \<sqsubseteq> \<Squnion>B" by (rule Sup_upper)
|
haftmann@43741
|
216 |
with `a \<sqsubseteq> b` show "a \<sqsubseteq> \<Squnion>B" by auto
|
haftmann@41082
|
217 |
qed
|
haftmann@32077
|
218 |
|
haftmann@44041
|
219 |
lemma SUP_mono:
|
haftmann@44041
|
220 |
"(\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<sqsubseteq> g m) \<Longrightarrow> (\<Squnion>n\<in>A. f n) \<sqsubseteq> (\<Squnion>n\<in>B. g n)"
|
haftmann@44041
|
221 |
by (force intro!: Sup_mono simp: SUP_def)
|
haftmann@44041
|
222 |
|
haftmann@44041
|
223 |
lemma INF_superset_mono:
|
haftmann@44041
|
224 |
"B \<subseteq> A \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> f x \<sqsubseteq> g x) \<Longrightarrow> (\<Sqinter>x\<in>A. f x) \<sqsubseteq> (\<Sqinter>x\<in>B. g x)"
|
haftmann@44041
|
225 |
-- {* The last inclusion is POSITIVE! *}
|
haftmann@44041
|
226 |
by (blast intro: INF_mono dest: subsetD)
|
haftmann@44041
|
227 |
|
haftmann@44041
|
228 |
lemma SUP_subset_mono:
|
haftmann@44041
|
229 |
"A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<sqsubseteq> g x) \<Longrightarrow> (\<Squnion>x\<in>A. f x) \<sqsubseteq> (\<Squnion>x\<in>B. g x)"
|
haftmann@44041
|
230 |
by (blast intro: SUP_mono dest: subsetD)
|
haftmann@44041
|
231 |
|
haftmann@43868
|
232 |
lemma Inf_less_eq:
|
haftmann@43868
|
233 |
assumes "\<And>v. v \<in> A \<Longrightarrow> v \<sqsubseteq> u"
|
haftmann@43868
|
234 |
and "A \<noteq> {}"
|
haftmann@43868
|
235 |
shows "\<Sqinter>A \<sqsubseteq> u"
|
haftmann@43868
|
236 |
proof -
|
haftmann@43868
|
237 |
from `A \<noteq> {}` obtain v where "v \<in> A" by blast
|
haftmann@43868
|
238 |
moreover with assms have "v \<sqsubseteq> u" by blast
|
haftmann@43868
|
239 |
ultimately show ?thesis by (rule Inf_lower2)
|
haftmann@43868
|
240 |
qed
|
haftmann@43868
|
241 |
|
haftmann@43868
|
242 |
lemma less_eq_Sup:
|
haftmann@43868
|
243 |
assumes "\<And>v. v \<in> A \<Longrightarrow> u \<sqsubseteq> v"
|
haftmann@43868
|
244 |
and "A \<noteq> {}"
|
haftmann@43868
|
245 |
shows "u \<sqsubseteq> \<Squnion>A"
|
haftmann@43868
|
246 |
proof -
|
haftmann@43868
|
247 |
from `A \<noteq> {}` obtain v where "v \<in> A" by blast
|
haftmann@43868
|
248 |
moreover with assms have "u \<sqsubseteq> v" by blast
|
haftmann@43868
|
249 |
ultimately show ?thesis by (rule Sup_upper2)
|
haftmann@43868
|
250 |
qed
|
haftmann@43868
|
251 |
|
haftmann@43899
|
252 |
lemma less_eq_Inf_inter: "\<Sqinter>A \<squnion> \<Sqinter>B \<sqsubseteq> \<Sqinter>(A \<inter> B)"
|
haftmann@43868
|
253 |
by (auto intro: Inf_greatest Inf_lower)
|
haftmann@43868
|
254 |
|
haftmann@43899
|
255 |
lemma Sup_inter_less_eq: "\<Squnion>(A \<inter> B) \<sqsubseteq> \<Squnion>A \<sqinter> \<Squnion>B "
|
haftmann@43868
|
256 |
by (auto intro: Sup_least Sup_upper)
|
haftmann@43868
|
257 |
|
haftmann@43868
|
258 |
lemma Inf_union_distrib: "\<Sqinter>(A \<union> B) = \<Sqinter>A \<sqinter> \<Sqinter>B"
|
haftmann@43868
|
259 |
by (rule antisym) (auto intro: Inf_greatest Inf_lower le_infI1 le_infI2)
|
haftmann@43868
|
260 |
|
haftmann@44041
|
261 |
lemma INF_union:
|
haftmann@44041
|
262 |
"(\<Sqinter>i \<in> A \<union> B. M i) = (\<Sqinter>i \<in> A. M i) \<sqinter> (\<Sqinter>i\<in>B. M i)"
|
haftmann@44041
|
263 |
by (auto intro!: antisym INF_mono intro: le_infI1 le_infI2 le_INF_I INF_leI)
|
haftmann@44041
|
264 |
|
haftmann@43868
|
265 |
lemma Sup_union_distrib: "\<Squnion>(A \<union> B) = \<Squnion>A \<squnion> \<Squnion>B"
|
haftmann@43868
|
266 |
by (rule antisym) (auto intro: Sup_least Sup_upper le_supI1 le_supI2)
|
haftmann@43868
|
267 |
|
haftmann@44041
|
268 |
lemma SUP_union:
|
haftmann@44041
|
269 |
"(\<Squnion>i \<in> A \<union> B. M i) = (\<Squnion>i \<in> A. M i) \<squnion> (\<Squnion>i\<in>B. M i)"
|
haftmann@44041
|
270 |
by (auto intro!: antisym SUP_mono intro: le_supI1 le_supI2 SUP_leI le_SUP_I)
|
haftmann@44041
|
271 |
|
haftmann@44041
|
272 |
lemma INF_inf_distrib: "(\<Sqinter>a\<in>A. f a) \<sqinter> (\<Sqinter>a\<in>A. g a) = (\<Sqinter>a\<in>A. f a \<sqinter> g a)"
|
haftmann@44041
|
273 |
by (rule antisym) (rule le_INF_I, auto intro: le_infI1 le_infI2 INF_leI INF_mono)
|
haftmann@44041
|
274 |
|
haftmann@44041
|
275 |
lemma SUP_sup_distrib: "(\<Squnion>a\<in>A. f a) \<squnion> (\<Squnion>a\<in>A. g a) = (\<Squnion>a\<in>A. f a \<squnion> g a)"
|
haftmann@44041
|
276 |
by (rule antisym) (auto intro: le_supI1 le_supI2 le_SUP_I SUP_mono,
|
haftmann@44041
|
277 |
rule SUP_leI, auto intro: le_supI1 le_supI2 le_SUP_I SUP_mono)
|
haftmann@44041
|
278 |
|
haftmann@43868
|
279 |
lemma Inf_top_conv [no_atp]:
|
haftmann@43868
|
280 |
"\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
|
haftmann@43868
|
281 |
"\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
|
haftmann@43868
|
282 |
proof -
|
haftmann@43868
|
283 |
show "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
|
haftmann@43868
|
284 |
proof
|
haftmann@43868
|
285 |
assume "\<forall>x\<in>A. x = \<top>"
|
haftmann@43868
|
286 |
then have "A = {} \<or> A = {\<top>}" by auto
|
haftmann@43868
|
287 |
then show "\<Sqinter>A = \<top>" by auto
|
haftmann@43868
|
288 |
next
|
haftmann@43868
|
289 |
assume "\<Sqinter>A = \<top>"
|
haftmann@43868
|
290 |
show "\<forall>x\<in>A. x = \<top>"
|
haftmann@43868
|
291 |
proof (rule ccontr)
|
haftmann@43868
|
292 |
assume "\<not> (\<forall>x\<in>A. x = \<top>)"
|
haftmann@43868
|
293 |
then obtain x where "x \<in> A" and "x \<noteq> \<top>" by blast
|
haftmann@43868
|
294 |
then obtain B where "A = insert x B" by blast
|
haftmann@43868
|
295 |
with `\<Sqinter>A = \<top>` `x \<noteq> \<top>` show False by (simp add: Inf_insert)
|
haftmann@43868
|
296 |
qed
|
haftmann@43868
|
297 |
qed
|
haftmann@43868
|
298 |
then show "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" by auto
|
haftmann@43868
|
299 |
qed
|
haftmann@43868
|
300 |
|
haftmann@44041
|
301 |
lemma INF_top_conv:
|
haftmann@44041
|
302 |
"(\<Sqinter>x\<in>A. B x) = \<top> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)"
|
haftmann@44041
|
303 |
"\<top> = (\<Sqinter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)"
|
haftmann@44041
|
304 |
by (auto simp add: INF_def Inf_top_conv)
|
haftmann@44041
|
305 |
|
haftmann@43868
|
306 |
lemma Sup_bot_conv [no_atp]:
|
haftmann@43868
|
307 |
"\<Squnion>A = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" (is ?P)
|
haftmann@43868
|
308 |
"\<bottom> = \<Squnion>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" (is ?Q)
|
haftmann@43868
|
309 |
proof -
|
haftmann@43868
|
310 |
interpret dual: complete_lattice Sup Inf "op \<ge>" "op >" sup inf \<top> \<bottom>
|
haftmann@43868
|
311 |
by (fact dual_complete_lattice)
|
haftmann@43868
|
312 |
from dual.Inf_top_conv show ?P and ?Q by simp_all
|
haftmann@43868
|
313 |
qed
|
haftmann@43868
|
314 |
|
haftmann@44041
|
315 |
lemma SUP_bot_conv:
