ballarin@14551
|
1 |
(*
|
wenzelm@14706
|
2 |
Title: HOL/Algebra/Lattice.thy
|
ballarin@14551
|
3 |
Id: $Id$
|
ballarin@14551
|
4 |
Author: Clemens Ballarin, started 7 November 2003
|
ballarin@14551
|
5 |
Copyright: Clemens Ballarin
|
ballarin@14551
|
6 |
*)
|
ballarin@14551
|
7 |
|
wenzelm@14706
|
8 |
header {* Orders and Lattices *}
|
ballarin@14551
|
9 |
|
haftmann@16417
|
10 |
theory Lattice imports Main begin
|
ballarin@14751
|
11 |
|
ballarin@14751
|
12 |
text {* Object with a carrier set. *}
|
ballarin@14751
|
13 |
|
ballarin@14751
|
14 |
record 'a partial_object =
|
ballarin@14751
|
15 |
carrier :: "'a set"
|
ballarin@14551
|
16 |
|
ballarin@14551
|
17 |
subsection {* Partial Orders *}
|
ballarin@14551
|
18 |
|
ballarin@14551
|
19 |
record 'a order = "'a partial_object" +
|
ballarin@14551
|
20 |
le :: "['a, 'a] => bool" (infixl "\<sqsubseteq>\<index>" 50)
|
ballarin@14551
|
21 |
|
wenzelm@14693
|
22 |
locale partial_order = struct L +
|
ballarin@14551
|
23 |
assumes refl [intro, simp]:
|
ballarin@14551
|
24 |
"x \<in> carrier L ==> x \<sqsubseteq> x"
|
ballarin@14551
|
25 |
and anti_sym [intro]:
|
ballarin@14551
|
26 |
"[| x \<sqsubseteq> y; y \<sqsubseteq> x; x \<in> carrier L; y \<in> carrier L |] ==> x = y"
|
ballarin@14551
|
27 |
and trans [trans]:
|
ballarin@14551
|
28 |
"[| x \<sqsubseteq> y; y \<sqsubseteq> z;
|
ballarin@14551
|
29 |
x \<in> carrier L; y \<in> carrier L; z \<in> carrier L |] ==> x \<sqsubseteq> z"
|
ballarin@14551
|
30 |
|
wenzelm@14651
|
31 |
constdefs (structure L)
|
haftmann@19286
|
32 |
lless :: "[_, 'a, 'a] => bool" (infixl "\<sqsubset>\<index>" 50)
|
wenzelm@14651
|
33 |
"x \<sqsubset> y == x \<sqsubseteq> y & x ~= y"
|
ballarin@14551
|
34 |
|
wenzelm@14651
|
35 |
-- {* Upper and lower bounds of a set. *}
|
wenzelm@14651
|
36 |
Upper :: "[_, 'a set] => 'a set"
|
wenzelm@14693
|
37 |
"Upper L A == {u. (ALL x. x \<in> A \<inter> carrier L --> x \<sqsubseteq> u)} \<inter>
|
ballarin@14551
|
38 |
carrier L"
|
ballarin@14551
|
39 |
|
wenzelm@14651
|
40 |
Lower :: "[_, 'a set] => 'a set"
|
wenzelm@14693
|
41 |
"Lower L A == {l. (ALL x. x \<in> A \<inter> carrier L --> l \<sqsubseteq> x)} \<inter>
|
ballarin@14551
|
42 |
carrier L"
|
ballarin@14551
|
43 |
|
wenzelm@14651
|
44 |
-- {* Least and greatest, as predicate. *}
|
wenzelm@14651
|
45 |
least :: "[_, 'a, 'a set] => bool"
|
wenzelm@14693
|
46 |
"least L l A == A \<subseteq> carrier L & l \<in> A & (ALL x : A. l \<sqsubseteq> x)"
|
ballarin@14551
|
47 |
|
wenzelm@14651
|
48 |
greatest :: "[_, 'a, 'a set] => bool"
|
wenzelm@14693
|
49 |
"greatest L g A == A \<subseteq> carrier L & g \<in> A & (ALL x : A. x \<sqsubseteq> g)"
|
ballarin@14551
|
50 |
|
wenzelm@14651
|
51 |
-- {* Supremum and infimum *}
|
wenzelm@14651
|
52 |
sup :: "[_, 'a set] => 'a" ("\<Squnion>\<index>_" [90] 90)
|
wenzelm@14651
|
53 |
"\<Squnion>A == THE x. least L x (Upper L A)"
|
ballarin@14551
|
54 |
|
wenzelm@14651
|
55 |
inf :: "[_, 'a set] => 'a" ("\<Sqinter>\<index>_" [90] 90)
|
wenzelm@14651
|
56 |
"\<Sqinter>A == THE x. greatest L x (Lower L A)"
|
ballarin@14551
|
57 |
|
wenzelm@14651
|
58 |
join :: "[_, 'a, 'a] => 'a" (infixl "\<squnion>\<index>" 65)
|
wenzelm@14651
|
59 |
"x \<squnion> y == sup L {x, y}"
|
ballarin@14551
|
60 |
|
ballarin@16325
|
61 |
meet :: "[_, 'a, 'a] => 'a" (infixl "\<sqinter>\<index>" 70)
|
wenzelm@14651
|
62 |
"x \<sqinter> y == inf L {x, y}"
|
ballarin@14551
|
63 |
|
wenzelm@14651
|
64 |
|
wenzelm@14651
|
65 |
subsubsection {* Upper *}
|
ballarin@14551
|
66 |
|
ballarin@14551
|
67 |
lemma Upper_closed [intro, simp]:
|
ballarin@14551
|
68 |
"Upper L A \<subseteq> carrier L"
|
ballarin@14551
|
69 |
by (unfold Upper_def) clarify
|
ballarin@14551
|
70 |
|
ballarin@14551
|
71 |
lemma UpperD [dest]:
|
wenzelm@14693
|
72 |
includes struct L
|
ballarin@14551
|
73 |
shows "[| u \<in> Upper L A; x \<in> A; A \<subseteq> carrier L |] ==> x \<sqsubseteq> u"
|
wenzelm@14693
|
74 |
by (unfold Upper_def) blast
|
ballarin@14551
|
75 |
|
ballarin@14551
|
76 |
lemma Upper_memI:
|
wenzelm@14693
|
77 |
includes struct L
|
ballarin@14551
|
78 |
shows "[| !! y. y \<in> A ==> y \<sqsubseteq> x; x \<in> carrier L |] ==> x \<in> Upper L A"
|
wenzelm@14693
|
79 |
by (unfold Upper_def) blast
|
ballarin@14551
|
80 |
|
ballarin@14551
|
81 |
lemma Upper_antimono:
|
ballarin@14551
|
82 |
"A \<subseteq> B ==> Upper L B \<subseteq> Upper L A"
|
ballarin@14551
|
83 |
by (unfold Upper_def) blast
|
ballarin@14551
|
84 |
|
wenzelm@14651
|
85 |
|
wenzelm@14651
|
86 |
subsubsection {* Lower *}
|
ballarin@14551
|
87 |
|
ballarin@14551
|
88 |
lemma Lower_closed [intro, simp]:
|
ballarin@14551
|
89 |
"Lower L A \<subseteq> carrier L"
|
ballarin@14551
|
90 |
by (unfold Lower_def) clarify
|
ballarin@14551
|
91 |
|
ballarin@14551
|
92 |
lemma LowerD [dest]:
|
wenzelm@14693
|
93 |
includes struct L
|
ballarin@14551
|
94 |
shows "[| l \<in> Lower L A; x \<in> A; A \<subseteq> carrier L |] ==> l \<sqsubseteq> x"
|
wenzelm@14693
|
95 |
by (unfold Lower_def) blast
|
ballarin@14551
|
96 |
|
ballarin@14551
|
97 |
lemma Lower_memI:
|
wenzelm@14693
|
98 |
includes struct L
|
ballarin@14551
|
99 |
shows "[| !! y. y \<in> A ==> x \<sqsubseteq> y; x \<in> carrier L |] ==> x \<in> Lower L A"
|
wenzelm@14693
|
100 |
by (unfold Lower_def) blast
|
ballarin@14551
|
101 |
|
ballarin@14551
|
102 |
lemma Lower_antimono:
|
ballarin@14551
|
103 |
"A \<subseteq> B ==> Lower L B \<subseteq> Lower L A"
|
ballarin@14551
|
104 |
by (unfold Lower_def) blast
|
ballarin@14551
|
105 |
|
wenzelm@14651
|
106 |
|
wenzelm@14651
|
107 |
subsubsection {* least *}
|
ballarin@14551
|
108 |
|
ballarin@14551
|
109 |
lemma least_carrier [intro, simp]:
|
ballarin@14551
|
110 |
shows "least L l A ==> l \<in> carrier L"
|
