src/HOL/Algebra/Lattice.thy
author haftmann
Sat Mar 18 09:58:49 2006 +0100 (2006-03-18)
changeset 19286 83404ccd270a
parent 16417 9bc16273c2d4
child 19783 82f365a14960
permissions -rw-r--r--
renamed constant less in lattice
ballarin@14551
     1
(*
wenzelm@14706
     2
  Title:     HOL/Algebra/Lattice.thy
ballarin@14551
     3
  Id:        $Id$
ballarin@14551
     4
  Author:    Clemens Ballarin, started 7 November 2003
ballarin@14551
     5
  Copyright: Clemens Ballarin
ballarin@14551
     6
*)
ballarin@14551
     7
wenzelm@14706
     8
header {* Orders and Lattices *}
ballarin@14551
     9
haftmann@16417
    10
theory Lattice imports Main begin
ballarin@14751
    11
ballarin@14751
    12
text {* Object with a carrier set. *}
ballarin@14751
    13
ballarin@14751
    14
record 'a partial_object =
ballarin@14751
    15
  carrier :: "'a set"
ballarin@14551
    16
ballarin@14551
    17
subsection {* Partial Orders *}
ballarin@14551
    18
ballarin@14551
    19
record 'a order = "'a partial_object" +
ballarin@14551
    20
  le :: "['a, 'a] => bool" (infixl "\<sqsubseteq>\<index>" 50)
ballarin@14551
    21
wenzelm@14693
    22
locale partial_order = struct L +
ballarin@14551
    23
  assumes refl [intro, simp]:
ballarin@14551
    24
                  "x \<in> carrier L ==> x \<sqsubseteq> x"
ballarin@14551
    25
    and anti_sym [intro]:
ballarin@14551
    26
                  "[| x \<sqsubseteq> y; y \<sqsubseteq> x; x \<in> carrier L; y \<in> carrier L |] ==> x = y"
ballarin@14551
    27
    and trans [trans]:
ballarin@14551
    28
                  "[| x \<sqsubseteq> y; y \<sqsubseteq> z;
ballarin@14551
    29
                   x \<in> carrier L; y \<in> carrier L; z \<in> carrier L |] ==> x \<sqsubseteq> z"
ballarin@14551
    30
wenzelm@14651
    31
constdefs (structure L)
haftmann@19286
    32
  lless :: "[_, 'a, 'a] => bool" (infixl "\<sqsubset>\<index>" 50)
wenzelm@14651
    33
  "x \<sqsubset> y == x \<sqsubseteq> y & x ~= y"
ballarin@14551
    34
wenzelm@14651
    35
  -- {* Upper and lower bounds of a set. *}
wenzelm@14651
    36
  Upper :: "[_, 'a set] => 'a set"
wenzelm@14693
    37
  "Upper L A == {u. (ALL x. x \<in> A \<inter> carrier L --> x \<sqsubseteq> u)} \<inter>
ballarin@14551
    38
                carrier L"
ballarin@14551
    39
wenzelm@14651
    40
  Lower :: "[_, 'a set] => 'a set"
wenzelm@14693
    41
  "Lower L A == {l. (ALL x. x \<in> A \<inter> carrier L --> l \<sqsubseteq> x)} \<inter>
ballarin@14551
    42
                carrier L"
ballarin@14551
    43
wenzelm@14651
    44
  -- {* Least and greatest, as predicate. *}
wenzelm@14651
    45
  least :: "[_, 'a, 'a set] => bool"
wenzelm@14693
    46
  "least L l A == A \<subseteq> carrier L & l \<in> A & (ALL x : A. l \<sqsubseteq> x)"
ballarin@14551
    47
wenzelm@14651
    48
  greatest :: "[_, 'a, 'a set] => bool"
wenzelm@14693
    49
  "greatest L g A == A \<subseteq> carrier L & g \<in> A & (ALL x : A. x \<sqsubseteq> g)"
ballarin@14551
    50
wenzelm@14651
    51
  -- {* Supremum and infimum *}
wenzelm@14651
    52
  sup :: "[_, 'a set] => 'a" ("\<Squnion>\<index>_" [90] 90)
wenzelm@14651
    53
  "\<Squnion>A == THE x. least L x (Upper L A)"
ballarin@14551
    54
wenzelm@14651
    55
  inf :: "[_, 'a set] => 'a" ("\<Sqinter>\<index>_" [90] 90)
wenzelm@14651
    56
  "\<Sqinter>A == THE x. greatest L x (Lower L A)"
ballarin@14551
    57
wenzelm@14651
    58
  join :: "[_, 'a, 'a] => 'a" (infixl "\<squnion>\<index>" 65)
wenzelm@14651
    59
  "x \<squnion> y == sup L {x, y}"
ballarin@14551
    60
ballarin@16325
    61
  meet :: "[_, 'a, 'a] => 'a" (infixl "\<sqinter>\<index>" 70)
wenzelm@14651
    62
  "x \<sqinter> y == inf L {x, y}"
ballarin@14551
    63
wenzelm@14651
    64
wenzelm@14651
    65
subsubsection {* Upper *}
ballarin@14551
    66
ballarin@14551
    67
lemma Upper_closed [intro, simp]:
ballarin@14551
    68
  "Upper L A \<subseteq> carrier L"
ballarin@14551
    69
  by (unfold Upper_def) clarify
ballarin@14551
    70
ballarin@14551
    71
lemma UpperD [dest]:
wenzelm@14693
    72
  includes struct L
ballarin@14551
    73
  shows "[| u \<in> Upper L A; x \<in> A; A \<subseteq> carrier L |] ==> x \<sqsubseteq> u"
wenzelm@14693
    74
  by (unfold Upper_def) blast
ballarin@14551
    75
ballarin@14551
    76
lemma Upper_memI:
wenzelm@14693
    77
  includes struct L
ballarin@14551
    78
  shows "[| !! y. y \<in> A ==> y \<sqsubseteq> x; x \<in> carrier L |] ==> x \<in> Upper L A"
wenzelm@14693
    79
  by (unfold Upper_def) blast
ballarin@14551
    80
ballarin@14551
    81
lemma Upper_antimono:
ballarin@14551
    82