|
haftmann@44041
|
316 |
"(\<Squnion>x\<in>A. B x) = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)"
|
haftmann@44041
|
317 |
"\<bottom> = (\<Squnion>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)"
|
haftmann@44041
|
318 |
by (auto simp add: SUP_def Sup_bot_conv)
|
haftmann@44041
|
319 |
|
haftmann@43865
|
320 |
lemma INF_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>A. f) = f"
|
haftmann@43872
|
321 |
by (auto intro: antisym INF_leI le_INF_I)
|
haftmann@32077
|
322 |
|
haftmann@43870
|
323 |
lemma SUP_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Squnion>i\<in>A. f) = f"
|
haftmann@43872
|
324 |
by (auto intro: antisym SUP_leI le_SUP_I)
|
haftmann@43870
|
325 |
|
haftmann@43900
|
326 |
lemma INF_top: "(\<Sqinter>x\<in>A. \<top>) = \<top>"
|
haftmann@43900
|
327 |
by (cases "A = {}") (simp_all add: INF_empty)
|
haftmann@43900
|
328 |
|
haftmann@43900
|
329 |
lemma SUP_bot: "(\<Squnion>x\<in>A. \<bottom>) = \<bottom>"
|
haftmann@43900
|
330 |
by (cases "A = {}") (simp_all add: SUP_empty)
|
haftmann@43900
|
331 |
|
haftmann@43865
|
332 |
lemma INF_commute: "(\<Sqinter>i\<in>A. \<Sqinter>j\<in>B. f i j) = (\<Sqinter>j\<in>B. \<Sqinter>i\<in>A. f i j)"
|
haftmann@43872
|
333 |
by (iprover intro: INF_leI le_INF_I order_trans antisym)
|
haftmann@43865
|
334 |
|
haftmann@43870
|
335 |
lemma SUP_commute: "(\<Squnion>i\<in>A. \<Squnion>j\<in>B. f i j) = (\<Squnion>j\<in>B. \<Squnion>i\<in>A. f i j)"
|
haftmann@43872
|
336 |
by (iprover intro: SUP_leI le_SUP_I order_trans antisym)
|
haftmann@43870
|
337 |
|
haftmann@43871
|
338 |
lemma INF_absorb:
|
haftmann@43868
|
339 |
assumes "k \<in> I"
|
haftmann@43868
|
340 |
shows "A k \<sqinter> (\<Sqinter>i\<in>I. A i) = (\<Sqinter>i\<in>I. A i)"
|
haftmann@43868
|
341 |
proof -
|
haftmann@43868
|
342 |
from assms obtain J where "I = insert k J" by blast
|
haftmann@43868
|
343 |
then show ?thesis by (simp add: INF_insert)
|
haftmann@43868
|
344 |
qed
|
haftmann@43868
|
345 |
|
haftmann@43871
|
346 |
lemma SUP_absorb:
|
haftmann@43871
|
347 |
assumes "k \<in> I"
|
haftmann@43871
|
348 |
shows "A k \<squnion> (\<Squnion>i\<in>I. A i) = (\<Squnion>i\<in>I. A i)"
|
haftmann@43871
|
349 |
proof -
|
haftmann@43871
|
350 |
from assms obtain J where "I = insert k J" by blast
|
haftmann@43871
|
351 |
then show ?thesis by (simp add: SUP_insert)
|
haftmann@43871
|
352 |
qed
|
haftmann@43871
|
353 |
|
haftmann@43871
|
354 |
lemma INF_constant:
|
haftmann@43868
|
355 |
"(\<Sqinter>y\<in>A. c) = (if A = {} then \<top> else c)"
|
haftmann@43868
|
356 |
by (simp add: INF_empty)
|
haftmann@43868
|
357 |
|
haftmann@43871
|
358 |
lemma SUP_constant:
|
haftmann@43871
|
359 |
"(\<Squnion>y\<in>A. c) = (if A = {} then \<bottom> else c)"
|
haftmann@43871
|
360 |
by (simp add: SUP_empty)
|
haftmann@43871
|
361 |
|
haftmann@43871
|
362 |
lemma INF_eq:
|
haftmann@43868
|
363 |
"(\<Sqinter>x\<in>A. B x) = \<Sqinter>({Y. \<exists>x\<in>A. Y = B x})"
|
haftmann@43872
|
364 |
by (simp add: INF_def image_def)
|
haftmann@43868
|
365 |
|
haftmann@43871
|
366 |
lemma SUP_eq:
|
haftmann@43871
|
367 |
"(\<Squnion>x\<in>A. B x) = \<Squnion>({Y. \<exists>x\<in>A. Y = B x})"
|
haftmann@43872
|
368 |
by (simp add: SUP_def image_def)
|
haftmann@43871
|
369 |
|
haftmann@43943
|
370 |
lemma less_INF_D:
|
haftmann@43943
|
371 |
assumes "y < (\<Sqinter>i\<in>A. f i)" "i \<in> A" shows "y < f i"
|
haftmann@43943
|
372 |
proof -
|
haftmann@43943
|
373 |
note `y < (\<Sqinter>i\<in>A. f i)`
|
haftmann@43943
|
374 |
also have "(\<Sqinter>i\<in>A. f i) \<le> f i" using `i \<in> A`
|
haftmann@43943
|
375 |
by (rule INF_leI)
|
haftmann@43943
|
376 |
finally show "y < f i" .
|
haftmann@43943
|
377 |
qed
|
haftmann@43943
|
378 |
|
haftmann@43943
|
379 |
lemma SUP_lessD:
|
haftmann@43943
|
380 |
assumes "(\<Squnion>i\<in>A. f i) < y" "i \<in> A" shows "f i < y"
|
haftmann@43943
|
381 |
proof -
|
haftmann@43943
|
382 |
have "f i \<le> (\<Squnion>i\<in>A. f i)" using `i \<in> A`
|
haftmann@43943
|
383 |
by (rule le_SUP_I)
|
haftmann@43943
|
384 |
also note `(\<Squnion>i\<in>A. f i) < y`
|
haftmann@43943
|
385 |
finally show "f i < y" .
|
haftmann@43943
|
386 |
qed
|
haftmann@43943
|
387 |
|
haftmann@43873
|
388 |
lemma INF_UNIV_range:
|
haftmann@43871
|
389 |
"(\<Sqinter>x. f x) = \<Sqinter>range f"
|
haftmann@43872
|
390 |
by (fact INF_def)
|
haftmann@43871
|
391 |
|
haftmann@43873
|
392 |
lemma SUP_UNIV_range:
|
haftmann@43871
|
393 |
"(\<Squnion>x. f x) = \<Squnion>range f"
|
haftmann@43872
|
394 |
by (fact SUP_def)
|
haftmann@43871
|
395 |
|
haftmann@43873
|
396 |
lemma INF_UNIV_bool_expand:
|
haftmann@43868
|
397 |
"(\<Sqinter>b. A b) = A True \<sqinter> A False"
|
haftmann@43868
|
398 |
by (simp add: UNIV_bool INF_empty INF_insert inf_commute)
|
haftmann@43868
|
399 |
|
haftmann@43873
|
400 |
lemma SUP_UNIV_bool_expand:
|
haftmann@43871
|
401 |
"(\<Squnion>b. A b) = A True \<squnion> A False"
|
haftmann@43871
|
402 |
by (simp add: UNIV_bool SUP_empty SUP_insert sup_commute)
|
haftmann@43871
|
403 |
|
haftmann@32077
|
404 |
end
|
haftmann@32077
|
405 |
|
haftmann@44024
|
406 |
class complete_distrib_lattice = complete_lattice +
|
haftmann@44039
|
407 |
assumes sup_Inf: "a \<squnion> \<Sqinter>B = (\<Sqinter>b\<in>B. a \<squnion> b)"
|
haftmann@44024
|
408 |
assumes inf_Sup: "a \<sqinter> \<Squnion>B = (\<Squnion>b\<in>B. a \<sqinter> b)"
|
haftmann@44024
|
409 |
begin
|
haftmann@44024
|
410 |
|
haftmann@44039
|
411 |
lemma sup_INF:
|
haftmann@44039
|
412 |
"a \<squnion> (\<Sqinter>b\<in>B. f b) = (\<Sqinter>b\<in>B. a \<squnion> f b)"
|
haftmann@44039
|
413 |
by (simp add: INF_def sup_Inf image_image)
|
haftmann@44039
|
414 |
|
haftmann@44039
|
415 |
lemma inf_SUP:
|
haftmann@44039
|
416 |
"a \<sqinter> (\<Squnion>b\<in>B. f b) = (\<Squnion>b\<in>B. a \<sqinter> f b)"
|
haftmann@44039
|
417 |
by (simp add: SUP_def inf_Sup image_image)
|
haftmann@44039
|
418 |
|
haftmann@44032
|
419 |
lemma dual_complete_distrib_lattice:
|
haftmann@44024
|
420 |
"class.complete_distrib_lattice Sup Inf (op \<ge>) (op >) sup inf \<top> \<bottom>"
|
haftmann@44024
|
421 |
apply (rule class.complete_distrib_lattice.intro)
|
haftmann@44024
|
422 |
apply (fact dual_complete_lattice)
|
haftmann@44024
|
423 |
apply (rule class.complete_distrib_lattice_axioms.intro)
|
haftmann@44032
|
424 |
apply (simp_all only: INF_foundation_dual SUP_foundation_dual inf_Sup sup_Inf)
|
haftmann@44032
|
425 |
done
|
haftmann@44024
|
426 |
|
haftmann@44024
|
427 |
subclass distrib_lattice proof -- {* Question: is it sufficient to include @{class distrib_lattice}
|
haftmann@44029
|
428 |
and prove @{text inf_Sup} and @{text sup_Inf} from that? *}
|
haftmann@44024
|
429 |
fix a b c
|
haftmann@44024
|
430 |
from sup_Inf have "a \<squnion> \<Sqinter>{b, c} = (\<Sqinter>d\<in>{b, c}. a \<squnion> d)" .