ballarin@14551
|
111 |
by (unfold least_def) fast
|
ballarin@14551
|
112 |
|
ballarin@14551
|
113 |
lemma least_mem:
|
ballarin@14551
|
114 |
"least L l A ==> l \<in> A"
|
ballarin@14551
|
115 |
by (unfold least_def) fast
|
ballarin@14551
|
116 |
|
ballarin@14551
|
117 |
lemma (in partial_order) least_unique:
|
ballarin@14551
|
118 |
"[| least L x A; least L y A |] ==> x = y"
|
ballarin@14551
|
119 |
by (unfold least_def) blast
|
ballarin@14551
|
120 |
|
ballarin@14551
|
121 |
lemma least_le:
|
wenzelm@14693
|
122 |
includes struct L
|
ballarin@14551
|
123 |
shows "[| least L x A; a \<in> A |] ==> x \<sqsubseteq> a"
|
ballarin@14551
|
124 |
by (unfold least_def) fast
|
ballarin@14551
|
125 |
|
ballarin@14551
|
126 |
lemma least_UpperI:
|
wenzelm@14693
|
127 |
includes struct L
|
ballarin@14551
|
128 |
assumes above: "!! x. x \<in> A ==> x \<sqsubseteq> s"
|
ballarin@14551
|
129 |
and below: "!! y. y \<in> Upper L A ==> s \<sqsubseteq> y"
|
wenzelm@14693
|
130 |
and L: "A \<subseteq> carrier L" "s \<in> carrier L"
|
ballarin@14551
|
131 |
shows "least L s (Upper L A)"
|
wenzelm@14693
|
132 |
proof -
|
wenzelm@14693
|
133 |
have "Upper L A \<subseteq> carrier L" by simp
|
wenzelm@14693
|
134 |
moreover from above L have "s \<in> Upper L A" by (simp add: Upper_def)
|
wenzelm@14693
|
135 |
moreover from below have "ALL x : Upper L A. s \<sqsubseteq> x" by fast
|
wenzelm@14693
|
136 |
ultimately show ?thesis by (simp add: least_def)
|
ballarin@14551
|
137 |
qed
|
ballarin@14551
|
138 |
|
wenzelm@14651
|
139 |
|
wenzelm@14651
|
140 |
subsubsection {* greatest *}
|
ballarin@14551
|
141 |
|
ballarin@14551
|
142 |
lemma greatest_carrier [intro, simp]:
|
ballarin@14551
|
143 |
shows "greatest L l A ==> l \<in> carrier L"
|
ballarin@14551
|
144 |
by (unfold greatest_def) fast
|
ballarin@14551
|
145 |
|
ballarin@14551
|
146 |
lemma greatest_mem:
|
ballarin@14551
|
147 |
"greatest L l A ==> l \<in> A"
|
ballarin@14551
|
148 |
by (unfold greatest_def) fast
|
ballarin@14551
|
149 |
|
ballarin@14551
|
150 |
lemma (in partial_order) greatest_unique:
|
ballarin@14551
|
151 |
"[| greatest L x A; greatest L y A |] ==> x = y"
|
ballarin@14551
|
152 |
by (unfold greatest_def) blast
|
ballarin@14551
|
153 |
|
ballarin@14551
|
154 |
lemma greatest_le:
|
wenzelm@14693
|
155 |
includes struct L
|
ballarin@14551
|
156 |
shows "[| greatest L x A; a \<in> A |] ==> a \<sqsubseteq> x"
|
ballarin@14551
|
157 |
by (unfold greatest_def) fast
|
ballarin@14551
|
158 |
|
ballarin@14551
|
159 |
lemma greatest_LowerI:
|
wenzelm@14693
|
160 |
includes struct L
|
ballarin@14551
|
161 |
assumes below: "!! x. x \<in> A ==> i \<sqsubseteq> x"
|
ballarin@14551
|
162 |
and above: "!! y. y \<in> Lower L A ==> y \<sqsubseteq> i"
|
wenzelm@14693
|
163 |
and L: "A \<subseteq> carrier L" "i \<in> carrier L"
|
ballarin@14551
|
164 |
shows "greatest L i (Lower L A)"
|
wenzelm@14693
|
165 |
proof -
|
wenzelm@14693
|
166 |
have "Lower L A \<subseteq> carrier L" by simp
|
wenzelm@14693
|
167 |
moreover from below L have "i \<in> Lower L A" by (simp add: Lower_def)
|
wenzelm@14693
|
168 |
moreover from above have "ALL x : Lower L A. x \<sqsubseteq> i" by fast
|
wenzelm@14693
|
169 |
ultimately show ?thesis by (simp add: greatest_def)
|
ballarin@14551
|
170 |
qed
|
ballarin@14551
|
171 |
|
wenzelm@14693
|
172 |
|
ballarin@14551
|
173 |
subsection {* Lattices *}
|
ballarin@14551
|
174 |
|
ballarin@14551
|
175 |
locale lattice = partial_order +
|
ballarin@14551
|
176 |
assumes sup_of_two_exists:
|
ballarin@14551
|
177 |
"[| x \<in> carrier L; y \<in> carrier L |] ==> EX s. least L s (Upper L {x, y})"
|
ballarin@14551
|
178 |
and inf_of_two_exists:
|
ballarin@14551
|
179 |
"[| x \<in> carrier L; y \<in> carrier L |] ==> EX s. greatest L s (Lower L {x, y})"
|
ballarin@14551
|
180 |
|
ballarin@14551
|
181 |
lemma least_Upper_above:
|
wenzelm@14693
|
182 |
includes struct L
|
ballarin@14551
|
183 |
shows "[| least L s (Upper L A); x \<in> A; A \<subseteq> carrier L |] ==> x \<sqsubseteq> s"
|
ballarin@14551
|
184 |
by (unfold least_def) blast
|
ballarin@14551
|
185 |
|
ballarin@14551
|
186 |
lemma greatest_Lower_above:
|
wenzelm@14693
|
187 |
includes struct L
|
ballarin@14551
|
188 |
shows "[| greatest L i (Lower L A); x \<in> A; A \<subseteq> carrier L |] ==> i \<sqsubseteq> x"
|
ballarin@14551
|
189 |
by (unfold greatest_def) blast
|
ballarin@14551
|
190 |
|
wenzelm@14666
|
191 |
|
ballarin@14551
|
192 |
subsubsection {* Supremum *}
|
ballarin@14551
|
193 |
|
ballarin@14551
|
194 |
lemma (in lattice) joinI:
|
ballarin@14551
|
195 |
"[| !!l. least L l (Upper L {x, y}) ==> P l; x \<in> carrier L; y \<in> carrier L |]
|
ballarin@14551
|
196 |
==> P (x \<squnion> y)"
|
ballarin@14551
|
197 |
proof (unfold join_def sup_def)
|
wenzelm@14693
|
198 |
assume L: "x \<in> carrier L" "y \<in> carrier L"
|
ballarin@14551
|
199 |
and P: "!!l. least L l (Upper L {x, y}) ==> P l"
|
ballarin@14551
|
200 |
with sup_of_two_exists obtain s where "least L s (Upper L {x, y})" by fast
|
ballarin@14551
|
201 |
with L show "P (THE l. least L l (Upper L {x, y}))"
|
wenzelm@14693
|
202 |
by (fast intro: theI2 least_unique P)
|
ballarin@14551
|
203 |
qed
|
ballarin@14551
|
204 |
|
ballarin@14551
|
205 |
lemma (in lattice) join_closed [simp]:
|
ballarin@14551
|
206 |
"[| x \<in> carrier L; y \<in> carrier L |] ==> x \<squnion> y \<in> carrier L"
|
ballarin@14551
|
207 |
by (rule joinI) (rule least_carrier)
|
ballarin@14551
|
208 |
|
wenzelm@14651
|
209 |
lemma (in partial_order) sup_of_singletonI: (* only reflexivity needed ? *)
|
ballarin@14551
|
210 |
"x \<in> carrier L ==> least L x (Upper L {x})"
|
ballarin@14551
|
211 |
by (rule least_UpperI) fast+
|
ballarin@14551
|
212 |
|
ballarin@14551
|
213 |