  "A \<subseteq> B ==> Upper L B \<subseteq> Upper L A"
ballarin@14551
    83
  by (unfold Upper_def) blast
ballarin@14551
    84
wenzelm@14651
    85
wenzelm@14651
    86
subsubsection {* Lower *}
ballarin@14551
    87
ballarin@14551
    88
lemma Lower_closed [intro, simp]:
ballarin@14551
    89
  "Lower L A \<subseteq> carrier L"
ballarin@14551
    90
  by (unfold Lower_def) clarify
ballarin@14551
    91
ballarin@14551
    92
lemma LowerD [dest]:
wenzelm@14693
    93
  includes struct L
ballarin@14551
    94
  shows "[| l \<in> Lower L A; x \<in> A; A \<subseteq> carrier L |] ==> l \<sqsubseteq> x"
wenzelm@14693
    95
  by (unfold Lower_def) blast
ballarin@14551
    96
ballarin@14551
    97
lemma Lower_memI:
wenzelm@14693
    98
  includes struct L
ballarin@14551
    99
  shows "[| !! y. y \<in> A ==> x \<sqsubseteq> y; x \<in> carrier L |] ==> x \<in> Lower L A"
wenzelm@14693
   100
  by (unfold Lower_def) blast
ballarin@14551
   101
ballarin@14551
   102
lemma Lower_antimono:
ballarin@14551
   103
  "A \<subseteq> B ==> Lower L B \<subseteq> Lower L A"
ballarin@14551
   104
  by (unfold Lower_def) blast
ballarin@14551
   105
wenzelm@14651
   106
wenzelm@14651
   107
subsubsection {* least *}
ballarin@14551
   108
ballarin@14551
   109
lemma least_carrier [intro, simp]:
ballarin@14551
   110
  shows "least L l A ==> l \<in> carrier L"
ballarin@14551
   111
  by (unfold least_def) fast
ballarin@14551
   112
ballarin@14551
   113
lemma least_mem:
ballarin@14551
   114
  "least L l A ==> l \<in> A"
ballarin@14551
   115
  by (unfold least_def) fast
ballarin@14551
   116
ballarin@14551
   117
lemma (in partial_order) least_unique:
ballarin@14551
   118
  "[| least L x A; least L y A |] ==> x = y"
ballarin@14551
   119
  by (unfold least_def) blast
ballarin@14551
   120
ballarin@14551
   121
lemma least_le:
wenzelm@14693
   122
  includes struct L
ballarin@14551
   123
  shows "[| least L x A; a \<in> A |] ==> x \<sqsubseteq> a"
ballarin@14551
   124
  by (unfold least_def) fast
ballarin@14551
   125
ballarin@14551
   126
lemma least_UpperI:
wenzelm@14693
   127
  includes struct L
ballarin@14551
   128
  assumes above: "!! x. x \<in> A ==> x \<sqsubseteq> s"
ballarin@14551
   129
    and below: "!! y. y \<in> Upper L A ==> s \<sqsubseteq> y"
wenzelm@14693
   130
    and L: "A \<subseteq> carrier L"  "s \<in> carrier L"
ballarin@14551
   131
  shows "least L s (Upper L A)"
wenzelm@14693
   132
proof -
wenzelm@14693
   133
  have "Upper L A \<subseteq> carrier L" by simp
wenzelm@14693
   134
  moreover from above L have "s \<in> Upper L A" by (simp add: Upper_def)
wenzelm@14693
   135
  moreover from below have "ALL x : Upper L A. s \<sqsubseteq> x" by fast
wenzelm@14693
   136
  ultimately show ?thesis by (simp add: least_def)
ballarin@14551
   137
qed
ballarin@14551
   138
wenzelm@14651
   139
wenzelm@14651
   140
subsubsection {* greatest *}
ballarin@14551
   141
ballarin@14551
   142
lemma greatest_carrier [intro, simp]:
ballarin@14551
   143
  shows "greatest L l A ==> l \<in> carrier L"
ballarin@14551
   144
  by (unfold greatest_def) fast
ballarin@14551
   145
ballarin@14551
   146
lemma greatest_mem:
ballarin@14551
   147
  "greatest L l A ==> l \<in> A"
ballarin@14551
   148
  by (unfold greatest_def) fast
ballarin@14551
   149
ballarin@14551
   150
lemma (in partial_order) greatest_unique:
ballarin@14551
   151
  "[| greatest L x A; greatest L y A |] ==> x = y"
ballarin@14551
   152
  by (unfold greatest_def) blast
ballarin@14551
   153
ballarin@14551
   154
lemma greatest_le:
wenzelm@14693
   155
  includes struct L
ballarin@14551
   156
  shows "[| greatest L x A; a \<in> A |] ==> a \<sqsubseteq> x"
ballarin@14551
   157
  by (unfold greatest_def) fast
ballarin@14551
   158
ballarin@14551
   159
lemma greatest_LowerI:
wenzelm@14693
   160
  includes struct L
ballarin@14551
   161
  assumes below: "!! x. x \<in> A ==> i \<sqsubseteq> x"
ballarin@14551
   162
    and above: "!! y. y \<in> Lower L A ==> y \<sqsubseteq> i"
wenzelm@14693
   163
    and L: "A \<subseteq> carrier L"  "i \<in> carrier L"
ballarin@14551
   164
  shows "greatest L i (Lower L A)"
wenzelm@14693
   165
proof -
wenzelm@14693
   166
  have "Lower L A \<subseteq> carrier L" by simp
wenzelm@14693
   167
  moreover from below L have "i \<in> Lower L A" by (simp add: Lower_def)
wenzelm@14693
   168
  moreover from above have "ALL x : Lower L A. x \<sqsubseteq> i" by fast
wenzelm@14693
   169
  ultimately show ?thesis by (simp add: greatest_def)
ballarin@14551
   170
qed
ballarin@14551
   171
wenzelm@14693
   172
ballarin@14551
   173
subsection {* Lattices *}
ballarin@14551
   174