|
haftmann@44082
|
431 |
then show "a \<squnion> b \<sqinter> c = (a \<squnion> b) \<sqinter> (a \<squnion> c)" by (simp add: INF_def Inf_insert)
|
haftmann@44024
|
432 |
qed
|
haftmann@44024
|
433 |
|
haftmann@44039
|
434 |
lemma Inf_sup:
|
haftmann@44039
|
435 |
"\<Sqinter>B \<squnion> a = (\<Sqinter>b\<in>B. b \<squnion> a)"
|
haftmann@44039
|
436 |
by (simp add: sup_Inf sup_commute)
|
haftmann@44039
|
437 |
|
haftmann@44039
|
438 |
lemma Sup_inf:
|
haftmann@44039
|
439 |
"\<Squnion>B \<sqinter> a = (\<Squnion>b\<in>B. b \<sqinter> a)"
|
haftmann@44039
|
440 |
by (simp add: inf_Sup inf_commute)
|
haftmann@44039
|
441 |
|
haftmann@44039
|
442 |
lemma INF_sup:
|
haftmann@44039
|
443 |
"(\<Sqinter>b\<in>B. f b) \<squnion> a = (\<Sqinter>b\<in>B. f b \<squnion> a)"
|
haftmann@44039
|
444 |
by (simp add: sup_INF sup_commute)
|
haftmann@44039
|
445 |
|
haftmann@44039
|
446 |
lemma SUP_inf:
|
haftmann@44039
|
447 |
"(\<Squnion>b\<in>B. f b) \<sqinter> a = (\<Squnion>b\<in>B. f b \<sqinter> a)"
|
haftmann@44039
|
448 |
by (simp add: inf_SUP inf_commute)
|
haftmann@44039
|
449 |
|
haftmann@44039
|
450 |
lemma Inf_sup_eq_top_iff:
|
haftmann@44039
|
451 |
"(\<Sqinter>B \<squnion> a = \<top>) \<longleftrightarrow> (\<forall>b\<in>B. b \<squnion> a = \<top>)"
|
haftmann@44039
|
452 |
by (simp only: Inf_sup INF_top_conv)
|
haftmann@44039
|
453 |
|
haftmann@44039
|
454 |
lemma Sup_inf_eq_bot_iff:
|
haftmann@44039
|
455 |
"(\<Squnion>B \<sqinter> a = \<bottom>) \<longleftrightarrow> (\<forall>b\<in>B. b \<sqinter> a = \<bottom>)"
|
haftmann@44039
|
456 |
by (simp only: Sup_inf SUP_bot_conv)
|
haftmann@44039
|
457 |
|
haftmann@44039
|
458 |
lemma INF_sup_distrib2:
|
haftmann@44039
|
459 |
"(\<Sqinter>a\<in>A. f a) \<squnion> (\<Sqinter>b\<in>B. g b) = (\<Sqinter>a\<in>A. \<Sqinter>b\<in>B. f a \<squnion> g b)"
|
haftmann@44039
|
460 |
by (subst INF_commute) (simp add: sup_INF INF_sup)
|
haftmann@44039
|
461 |
|
haftmann@44039
|
462 |
lemma SUP_inf_distrib2:
|
haftmann@44039
|
463 |
"(\<Squnion>a\<in>A. f a) \<sqinter> (\<Squnion>b\<in>B. g b) = (\<Squnion>a\<in>A. \<Squnion>b\<in>B. f a \<sqinter> g b)"
|
haftmann@44039
|
464 |
by (subst SUP_commute) (simp add: inf_SUP SUP_inf)
|
haftmann@44039
|
465 |
|
haftmann@44024
|
466 |
end
|
haftmann@44024
|
467 |
|
haftmann@44032
|
468 |
class complete_boolean_algebra = boolean_algebra + complete_distrib_lattice
|
haftmann@43873
|
469 |
begin
|
haftmann@43873
|
470 |
|
haftmann@43943
|
471 |
lemma dual_complete_boolean_algebra:
|
haftmann@43943
|
472 |
"class.complete_boolean_algebra Sup Inf (op \<ge>) (op >) sup inf \<top> \<bottom> (\<lambda>x y. x \<squnion> - y) uminus"
|
haftmann@44032
|
473 |
by (rule class.complete_boolean_algebra.intro, rule dual_complete_distrib_lattice, rule dual_boolean_algebra)
|
haftmann@43943
|
474 |
|
haftmann@43873
|
475 |
lemma uminus_Inf:
|
haftmann@43873
|
476 |
"- (\<Sqinter>A) = \<Squnion>(uminus ` A)"
|
haftmann@43873
|
477 |
proof (rule antisym)
|
haftmann@43873
|
478 |
show "- \<Sqinter>A \<le> \<Squnion>(uminus ` A)"
|
haftmann@43873
|
479 |
by (rule compl_le_swap2, rule Inf_greatest, rule compl_le_swap2, rule Sup_upper) simp
|
haftmann@43873
|
480 |
show "\<Squnion>(uminus ` A) \<le> - \<Sqinter>A"
|
haftmann@43873
|
481 |
by (rule Sup_least, rule compl_le_swap1, rule Inf_lower) auto
|
haftmann@43873
|
482 |
qed
|
haftmann@43873
|
483 |
|
haftmann@44041
|
484 |
lemma uminus_INF: "- (\<Sqinter>x\<in>A. B x) = (\<Squnion>x\<in>A. - B x)"
|
haftmann@44041
|
485 |
by (simp add: INF_def SUP_def uminus_Inf image_image)
|
haftmann@44041
|
486 |
|
haftmann@43873
|
487 |
lemma uminus_Sup:
|
haftmann@43873
|
488 |
"- (\<Squnion>A) = \<Sqinter>(uminus ` A)"
|
haftmann@43873
|
489 |
proof -
|
haftmann@43873
|
490 |
have "\<Squnion>A = - \<Sqinter>(uminus ` A)" by (simp add: image_image uminus_Inf)
|
haftmann@43873
|
491 |
then show ?thesis by simp
|
haftmann@43873
|
492 |
qed
|
haftmann@43873
|
493 |
|
haftmann@43873
|
494 |
lemma uminus_SUP: "- (\<Squnion>x\<in>A. B x) = (\<Sqinter>x\<in>A. - B x)"
|
haftmann@43873
|
495 |
by (simp add: INF_def SUP_def uminus_Sup image_image)
|
haftmann@43873
|
496 |
|
haftmann@43873
|
497 |
end
|
haftmann@43873
|
498 |
|
haftmann@43940
|
499 |
class complete_linorder = linorder + complete_lattice
|
haftmann@43940
|
500 |
begin
|
haftmann@43940
|
501 |
|
haftmann@43943
|
502 |
lemma dual_complete_linorder:
|
haftmann@43943
|
503 |
"class.complete_linorder Sup Inf (op \<ge>) (op >) sup inf \<top> \<bottom>"
|
haftmann@43943
|
504 |
by (rule class.complete_linorder.intro, rule dual_complete_lattice, rule dual_linorder)
|
haftmann@43943
|
505 |
|
haftmann@43940
|
506 |
lemma Inf_less_iff:
|
haftmann@43940
|
507 |
"\<Sqinter>S \<sqsubset> a \<longleftrightarrow> (\<exists>x\<in>S. x \<sqsubset> a)"
|
haftmann@43940
|
508 |
unfolding not_le [symmetric] le_Inf_iff by auto
|
haftmann@43940
|
509 |
|
haftmann@44041
|
510 |
lemma INF_less_iff:
|
haftmann@44041
|
511 |
"(\<Sqinter>i\<in>A. f i) \<sqsubset> a \<longleftrightarrow> (\<exists>x\<in>A. f x \<sqsubset> a)"
|
haftmann@44041
|
512 |
unfolding INF_def Inf_less_iff by auto
|
haftmann@44041
|
513 |
|
haftmann@43940
|
514 |
lemma less_Sup_iff:
|
haftmann@43940
|
515 |
"a \<sqsubset> \<Squnion>S \<longleftrightarrow> (\<exists>x\<in>S. a \<sqsubset> x)"
|
haftmann@43940
|
516 |
unfolding not_le [symmetric] Sup_le_iff by auto
|
haftmann@43940
|
517 |
|
haftmann@43940
|
518 |
lemma less_SUP_iff:
|
haftmann@43940
|
519 |
"a \<sqsubset> (\<Squnion>i\<in>A. f i) \<longleftrightarrow> (\<exists>x\<in>A. a \<sqsubset> f x)"
|
haftmann@43940
|
520 |
unfolding SUP_def less_Sup_iff by auto
|
haftmann@43940
|
521 |
|
haftmann@43943
|
522 |
lemma Sup_eq_top_iff:
|
haftmann@43943
|
523 |
"\<Squnion>A = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < i)"
|
haftmann@43943
|
524 |
proof
|
haftmann@43943
|
525 |
assume *: "\<Squnion>A = \<top>"
|
haftmann@43943
|
526 |
show "(\<forall>x<\<top>. \<exists>i\<in>A. x < i)" unfolding * [symmetric]
|
haftmann@43943
|
527 |
proof (intro allI impI)
|
haftmann@43943
|
528 |
fix x assume "x < \<Squnion>A" then show "\<exists>i\<in>A. x < i"
|
haftmann@43943
|
529 |
unfolding less_Sup_iff by auto
|
haftmann@43943
|
530 |
qed
|
haftmann@43943
|
531 |
next
|
haftmann@43943
|
532 |
assume *: "\<forall>x<\<top>. \<exists>i\<in>A. x < i"
|
haftmann@43943
|
533 |
show "\<Squnion>A = \<top>"
|
haftmann@43943
|
534 |
proof (rule ccontr)
|
haftmann@43943
|
535 |
assume "\<Squnion>A \<noteq> \<top>"
|
haftmann@43943
|
536 |
with top_greatest [of "\<Squnion>A"]
|
haftmann@43943
|
537 |
have "\<Squnion>A < \<top>" unfolding le_less by auto
|
haftmann@43943
|
538 |
then have "\<Squnion>A < \<Squnion>A"
|
haftmann@43943
|
539 |
using * unfolding less_Sup_iff by auto
|
haftmann@43943
|
540 |
then show False by auto
|
haftmann@43943
|
541 |
qed
|
haftmann@43943
|
542 |
qed
|
haftmann@43943
|
543 |
|
haftmann@44041
|
544 |
lemma SUP_eq_top_iff:
|
haftmann@44041
|
545 |
"(\<Squnion>i\<in>A. f i) = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < f i)"
|
haftmann@44041
|
546 |
unfolding SUP_def Sup_eq_top_iff by auto
|
haftmann@44041
|
547 |
|
haftmann@43943
|
548 |
lemma Inf_eq_bot_iff:
|
haftmann@43943
|
549 |
"\<Sqinter>A = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. i < x)"
|
haftmann@43943
|
550 |
proof -
|
haftmann@43943
|
551 |
interpret dual: complete_linorder Sup Inf "op \<ge>" "op >" sup inf \<top> \<bottom>
|
haftmann@43943
|
552 |
by (fact dual_complete_linorder)
|
haftmann@43943
|
553 |
from dual.Sup_eq_top_iff show ?thesis .