lemma (in partial_order) sup_of_singleton [simp]:
|
wenzelm@14693
|
214 |
includes struct L
|
wenzelm@14693
|
215 |
shows "x \<in> carrier L ==> \<Squnion>{x} = x"
|
ballarin@14551
|
216 |
by (unfold sup_def) (blast intro: least_unique least_UpperI sup_of_singletonI)
|
ballarin@14551
|
217 |
|
wenzelm@14666
|
218 |
|
wenzelm@14666
|
219 |
text {* Condition on @{text A}: supremum exists. *}
|
ballarin@14551
|
220 |
|
ballarin@14551
|
221 |
lemma (in lattice) sup_insertI:
|
ballarin@14551
|
222 |
"[| !!s. least L s (Upper L (insert x A)) ==> P s;
|
ballarin@14551
|
223 |
least L a (Upper L A); x \<in> carrier L; A \<subseteq> carrier L |]
|
wenzelm@14693
|
224 |
==> P (\<Squnion>(insert x A))"
|
ballarin@14551
|
225 |
proof (unfold sup_def)
|
wenzelm@14693
|
226 |
assume L: "x \<in> carrier L" "A \<subseteq> carrier L"
|
ballarin@14551
|
227 |
and P: "!!l. least L l (Upper L (insert x A)) ==> P l"
|
ballarin@14551
|
228 |
and least_a: "least L a (Upper L A)"
|
ballarin@14551
|
229 |
from L least_a have La: "a \<in> carrier L" by simp
|
ballarin@14551
|
230 |
from L sup_of_two_exists least_a
|
ballarin@14551
|
231 |
obtain s where least_s: "least L s (Upper L {a, x})" by blast
|
ballarin@14551
|
232 |
show "P (THE l. least L l (Upper L (insert x A)))"
|
wenzelm@14693
|
233 |
proof (rule theI2)
|
ballarin@14551
|
234 |
show "least L s (Upper L (insert x A))"
|
ballarin@14551
|
235 |
proof (rule least_UpperI)
|
ballarin@14551
|
236 |
fix z
|
wenzelm@14693
|
237 |
assume "z \<in> insert x A"
|
wenzelm@14693
|
238 |
then show "z \<sqsubseteq> s"
|
wenzelm@14693
|
239 |
proof
|
wenzelm@14693
|
240 |
assume "z = x" then show ?thesis
|
wenzelm@14693
|
241 |
by (simp add: least_Upper_above [OF least_s] L La)
|
wenzelm@14693
|
242 |
next
|
wenzelm@14693
|
243 |
assume "z \<in> A"
|
wenzelm@14693
|
244 |
with L least_s least_a show ?thesis
|
wenzelm@14693
|
245 |
by (rule_tac trans [where y = a]) (auto dest: least_Upper_above)
|
wenzelm@14693
|
246 |
qed
|
wenzelm@14693
|
247 |
next
|
wenzelm@14693
|
248 |
fix y
|
wenzelm@14693
|
249 |
assume y: "y \<in> Upper L (insert x A)"
|
wenzelm@14693
|
250 |
show "s \<sqsubseteq> y"
|
wenzelm@14693
|
251 |
proof (rule least_le [OF least_s], rule Upper_memI)
|
wenzelm@14693
|
252 |
fix z
|
wenzelm@14693
|
253 |
assume z: "z \<in> {a, x}"
|
wenzelm@14693
|
254 |
then show "z \<sqsubseteq> y"
|
wenzelm@14693
|
255 |
proof
|
wenzelm@14693
|
256 |
have y': "y \<in> Upper L A"
|
wenzelm@14693
|
257 |
apply (rule subsetD [where A = "Upper L (insert x A)"])
|
wenzelm@14693
|
258 |
apply (rule Upper_antimono) apply clarify apply assumption
|
wenzelm@14693
|
259 |
done
|
wenzelm@14693
|
260 |
assume "z = a"
|
wenzelm@14693
|
261 |
with y' least_a show ?thesis by (fast dest: least_le)
|
wenzelm@14693
|
262 |
next
|
wenzelm@14693
|
263 |
assume "z \<in> {x}" (* FIXME "z = x"; declare specific elim rule for "insert x {}" (!?) *)
|
wenzelm@14693
|
264 |
with y L show ?thesis by blast
|
wenzelm@14693
|
265 |
qed
|
wenzelm@14693
|
266 |
qed (rule Upper_closed [THEN subsetD])
|
wenzelm@14693
|
267 |
next
|
wenzelm@14693
|
268 |
from L show "insert x A \<subseteq> carrier L" by simp
|
wenzelm@14693
|
269 |
from least_s show "s \<in> carrier L" by simp
|
ballarin@14551
|
270 |
qed
|
ballarin@14551
|
271 |
next
|
ballarin@14551
|
272 |
fix l
|
ballarin@14551
|
273 |
assume least_l: "least L l (Upper L (insert x A))"
|
ballarin@14551
|
274 |
show "l = s"
|
ballarin@14551
|
275 |
proof (rule least_unique)
|
ballarin@14551
|
276 |
show "least L s (Upper L (insert x A))"
|
ballarin@14551
|
277 |
proof (rule least_UpperI)
|
wenzelm@14693
|
278 |
fix z
|
wenzelm@14693
|
279 |
assume "z \<in> insert x A"
|
wenzelm@14693
|
280 |
then show "z \<sqsubseteq> s"
|
wenzelm@14693
|
281 |
proof
|
wenzelm@14693
|
282 |
assume "z = x" then show ?thesis
|
wenzelm@14693
|
283 |
by (simp add: least_Upper_above [OF least_s] L La)
|
wenzelm@14693
|
284 |
next
|
wenzelm@14693
|
285 |
assume "z \<in> A"
|
wenzelm@14693
|
286 |
with L least_s least_a show ?thesis
|
wenzelm@14693
|
287 |
by (rule_tac trans [where y = a]) (auto dest: least_Upper_above)
|
ballarin@14551
|
288 |
qed
|
ballarin@14551
|
289 |
next
|
wenzelm@14693
|
290 |
fix y
|
wenzelm@14693
|
291 |
assume y: "y \<in> Upper L (insert x A)"
|
wenzelm@14693
|
292 |
show "s \<sqsubseteq> y"
|
wenzelm@14693
|
293 |
proof (rule least_le [OF least_s], rule Upper_memI)
|
wenzelm@14693
|
294 |
fix z
|
wenzelm@14693
|
295 |
assume z: "z \<in> {a, x}"
|
wenzelm@14693
|
296 |
then show "z \<sqsubseteq> y"
|
wenzelm@14693
|
297 |
proof
|
wenzelm@14693
|
298 |
have y': "y \<in> Upper L A"
|
wenzelm@14693
|
299 |
apply (rule subsetD [where A = "Upper L (insert x A)"])
|
wenzelm@14693
|
300 |
apply (rule Upper_antimono) apply clarify apply assumption
|
wenzelm@14693
|
301 |
done
|
wenzelm@14693
|
302 |
assume "z = a"
|
wenzelm@14693
|
303 |
with y' least_a show ?thesis by (fast dest: least_le)
|
wenzelm@14693
|
304 |
next
|
wenzelm@14693
|
305 |
assume "z \<in> {x}"
|
wenzelm@14693
|
306 |
with y L show ?thesis by blast
|
wenzelm@14693
|
307 |
qed
|
wenzelm@14693
|
308 |
qed (rule Upper_closed [THEN subsetD])
|
ballarin@14551
|
309 |
next
|
wenzelm@14693
|
310 |
from L show "insert x A \<subseteq> carrier L" by simp
|
wenzelm@14693
|
311 |
from least_s show "s \<in> carrier L" by simp
|
ballarin@14551
|
312 |
qed
|
ballarin@14551
|
313 |
qed
|
ballarin@14551
|
314 |
qed
|
ballarin@14551
|
315 |
qed
|
ballarin@14551
|
316 |
|
ballarin@14551
|
317 |
lemma (in lattice) finite_sup_least:
|
wenzelm@14693
|
318 |
"[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> least L (\<Squnion>A) (Upper L A)"
|
ballarin@14551
|
319 |
proof (induct set: Finites)
|
wenzelm@14693
|
320 |
case empty
|
wenzelm@14693
|