ballarin@14551
   175
locale lattice = partial_order +
ballarin@14551
   176
  assumes sup_of_two_exists:
ballarin@14551
   177
    "[| x \<in> carrier L; y \<in> carrier L |] ==> EX s. least L s (Upper L {x, y})"
ballarin@14551
   178
    and inf_of_two_exists:
ballarin@14551
   179
    "[| x \<in> carrier L; y \<in> carrier L |] ==> EX s. greatest L s (Lower L {x, y})"
ballarin@14551
   180
ballarin@14551
   181
lemma least_Upper_above:
wenzelm@14693
   182
  includes struct L
ballarin@14551
   183
  shows "[| least L s (Upper L A); x \<in> A; A \<subseteq> carrier L |] ==> x \<sqsubseteq> s"
ballarin@14551
   184
  by (unfold least_def) blast
ballarin@14551
   185
ballarin@14551
   186
lemma greatest_Lower_above:
wenzelm@14693
   187
  includes struct L
ballarin@14551
   188
  shows "[| greatest L i (Lower L A); x \<in> A; A \<subseteq> carrier L |] ==> i \<sqsubseteq> x"
ballarin@14551
   189
  by (unfold greatest_def) blast
ballarin@14551
   190
wenzelm@14666
   191
ballarin@14551
   192
subsubsection {* Supremum *}
ballarin@14551
   193
ballarin@14551
   194
lemma (in lattice) joinI:
ballarin@14551
   195
  "[| !!l. least L l (Upper L {x, y}) ==> P l; x \<in> carrier L; y \<in> carrier L |]
ballarin@14551
   196
  ==> P (x \<squnion> y)"
ballarin@14551
   197
proof (unfold join_def sup_def)
wenzelm@14693
   198
  assume L: "x \<in> carrier L"  "y \<in> carrier L"
ballarin@14551
   199
    and P: "!!l. least L l (Upper L {x, y}) ==> P l"
ballarin@14551
   200
  with sup_of_two_exists obtain s where "least L s (Upper L {x, y})" by fast
ballarin@14551
   201
  with L show "P (THE l. least L l (Upper L {x, y}))"
wenzelm@14693
   202
    by (fast intro: theI2 least_unique P)
ballarin@14551
   203
qed
ballarin@14551
   204
ballarin@14551
   205
lemma (in lattice) join_closed [simp]:
ballarin@14551
   206
  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<squnion> y \<in> carrier L"
ballarin@14551
   207
  by (rule joinI) (rule least_carrier)
ballarin@14551
   208
wenzelm@14651
   209
lemma (in partial_order) sup_of_singletonI:      (* only reflexivity needed ? *)
ballarin@14551
   210
  "x \<in> carrier L ==> least L x (Upper L {x})"
ballarin@14551
   211
  by (rule least_UpperI) fast+
ballarin@14551
   212
ballarin@14551
   213
lemma (in partial_order) sup_of_singleton [simp]:
wenzelm@14693
   214
  includes struct L
wenzelm@14693
   215
  shows "x \<in> carrier L ==> \<Squnion>{x} = x"
ballarin@14551
   216
  by (unfold sup_def) (blast intro: least_unique least_UpperI sup_of_singletonI)
ballarin@14551
   217
wenzelm@14666
   218
wenzelm@14666
   219
text {* Condition on @{text A}: supremum exists. *}
ballarin@14551
   220
ballarin@14551
   221
lemma (in lattice) sup_insertI:
ballarin@14551
   222
  "[| !!s. least L s (Upper L (insert x A)) ==> P s;
ballarin@14551
   223
  least L a (Upper L A); x \<in> carrier L; A \<subseteq> carrier L |]
wenzelm@14693
   224
  ==> P (\<Squnion>(insert x A))"
ballarin@14551
   225
proof (unfold sup_def)
wenzelm@14693
   226
  assume L: "x \<in> carrier L"  "A \<subseteq> carrier L"
ballarin@14551
   227
    and P: "!!l. least L l (Upper L (insert x A)) ==> P l"
ballarin@14551
   228
    and least_a: "least L a (Upper L A)"
ballarin@14551
   229
  from L least_a have La: "a \<in> carrier L" by simp
ballarin@14551
   230
  from L sup_of_two_exists least_a
ballarin@14551
   231
  obtain s where least_s: "least L s (Upper L {a, x})" by blast
ballarin@14551
   232
  show "P (THE l. least L l (Upper L (insert x A)))"
wenzelm@14693
   233
  proof (rule theI2)
ballarin@14551
   234
    show "least L s (Upper L (insert x A))"
ballarin@14551
   235
    proof (rule least_UpperI)
ballarin@14551
   236
      fix z
wenzelm@14693
   237
      assume "z \<in> insert x A"
wenzelm@14693
   238
      then show "z \<sqsubseteq> s"
wenzelm@14693
   239
      proof
wenzelm@14693
   240
        assume "z = x" then show ?thesis
wenzelm@14693
   241
          by (simp add: least_Upper_above [OF least_s] L La)
wenzelm@14693
   242
      next
wenzelm@14693
   243
        assume "z \<in> A"
wenzelm@14693
   244
        with L least_s least_a show ?thesis
wenzelm@14693
   245
          by (rule_tac trans [where y = a]) (auto dest: least_Upper_above)
wenzelm@14693
   246
      qed
wenzelm@14693
   247
    next
wenzelm@14693
   248
      fix y
wenzelm@14693
   249
      assume y: "y \<in> Upper L (insert x A)"
wenzelm@14693
   250
      show "s \<sqsubseteq> y"
wenzelm@14693
   251
      proof (rule least_le [OF least_s], rule Upper_memI)
wenzelm@14693
   252
	fix z
wenzelm@14693
   253
	assume z: "z \<in> {a, x}"
wenzelm@14693
   254