|
haftmann@43943
|
554 |
qed
|
haftmann@43943
|
555 |
|
haftmann@43967
|
556 |
lemma INF_eq_bot_iff:
|
haftmann@43967
|
557 |
"(\<Sqinter>i\<in>A. f i) = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. f i < x)"
|
haftmann@43967
|
558 |
unfolding INF_def Inf_eq_bot_iff by auto
|
haftmann@43967
|
559 |
|
haftmann@43940
|
560 |
end
|
haftmann@43940
|
561 |
|
haftmann@43873
|
562 |
|
haftmann@32139
|
563 |
subsection {* @{typ bool} and @{typ "_ \<Rightarrow> _"} as complete lattice *}
|
haftmann@32077
|
564 |
|
haftmann@44024
|
565 |
instantiation bool :: complete_lattice
|
haftmann@32077
|
566 |
begin
|
haftmann@32077
|
567 |
|
haftmann@32077
|
568 |
definition
|
haftmann@41080
|
569 |
"\<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x)"
|
haftmann@32077
|
570 |
|
haftmann@32077
|
571 |
definition
|
haftmann@41080
|
572 |
"\<Squnion>A \<longleftrightarrow> (\<exists>x\<in>A. x)"
|
haftmann@32077
|
573 |
|
haftmann@32077
|
574 |
instance proof
|
haftmann@43852
|
575 |
qed (auto simp add: Inf_bool_def Sup_bool_def)
|
haftmann@32077
|
576 |
|
haftmann@32077
|
577 |
end
|
haftmann@32077
|
578 |
|
haftmann@43873
|
579 |
lemma INF_bool_eq [simp]:
|
haftmann@32120
|
580 |
"INFI = Ball"
|
haftmann@32120
|
581 |
proof (rule ext)+
|
haftmann@32120
|
582 |
fix A :: "'a set"
|
haftmann@32120
|
583 |
fix P :: "'a \<Rightarrow> bool"
|
haftmann@43753
|
584 |
show "(\<Sqinter>x\<in>A. P x) \<longleftrightarrow> (\<forall>x\<in>A. P x)"
|
haftmann@43872
|
585 |
by (auto simp add: Ball_def INF_def Inf_bool_def)
|
haftmann@32120
|
586 |
qed
|
haftmann@32120
|
587 |
|
haftmann@43873
|
588 |
lemma SUP_bool_eq [simp]:
|
haftmann@32120
|
589 |
"SUPR = Bex"
|
haftmann@32120
|
590 |
proof (rule ext)+
|
haftmann@32120
|
591 |
fix A :: "'a set"
|
haftmann@32120
|
592 |
fix P :: "'a \<Rightarrow> bool"
|
haftmann@43753
|
593 |
show "(\<Squnion>x\<in>A. P x) \<longleftrightarrow> (\<exists>x\<in>A. P x)"
|
haftmann@43872
|
594 |
by (auto simp add: Bex_def SUP_def Sup_bool_def)
|
haftmann@32120
|
595 |
qed
|
haftmann@32120
|
596 |
|
haftmann@44032
|
597 |
instance bool :: complete_boolean_algebra proof
|
haftmann@44024
|
598 |
qed (auto simp add: Inf_bool_def Sup_bool_def)
|
haftmann@44024
|
599 |
|
haftmann@32077
|
600 |
instantiation "fun" :: (type, complete_lattice) complete_lattice
|
haftmann@32077
|
601 |
begin
|
haftmann@32077
|
602 |
|
haftmann@32077
|
603 |
definition
|
haftmann@44024
|
604 |
"\<Sqinter>A = (\<lambda>x. \<Sqinter>f\<in>A. f x)"
|
haftmann@41080
|
605 |
|
haftmann@41080
|
606 |
lemma Inf_apply:
|
haftmann@44024
|
607 |
"(\<Sqinter>A) x = (\<Sqinter>f\<in>A. f x)"
|
haftmann@41080
|
608 |
by (simp add: Inf_fun_def)
|
haftmann@32077
|
609 |
|
haftmann@32077
|
610 |
definition
|
haftmann@44024
|
611 |
"\<Squnion>A = (\<lambda>x. \<Squnion>f\<in>A. f x)"
|
haftmann@41080
|
612 |
|
haftmann@41080
|
613 |
lemma Sup_apply:
|
haftmann@44024
|
614 |
"(\<Squnion>A) x = (\<Squnion>f\<in>A. f x)"
|
haftmann@41080
|
615 |
by (simp add: Sup_fun_def)
|
haftmann@32077
|
616 |
|
haftmann@32077
|
617 |
instance proof
|
haftmann@44024
|
618 |
qed (auto simp add: le_fun_def Inf_apply Sup_apply intro: INF_leI le_SUP_I le_INF_I SUP_leI)
|
haftmann@32077
|
619 |
|
haftmann@32077
|
620 |
end
|
haftmann@32077
|
621 |
|
haftmann@43873
|
622 |
lemma INF_apply:
|
haftmann@41080
|
623 |
"(\<Sqinter>y\<in>A. f y) x = (\<Sqinter>y\<in>A. f y x)"
|
haftmann@43872
|
624 |
by (auto intro: arg_cong [of _ _ Inf] simp add: INF_def Inf_apply)
|
hoelzl@38705
|
625 |
|
haftmann@43873
|
626 |
lemma SUP_apply:
|
haftmann@41080
|
627 |
"(\<Squnion>y\<in>A. f y) x = (\<Squnion>y\<in>A. f y x)"
|
haftmann@43872
|
628 |
by (auto intro: arg_cong [of _ _ Sup] simp add: SUP_def Sup_apply)
|
haftmann@32077
|
629 |
|
haftmann@44024
|
630 |
instance "fun" :: (type, complete_distrib_lattice) complete_distrib_lattice proof
|
haftmann@44024
|
631 |
qed (auto simp add: inf_apply sup_apply Inf_apply Sup_apply INF_def SUP_def inf_Sup sup_Inf image_image)
|
haftmann@44024
|
632 |
|
haftmann@43873
|
633 |
instance "fun" :: (type, complete_boolean_algebra) complete_boolean_algebra ..
|
haftmann@43873
|
634 |
|
haftmann@32077
|
635 |
|
haftmann@41082
|
636 |
subsection {* Inter *}
|
haftmann@41082
|
637 |
|
haftmann@41082
|
638 |
abbreviation Inter :: "'a set set \<Rightarrow> 'a set" where
|
haftmann@41082
|
639 |
"Inter S \<equiv> \<Sqinter>S"
|
haftmann@41082
|
640 |
|
haftmann@41082
|
641 |
notation (xsymbols)
|
haftmann@41082
|
642 |
Inter ("\<Inter>_" [90] 90)
|
haftmann@41082
|
643 |
|
haftmann@41082
|
644 |
lemma Inter_eq:
|
haftmann@41082
|
645 |
"\<Inter>A = {x. \<forall>B \<in> A. x \<in> B}"
|
haftmann@41082
|
646 |
proof (rule set_eqI)
|
haftmann@41082
|
647 |
fix x
|
haftmann@41082
|
648 |
have "(\<forall>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<forall>B\<in>A. x \<in> B)"
|
haftmann@41082
|
649 |
by auto
|
haftmann@41082
|
650 |
then show "x \<in> \<Inter>A \<longleftrightarrow> x \<in> {x. \<forall>B \<in> A. x \<in> B}"
|
haftmann@41082
|
651 |
by (simp add: Inf_fun_def Inf_bool_def) (simp add: mem_def)
|
haftmann@41082
|
652 |
qed
|
haftmann@41082
|
653 |
|
haftmann@43741
|
654 |
lemma Inter_iff [simp,no_atp]: "A \<in> \<Inter>C \<longleftrightarrow> (\<forall>X\<in>C. A \<in> X)"
|
haftmann@41082
|
655 |
by (unfold Inter_eq) blast
|
haftmann@41082
|
656 |
|
haftmann@43741
|
657 |
lemma InterI [intro!]: "(\<And>X. X \<in> C \<Longrightarrow> A \<in> X) \<Longrightarrow> A \<in> \<Inter>C"
|
haftmann@41082
|
658 |
by (simp add: Inter_eq)
|
haftmann@41082
|
659 |
|
haftmann@41082
|
660 |
text {*
|
haftmann@41082
|
661 |
\medskip A ``destruct'' rule -- every @{term X} in @{term C}
|
haftmann@43741
|
662 |
contains @{term A} as an element, but @{prop "A \<in> X"} can hold when
|
haftmann@43741
|
663 |
@{prop "X \<in> C"} does not! This rule is analogous to @{text spec}.
|
haftmann@41082
|
664 |
*}
|
haftmann@41082
|
665 |
|
haftmann@43741
|
666 |
lemma InterD [elim, Pure.elim]: "A \<in> \<Inter>C \<Longrightarrow> X \<in> C \<Longrightarrow> A \<in> X"
|
haftmann@41082
|
667 |
by auto
|
haftmann@41082
|
668 |
|
haftmann@43741
|
669 |
lemma InterE [elim]: "A \<in> \<Inter>C \<Longrightarrow> (X \<notin> C \<Longrightarrow> R) \<Longrightarrow> (A \<in> X \<Longrightarrow> R) \<Longrightarrow> R"
|
haftmann@41082
|
670 |
-- {* ``Classical'' elimination rule -- does not require proving
|
haftmann@43741
|
671 |
@{prop "X \<in> C"}. *}
|
haftmann@41082
|
672 |
by (unfold Inter_eq) blast
|
haftmann@41082
|
673 |
|
haftmann@43741
|
674 |
lemma Inter_lower: "B \<in> A \<Longrightarrow> \<Inter>A \<subseteq> B"
|
haftmann@43740
|
675 |
by (fact Inf_lower)
|
haftmann@43740
|
676 |
|
haftmann@41082
|
677 |
lemma Inter_subset:
|
haftmann@43755
|
678 |
"(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> B) \<Longrightarrow> A \<noteq> {} \<Longrightarrow> \<Inter>A \<subseteq> B"
|
haftmann@43740
|
679 |
by (fact Inf_less_eq)
|
haftmann@41082
|
680 |
|
haftmann@43755
|
681 |
lemma Inter_greatest: "(\<And>X. X \<in> A \<Longrightarrow> C \<subseteq> X) \<Longrightarrow> C \<subseteq> Inter A"
|
haftmann@43740
|
682 |
by (fact Inf_greatest)
|
haftmann@41082
|
683 |
|
haftmann@41082
|
684 |
lemma Int_eq_Inter: "A \<inter> B = \<Inter>{A, B}"
|
haftmann@44082
|
685 |
by (simp add: Inf_insert)
|
haftmann@41082
|
686 |
|
haftmann@41082
|
687 |
lemma Inter_empty [simp]: "\<Inter>{} = UNIV"
|
haftmann@41082
|
688 |
by (fact Inf_empty)
|
haftmann@41082
|
689 |
|
haftmann@41082
|
690 |
lemma Inter_UNIV [simp]: "\<Inter>UNIV = {}"
|
haftmann@43739
|
691 |
by (fact Inf_UNIV)
|
haftmann@41082
|
692 |
|
haftmann@41082
|
693 |
lemma Inter_insert [simp]: "\<Inter>(insert a B) = a \<inter> \<Inter>B"
|
haftmann@43739
|
694 |
by (fact Inf_insert)
|
haftmann@41082
|
695 |
|
haftmann@41082
|
696 |
lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)"
|
haftmann@43899
|
697 |
by (fact less_eq_Inf_inter)
|
haftmann@41082
|
698 |
|
haftmann@41082
|
699 |
lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B"
|
haftmann@43756
|
700 |
by (fact Inf_union_distrib)
|
haftmann@43756
|
701 |
|
haftmann@43868
|
702 |
lemma Inter_UNIV_conv [simp, no_atp]:
|
haftmann@43741
|
703 |
"\<Inter>A = UNIV \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)"
|
haftmann@43741
|
704 |
"UNIV = \<Inter>A \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)"
|
haftmann@43801
|
705 |
by (fact Inf_top_conv)+
|
haftmann@41082
|
706 |
|
haftmann@43741
|
707 |
lemma Inter_anti_mono: "B \<subseteq> A \<Longrightarrow> \<Inter>A \<subseteq> \<Inter>B"
|
haftmann@43899
|
708 |
by (fact Inf_superset_mono)
|
haftmann@41082
|
709 |
|
haftmann@41082
|
710 |
|
haftmann@41082
|
711 |
subsection {* Intersections of families *}
|
haftmann@41082
|
712 |
|
haftmann@41082
|
713 |
abbreviation INTER :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
|
haftmann@41082
|
714 |
"INTER \<equiv> INFI"
|
haftmann@41082
|
715 |
|
haftmann@43872
|
716 |
text {*
|
haftmann@43872
|
717 |
Note: must use name @{const INTER} here instead of @{text INT}
|
haftmann@43872
|
718 |
to allow the following syntax coexist with the plain constant name.