321 |
then show ?case by simp
|
ballarin@14551
|
322 |
next
|
nipkow@15328
|
323 |
case (insert x A)
|
ballarin@14551
|
324 |
show ?case
|
ballarin@14551
|
325 |
proof (cases "A = {}")
|
ballarin@14551
|
326 |
case True
|
ballarin@14551
|
327 |
with insert show ?thesis by (simp add: sup_of_singletonI)
|
ballarin@14551
|
328 |
next
|
ballarin@14551
|
329 |
case False
|
wenzelm@14693
|
330 |
with insert have "least L (\<Squnion>A) (Upper L A)" by simp
|
wenzelm@14693
|
331 |
with _ show ?thesis
|
wenzelm@14693
|
332 |
by (rule sup_insertI) (simp_all add: insert [simplified])
|
ballarin@14551
|
333 |
qed
|
ballarin@14551
|
334 |
qed
|
ballarin@14551
|
335 |
|
ballarin@14551
|
336 |
lemma (in lattice) finite_sup_insertI:
|
ballarin@14551
|
337 |
assumes P: "!!l. least L l (Upper L (insert x A)) ==> P l"
|
wenzelm@14693
|
338 |
and xA: "finite A" "x \<in> carrier L" "A \<subseteq> carrier L"
|
ballarin@14551
|
339 |
shows "P (\<Squnion> (insert x A))"
|
ballarin@14551
|
340 |
proof (cases "A = {}")
|
ballarin@14551
|
341 |
case True with P and xA show ?thesis
|
ballarin@14551
|
342 |
by (simp add: sup_of_singletonI)
|
ballarin@14551
|
343 |
next
|
ballarin@14551
|
344 |
case False with P and xA show ?thesis
|
ballarin@14551
|
345 |
by (simp add: sup_insertI finite_sup_least)
|
ballarin@14551
|
346 |
qed
|
ballarin@14551
|
347 |
|
ballarin@14551
|
348 |
lemma (in lattice) finite_sup_closed:
|
wenzelm@14693
|
349 |
"[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> \<Squnion>A \<in> carrier L"
|
ballarin@14551
|
350 |
proof (induct set: Finites)
|
ballarin@14551
|
351 |
case empty then show ?case by simp
|
ballarin@14551
|
352 |
next
|
nipkow@15328
|
353 |
case insert then show ?case
|
wenzelm@14693
|
354 |
by - (rule finite_sup_insertI, simp_all)
|
ballarin@14551
|
355 |
qed
|
ballarin@14551
|
356 |
|
ballarin@14551
|
357 |
lemma (in lattice) join_left:
|
ballarin@14551
|
358 |
"[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> x \<squnion> y"
|
wenzelm@14693
|
359 |
by (rule joinI [folded join_def]) (blast dest: least_mem)
|
ballarin@14551
|
360 |
|
ballarin@14551
|
361 |
lemma (in lattice) join_right:
|
ballarin@14551
|
362 |
"[| x \<in> carrier L; y \<in> carrier L |] ==> y \<sqsubseteq> x \<squnion> y"
|
wenzelm@14693
|
363 |
by (rule joinI [folded join_def]) (blast dest: least_mem)
|
ballarin@14551
|
364 |
|
ballarin@14551
|
365 |
lemma (in lattice) sup_of_two_least:
|
wenzelm@14693
|
366 |
"[| x \<in> carrier L; y \<in> carrier L |] ==> least L (\<Squnion>{x, y}) (Upper L {x, y})"
|
ballarin@14551
|
367 |
proof (unfold sup_def)
|
wenzelm@14693
|
368 |
assume L: "x \<in> carrier L" "y \<in> carrier L"
|
ballarin@14551
|
369 |
with sup_of_two_exists obtain s where "least L s (Upper L {x, y})" by fast
|
ballarin@14551
|
370 |
with L show "least L (THE xa. least L xa (Upper L {x, y})) (Upper L {x, y})"
|
ballarin@14551
|
371 |
by (fast intro: theI2 least_unique) (* blast fails *)
|
ballarin@14551
|
372 |
qed
|
ballarin@14551
|
373 |
|
ballarin@14551
|
374 |
lemma (in lattice) join_le:
|
wenzelm@14693
|
375 |
assumes sub: "x \<sqsubseteq> z" "y \<sqsubseteq> z"
|
wenzelm@14693
|
376 |
and L: "x \<in> carrier L" "y \<in> carrier L" "z \<in> carrier L"
|
ballarin@14551
|
377 |
shows "x \<squnion> y \<sqsubseteq> z"
|
ballarin@14551
|
378 |
proof (rule joinI)
|
ballarin@14551
|
379 |
fix s
|
ballarin@14551
|
380 |
assume "least L s (Upper L {x, y})"
|
ballarin@14551
|
381 |
with sub L show "s \<sqsubseteq> z" by (fast elim: least_le intro: Upper_memI)
|
ballarin@14551
|
382 |
qed
|
wenzelm@14693
|
383 |
|
ballarin@14551
|
384 |
lemma (in lattice) join_assoc_lemma:
|
wenzelm@14693
|
385 |
assumes L: "x \<in> carrier L" "y \<in> carrier L" "z \<in> carrier L"
|
wenzelm@14693
|
386 |
shows "x \<squnion> (y \<squnion> z) = \<Squnion>{x, y, z}"
|
ballarin@14551
|
387 |
proof (rule finite_sup_insertI)
|
wenzelm@14651
|
388 |
-- {* The textbook argument in Jacobson I, p 457 *}
|
ballarin@14551
|
389 |
fix s
|
ballarin@14551
|
390 |
assume sup: "least L s (Upper L {x, y, z})"
|
ballarin@14551
|
391 |
show "x \<squnion> (y \<squnion> z) = s"
|
ballarin@14551
|
392 |
proof (rule anti_sym)
|
ballarin@14551
|
393 |
from sup L show "x \<squnion> (y \<squnion> z) \<sqsubseteq> s"
|
ballarin@14551
|
394 |
by (fastsimp intro!: join_le elim: least_Upper_above)
|
ballarin@14551
|
395 |
next
|
ballarin@14551
|
396 |
from sup L show "s \<sqsubseteq> x \<squnion> (y \<squnion> z)"
|
ballarin@14551
|
397 |
by (erule_tac least_le)
|
ballarin@14551
|
398 |
(blast intro!: Upper_memI intro: trans join_left join_right join_closed)
|
ballarin@14551
|
399 |
qed (simp_all add: L least_carrier [OF sup])
|
ballarin@14551
|
400 |
qed (simp_all add: L)
|
ballarin@14551
|
401 |
|
ballarin@14551
|
402 |
lemma join_comm:
|
wenzelm@14693
|
403 |
includes struct L
|
ballarin@14551
|
404 |
shows "x \<squnion> y = y \<squnion> x"
|
ballarin@14551
|
405 |
by (unfold join_def) (simp add: insert_commute)
|
ballarin@14551
|
406 |
|
ballarin@14551
|
407 |
lemma (in lattice) join_assoc:
|
wenzelm@14693
|
408 |
assumes L: "x \<in> carrier L" "y \<in> carrier L" "z \<in> carrier L"
|
ballarin@14551
|
409 |
shows "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"
|
ballarin@14551
|
410 |
proof -
|
ballarin@14551
|
411 |
have "(x \<squnion> y) \<squnion> z = z \<squnion> (x \<squnion> y)" by (simp only: join_comm)
|
wenzelm@14693
|
412 |
also from L have "... = \<Squnion>{z, x, y}" by (simp add: join_assoc_lemma)
|
wenzelm@14693
|
413 |
also from L have "... = \<Squnion>{x, y, z}" by (simp add: insert_commute)
|
ballarin@14551
|
414 |
also from L have "... = x \<squnion> (y \<squnion> z)" by (simp add: join_assoc_lemma)
|
ballarin@14551
|
415 |
finally show ?thesis .