	then show "z \<sqsubseteq> y"
wenzelm@14693
   255
	proof
wenzelm@14693
   256
          have y': "y \<in> Upper L A"
wenzelm@14693
   257
            apply (rule subsetD [where A = "Upper L (insert x A)"])
wenzelm@14693
   258
            apply (rule Upper_antimono) apply clarify apply assumption
wenzelm@14693
   259
            done
wenzelm@14693
   260
          assume "z = a"
wenzelm@14693
   261
          with y' least_a show ?thesis by (fast dest: least_le)
wenzelm@14693
   262
	next
wenzelm@14693
   263
	  assume "z \<in> {x}"  (* FIXME "z = x"; declare specific elim rule for "insert x {}" (!?) *)
wenzelm@14693
   264
          with y L show ?thesis by blast
wenzelm@14693
   265
	qed
wenzelm@14693
   266
      qed (rule Upper_closed [THEN subsetD])
wenzelm@14693
   267
    next
wenzelm@14693
   268
      from L show "insert x A \<subseteq> carrier L" by simp
wenzelm@14693
   269
      from least_s show "s \<in> carrier L" by simp
ballarin@14551
   270
    qed
ballarin@14551
   271
  next
ballarin@14551
   272
    fix l
ballarin@14551
   273
    assume least_l: "least L l (Upper L (insert x A))"
ballarin@14551
   274
    show "l = s"
ballarin@14551
   275
    proof (rule least_unique)
ballarin@14551
   276
      show "least L s (Upper L (insert x A))"
ballarin@14551
   277
      proof (rule least_UpperI)
wenzelm@14693
   278
        fix z
wenzelm@14693
   279
        assume "z \<in> insert x A"
wenzelm@14693
   280
        then show "z \<sqsubseteq> s"
wenzelm@14693
   281
	proof
wenzelm@14693
   282
          assume "z = x" then show ?thesis
wenzelm@14693
   283
            by (simp add: least_Upper_above [OF least_s] L La)
wenzelm@14693
   284
	next
wenzelm@14693
   285
          assume "z \<in> A"
wenzelm@14693
   286
          with L least_s least_a show ?thesis
wenzelm@14693
   287
            by (rule_tac trans [where y = a]) (auto dest: least_Upper_above)
ballarin@14551
   288
	qed
ballarin@14551
   289
      next
wenzelm@14693
   290
        fix y
wenzelm@14693
   291
        assume y: "y \<in> Upper L (insert x A)"
wenzelm@14693
   292
        show "s \<sqsubseteq> y"
wenzelm@14693
   293
        proof (rule least_le [OF least_s], rule Upper_memI)
wenzelm@14693
   294
          fix z
wenzelm@14693
   295
          assume z: "z \<in> {a, x}"
wenzelm@14693
   296
          then show "z \<sqsubseteq> y"
wenzelm@14693
   297
          proof
wenzelm@14693
   298
            have y': "y \<in> Upper L A"
wenzelm@14693
   299
	      apply (rule subsetD [where A = "Upper L (insert x A)"])
wenzelm@14693
   300
	      apply (rule Upper_antimono) apply clarify apply assumption
wenzelm@14693
   301
	      done
wenzelm@14693
   302
            assume "z = a"
wenzelm@14693
   303
            with y' least_a show ?thesis by (fast dest: least_le)
wenzelm@14693
   304
	  next
wenzelm@14693
   305
            assume "z \<in> {x}"
wenzelm@14693
   306
            with y L show ?thesis by blast
wenzelm@14693
   307
          qed
wenzelm@14693
   308
        qed (rule Upper_closed [THEN subsetD])
ballarin@14551
   309
      next
wenzelm@14693
   310
        from L show "insert x A \<subseteq> carrier L" by simp
wenzelm@14693
   311
        from least_s show "s \<in> carrier L" by simp
ballarin@14551
   312
      qed
ballarin@14551
   313
    qed
ballarin@14551
   314
  qed
ballarin@14551
   315
qed
ballarin@14551
   316
ballarin@14551
   317
lemma (in lattice) finite_sup_least:
wenzelm@14693
   318
  "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> least L (\<Squnion>A) (Upper L A)"
ballarin@14551
   319
proof (induct set: Finites)
wenzelm@14693
   320
  case empty
wenzelm@14693
   321
  then show ?case by simp
ballarin@14551
   322
next
nipkow@15328
   323
  case (insert x A)
ballarin@14551
   324
  show ?case
ballarin@14551
   325
  proof (cases "A = {}")
ballarin@14551
   326
    case True
ballarin@14551
   327
    with insert show ?thesis by (simp add: sup_of_singletonI)
ballarin@14551
   328
  next
ballarin@14551
   329
    case False
wenzelm@14693
   330
    with insert have "least L (\<Squnion>A) (Upper L A)" by simp
wenzelm@14693
   331
    with _ show ?thesis
wenzelm@14693
   332
      by (rule sup_insertI) (simp_all add: insert [simplified])
ballarin@14551
   333
  qed
ballarin@14551
   334
qed
ballarin@14551
   335
ballarin@14551
   336
lemma (in lattice) finite_sup_insertI:
ballarin@14551
   337
  assumes P: "!!l. least L l (Upper L (insert x A)) ==> P l"
wenzelm@14693
   338
    and xA: "finite A"  "x \<in> carrier L"  "A \<subseteq> carrier L"
ballarin@14551
   339
  shows "P (\<Squnion> (insert x A))"
ballarin@14551