|
haftmann@43872
|
719 |
*}
|
haftmann@43872
|
720 |
|
haftmann@41082
|
721 |
syntax
|
haftmann@41082
|
722 |
"_INTER1" :: "pttrns => 'b set => 'b set" ("(3INT _./ _)" [0, 10] 10)
|
haftmann@41082
|
723 |
"_INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3INT _:_./ _)" [0, 0, 10] 10)
|
haftmann@41082
|
724 |
|
haftmann@41082
|
725 |
syntax (xsymbols)
|
haftmann@41082
|
726 |
"_INTER1" :: "pttrns => 'b set => 'b set" ("(3\<Inter>_./ _)" [0, 10] 10)
|
haftmann@41082
|
727 |
"_INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Inter>_\<in>_./ _)" [0, 0, 10] 10)
|
haftmann@41082
|
728 |
|
haftmann@41082
|
729 |
syntax (latex output)
|
haftmann@41082
|
730 |
"_INTER1" :: "pttrns => 'b set => 'b set" ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
|
haftmann@41082
|
731 |
"_INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
|
haftmann@41082
|
732 |
|
haftmann@41082
|
733 |
translations
|
haftmann@41082
|
734 |
"INT x y. B" == "INT x. INT y. B"
|
haftmann@41082
|
735 |
"INT x. B" == "CONST INTER CONST UNIV (%x. B)"
|
haftmann@41082
|
736 |
"INT x. B" == "INT x:CONST UNIV. B"
|
haftmann@41082
|
737 |
"INT x:A. B" == "CONST INTER A (%x. B)"
|
haftmann@41082
|
738 |
|
haftmann@41082
|
739 |
print_translation {*
|
wenzelm@42284
|
740 |
[Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INTER} @{syntax_const "_INTER"}]
|
haftmann@41082
|
741 |
*} -- {* to avoid eta-contraction of body *}
|
haftmann@41082
|
742 |
|
haftmann@41082
|
743 |
lemma INTER_eq_Inter_image:
|
haftmann@41082
|
744 |
"(\<Inter>x\<in>A. B x) = \<Inter>(B`A)"
|
haftmann@43872
|
745 |
by (fact INF_def)
|
haftmann@41082
|
746 |
|
haftmann@41082
|
747 |
lemma Inter_def:
|
haftmann@41082
|
748 |
"\<Inter>S = (\<Inter>x\<in>S. x)"
|
haftmann@41082
|
749 |
by (simp add: INTER_eq_Inter_image image_def)
|
haftmann@41082
|
750 |
|
haftmann@41082
|
751 |
lemma INTER_def:
|
haftmann@41082
|
752 |
"(\<Inter>x\<in>A. B x) = {y. \<forall>x\<in>A. y \<in> B x}"
|
haftmann@41082
|
753 |
by (auto simp add: INTER_eq_Inter_image Inter_eq)
|
haftmann@41082
|
754 |
|
haftmann@41082
|
755 |
lemma Inter_image_eq [simp]:
|
haftmann@41082
|
756 |
"\<Inter>(B`A) = (\<Inter>x\<in>A. B x)"
|
haftmann@43872
|
757 |
by (rule sym) (fact INF_def)
|
haftmann@41082
|
758 |
|
haftmann@43817
|
759 |
lemma INT_iff [simp]: "b \<in> (\<Inter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. b \<in> B x)"
|
haftmann@41082
|
760 |
by (unfold INTER_def) blast
|
haftmann@41082
|
761 |
|
haftmann@43817
|
762 |
lemma INT_I [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> b \<in> B x) \<Longrightarrow> b \<in> (\<Inter>x\<in>A. B x)"
|
haftmann@41082
|
763 |
by (unfold INTER_def) blast
|
haftmann@41082
|
764 |
|
haftmann@43852
|
765 |
lemma INT_D [elim, Pure.elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> a \<in> A \<Longrightarrow> b \<in> B a"
|
haftmann@41082
|
766 |
by auto
|
haftmann@41082
|
767 |
|
haftmann@43852
|
768 |
lemma INT_E [elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> (b \<in> B a \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R"
|
haftmann@43852
|
769 |
-- {* "Classical" elimination -- by the Excluded Middle on @{prop "a\<in>A"}. *}
|
haftmann@41082
|
770 |
by (unfold INTER_def) blast
|
haftmann@41082
|
771 |
|
haftmann@41082
|
772 |
lemma INT_cong [cong]:
|
haftmann@43854
|
773 |
"A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Inter>x\<in>A. C x) = (\<Inter>x\<in>B. D x)"
|
haftmann@43865
|
774 |
by (fact INF_cong)
|
haftmann@41082
|
775 |
|
haftmann@41082
|
776 |
lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
|
haftmann@41082
|
777 |
by blast
|
haftmann@41082
|
778 |
|
haftmann@41082
|
779 |
lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
|
haftmann@41082
|
780 |
by blast
|
haftmann@41082
|
781 |
|
haftmann@43817
|
782 |
lemma INT_lower: "a \<in> A \<Longrightarrow> (\<Inter>x\<in>A. B x) \<subseteq> B a"
|
haftmann@41082
|
783 |
by (fact INF_leI)
|
haftmann@41082
|
784 |
|
haftmann@43817
|
785 |
lemma INT_greatest: "(\<And>x. x \<in> A \<Longrightarrow> C \<subseteq> B x) \<Longrightarrow> C \<subseteq> (\<Inter>x\<in>A. B x)"
|
haftmann@43872
|
786 |
by (fact le_INF_I)
|
haftmann@41082
|
787 |
|
haftmann@41082
|
788 |
lemma INT_empty [simp]: "(\<Inter>x\<in>{}. B x) = UNIV"
|
haftmann@43872
|
789 |
by (fact INF_empty)
|
haftmann@43854
|
790 |
|
haftmann@43817
|
791 |
lemma INT_absorb: "k \<in> I \<Longrightarrow> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)"
|
haftmann@43872
|
792 |
by (fact INF_absorb)
|
haftmann@41082
|
793 |
|
haftmann@43854
|
794 |
lemma INT_subset_iff: "B \<subseteq> (\<Inter>i\<in>I. A i) \<longleftrightarrow> (\<forall>i\<in>I. B \<subseteq> A i)"
|
haftmann@41082
|
795 |
by (fact le_INF_iff)
|
haftmann@41082
|
796 |
|
haftmann@41082
|
797 |
lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B"
|
haftmann@43865
|
798 |
by (fact INF_insert)
|
haftmann@43865
|
799 |
|
haftmann@43865
|
800 |
lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)"
|
haftmann@43865
|
801 |
by (fact INF_union)
|
haftmann@43865
|
802 |
|
haftmann@43865
|
803 |
lemma INT_insert_distrib:
|
haftmann@43865
|
804 |
"u \<in> A \<Longrightarrow> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)"
|
haftmann@43865
|
805 |
by blast
|
haftmann@43854
|
806 |
|
haftmann@41082
|
807 |
lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
|
haftmann@43865
|
808 |
by (fact INF_constant)
|
haftmann@43865
|
809 |
|
haftmann@41082
|
810 |
lemma INT_eq: "(\<Inter>x\<in>A. B x) = \<Inter>({Y. \<exists>x\<in>A. Y = B x})"
|
haftmann@41082
|
811 |
-- {* Look: it has an \emph{existential} quantifier *}
|
haftmann@43865
|
812 |
by (fact INF_eq)
|
haftmann@43865
|
813 |
|
haftmann@43854
|
814 |
lemma INTER_UNIV_conv [simp]:
|
haftmann@43817
|
815 |
"(UNIV = (\<Inter>x\<in>A. B x)) = (\<forall>x\<in>A. B x = UNIV)"
|
haftmann@43817
|
816 |
"((\<Inter>x\<in>A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)"
|
haftmann@43865
|
817 |
by (fact INF_top_conv)+
|
haftmann@43865
|
818 |
|
haftmann@43865
|
819 |
lemma INT_bool_eq: "(\<Inter>b. A b) = A True \<inter> A False"
|
haftmann@43873
|
820 |
by (fact INF_UNIV_bool_expand)
|
haftmann@43865
|
821 |
|
haftmann@43865
|
822 |
lemma INT_anti_mono:
|
haftmann@43900
|
823 |
"A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow> (\<Inter>x\<in>B. f x) \<subseteq> (\<Inter>x\<in>A. g x)"
|
haftmann@43865
|
824 |
-- {* The last inclusion is POSITIVE! *}
|
haftmann@43940
|
825 |
by (fact INF_superset_mono)
|
haftmann@41082
|
826 |
|
haftmann@41082
|
827 |
lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))"
|
haftmann@41082
|
828 |
by blast
|
haftmann@41082
|
829 |
|
haftmann@43817
|
830 |
lemma vimage_INT: "f -` (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. f -` B x)"
|
haftmann@41082
|
831 |
by blast
|
haftmann@41082
|
832 |
|
haftmann@41082
|
833 |
|
haftmann@32139
|
834 |
subsection {* Union *}
|
haftmann@32115
|
835 |
|
haftmann@32587
|
836 |
abbreviation Union :: "'a set set \<Rightarrow> 'a set" where
|
haftmann@32587
|
837 |
"Union S \<equiv> \<Squnion>S"
|
haftmann@32115
|
838 |
|
haftmann@32115
|
839 |
notation (xsymbols)
|
haftmann@32115
|
840 |
Union ("\<Union>_" [90] 90)
|
haftmann@32115
|
841 |
|
haftmann@32135
|
842 |
lemma Union_eq:
|
haftmann@32135
|
843 |
"\<Union>A = {x. \<exists>B \<in> A. x \<in> B}"
|
nipkow@39302
|
844 |
proof (rule set_eqI)
|
haftmann@32115
|
845 |
fix x
|
haftmann@32135
|
846 |
have "(\<exists>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<exists>B\<in>A. x \<in> B)"
|
haftmann@32115
|
847 |
by auto
|
haftmann@32135
|
848 |
then show "x \<in> \<Union>A \<longleftrightarrow> x \<in> {x. \<exists>B\<in>A. x \<in> B}"
|
haftmann@32587
|
849 |
by (simp add: Sup_fun_def Sup_bool_def) (simp add: mem_def)
|
haftmann@32115
|
850 |
qed
|
haftmann@32115
|
851 |
|
blanchet@35828
|
852 |
lemma Union_iff [simp, no_atp]:
|
haftmann@32115
|
853 |
"A \<in> \<Union>C \<longleftrightarrow> (\<exists>X\<in>C. A\<in>X)"
|
haftmann@32115
|
854 |
by (unfold Union_eq) blast
|
haftmann@32115
|
855 |
|
haftmann@32115
|
856 |
lemma UnionI [intro]:
|
haftmann@32115
|
857 |
"X \<in> C \<Longrightarrow> A \<in> X \<Longrightarrow> A \<in> \<Union>C"