|
ballarin@14551
|
416 |
qed
|
ballarin@14551
|
417 |
|
wenzelm@14693
|
418 |
|
ballarin@14551
|
419 |
subsubsection {* Infimum *}
|
ballarin@14551
|
420 |
|
ballarin@14551
|
421 |
lemma (in lattice) meetI:
|
ballarin@14551
|
422 |
"[| !!i. greatest L i (Lower L {x, y}) ==> P i;
|
ballarin@14551
|
423 |
x \<in> carrier L; y \<in> carrier L |]
|
ballarin@14551
|
424 |
==> P (x \<sqinter> y)"
|
ballarin@14551
|
425 |
proof (unfold meet_def inf_def)
|
wenzelm@14693
|
426 |
assume L: "x \<in> carrier L" "y \<in> carrier L"
|
ballarin@14551
|
427 |
and P: "!!g. greatest L g (Lower L {x, y}) ==> P g"
|
ballarin@14551
|
428 |
with inf_of_two_exists obtain i where "greatest L i (Lower L {x, y})" by fast
|
ballarin@14551
|
429 |
with L show "P (THE g. greatest L g (Lower L {x, y}))"
|
ballarin@14551
|
430 |
by (fast intro: theI2 greatest_unique P)
|
ballarin@14551
|
431 |
qed
|
ballarin@14551
|
432 |
|
ballarin@14551
|
433 |
lemma (in lattice) meet_closed [simp]:
|
ballarin@14551
|
434 |
"[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqinter> y \<in> carrier L"
|
ballarin@14551
|
435 |
by (rule meetI) (rule greatest_carrier)
|
ballarin@14551
|
436 |
|
wenzelm@14651
|
437 |
lemma (in partial_order) inf_of_singletonI: (* only reflexivity needed ? *)
|
ballarin@14551
|
438 |
"x \<in> carrier L ==> greatest L x (Lower L {x})"
|
ballarin@14551
|
439 |
by (rule greatest_LowerI) fast+
|
ballarin@14551
|
440 |
|
ballarin@14551
|
441 |
lemma (in partial_order) inf_of_singleton [simp]:
|
wenzelm@14693
|
442 |
includes struct L
|
ballarin@14551
|
443 |
shows "x \<in> carrier L ==> \<Sqinter> {x} = x"
|
ballarin@14551
|
444 |
by (unfold inf_def) (blast intro: greatest_unique greatest_LowerI inf_of_singletonI)
|
ballarin@14551
|
445 |
|
ballarin@14551
|
446 |
text {* Condition on A: infimum exists. *}
|
ballarin@14551
|
447 |
|
ballarin@14551
|
448 |
lemma (in lattice) inf_insertI:
|
ballarin@14551
|
449 |
"[| !!i. greatest L i (Lower L (insert x A)) ==> P i;
|
ballarin@14551
|
450 |
greatest L a (Lower L A); x \<in> carrier L; A \<subseteq> carrier L |]
|
wenzelm@14693
|
451 |
==> P (\<Sqinter>(insert x A))"
|
ballarin@14551
|
452 |
proof (unfold inf_def)
|
wenzelm@14693
|
453 |
assume L: "x \<in> carrier L" "A \<subseteq> carrier L"
|
ballarin@14551
|
454 |
and P: "!!g. greatest L g (Lower L (insert x A)) ==> P g"
|
ballarin@14551
|
455 |
and greatest_a: "greatest L a (Lower L A)"
|
ballarin@14551
|
456 |
from L greatest_a have La: "a \<in> carrier L" by simp
|
ballarin@14551
|
457 |
from L inf_of_two_exists greatest_a
|
ballarin@14551
|
458 |
obtain i where greatest_i: "greatest L i (Lower L {a, x})" by blast
|
ballarin@14551
|
459 |
show "P (THE g. greatest L g (Lower L (insert x A)))"
|
wenzelm@14693
|
460 |
proof (rule theI2)
|
ballarin@14551
|
461 |
show "greatest L i (Lower L (insert x A))"
|
ballarin@14551
|
462 |
proof (rule greatest_LowerI)
|
ballarin@14551
|
463 |
fix z
|
wenzelm@14693
|
464 |
assume "z \<in> insert x A"
|
wenzelm@14693
|
465 |
then show "i \<sqsubseteq> z"
|
wenzelm@14693
|
466 |
proof
|
wenzelm@14693
|
467 |
assume "z = x" then show ?thesis
|
wenzelm@14693
|
468 |
by (simp add: greatest_Lower_above [OF greatest_i] L La)
|
wenzelm@14693
|
469 |
next
|
wenzelm@14693
|
470 |
assume "z \<in> A"
|
wenzelm@14693
|
471 |
with L greatest_i greatest_a show ?thesis
|
wenzelm@14693
|
472 |
by (rule_tac trans [where y = a]) (auto dest: greatest_Lower_above)
|
wenzelm@14693
|
473 |
qed
|
wenzelm@14693
|
474 |
next
|
wenzelm@14693
|
475 |
fix y
|
wenzelm@14693
|
476 |
assume y: "y \<in> Lower L (insert x A)"
|
wenzelm@14693
|
477 |
show "y \<sqsubseteq> i"
|
wenzelm@14693
|
478 |
proof (rule greatest_le [OF greatest_i], rule Lower_memI)
|
wenzelm@14693
|
479 |
fix z
|
wenzelm@14693
|
480 |
assume z: "z \<in> {a, x}"
|
wenzelm@14693
|
481 |
then show "y \<sqsubseteq> z"
|
wenzelm@14693
|
482 |
proof
|
wenzelm@14693
|
483 |
have y': "y \<in> Lower L A"
|
wenzelm@14693
|
484 |
apply (rule subsetD [where A = "Lower L (insert x A)"])
|
wenzelm@14693
|
485 |
apply (rule Lower_antimono) apply clarify apply assumption
|
wenzelm@14693
|
486 |
done
|
wenzelm@14693
|
487 |
assume "z = a"
|
wenzelm@14693
|
488 |
with y' greatest_a show ?thesis by (fast dest: greatest_le)
|
wenzelm@14693
|
489 |
next
|
wenzelm@14693
|
490 |
assume "z \<in> {x}"
|
wenzelm@14693
|
491 |
with y L show ?thesis by blast
|
wenzelm@14693
|
492 |
qed
|
wenzelm@14693
|
493 |
qed (rule Lower_closed [THEN subsetD])
|
wenzelm@14693
|
494 |
next
|
wenzelm@14693
|
495 |
from L show "insert x A \<subseteq> carrier L" by simp
|
wenzelm@14693
|
496 |
from greatest_i show "i \<in> carrier L" by simp
|
ballarin@14551
|
497 |
qed
|
ballarin@14551
|
498 |
next
|
ballarin@14551
|
499 |
fix g
|
ballarin@14551
|
500 |
assume greatest_g: "greatest L g (Lower L (insert x A))"
|
ballarin@14551
|
501 |
show "g = i"
|
ballarin@14551
|
502 |
proof (rule greatest_unique)
|
ballarin@14551
|
503 |
show "greatest L i (Lower L (insert x A))"
|
ballarin@14551
|
504 |
proof (rule greatest_LowerI)
|
wenzelm@14693
|
505 |
fix z
|
wenzelm@14693
|
506 |
assume "z \<in> insert x A"
|
wenzelm@14693
|
507 |
then show "i \<sqsubseteq> z"
|
wenzelm@14693
|
508 |
proof
|
wenzelm@14693
|
509 |
assume "z = x" then show ?thesis
|
wenzelm@14693
|
510 |
by (simp add: greatest_Lower_above [OF greatest_i] L La)
|
wenzelm@14693
|
511 |
next
|
wenzelm@14693
|
512 |
assume "z \<in> A"
|
wenzelm@14693
|
513 |
with L greatest_i greatest_a show ?thesis
|
wenzelm@14693
|
514 |
by (rule_tac trans [where y = a]) (auto dest: greatest_Lower_above)
|
wenzelm@14693
|
515 |
qed
|
ballarin@14551
|
516 |
next
|
wenzelm@14693
|
517 |
fix y
|
wenzelm@14693
|
518 |
assume y: "y \<in> Lower L (insert x A)"
|
wenzelm@14693
|
519 |
show "y \<sqsubseteq> i"
|
wenzelm@14693
|
520 |
proof (rule greatest_le [OF greatest_i], rule Lower_memI)
|
wenzelm@14693
|
521 |
fix z
|
wenzelm@14693
|
522 |
assume z: "z \<in> {a, x}"
|
wenzelm@14693
|
523 |
then show "y \<sqsubseteq> z"
|
wenzelm@14693
|
524 |
proof
|
wenzelm@14693
|
525 |
have y': "y \<in> Lower L A"
|
wenzelm@14693
|
526 |
apply (rule subsetD [where A = "Lower L (insert x A)"])
|
wenzelm@14693
|
527 |
apply (rule Lower_antimono) apply clarify apply assumption
|
wenzelm@14693
|
528 |
done
|
wenzelm@14693
|
529 |
assume "z = a"
|
wenzelm@14693
|
530 |
with y' greatest_a show ?thesis by (fast dest: greatest_le)
|
wenzelm@14693
|
531 |
next
|
wenzelm@14693
|
532 |
assume "z \<in> {x}"
|
wenzelm@14693
|
533 |
with y L show ?thesis by blast
|
ballarin@14551
|
534 |
qed