   340
proof (cases "A = {}")
ballarin@14551
   341
  case True with P and xA show ?thesis
ballarin@14551
   342
    by (simp add: sup_of_singletonI)
ballarin@14551
   343
next
ballarin@14551
   344
  case False with P and xA show ?thesis
ballarin@14551
   345
    by (simp add: sup_insertI finite_sup_least)
ballarin@14551
   346
qed
ballarin@14551
   347
ballarin@14551
   348
lemma (in lattice) finite_sup_closed:
wenzelm@14693
   349
  "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> \<Squnion>A \<in> carrier L"
ballarin@14551
   350
proof (induct set: Finites)
ballarin@14551
   351
  case empty then show ?case by simp
ballarin@14551
   352
next
nipkow@15328
   353
  case insert then show ?case
wenzelm@14693
   354
    by - (rule finite_sup_insertI, simp_all)
ballarin@14551
   355
qed
ballarin@14551
   356
ballarin@14551
   357
lemma (in lattice) join_left:
ballarin@14551
   358
  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> x \<squnion> y"
wenzelm@14693
   359
  by (rule joinI [folded join_def]) (blast dest: least_mem)
ballarin@14551
   360
ballarin@14551
   361
lemma (in lattice) join_right:
ballarin@14551
   362
  "[| x \<in> carrier L; y \<in> carrier L |] ==> y \<sqsubseteq> x \<squnion> y"
wenzelm@14693
   363
  by (rule joinI [folded join_def]) (blast dest: least_mem)
ballarin@14551
   364
ballarin@14551
   365
lemma (in lattice) sup_of_two_least:
wenzelm@14693
   366
  "[| x \<in> carrier L; y \<in> carrier L |] ==> least L (\<Squnion>{x, y}) (Upper L {x, y})"
ballarin@14551
   367
proof (unfold sup_def)
wenzelm@14693
   368
  assume L: "x \<in> carrier L"  "y \<in> carrier L"
ballarin@14551
   369
  with sup_of_two_exists obtain s where "least L s (Upper L {x, y})" by fast
ballarin@14551
   370
  with L show "least L (THE xa. least L xa (Upper L {x, y})) (Upper L {x, y})"
ballarin@14551
   371
  by (fast intro: theI2 least_unique)  (* blast fails *)
ballarin@14551
   372
qed
ballarin@14551
   373
ballarin@14551
   374
lemma (in lattice) join_le:
wenzelm@14693
   375
  assumes sub: "x \<sqsubseteq> z"  "y \<sqsubseteq> z"
wenzelm@14693
   376
    and L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
ballarin@14551
   377
  shows "x \<squnion> y \<sqsubseteq> z"
ballarin@14551
   378
proof (rule joinI)
ballarin@14551
   379
  fix s
ballarin@14551
   380
  assume "least L s (Upper L {x, y})"
ballarin@14551
   381
  with sub L show "s \<sqsubseteq> z" by (fast elim: least_le intro: Upper_memI)
ballarin@14551
   382
qed
wenzelm@14693
   383
ballarin@14551
   384
lemma (in lattice) join_assoc_lemma:
wenzelm@14693
   385
  assumes L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
wenzelm@14693
   386
  shows "x \<squnion> (y \<squnion> z) = \<Squnion>{x, y, z}"
ballarin@14551
   387
proof (rule finite_sup_insertI)
wenzelm@14651
   388
  -- {* The textbook argument in Jacobson I, p 457 *}
ballarin@14551
   389
  fix s
ballarin@14551
   390
  assume sup: "least L s (Upper L {x, y, z})"
ballarin@14551
   391
  show "x \<squnion> (y \<squnion> z) = s"
ballarin@14551
   392
  proof (rule anti_sym)
ballarin@14551
   393
    from sup L show "x \<squnion> (y \<squnion> z) \<sqsubseteq> s"
ballarin@14551
   394
      by (fastsimp intro!: join_le elim: least_Upper_above)
ballarin@14551
   395
  next
ballarin@14551
   396
    from sup L show "s \<sqsubseteq> x \<squnion> (y \<squnion> z)"
ballarin@14551
   397
    by (erule_tac least_le)
ballarin@14551
   398
      (blast intro!: Upper_memI intro: trans join_left join_right join_closed)
ballarin@14551
   399
  qed (simp_all add: L least_carrier [OF sup])
ballarin@14551
   400
qed (simp_all add: L)
ballarin@14551
   401
ballarin@14551
   402
lemma join_comm:
wenzelm@14693
   403
  includes struct L
ballarin@14551
   404
  shows "x \<squnion> y = y \<squnion> x"
ballarin@14551
   405
  by (unfold join_def) (simp add: insert_commute)
ballarin@14551
   406
ballarin@14551
   407
lemma (in lattice) join_assoc:
wenzelm@14693
   408
  assumes L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
ballarin@14551
   409
  shows "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"
ballarin@14551
   410
proof -
ballarin@14551
   411
  have "(x \<squnion> y) \<squnion> z = z \<squnion> (x \<squnion> y)" by (simp only: join_comm)
wenzelm@14693
   412
  also from L have "... = \<Squnion>{z, x, y}" by (simp add: join_assoc_lemma)
wenzelm@14693
   413
  also from L have "... = \<Squnion>{x, y, z}" by (simp add: insert_commute)
ballarin@14551
   414
  also from L have "... = x \<squnion> (y \<squnion> z)" by (simp add: join_assoc_lemma)
ballarin@14551
   415
  finally show ?thesis .