|
haftmann@32115
|
858 |
-- {* The order of the premises presupposes that @{term C} is rigid;
|
haftmann@32115
|
859 |
@{term A} may be flexible. *}
|
haftmann@32115
|
860 |
by auto
|
haftmann@32115
|
861 |
|
haftmann@32115
|
862 |
lemma UnionE [elim!]:
|
haftmann@43817
|
863 |
"A \<in> \<Union>C \<Longrightarrow> (\<And>X. A \<in> X \<Longrightarrow> X \<in> C \<Longrightarrow> R) \<Longrightarrow> R"
|
haftmann@32115
|
864 |
by auto
|
haftmann@32115
|
865 |
|
haftmann@43817
|
866 |
lemma Union_upper: "B \<in> A \<Longrightarrow> B \<subseteq> \<Union>A"
|
haftmann@43901
|
867 |
by (fact Sup_upper)
|
haftmann@32135
|
868 |
|
haftmann@43817
|
869 |
lemma Union_least: "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> C) \<Longrightarrow> \<Union>A \<subseteq> C"
|
haftmann@43901
|
870 |
by (fact Sup_least)
|
haftmann@32135
|
871 |
|
haftmann@32135
|
872 |
lemma Un_eq_Union: "A \<union> B = \<Union>{A, B}"
|
haftmann@32135
|
873 |
by blast
|
haftmann@32135
|
874 |
|
haftmann@43817
|
875 |
lemma Union_empty [simp]: "\<Union>{} = {}"
|
haftmann@43901
|
876 |
by (fact Sup_empty)
|
haftmann@32135
|
877 |
|
haftmann@43817
|
878 |
lemma Union_UNIV [simp]: "\<Union>UNIV = UNIV"
|
haftmann@43901
|
879 |
by (fact Sup_UNIV)
|
haftmann@32135
|
880 |
|
haftmann@43817
|
881 |
lemma Union_insert [simp]: "\<Union>insert a B = a \<union> \<Union>B"
|
haftmann@43901
|
882 |
by (fact Sup_insert)
|
haftmann@32135
|
883 |
|
haftmann@43817
|
884 |
lemma Union_Un_distrib [simp]: "\<Union>(A \<union> B) = \<Union>A \<union> \<Union>B"
|
haftmann@43901
|
885 |
by (fact Sup_union_distrib)
|
haftmann@32135
|
886 |
|
haftmann@32135
|
887 |
lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B"
|
haftmann@43901
|
888 |
by (fact Sup_inter_less_eq)
|
haftmann@32135
|
889 |
|
haftmann@43817
|
890 |
lemma Union_empty_conv [simp,no_atp]: "(\<Union>A = {}) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
|
haftmann@43901
|
891 |
by (fact Sup_bot_conv)
|
haftmann@32135
|
892 |
|
haftmann@43817
|
893 |
lemma empty_Union_conv [simp,no_atp]: "({} = \<Union>A) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
|
haftmann@43901
|
894 |
by (fact Sup_bot_conv)
|
haftmann@32135
|
895 |
|
haftmann@32135
|
896 |
lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)"
|
haftmann@32135
|
897 |
by blast
|
haftmann@32135
|
898 |
|
haftmann@32135
|
899 |
lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A"
|
haftmann@32135
|
900 |
by blast
|
haftmann@32135
|
901 |
|
haftmann@43817
|
902 |
lemma Union_mono: "A \<subseteq> B \<Longrightarrow> \<Union>A \<subseteq> \<Union>B"
|
haftmann@43901
|
903 |
by (fact Sup_subset_mono)
|
haftmann@32135
|
904 |
|
haftmann@32115
|
905 |
|
haftmann@32139
|
906 |
subsection {* Unions of families *}
|
haftmann@32077
|
907 |
|
haftmann@32606
|
908 |
abbreviation UNION :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
|
haftmann@32606
|
909 |
"UNION \<equiv> SUPR"
|
haftmann@32077
|
910 |
|
haftmann@43872
|
911 |
text {*
|
haftmann@43872
|
912 |
Note: must use name @{const UNION} here instead of @{text UN}
|
haftmann@43872
|
913 |
to allow the following syntax coexist with the plain constant name.
|
haftmann@43872
|
914 |
*}
|
haftmann@43872
|
915 |
|
haftmann@32077
|
916 |
syntax
|
wenzelm@35115
|
917 |
"_UNION1" :: "pttrns => 'b set => 'b set" ("(3UN _./ _)" [0, 10] 10)
|
huffman@36364
|
918 |
"_UNION" :: "pttrn => 'a set => 'b set => 'b set" ("(3UN _:_./ _)" [0, 0, 10] 10)
|
haftmann@32077
|
919 |
|
haftmann@32077
|
920 |
syntax (xsymbols)
|
wenzelm@35115
|
921 |
"_UNION1" :: "pttrns => 'b set => 'b set" ("(3\<Union>_./ _)" [0, 10] 10)
|
huffman@36364
|
922 |
"_UNION" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Union>_\<in>_./ _)" [0, 0, 10] 10)
|
haftmann@32077
|
923 |
|
haftmann@32077
|
924 |
syntax (latex output)
|
wenzelm@35115
|
925 |
"_UNION1" :: "pttrns => 'b set => 'b set" ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
|
huffman@36364
|
926 |
"_UNION" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
|
haftmann@32077
|
927 |
|
haftmann@32077
|
928 |
translations
|
haftmann@32077
|
929 |
"UN x y. B" == "UN x. UN y. B"
|
haftmann@32077
|
930 |
"UN x. B" == "CONST UNION CONST UNIV (%x. B)"
|
haftmann@32077
|
931 |
"UN x. B" == "UN x:CONST UNIV. B"
|
haftmann@32077
|
932 |
"UN x:A. B" == "CONST UNION A (%x. B)"
|
haftmann@32077
|
933 |
|
haftmann@32077
|
934 |
text {*
|
haftmann@32077
|
935 |
Note the difference between ordinary xsymbol syntax of indexed
|
haftmann@32077
|
936 |
unions and intersections (e.g.\ @{text"\<Union>a\<^isub>1\<in>A\<^isub>1. B"})
|
haftmann@32077
|
937 |
and their \LaTeX\ rendition: @{term"\<Union>a\<^isub>1\<in>A\<^isub>1. B"}. The
|
haftmann@32077
|
938 |
former does not make the index expression a subscript of the
|
haftmann@32077
|
939 |
union/intersection symbol because this leads to problems with nested
|
haftmann@32077
|
940 |
subscripts in Proof General.
|
haftmann@32077
|
941 |
*}
|
haftmann@32077
|
942 |
|
wenzelm@35115
|
943 |
print_translation {*
|
wenzelm@42284
|
944 |
[Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax UNION} @{syntax_const "_UNION"}]
|
wenzelm@35115
|
945 |
*} -- {* to avoid eta-contraction of body *}
|
haftmann@32077
|
946 |
|
haftmann@32135
|
947 |
lemma UNION_eq_Union_image:
|
haftmann@43817
|
948 |
"(\<Union>x\<in>A. B x) = \<Union>(B ` A)"
|
haftmann@43872
|
949 |
by (fact SUP_def)
|
haftmann@32115
|
950 |
|
haftmann@32115
|
951 |
lemma Union_def:
|
haftmann@32117
|
952 |
"\<Union>S = (\<Union>x\<in>S. x)"
|
haftmann@32115
|
953 |
by (simp add: UNION_eq_Union_image image_def)
|
haftmann@32115
|
954 |
|
blanchet@35828
|
955 |
lemma UNION_def [no_atp]:
|
haftmann@32135
|
956 |
"(\<Union>x\<in>A. B x) = {y. \<exists>x\<in>A. y \<in> B x}"
|
haftmann@32117
|
957 |
by (auto simp add: UNION_eq_Union_image Union_eq)
|
haftmann@32115
|
958 |
|
haftmann@32115
|
959 |
lemma Union_image_eq [simp]:
|
haftmann@43817
|
960 |
"\<Union>(B ` A) = (\<Union>x\<in>A. B x)"
|
haftmann@32115
|
961 |
by (rule sym) (fact UNION_eq_Union_image)
|
haftmann@32115
|
962 |
|
haftmann@43852
|
963 |
lemma UN_iff [simp]: "(b \<in> (\<Union>x\<in>A. B x)) = (\<exists>x\<in>A. b \<in> B x)"
|
wenzelm@11979
|
964 |
by (unfold UNION_def) blast
|
wenzelm@11979
|
965 |
|
haftmann@43852
|
966 |
lemma UN_I [intro]: "a \<in> A \<Longrightarrow> b \<in> B a \<Longrightarrow> b \<in> (\<Union>x\<in>A. B x)"
|
wenzelm@11979
|
967 |
-- {* The order of the premises presupposes that @{term A} is rigid;
|
wenzelm@11979
|
968 |
@{term b} may be flexible. *}
|
wenzelm@11979
|
969 |
by auto
|
wenzelm@11979
|
970 |
|
haftmann@43852
|
971 |
lemma UN_E [elim!]: "b \<in> (\<Union>x\<in>A. B x) \<Longrightarrow> (\<And>x. x\<in>A \<Longrightarrow> b \<in> B x \<Longrightarrow> R) \<Longrightarrow> R"
|
wenzelm@11979
|
972 |
by (unfold UNION_def) blast
|
clasohm@923
|
973 |
|
wenzelm@11979
|
974 |
lemma UN_cong [cong]:
|
haftmann@43900
|
975 |
"A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Union>x\<in>A. C x) = (\<Union>x\<in>B. D x)"
|
haftmann@43900
|
976 |
by (fact SUP_cong)
|
wenzelm@11979
|
977 |
|
berghofe@29691
|
978 |
lemma strong_UN_cong:
|
haftmann@43900
|
979 |
"A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> C x = D x) \<Longrightarrow> (\<Union>x\<in>A. C x) = (\<Union>x\<in>B. D x)"
|
haftmann@43900
|
980 |
by (unfold simp_implies_def) (fact UN_cong)
|
berghofe@29691
|
981 |
|
haftmann@43817
|
982 |
lemma image_eq_UN: "f ` A = (\<Union>x\<in>A. {f x})"
|
haftmann@32077
|
983 |
by blast
|
haftmann@32077
|
984 |
|
haftmann@43817
|
985 |
lemma UN_upper: "a \<in> A \<Longrightarrow> B a \<subseteq> (\<Union>x\<in>A. B x)"
|
haftmann@43872
|
986 |
by (fact le_SUP_I)
|
haftmann@32135
|
987 |
|
haftmann@43817
|
988 |
lemma UN_least: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C) \<Longrightarrow> (\<Union>x\<in>A. B x) \<subseteq> C"
|
haftmann@43900
|
989 |
by (fact SUP_leI)
|
haftmann@32135
|
990 |
|
blanchet@35828
|
991 |
lemma Collect_bex_eq [no_atp]: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
|
haftmann@32135
|
992 |
by blast
|
haftmann@32135
|
993 |
|
haftmann@43817
|
994 |
lemma UN_insert_distrib: "u \<in> A \<Longrightarrow> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)"