|
wenzelm@14693
|
535 |
qed (rule Lower_closed [THEN subsetD])
|
ballarin@14551
|
536 |
next
|
wenzelm@14693
|
537 |
from L show "insert x A \<subseteq> carrier L" by simp
|
wenzelm@14693
|
538 |
from greatest_i show "i \<in> carrier L" by simp
|
ballarin@14551
|
539 |
qed
|
ballarin@14551
|
540 |
qed
|
ballarin@14551
|
541 |
qed
|
ballarin@14551
|
542 |
qed
|
ballarin@14551
|
543 |
|
ballarin@14551
|
544 |
lemma (in lattice) finite_inf_greatest:
|
wenzelm@14693
|
545 |
"[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> greatest L (\<Sqinter>A) (Lower L A)"
|
ballarin@14551
|
546 |
proof (induct set: Finites)
|
ballarin@14551
|
547 |
case empty then show ?case by simp
|
ballarin@14551
|
548 |
next
|
nipkow@15328
|
549 |
case (insert x A)
|
ballarin@14551
|
550 |
show ?case
|
ballarin@14551
|
551 |
proof (cases "A = {}")
|
ballarin@14551
|
552 |
case True
|
ballarin@14551
|
553 |
with insert show ?thesis by (simp add: inf_of_singletonI)
|
ballarin@14551
|
554 |
next
|
ballarin@14551
|
555 |
case False
|
ballarin@14551
|
556 |
from insert show ?thesis
|
ballarin@14551
|
557 |
proof (rule_tac inf_insertI)
|
wenzelm@14693
|
558 |
from False insert show "greatest L (\<Sqinter>A) (Lower L A)" by simp
|
ballarin@14551
|
559 |
qed simp_all
|
ballarin@14551
|
560 |
qed
|
ballarin@14551
|
561 |
qed
|
ballarin@14551
|
562 |
|
ballarin@14551
|
563 |
lemma (in lattice) finite_inf_insertI:
|
ballarin@14551
|
564 |
assumes P: "!!i. greatest L i (Lower L (insert x A)) ==> P i"
|
wenzelm@14693
|
565 |
and xA: "finite A" "x \<in> carrier L" "A \<subseteq> carrier L"
|
ballarin@14551
|
566 |
shows "P (\<Sqinter> (insert x A))"
|
ballarin@14551
|
567 |
proof (cases "A = {}")
|
ballarin@14551
|
568 |
case True with P and xA show ?thesis
|
ballarin@14551
|
569 |
by (simp add: inf_of_singletonI)
|
ballarin@14551
|
570 |
next
|
ballarin@14551
|
571 |
case False with P and xA show ?thesis
|
ballarin@14551
|
572 |
by (simp add: inf_insertI finite_inf_greatest)
|
ballarin@14551
|
573 |
qed
|
ballarin@14551
|
574 |
|
ballarin@14551
|
575 |
lemma (in lattice) finite_inf_closed:
|
wenzelm@14693
|
576 |
"[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> \<Sqinter>A \<in> carrier L"
|
ballarin@14551
|
577 |
proof (induct set: Finites)
|
ballarin@14551
|
578 |
case empty then show ?case by simp
|
ballarin@14551
|
579 |
next
|
nipkow@15328
|
580 |
case insert then show ?case
|
ballarin@14551
|
581 |
by (rule_tac finite_inf_insertI) (simp_all)
|
ballarin@14551
|
582 |
qed
|
ballarin@14551
|
583 |
|
ballarin@14551
|
584 |
lemma (in lattice) meet_left:
|
ballarin@14551
|
585 |
"[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqinter> y \<sqsubseteq> x"
|
wenzelm@14693
|
586 |
by (rule meetI [folded meet_def]) (blast dest: greatest_mem)
|
ballarin@14551
|
587 |
|
ballarin@14551
|
588 |
lemma (in lattice) meet_right:
|
ballarin@14551
|
589 |
"[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqinter> y \<sqsubseteq> y"
|
wenzelm@14693
|
590 |
by (rule meetI [folded meet_def]) (blast dest: greatest_mem)
|
ballarin@14551
|
591 |
|
ballarin@14551
|
592 |
lemma (in lattice) inf_of_two_greatest:
|
ballarin@14551
|
593 |
"[| x \<in> carrier L; y \<in> carrier L |] ==>
|
ballarin@14551
|
594 |
greatest L (\<Sqinter> {x, y}) (Lower L {x, y})"
|
ballarin@14551
|
595 |
proof (unfold inf_def)
|
wenzelm@14693
|
596 |
assume L: "x \<in> carrier L" "y \<in> carrier L"
|
ballarin@14551
|
597 |
with inf_of_two_exists obtain s where "greatest L s (Lower L {x, y})" by fast
|
ballarin@14551
|
598 |
with L
|
ballarin@14551
|
599 |
show "greatest L (THE xa. greatest L xa (Lower L {x, y})) (Lower L {x, y})"
|
ballarin@14551
|
600 |
by (fast intro: theI2 greatest_unique) (* blast fails *)
|
ballarin@14551
|
601 |
qed
|
ballarin@14551
|
602 |
|
ballarin@14551
|
603 |
lemma (in lattice) meet_le:
|
wenzelm@14693
|
604 |
assumes sub: "z \<sqsubseteq> x" "z \<sqsubseteq> y"
|
wenzelm@14693
|
605 |
and L: "x \<in> carrier L" "y \<in> carrier L" "z \<in> carrier L"
|
ballarin@14551
|
606 |
shows "z \<sqsubseteq> x \<sqinter> y"
|
ballarin@14551
|
607 |
proof (rule meetI)
|
ballarin@14551
|
608 |
fix i
|
ballarin@14551
|
609 |
assume "greatest L i (Lower L {x, y})"
|
ballarin@14551
|
610 |
with sub L show "z \<sqsubseteq> i" by (fast elim: greatest_le intro: Lower_memI)
|
ballarin@14551
|
611 |
qed
|
wenzelm@14693
|
612 |
|
ballarin@14551
|
613 |
lemma (in lattice) meet_assoc_lemma:
|
wenzelm@14693
|
614 |
assumes L: "x \<in> carrier L" "y \<in> carrier L" "z \<in> carrier L"
|
wenzelm@14693
|
615 |
shows "x \<sqinter> (y \<sqinter> z) = \<Sqinter>{x, y, z}"
|
ballarin@14551
|
616 |
proof (rule finite_inf_insertI)
|
ballarin@14551
|
617 |
txt {* The textbook argument in Jacobson I, p 457 *}
|
ballarin@14551
|
618 |
fix i
|
ballarin@14551
|
619 |
assume inf: "greatest L i (Lower L {x, y, z})"
|
ballarin@14551
|
620 |
show "x \<sqinter> (y \<sqinter> z) = i"
|
ballarin@14551
|
621 |
proof (rule anti_sym)
|
ballarin@14551
|
622 |
from inf L show "i \<sqsubseteq> x \<sqinter> (y \<sqinter> z)"
|
ballarin@14551
|
623 |
by (fastsimp intro!: meet_le elim: greatest_Lower_above)
|
ballarin@14551
|
624 |
next
|
ballarin@14551
|
625 |
from inf L show "x \<sqinter> (y \<sqinter> z) \<sqsubseteq> i"
|
ballarin@14551
|
626 |
by (erule_tac greatest_le)
|
ballarin@14551
|
627 |
(blast intro!: Lower_memI intro: trans meet_left meet_right meet_closed)
|
ballarin@14551
|
628 |
qed (simp_all add: L greatest_carrier [OF inf])
|
ballarin@14551
|
629 |
qed (simp_all add: L)
|
ballarin@14551
|
630 |
|
ballarin@14551
|
631 |
lemma meet_comm:
|
wenzelm@14693
|
632 |
includes struct L
|
ballarin@14551
|
633 |
shows "x \<sqinter> y = y \<sqinter> x"
|
ballarin@14551
|
634 |
by (unfold meet_def) (simp add: insert_commute)
|
ballarin@14551
|
635 |
|
ballarin@14551
|
636 |
lemma (in lattice) meet_assoc:
|
wenzelm@14693
|
637 |
assumes L: "x \<in> carrier L" "y \<in> carrier L" "z \<in> carrier L"
|
ballarin@14551
|
638 |
shows "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"
|
ballarin@14551
|
639 |
proof -
|
ballarin@14551
|
640 |
have "(x \<sqinter> y) \<sqinter> z = z \<sqinter> (x \<sqinter> y)" by (simp only: meet_comm)
|
ballarin@14551
|
641 |
also from L have "... = \<Sqinter> {z, x, y}" by (simp add: meet_assoc_lemma)
|
ballarin@14551
|
642 |
also from L have "... = \<Sqinter> {x, y, z}" by (simp add: insert_commute)
|
ballarin@14551
|
643 |
also from L have "... = x \<sqinter> (y \<sqinter> z)" by (simp add: meet_assoc_lemma)
|
ballarin@14551
|
644 |
finally show ?thesis .