ballarin@14551
   416
qed
ballarin@14551
   417
wenzelm@14693
   418
ballarin@14551
   419
subsubsection {* Infimum *}
ballarin@14551
   420
ballarin@14551
   421
lemma (in lattice) meetI:
ballarin@14551
   422
  "[| !!i. greatest L i (Lower L {x, y}) ==> P i;
ballarin@14551
   423
  x \<in> carrier L; y \<in> carrier L |]
ballarin@14551
   424
  ==> P (x \<sqinter> y)"
ballarin@14551
   425
proof (unfold meet_def inf_def)
wenzelm@14693
   426
  assume L: "x \<in> carrier L"  "y \<in> carrier L"
ballarin@14551
   427
    and P: "!!g. greatest L g (Lower L {x, y}) ==> P g"
ballarin@14551
   428
  with inf_of_two_exists obtain i where "greatest L i (Lower L {x, y})" by fast
ballarin@14551
   429
  with L show "P (THE g. greatest L g (Lower L {x, y}))"
ballarin@14551
   430
  by (fast intro: theI2 greatest_unique P)
ballarin@14551
   431
qed
ballarin@14551
   432
ballarin@14551
   433
lemma (in lattice) meet_closed [simp]:
ballarin@14551
   434
  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqinter> y \<in> carrier L"
ballarin@14551
   435
  by (rule meetI) (rule greatest_carrier)
ballarin@14551
   436
wenzelm@14651
   437
lemma (in partial_order) inf_of_singletonI:      (* only reflexivity needed ? *)
ballarin@14551
   438
  "x \<in> carrier L ==> greatest L x (Lower L {x})"
ballarin@14551
   439
  by (rule greatest_LowerI) fast+
ballarin@14551
   440
ballarin@14551
   441
lemma (in partial_order) inf_of_singleton [simp]:
wenzelm@14693
   442
  includes struct L
ballarin@14551
   443
  shows "x \<in> carrier L ==> \<Sqinter> {x} = x"
ballarin@14551
   444
  by (unfold inf_def) (blast intro: greatest_unique greatest_LowerI inf_of_singletonI)
ballarin@14551
   445
ballarin@14551
   446
text {* Condition on A: infimum exists. *}
ballarin@14551
   447
ballarin@14551
   448
lemma (in lattice) inf_insertI:
ballarin@14551
   449
  "[| !!i. greatest L i (Lower L (insert x A)) ==> P i;
ballarin@14551
   450
  greatest L a (Lower L A); x \<in> carrier L; A \<subseteq> carrier L |]
wenzelm@14693
   451
  ==> P (\<Sqinter>(insert x A))"
ballarin@14551
   452
proof (unfold inf_def)
wenzelm@14693
   453
  assume L: "x \<in> carrier L"  "A \<subseteq> carrier L"
ballarin@14551
   454
    and P: "!!g. greatest L g (Lower L (insert x A)) ==> P g"
ballarin@14551
   455
    and greatest_a: "greatest L a (Lower L A)"
ballarin@14551
   456
  from L greatest_a have La: "a \<in> carrier L" by simp
ballarin@14551
   457
  from L inf_of_two_exists greatest_a
ballarin@14551
   458
  obtain i where greatest_i: "greatest L i (Lower L {a, x})" by blast
ballarin@14551
   459
  show "P (THE g. greatest L g (Lower L (insert x A)))"
wenzelm@14693
   460
  proof (rule theI2)
ballarin@14551
   461
    show "greatest L i (Lower L (insert x A))"
ballarin@14551
   462
    proof (rule greatest_LowerI)
ballarin@14551
   463
      fix z
wenzelm@14693
   464
      assume "z \<in> insert x A"
wenzelm@14693
   465
      then show "i \<sqsubseteq> z"
wenzelm@14693
   466
      proof
wenzelm@14693
   467
        assume "z = x" then show ?thesis
wenzelm@14693
   468
          by (simp add: greatest_Lower_above [OF greatest_i] L La)
wenzelm@14693
   469
      next
wenzelm@14693
   470
        assume "z \<in> A"
wenzelm@14693
   471
        with L greatest_i greatest_a show ?thesis
wenzelm@14693
   472
          by (rule_tac trans [where y = a]) (auto dest: greatest_Lower_above)
wenzelm@14693
   473
      qed
wenzelm@14693
   474
    next
wenzelm@14693
   475
      fix y
wenzelm@14693
   476
      assume y: "y \<in> Lower L (insert x A)"
wenzelm@14693
   477
      show "y \<sqsubseteq> i"
wenzelm@14693
   478
      proof (rule greatest_le [OF greatest_i], rule Lower_memI)
wenzelm@14693
   479
	fix z
wenzelm@14693
   480
	assume z: "z \<in> {a, x}"
wenzelm@14693
   481
	then show "y \<sqsubseteq> z"
wenzelm@14693
   482
	proof
wenzelm@14693
   483
          have y': "y \<in> Lower L A"
wenzelm@14693
   484
            apply (rule subsetD [where A = "Lower L (insert x A)"])
wenzelm@14693
   485
            apply (rule Lower_antimono) apply clarify apply assumption
wenzelm@14693
   486
            done
wenzelm@14693
   487
          assume "z = a"
wenzelm@14693
   488
          with y' greatest_a show ?thesis by (fast dest: greatest_le)
wenzelm@14693
   489
	next
wenzelm@14693
   490
          assume "z \<in> {x}"
wenzelm@14693
   491
          with y L show ?thesis by blast
wenzelm@14693
   492
	qed
wenzelm@14693
   493
      qed (rule Lower_closed [THEN subsetD])
wenzelm@14693
   494
    next
wenzelm@14693
   495
      from L show "insert x A \<subseteq> carrier L" by simp
wenzelm@14693
   496
      from greatest_i show "i \<in> carrier L" by simp
ballarin@14551
   497
    qed
ballarin@14551
   498
  next
ballarin@14551
   499
    fix g
ballarin@14551
   500
    assume greatest_g: "greatest L g (Lower L (insert x A))"
ballarin@14551