|
haftmann@32135
|
995 |
by blast
|
haftmann@32135
|
996 |
|
haftmann@43900
|
997 |
lemma UN_empty [simp, no_atp]: "(\<Union>x\<in>{}. B x) = {}"
|
haftmann@43900
|
998 |
by (fact SUP_empty)
|
haftmann@32135
|
999 |
|
haftmann@32135
|
1000 |
lemma UN_empty2 [simp]: "(\<Union>x\<in>A. {}) = {}"
|
haftmann@43900
|
1001 |
by (fact SUP_bot)
|
haftmann@32135
|
1002 |
|
haftmann@32135
|
1003 |
lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
|
haftmann@32135
|
1004 |
by blast
|
haftmann@32135
|
1005 |
|
haftmann@43817
|
1006 |
lemma UN_absorb: "k \<in> I \<Longrightarrow> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)"
|
haftmann@43900
|
1007 |
by (fact SUP_absorb)
|
haftmann@32135
|
1008 |
|
haftmann@32135
|
1009 |
lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B"
|
haftmann@43900
|
1010 |
by (fact SUP_insert)
|
haftmann@32135
|
1011 |
|
haftmann@32135
|
1012 |
lemma UN_Un[simp]: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)"
|
haftmann@43900
|
1013 |
by (fact SUP_union)
|
haftmann@32135
|
1014 |
|
haftmann@43967
|
1015 |
lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)"
|
haftmann@32135
|
1016 |
by blast
|
haftmann@32135
|
1017 |
|
haftmann@32135
|
1018 |
lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)"
|
huffman@35629
|
1019 |
by (fact SUP_le_iff)
|
haftmann@32135
|
1020 |
|
haftmann@32135
|
1021 |
lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
|
haftmann@43900
|
1022 |
by (fact SUP_constant)
|
haftmann@32135
|
1023 |
|
haftmann@32135
|
1024 |
lemma UN_eq: "(\<Union>x\<in>A. B x) = \<Union>({Y. \<exists>x\<in>A. Y = B x})"
|
haftmann@43900
|
1025 |
by (fact SUP_eq)
|
haftmann@43900
|
1026 |
|
haftmann@43944
|
1027 |
lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)"
|
haftmann@32135
|
1028 |
by blast
|
haftmann@32135
|
1029 |
|
haftmann@32135
|
1030 |
lemma UNION_empty_conv[simp]:
|
haftmann@43817
|
1031 |
"{} = (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
|
haftmann@43817
|
1032 |
"(\<Union>x\<in>A. B x) = {} \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
|
haftmann@43900
|
1033 |
by (fact SUP_bot_conv)+
|
haftmann@32135
|
1034 |
|
blanchet@35828
|
1035 |
lemma Collect_ex_eq [no_atp]: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
|
haftmann@32135
|
1036 |
by blast
|
haftmann@32135
|
1037 |
|
haftmann@43900
|
1038 |
lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>z \<in> B x. P z)"
|
haftmann@32135
|
1039 |
by blast
|
haftmann@32135
|
1040 |
|
haftmann@43900
|
1041 |
lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) \<longleftrightarrow> (\<exists>x\<in>A. \<exists>z\<in>B x. P z)"
|
haftmann@32135
|
1042 |
by blast
|
haftmann@32135
|
1043 |
|
haftmann@32135
|
1044 |
lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)"
|
haftmann@32135
|
1045 |
by (auto simp add: split_if_mem2)
|
haftmann@32135
|
1046 |
|
haftmann@43817
|
1047 |
lemma UN_bool_eq: "(\<Union>b. A b) = (A True \<union> A False)"
|
haftmann@43900
|
1048 |
by (fact SUP_UNIV_bool_expand)
|
haftmann@32135
|
1049 |
|
haftmann@32135
|
1050 |
lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)"
|
haftmann@32135
|
1051 |
by blast
|
haftmann@32135
|
1052 |
|
haftmann@32135
|
1053 |
lemma UN_mono:
|
haftmann@43817
|
1054 |
"A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow>
|
haftmann@32135
|
1055 |
(\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)"
|
haftmann@43940
|
1056 |
by (fact SUP_subset_mono)
|
haftmann@32135
|
1057 |
|
haftmann@43817
|
1058 |
lemma vimage_Union: "f -` (\<Union>A) = (\<Union>X\<in>A. f -` X)"
|
haftmann@32135
|
1059 |
by blast
|
haftmann@32135
|
1060 |
|
haftmann@43817
|
1061 |
lemma vimage_UN: "f -` (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. f -` B x)"
|
haftmann@32135
|
1062 |
by blast
|
haftmann@32135
|
1063 |
|
haftmann@43817
|
1064 |
lemma vimage_eq_UN: "f -` B = (\<Union>y\<in>B. f -` {y})"
|
haftmann@32135
|
1065 |
-- {* NOT suitable for rewriting *}
|
haftmann@32135
|
1066 |
by blast
|
haftmann@32135
|
1067 |
|
haftmann@43817
|
1068 |
lemma image_UN: "f ` UNION A B = (\<Union>x\<in>A. f ` B x)"
|
haftmann@43817
|
1069 |
by blast
|
haftmann@32135
|
1070 |
|
wenzelm@11979
|
1071 |
|
haftmann@32139
|
1072 |
subsection {* Distributive laws *}
|
wenzelm@12897
|
1073 |
|
wenzelm@12897
|
1074 |
lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)"
|
haftmann@44032
|
1075 |
by (fact inf_Sup)
|
wenzelm@12897
|
1076 |
|
haftmann@44039
|
1077 |
lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)"
|
haftmann@44039
|
1078 |
by (fact sup_Inf)
|
haftmann@44039
|
1079 |
|
wenzelm@12897
|
1080 |
lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)"
|
haftmann@44039
|
1081 |
by (fact Sup_inf)
|
haftmann@44039
|
1082 |
|
haftmann@44039
|
1083 |
lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)"
|
haftmann@44039
|
1084 |
by (rule sym) (rule INF_inf_distrib)
|
haftmann@44039
|
1085 |
|
haftmann@44039
|
1086 |
lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)"
|
haftmann@44039
|
1087 |
by (rule sym) (rule SUP_sup_distrib)
|
haftmann@44039
|
1088 |
|
haftmann@44039
|
1089 |
lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A ` C) \<inter> \<Inter>(B ` C)"
|
haftmann@44039
|
1090 |
by (simp only: INT_Int_distrib INF_def)
|
wenzelm@12897
|
1091 |
|
haftmann@43817
|
1092 |
lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A ` C) \<union> \<Union>(B ` C)"
|
wenzelm@12897
|
1093 |
-- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
|
wenzelm@12897
|
1094 |
-- {* Union of a family of unions *}
|
haftmann@44039
|
1095 |
by (simp only: UN_Un_distrib SUP_def)
|
wenzelm@12897
|
1096 |
|
haftmann@44039
|
1097 |
lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)"
|
haftmann@44039
|
1098 |
by (fact sup_INF)
|
wenzelm@12897
|
1099 |
|
wenzelm@12897
|
1100 |
lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)"
|
wenzelm@12897
|
1101 |
-- {* Halmos, Naive Set Theory, page 35. *}
|
haftmann@44039
|
1102 |
by (fact inf_SUP)
|
wenzelm@12897
|
1103 |
|
wenzelm@12897
|
1104 |
lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)"
|
haftmann@44039
|
1105 |
by (fact SUP_inf_distrib2)
|
wenzelm@12897
|
1106 |
|
wenzelm@12897
|
1107 |
lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)"
|
haftmann@44039
|
1108 |
by (fact INF_sup_distrib2)
|
haftmann@44039
|
1109 |
|
haftmann@44039
|
1110 |
lemma Union_disjoint: "(\<Union>C \<inter> A = {}) \<longleftrightarrow> (\<forall>B\<in>C. B \<inter> A = {})"
|
haftmann@44039
|
1111 |
by (fact Sup_inf_eq_bot_iff)
|
wenzelm@12897
|
1112 |
|
wenzelm@12897
|
1113 |
|
haftmann@32139
|
1114 |
subsection {* Complement *}
|
haftmann@32135
|
1115 |
|
haftmann@43873
|
1116 |
lemma Compl_INT [simp]: "- (\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)"
|
haftmann@43873
|
1117 |
by (fact uminus_INF)
|
wenzelm@12897
|
1118 |
|
haftmann@43873
|
1119 |
lemma Compl_UN [simp]: "- (\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)"
|
haftmann@43873
|
1120 |
by (fact uminus_SUP)
|
wenzelm@12897
|
1121 |
|
wenzelm@12897
|
1122 |
|
haftmann@32139
|
1123 |
subsection {* Miniscoping and maxiscoping *}
|
wenzelm@12897
|
1124 |
|
paulson@13860
|
1125 |
text {* \medskip Miniscoping: pushing in quantifiers and big Unions
|
paulson@13860
|
1126 |
and Intersections. *}
|
wenzelm@12897
|
1127 |
|
wenzelm@12897
|
1128 |
lemma UN_simps [simp]:
|
haftmann@43817
|
1129 |
"\<And>a B C. (\<Union>x\<in>C. insert a (B x)) = (if C={} then {} else insert a (\<Union>x\<in>C. B x))"
|
haftmann@44032
|
1130 |
"\<And>A B C. (\<Union>x\<in>C. A x \<union> B) = ((if C={} then {} else (\<Union>x\<in>C. A x) \<union> B))"
|
haftmann@43852
|
1131 |
"\<And>A B C. (\<Union>x\<in>C. A \<union> B x) = ((if C={} then {} else A \<union> (\<Union>x\<in>C. B x)))"
|
haftmann@44032
|
1132 |
"\<And>A B C. (\<Union>x\<in>C. A x \<inter> B) = ((\<Union>x\<in>C. A x) \<inter> B)"
|
haftmann@43852
|
1133 |
"\<And>A B C. (\<Union>x\<in>C. A \<inter> B x) = (A \<inter>(\<Union>x\<in>C. B x))"
|
haftmann@43852
|
1134 |
"\<And>A B C. (\<Union>x\<in>C. A x - B) = ((\<Union>x\<in>C. A x) - B)"
|
haftmann@43852
|
1135 |
"\<And>A B C. (\<Union>x\<in>C. A - B x) = (A - (\<Inter>x\<in>C. B x))"
|