|
ballarin@14551
|
645 |
qed
|
ballarin@14551
|
646 |
|
wenzelm@14693
|
647 |
|
ballarin@14551
|
648 |
subsection {* Total Orders *}
|
ballarin@14551
|
649 |
|
ballarin@14551
|
650 |
locale total_order = lattice +
|
ballarin@14551
|
651 |
assumes total: "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> y | y \<sqsubseteq> x"
|
ballarin@14551
|
652 |
|
ballarin@14551
|
653 |
text {* Introduction rule: the usual definition of total order *}
|
ballarin@14551
|
654 |
|
ballarin@14551
|
655 |
lemma (in partial_order) total_orderI:
|
ballarin@14551
|
656 |
assumes total: "!!x y. [| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> y | y \<sqsubseteq> x"
|
ballarin@14551
|
657 |
shows "total_order L"
|
ballarin@14551
|
658 |
proof (rule total_order.intro)
|
ballarin@14551
|
659 |
show "lattice_axioms L"
|
ballarin@14551
|
660 |
proof (rule lattice_axioms.intro)
|
ballarin@14551
|
661 |
fix x y
|
wenzelm@14693
|
662 |
assume L: "x \<in> carrier L" "y \<in> carrier L"
|
ballarin@14551
|
663 |
show "EX s. least L s (Upper L {x, y})"
|
ballarin@14551
|
664 |
proof -
|
ballarin@14551
|
665 |
note total L
|
ballarin@14551
|
666 |
moreover
|
ballarin@14551
|
667 |
{
|
wenzelm@14693
|
668 |
assume "x \<sqsubseteq> y"
|
ballarin@14551
|
669 |
with L have "least L y (Upper L {x, y})"
|
wenzelm@14693
|
670 |
by (rule_tac least_UpperI) auto
|
ballarin@14551
|
671 |
}
|
ballarin@14551
|
672 |
moreover
|
ballarin@14551
|
673 |
{
|
wenzelm@14693
|
674 |
assume "y \<sqsubseteq> x"
|
ballarin@14551
|
675 |
with L have "least L x (Upper L {x, y})"
|
wenzelm@14693
|
676 |
by (rule_tac least_UpperI) auto
|
ballarin@14551
|
677 |
}
|
ballarin@14551
|
678 |
ultimately show ?thesis by blast
|
ballarin@14551
|
679 |
qed
|
ballarin@14551
|
680 |
next
|
ballarin@14551
|
681 |
fix x y
|
wenzelm@14693
|
682 |
assume L: "x \<in> carrier L" "y \<in> carrier L"
|
ballarin@14551
|
683 |
show "EX i. greatest L i (Lower L {x, y})"
|
ballarin@14551
|
684 |
proof -
|
ballarin@14551
|
685 |
note total L
|
ballarin@14551
|
686 |
moreover
|
ballarin@14551
|
687 |
{
|
wenzelm@14693
|
688 |
assume "y \<sqsubseteq> x"
|
ballarin@14551
|
689 |
with L have "greatest L y (Lower L {x, y})"
|
wenzelm@14693
|
690 |
by (rule_tac greatest_LowerI) auto
|
ballarin@14551
|
691 |
}
|
ballarin@14551
|
692 |
moreover
|
ballarin@14551
|
693 |
{
|
wenzelm@14693
|
694 |
assume "x \<sqsubseteq> y"
|
ballarin@14551
|
695 |
with L have "greatest L x (Lower L {x, y})"
|
wenzelm@14693
|
696 |
by (rule_tac greatest_LowerI) auto
|
ballarin@14551
|
697 |
}
|
ballarin@14551
|
698 |
ultimately show ?thesis by blast
|
ballarin@14551
|
699 |
qed
|
ballarin@14551
|
700 |
qed
|
ballarin@14551
|
701 |
qed (assumption | rule total_order_axioms.intro)+
|
ballarin@14551
|
702 |
|
wenzelm@14693
|
703 |
|
ballarin@14551
|
704 |
subsection {* Complete lattices *}
|
ballarin@14551
|
705 |
|
ballarin@14551
|
706 |
locale complete_lattice = lattice +
|
ballarin@14551
|
707 |
assumes sup_exists:
|
ballarin@14551
|
708 |
"[| A \<subseteq> carrier L |] ==> EX s. least L s (Upper L A)"
|
ballarin@14551
|
709 |
and inf_exists:
|
ballarin@14551
|
710 |
"[| A \<subseteq> carrier L |] ==> EX i. greatest L i (Lower L A)"
|
ballarin@14551
|
711 |
|
ballarin@14551
|
712 |
text {* Introduction rule: the usual definition of complete lattice *}
|
ballarin@14551
|
713 |
|
ballarin@14551
|
714 |
lemma (in partial_order) complete_latticeI:
|
ballarin@14551
|
715 |
assumes sup_exists:
|
ballarin@14551
|
716 |
"!!A. [| A \<subseteq> carrier L |] ==> EX s. least L s (Upper L A)"
|
ballarin@14551
|
717 |
and inf_exists:
|
ballarin@14551
|
718 |
"!!A. [| A \<subseteq> carrier L |] ==> EX i. greatest L i (Lower L A)"
|
ballarin@14551
|
719 |
shows "complete_lattice L"
|
ballarin@14551
|
720 |
proof (rule complete_lattice.intro)
|
ballarin@14551
|
721 |
show "lattice_axioms L"
|
wenzelm@14693
|
722 |
by (rule lattice_axioms.intro) (blast intro: sup_exists inf_exists)+
|
ballarin@14551
|
723 |
qed (assumption | rule complete_lattice_axioms.intro)+
|
ballarin@14551
|
724 |
|
wenzelm@14651
|
725 |
constdefs (structure L)
|
wenzelm@14651
|
726 |
top :: "_ => 'a" ("\<top>\<index>")
|
wenzelm@14651
|
727 |
"\<top> == sup L (carrier L)"
|
ballarin@14551
|
728 |
|
wenzelm@14651
|
729 |
bottom :: "_ => 'a" ("\<bottom>\<index>")
|
wenzelm@14651
|
730 |
"\<bottom> == inf L (carrier L)"
|
ballarin@14551
|
731 |
|
ballarin@14551
|
732 |
|
ballarin@14551
|
733 |
lemma (in complete_lattice) supI:
|
ballarin@14551
|
734 |
"[| !!l. least L l (Upper L A) ==> P l; A \<subseteq> carrier L |]
|
wenzelm@14651
|
735 |
==> P (\<Squnion>A)"
|
ballarin@14551
|
736 |
proof (unfold sup_def)
|
ballarin@14551
|
737 |
assume L: "A \<subseteq> carrier L"
|
ballarin@14551
|
738 |
and P: "!!l. least L l (Upper L A) ==> P l"
|
ballarin@14551
|
739 |
with sup_exists obtain s where "least L s (Upper L A)" by blast
|
ballarin@14551
|
740 |
with L show "P (THE l. least L l (Upper L A))"
|
ballarin@14551
|
741 |
by (fast intro: theI2 least_unique P)
|
ballarin@14551
|
742 |
qed
|
ballarin@14551
|
743 |
|
ballarin@14551
|
744 |
lemma (in complete_lattice) sup_closed [simp]:
|
wenzelm@14693
|
745 |
"A \<subseteq> carrier L ==> \<Squnion>A \<in> carrier L"
|
ballarin@14551
|
746 |
by (rule supI) simp_all
|
ballarin@14551
|
747 |
|
ballarin@14551
|
748 |
lemma (in complete_lattice) top_closed [simp, intro]:
|
ballarin@14551
|
749 |
"\<top> \<in> carrier L"
|
ballarin@14551
|
750 |
by (unfold top_def) simp
|
ballarin@14551
|
751 |
|
ballarin@14551
|
752 |
lemma (in complete_lattice) infI:
|
ballarin@14551
|
753 |
"[| !!i. greatest L i (Lower L A) ==> P i; A \<subseteq> carrier L |]