   501
    show "g = i"
ballarin@14551
   502
    proof (rule greatest_unique)
ballarin@14551
   503
      show "greatest L i (Lower L (insert x A))"
ballarin@14551
   504
      proof (rule greatest_LowerI)
wenzelm@14693
   505
        fix z
wenzelm@14693
   506
        assume "z \<in> insert x A"
wenzelm@14693
   507
        then show "i \<sqsubseteq> z"
wenzelm@14693
   508
	proof
wenzelm@14693
   509
          assume "z = x" then show ?thesis
wenzelm@14693
   510
            by (simp add: greatest_Lower_above [OF greatest_i] L La)
wenzelm@14693
   511
	next
wenzelm@14693
   512
          assume "z \<in> A"
wenzelm@14693
   513
          with L greatest_i greatest_a show ?thesis
wenzelm@14693
   514
            by (rule_tac trans [where y = a]) (auto dest: greatest_Lower_above)
wenzelm@14693
   515
        qed
ballarin@14551
   516
      next
wenzelm@14693
   517
        fix y
wenzelm@14693
   518
        assume y: "y \<in> Lower L (insert x A)"
wenzelm@14693
   519
        show "y \<sqsubseteq> i"
wenzelm@14693
   520
        proof (rule greatest_le [OF greatest_i], rule Lower_memI)
wenzelm@14693
   521
          fix z
wenzelm@14693
   522
          assume z: "z \<in> {a, x}"
wenzelm@14693
   523
          then show "y \<sqsubseteq> z"
wenzelm@14693
   524
          proof
wenzelm@14693
   525
            have y': "y \<in> Lower L A"
wenzelm@14693
   526
	      apply (rule subsetD [where A = "Lower L (insert x A)"])
wenzelm@14693
   527
	      apply (rule Lower_antimono) apply clarify apply assumption
wenzelm@14693
   528
	      done
wenzelm@14693
   529
            assume "z = a"
wenzelm@14693
   530
            with y' greatest_a show ?thesis by (fast dest: greatest_le)
wenzelm@14693
   531
	  next
wenzelm@14693
   532
            assume "z \<in> {x}"
wenzelm@14693
   533
            with y L show ?thesis by blast
ballarin@14551
   534
	  qed
wenzelm@14693
   535
        qed (rule Lower_closed [THEN subsetD])
ballarin@14551
   536
      next
wenzelm@14693
   537
        from L show "insert x A \<subseteq> carrier L" by simp
wenzelm@14693
   538
        from greatest_i show "i \<in> carrier L" by simp
ballarin@14551
   539
      qed
ballarin@14551
   540
    qed
ballarin@14551
   541
  qed
ballarin@14551
   542
qed
ballarin@14551
   543
ballarin@14551
   544
lemma (in lattice) finite_inf_greatest:
wenzelm@14693
   545
  "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> greatest L (\<Sqinter>A) (Lower L A)"
ballarin@14551
   546
proof (induct set: Finites)
ballarin@14551
   547
  case empty then show ?case by simp
ballarin@14551
   548
next
nipkow@15328
   549
  case (insert x A)
ballarin@14551
   550
  show ?case
ballarin@14551
   551
  proof (cases "A = {}")
ballarin@14551
   552
    case True
ballarin@14551
   553
    with insert show ?thesis by (simp add: inf_of_singletonI)
ballarin@14551
   554
  next
ballarin@14551
   555
    case False
ballarin@14551
   556
    from insert show ?thesis
ballarin@14551
   557
    proof (rule_tac inf_insertI)
wenzelm@14693
   558
      from False insert show "greatest L (\<Sqinter>A) (Lower L A)" by simp
ballarin@14551
   559
    qed simp_all
ballarin@14551
   560
  qed
ballarin@14551
   561
qed
ballarin@14551
   562
ballarin@14551
   563
lemma (in lattice) finite_inf_insertI:
ballarin@14551
   564
  assumes P: "!!i. greatest L i (Lower L (insert x A)) ==> P i"
wenzelm@14693
   565
    and xA: "finite A"  "x \<in> carrier L"  "A \<subseteq> carrier L"
ballarin@14551
   566
  shows "P (\<Sqinter> (insert x A))"
ballarin@14551
   567
proof (cases "A = {}")
ballarin@14551
   568
  case True with P and xA show ?thesis
ballarin@14551
   569
    by (simp add: inf_of_singletonI)
ballarin@14551
   570
next
ballarin@14551
   571
  case False with P and xA show ?thesis
ballarin@14551
   572
    by (simp add: inf_insertI finite_inf_greatest)
ballarin@14551
   573
qed
ballarin@14551
   574
ballarin@14551
   575
lemma (in lattice) finite_inf_closed:
wenzelm@14693
   576
  "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> \<Sqinter>A \<in> carrier L"
ballarin@14551
   577
proof (induct set: Finites)
ballarin@14551
   578
  case empty then show ?case by simp
ballarin@14551
   579
next
nipkow@15328
   580
  case insert then show ?case
ballarin@14551
   581
    by (rule_tac finite_inf_insertI) (simp_all)
ballarin@14551
   582
qed
ballarin@14551
   583
ballarin@14551
   584
lemma (in lattice) meet_left:
ballarin@14551
   585
  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqinter> y \<sqsubseteq> x"
wenzelm@14693
   586
  by (rule meetI [folded meet_def]) (blast dest: greatest_mem)
ballarin@14551
   587
ballarin@14551
   588
lemma (in lattice) meet_right:
ballarin@14551
   589
  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqinter> y \<sqsubseteq> y"
wenzelm@14693
   590
  by (rule meetI [folded meet_def]) (blast dest: greatest_mem)
ballarin@14551