haftmann@43852
|
1136 |
"\<And>A B. (\<Union>x\<in>\<Union>A. B x) = (\<Union>y\<in>A. \<Union>x\<in>y. B x)"
|
haftmann@43852
|
1137 |
"\<And>A B C. (\<Union>z\<in>UNION A B. C z) = (\<Union>x\<in>A. \<Union>z\<in>B x. C z)"
|
haftmann@43831
|
1138 |
"\<And>A B f. (\<Union>x\<in>f`A. B x) = (\<Union>a\<in>A. B (f a))"
|
wenzelm@12897
|
1139 |
by auto
|
wenzelm@12897
|
1140 |
|
wenzelm@12897
|
1141 |
lemma INT_simps [simp]:
|
haftmann@44032
|
1142 |
"\<And>A B C. (\<Inter>x\<in>C. A x \<inter> B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) \<inter> B)"
|
haftmann@43831
|
1143 |
"\<And>A B C. (\<Inter>x\<in>C. A \<inter> B x) = (if C={} then UNIV else A \<inter>(\<Inter>x\<in>C. B x))"
|
haftmann@43852
|
1144 |
"\<And>A B C. (\<Inter>x\<in>C. A x - B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) - B)"
|
haftmann@43852
|
1145 |
"\<And>A B C. (\<Inter>x\<in>C. A - B x) = (if C={} then UNIV else A - (\<Union>x\<in>C. B x))"
|
haftmann@43817
|
1146 |
"\<And>a B C. (\<Inter>x\<in>C. insert a (B x)) = insert a (\<Inter>x\<in>C. B x)"
|
haftmann@43852
|
1147 |
"\<And>A B C. (\<Inter>x\<in>C. A x \<union> B) = ((\<Inter>x\<in>C. A x) \<union> B)"
|
haftmann@43852
|
1148 |
"\<And>A B C. (\<Inter>x\<in>C. A \<union> B x) = (A \<union> (\<Inter>x\<in>C. B x))"
|
haftmann@43852
|
1149 |
"\<And>A B. (\<Inter>x\<in>\<Union>A. B x) = (\<Inter>y\<in>A. \<Inter>x\<in>y. B x)"
|
haftmann@43852
|
1150 |
"\<And>A B C. (\<Inter>z\<in>UNION A B. C z) = (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z)"
|
haftmann@43852
|
1151 |
"\<And>A B f. (\<Inter>x\<in>f`A. B x) = (\<Inter>a\<in>A. B (f a))"
|
wenzelm@12897
|
1152 |
by auto
|
wenzelm@12897
|
1153 |
|
haftmann@43967
|
1154 |
lemma UN_ball_bex_simps [simp, no_atp]:
|
haftmann@43852
|
1155 |
"\<And>A P. (\<forall>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<forall>y\<in>A. \<forall>x\<in>y. P x)"
|
haftmann@43967
|
1156 |
"\<And>A B P. (\<forall>x\<in>UNION A B. P x) = (\<forall>a\<in>A. \<forall>x\<in> B a. P x)"
|
haftmann@43852
|
1157 |
"\<And>A P. (\<exists>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<exists>y\<in>A. \<exists>x\<in>y. P x)"
|
haftmann@43852
|
1158 |
"\<And>A B P. (\<exists>x\<in>UNION A B. P x) \<longleftrightarrow> (\<exists>a\<in>A. \<exists>x\<in>B a. P x)"
|
wenzelm@12897
|
1159 |
by auto
|
wenzelm@12897
|
1160 |
|
haftmann@43943
|
1161 |
|
paulson@13860
|
1162 |
text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}
|
paulson@13860
|
1163 |
|
paulson@13860
|
1164 |
lemma UN_extend_simps:
|
haftmann@43817
|
1165 |
"\<And>a B C. insert a (\<Union>x\<in>C. B x) = (if C={} then {a} else (\<Union>x\<in>C. insert a (B x)))"
|
haftmann@44032
|
1166 |
"\<And>A B C. (\<Union>x\<in>C. A x) \<union> B = (if C={} then B else (\<Union>x\<in>C. A x \<union> B))"
|
haftmann@43852
|
1167 |
"\<And>A B C. A \<union> (\<Union>x\<in>C. B x) = (if C={} then A else (\<Union>x\<in>C. A \<union> B x))"
|
haftmann@43852
|
1168 |
"\<And>A B C. ((\<Union>x\<in>C. A x) \<inter> B) = (\<Union>x\<in>C. A x \<inter> B)"
|
haftmann@43852
|
1169 |
"\<And>A B C. (A \<inter> (\<Union>x\<in>C. B x)) = (\<Union>x\<in>C. A \<inter> B x)"
|
haftmann@43817
|
1170 |
"\<And>A B C. ((\<Union>x\<in>C. A x) - B) = (\<Union>x\<in>C. A x - B)"
|
haftmann@43817
|
1171 |
"\<And>A B C. (A - (\<Inter>x\<in>C. B x)) = (\<Union>x\<in>C. A - B x)"
|
haftmann@43852
|
1172 |
"\<And>A B. (\<Union>y\<in>A. \<Union>x\<in>y. B x) = (\<Union>x\<in>\<Union>A. B x)"
|
haftmann@43852
|
1173 |
"\<And>A B C. (\<Union>x\<in>A. \<Union>z\<in>B x. C z) = (\<Union>z\<in>UNION A B. C z)"
|
haftmann@43831
|
1174 |
"\<And>A B f. (\<Union>a\<in>A. B (f a)) = (\<Union>x\<in>f`A. B x)"
|
paulson@13860
|
1175 |
by auto
|
paulson@13860
|
1176 |
|
paulson@13860
|
1177 |
lemma INT_extend_simps:
|
haftmann@43852
|
1178 |
"\<And>A B C. (\<Inter>x\<in>C. A x) \<inter> B = (if C={} then B else (\<Inter>x\<in>C. A x \<inter> B))"
|
haftmann@43852
|
1179 |
"\<And>A B C. A \<inter> (\<Inter>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A \<inter> B x))"
|
haftmann@43852
|
1180 |
"\<And>A B C. (\<Inter>x\<in>C. A x) - B = (if C={} then UNIV - B else (\<Inter>x\<in>C. A x - B))"
|
haftmann@43852
|
1181 |
"\<And>A B C. A - (\<Union>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A - B x))"
|
haftmann@43817
|
1182 |
"\<And>a B C. insert a (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. insert a (B x))"
|
haftmann@43852
|
1183 |
"\<And>A B C. ((\<Inter>x\<in>C. A x) \<union> B) = (\<Inter>x\<in>C. A x \<union> B)"
|
haftmann@43852
|
1184 |
"\<And>A B C. A \<union> (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. A \<union> B x)"
|
haftmann@43852
|
1185 |
"\<And>A B. (\<Inter>y\<in>A. \<Inter>x\<in>y. B x) = (\<Inter>x\<in>\<Union>A. B x)"
|
haftmann@43852
|
1186 |
"\<And>A B C. (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z) = (\<Inter>z\<in>UNION A B. C z)"
|
haftmann@43852
|
1187 |
"\<And>A B f. (\<Inter>a\<in>A. B (f a)) = (\<Inter>x\<in>f`A. B x)"
|
paulson@13860
|
1188 |
by auto
|
paulson@13860
|
1189 |
|
paulson@13860
|
1190 |
|
haftmann@43872
|
1191 |
text {* Legacy names *}
|
haftmann@43872
|
1192 |
|
haftmann@44082
|
1193 |
lemma Inf_singleton [simp]:
|
haftmann@44082
|
1194 |
"\<Sqinter>{a} = a"
|
haftmann@44082
|
1195 |
by (auto intro: antisym Inf_lower Inf_greatest)
|
haftmann@44082
|
1196 |
|
haftmann@44082
|
1197 |
lemma Sup_singleton [simp]:
|
haftmann@44082
|
1198 |
"\<Squnion>{a} = a"
|
haftmann@44082
|
1199 |
by (auto intro: antisym Sup_upper Sup_least)
|
haftmann@44082
|
1200 |
|
haftmann@44082
|
1201 |
lemma Inf_binary:
|
haftmann@44082
|
1202 |
"\<Sqinter>{a, b} = a \<sqinter> b"
|
haftmann@44082
|
1203 |
by (simp add: Inf_insert)
|
haftmann@44082
|
1204 |
|
haftmann@44082
|
1205 |
lemma Sup_binary:
|
haftmann@44082
|
1206 |
"\<Squnion>{a, b} = a \<squnion> b"
|
haftmann@44082
|
1207 |
by (simp add: Sup_insert)
|
haftmann@44082
|
1208 |
|
haftmann@43872
|
1209 |
lemmas (in complete_lattice) INFI_def = INF_def
|
haftmann@43872
|
1210 |
lemmas (in complete_lattice) SUPR_def = SUP_def
|
haftmann@43872
|
1211 |
lemmas (in complete_lattice) le_SUPI = le_SUP_I
|
haftmann@43872
|
1212 |
lemmas (in complete_lattice) le_SUPI2 = le_SUP_I2
|
haftmann@43872
|
1213 |
lemmas (in complete_lattice) le_INFI = le_INF_I
|
haftmann@43943
|
1214 |
lemmas (in complete_lattice) less_INFD = less_INF_D
|
haftmann@43940
|
1215 |
|
haftmann@43940
|
1216 |
lemma (in complete_lattice) INF_subset:
|
haftmann@43940
|
1217 |
"B \<subseteq> A \<Longrightarrow> INFI A f \<sqsubseteq> INFI B f"
|
haftmann@43940
|
1218 |
by (rule INF_superset_mono) auto
|
haftmann@43940
|
1219 |
|
haftmann@43873
|
1220 |
lemmas INFI_apply = INF_apply
|
haftmann@43873
|
1221 |
lemmas SUPR_apply = SUP_apply
|
haftmann@43872
|
1222 |
|
haftmann@43872
|
1223 |
text {* Finally *}
|
haftmann@43872
|
1224 |
|
haftmann@32135
|
1225 |
no_notation
|
haftmann@32135
|
1226 |
less_eq (infix "\<sqsubseteq>" 50) and
|
haftmann@32135
|
1227 |
less (infix "\<sqsubset>" 50) and
|
haftmann@41082
|
1228 |
bot ("\<bottom>") and
|
haftmann@41082
|
1229 |
top ("\<top>") and
|
haftmann@32135
|
1230 |
inf (infixl "\<sqinter>" 70) and
|
haftmann@32135
|
1231 |
sup (infixl "\<squnion>" 65) and
|
haftmann@32135
|
1232 |
Inf ("\<Sqinter>_" [900] 900) and
|
haftmann@41082
|
1233 |
Sup ("\<Squnion>_" [900] 900)
|
haftmann@32135
|
1234 |
|
haftmann@41080
|
1235 |
no_syntax (xsymbols)
|
haftmann@41082
|
1236 |
"_INF1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sqinter>_./ _)" [0, 10] 10)
|
haftmann@41082
|
1237 |
"_INF" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
|
haftmann@41080
|
1238 |
"_SUP1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Squnion>_./ _)" [0, 10] 10)
|
haftmann@41080
|
1239 |
"_SUP" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
|
haftmann@41080
|
1240 |
|
haftmann@30596
|
1241 |
lemmas mem_simps =
|
haftmann@30596
|
1242 |
insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff
|
haftmann@30596
|
1243 |
mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff
|
haftmann@30596
|
1244 |
-- {* Each of these has ALREADY been added @{text "[simp]"} above. *}
|
wenzelm@21669
|
1245 |
|
wenzelm@11979
|
1246 |
end
|