|
wenzelm@14693
|
754 |
==> P (\<Sqinter>A)"
|
ballarin@14551
|
755 |
proof (unfold inf_def)
|
ballarin@14551
|
756 |
assume L: "A \<subseteq> carrier L"
|
ballarin@14551
|
757 |
and P: "!!l. greatest L l (Lower L A) ==> P l"
|
ballarin@14551
|
758 |
with inf_exists obtain s where "greatest L s (Lower L A)" by blast
|
ballarin@14551
|
759 |
with L show "P (THE l. greatest L l (Lower L A))"
|
ballarin@14551
|
760 |
by (fast intro: theI2 greatest_unique P)
|
ballarin@14551
|
761 |
qed
|
ballarin@14551
|
762 |
|
ballarin@14551
|
763 |
lemma (in complete_lattice) inf_closed [simp]:
|
wenzelm@14693
|
764 |
"A \<subseteq> carrier L ==> \<Sqinter>A \<in> carrier L"
|
ballarin@14551
|
765 |
by (rule infI) simp_all
|
ballarin@14551
|
766 |
|
ballarin@14551
|
767 |
lemma (in complete_lattice) bottom_closed [simp, intro]:
|
ballarin@14551
|
768 |
"\<bottom> \<in> carrier L"
|
ballarin@14551
|
769 |
by (unfold bottom_def) simp
|
ballarin@14551
|
770 |
|
ballarin@14551
|
771 |
text {* Jacobson: Theorem 8.1 *}
|
ballarin@14551
|
772 |
|
ballarin@14551
|
773 |
lemma Lower_empty [simp]:
|
ballarin@14551
|
774 |
"Lower L {} = carrier L"
|
ballarin@14551
|
775 |
by (unfold Lower_def) simp
|
ballarin@14551
|
776 |
|
ballarin@14551
|
777 |
lemma Upper_empty [simp]:
|
ballarin@14551
|
778 |
"Upper L {} = carrier L"
|
ballarin@14551
|
779 |
by (unfold Upper_def) simp
|
ballarin@14551
|
780 |
|
ballarin@14551
|
781 |
theorem (in partial_order) complete_lattice_criterion1:
|
ballarin@14551
|
782 |
assumes top_exists: "EX g. greatest L g (carrier L)"
|
ballarin@14551
|
783 |
and inf_exists:
|
ballarin@14551
|
784 |
"!!A. [| A \<subseteq> carrier L; A ~= {} |] ==> EX i. greatest L i (Lower L A)"
|
ballarin@14551
|
785 |
shows "complete_lattice L"
|
ballarin@14551
|
786 |
proof (rule complete_latticeI)
|
ballarin@14551
|
787 |
from top_exists obtain top where top: "greatest L top (carrier L)" ..
|
ballarin@14551
|
788 |
fix A
|
ballarin@14551
|
789 |
assume L: "A \<subseteq> carrier L"
|
ballarin@14551
|
790 |
let ?B = "Upper L A"
|
ballarin@14551
|
791 |
from L top have "top \<in> ?B" by (fast intro!: Upper_memI intro: greatest_le)
|
ballarin@14551
|
792 |
then have B_non_empty: "?B ~= {}" by fast
|
ballarin@14551
|
793 |
have B_L: "?B \<subseteq> carrier L" by simp
|
ballarin@14551
|
794 |
from inf_exists [OF B_L B_non_empty]
|
ballarin@14551
|
795 |
obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
|
ballarin@14551
|
796 |
have "least L b (Upper L A)"
|
ballarin@14551
|
797 |
apply (rule least_UpperI)
|
wenzelm@14693
|
798 |
apply (rule greatest_le [where A = "Lower L ?B"])
|
ballarin@14551
|
799 |
apply (rule b_inf_B)
|
ballarin@14551
|
800 |
apply (rule Lower_memI)
|
ballarin@14551
|
801 |
apply (erule UpperD)
|
ballarin@14551
|
802 |
apply assumption
|
ballarin@14551
|
803 |
apply (rule L)
|
ballarin@14551
|
804 |
apply (fast intro: L [THEN subsetD])
|
ballarin@14551
|
805 |
apply (erule greatest_Lower_above [OF b_inf_B])
|
ballarin@14551
|
806 |
apply simp
|
ballarin@14551
|
807 |
apply (rule L)
|
ballarin@14551
|
808 |
apply (rule greatest_carrier [OF b_inf_B]) (* rename rule: _closed *)
|
ballarin@14551
|
809 |
done
|
ballarin@14551
|
810 |
then show "EX s. least L s (Upper L A)" ..
|
ballarin@14551
|
811 |
next
|
ballarin@14551
|
812 |
fix A
|
ballarin@14551
|
813 |
assume L: "A \<subseteq> carrier L"
|
ballarin@14551
|
814 |
show "EX i. greatest L i (Lower L A)"
|
ballarin@14551
|
815 |
proof (cases "A = {}")
|
ballarin@14551
|
816 |
case True then show ?thesis
|
ballarin@14551
|
817 |
by (simp add: top_exists)
|
ballarin@14551
|
818 |
next
|
ballarin@14551
|
819 |
case False with L show ?thesis
|
ballarin@14551
|
820 |
by (rule inf_exists)
|
ballarin@14551
|
821 |
qed
|
ballarin@14551
|
822 |
qed
|
ballarin@14551
|
823 |
|
ballarin@14551
|
824 |
(* TODO: prove dual version *)
|
ballarin@14551
|
825 |
|
ballarin@14551
|
826 |
subsection {* Examples *}
|
ballarin@14551
|
827 |
|
ballarin@14551
|
828 |
subsubsection {* Powerset of a set is a complete lattice *}
|
ballarin@14551
|
829 |
|
ballarin@14551
|
830 |
theorem powerset_is_complete_lattice:
|
ballarin@14551
|
831 |
"complete_lattice (| carrier = Pow A, le = op \<subseteq> |)"
|
ballarin@14551
|
832 |
(is "complete_lattice ?L")
|
ballarin@14551
|
833 |
proof (rule partial_order.complete_latticeI)
|
ballarin@14551
|
834 |
show "partial_order ?L"
|
ballarin@14551
|
835 |
by (rule partial_order.intro) auto
|
ballarin@14551
|
836 |
next
|
ballarin@14551
|
837 |
fix B
|
ballarin@14551
|
838 |
assume "B \<subseteq> carrier ?L"
|
ballarin@14551
|
839 |
then have "least ?L (\<Union> B) (Upper ?L B)"
|
ballarin@14551
|
840 |
by (fastsimp intro!: least_UpperI simp: Upper_def)
|
ballarin@14551
|
841 |
then show "EX s. least ?L s (Upper ?L B)" ..
|
ballarin@14551
|
842 |
next
|
ballarin@14551
|
843 |
fix B
|
ballarin@14551
|
844 |
assume "B \<subseteq> carrier ?L"
|
ballarin@14551
|
845 |
then have "greatest ?L (\<Inter> B \<inter> A) (Lower ?L B)"
|
ballarin@14551
|
846 |
txt {* @{term "\<Inter> B"} is not the infimum of @{term B}:
|
ballarin@14551
|
847 |
@{term "\<Inter> {} = UNIV"} which is in general bigger than @{term "A"}! *}
|
ballarin@14551
|
848 |
by (fastsimp intro!: greatest_LowerI simp: Lower_def)
|
ballarin@14551
|
849 |
then show "EX i. greatest ?L i (Lower ?L B)" ..
|
ballarin@14551
|
850 |
qed
|
ballarin@14551
|
851 |
|
ballarin@14751
|
852 |
text {* An other example, that of the lattice of subgroups of a group,
|
ballarin@14751
|
853 |
can be found in Group theory (Section~\ref{sec:subgroup-lattice}). *}
|
ballarin@14551
|
854 |
|
wenzelm@14693
|
855 |
end
|