   591
ballarin@14551
   592
lemma (in lattice) inf_of_two_greatest:
ballarin@14551
   593
  "[| x \<in> carrier L; y \<in> carrier L |] ==>
ballarin@14551
   594
  greatest L (\<Sqinter> {x, y}) (Lower L {x, y})"
ballarin@14551
   595
proof (unfold inf_def)
wenzelm@14693
   596
  assume L: "x \<in> carrier L"  "y \<in> carrier L"
ballarin@14551
   597
  with inf_of_two_exists obtain s where "greatest L s (Lower L {x, y})" by fast
ballarin@14551
   598
  with L
ballarin@14551
   599
  show "greatest L (THE xa. greatest L xa (Lower L {x, y})) (Lower L {x, y})"
ballarin@14551
   600
  by (fast intro: theI2 greatest_unique)  (* blast fails *)
ballarin@14551
   601
qed
ballarin@14551
   602
ballarin@14551
   603
lemma (in lattice) meet_le:
wenzelm@14693
   604
  assumes sub: "z \<sqsubseteq> x"  "z \<sqsubseteq> y"
wenzelm@14693
   605
    and L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
ballarin@14551
   606
  shows "z \<sqsubseteq> x \<sqinter> y"
ballarin@14551
   607
proof (rule meetI)
ballarin@14551
   608
  fix i
ballarin@14551
   609
  assume "greatest L i (Lower L {x, y})"
ballarin@14551
   610
  with sub L show "z \<sqsubseteq> i" by (fast elim: greatest_le intro: Lower_memI)
ballarin@14551
   611
qed
wenzelm@14693
   612
ballarin@14551
   613
lemma (in lattice) meet_assoc_lemma:
wenzelm@14693
   614
  assumes L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
wenzelm@14693
   615
  shows "x \<sqinter> (y \<sqinter> z) = \<Sqinter>{x, y, z}"
ballarin@14551
   616
proof (rule finite_inf_insertI)
ballarin@14551
   617
  txt {* The textbook argument in Jacobson I, p 457 *}
ballarin@14551
   618
  fix i
ballarin@14551
   619
  assume inf: "greatest L i (Lower L {x, y, z})"
ballarin@14551
   620
  show "x \<sqinter> (y \<sqinter> z) = i"
ballarin@14551
   621
  proof (rule anti_sym)
ballarin@14551
   622
    from inf L show "i \<sqsubseteq> x \<sqinter> (y \<sqinter> z)"
ballarin@14551
   623
      by (fastsimp intro!: meet_le elim: greatest_Lower_above)
ballarin@14551
   624
  next
ballarin@14551
   625
    from inf L show "x \<sqinter> (y \<sqinter> z) \<sqsubseteq> i"
ballarin@14551
   626
    by (erule_tac greatest_le)
ballarin@14551
   627
      (blast intro!: Lower_memI intro: trans meet_left meet_right meet_closed)
ballarin@14551
   628
  qed (simp_all add: L greatest_carrier [OF inf])
ballarin@14551
   629
qed (simp_all add: L)
ballarin@14551
   630
ballarin@14551
   631
lemma meet_comm:
wenzelm@14693
   632
  includes struct L
ballarin@14551
   633
  shows "x \<sqinter> y = y \<sqinter> x"
ballarin@14551
   634
  by (unfold meet_def) (simp add: insert_commute)
ballarin@14551
   635
ballarin@14551
   636
lemma (in lattice) meet_assoc:
wenzelm@14693
   637
  assumes L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
ballarin@14551
   638
  shows "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"
ballarin@14551
   639
proof -
ballarin@14551
   640
  have "(x \<sqinter> y) \<sqinter> z = z \<sqinter> (x \<sqinter> y)" by (simp only: meet_comm)
ballarin@14551
   641
  also from L have "... = \<Sqinter> {z, x, y}" by (simp add: meet_assoc_lemma)
ballarin@14551
   642
  also from L have "... = \<Sqinter> {x, y, z}" by (simp add: insert_commute)
ballarin@14551
   643
  also from L have "... = x \<sqinter> (y \<sqinter> z)" by (simp add: meet_assoc_lemma)
ballarin@14551
   644
  finally show ?thesis .
ballarin@14551
   645
qed
ballarin@14551
   646
wenzelm@14693
   647
ballarin@14551
   648
subsection {* Total Orders *}
ballarin@14551
   649
ballarin@14551
   650
locale total_order = lattice +
ballarin@14551
   651
  assumes total: "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> y | y \<sqsubseteq> x"
ballarin@14551
   652
ballarin@14551
   653
text {* Introduction rule: the usual definition of total order *}
ballarin@14551
   654
ballarin@14551
   655
lemma (in partial_order) total_orderI:
ballarin@14551
   656
  assumes total: "!!x y. [| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> y | y \<sqsubseteq> x"
ballarin@14551
   657
  shows "total_order L"
ballarin@14551
   658
proof (rule total_order.intro)
ballarin@14551
   659
  show "lattice_axioms L"
ballarin@14551
   660
  proof (rule lattice_axioms.intro)
ballarin@14551
   661
    fix x y
wenzelm@14693
   662
    assume L: "x \<in> carrier L"  "y \<in> carrier L"
ballarin@14551
   663
    show "EX s. least L s (Upper L {x, y})"
ballarin@14551
   664
    proof -
ballarin@14551
   665
      note total L
ballarin@14551
   666
      moreover
ballarin@14551
   667
      {
wenzelm@14693
   668
        assume "x \<sqsubseteq> y"
ballarin@14551
   669
        with L have "least L y (Upper L {x, y})"
wenzelm@14693
   670
          by (rule_tac least_UpperI) auto
ballarin@14551
   671
      }
ballarin@14551
   672
      moreover
ballarin@14551
   673
      {
wenzelm@14693
   674
        assume "y \<sqsubseteq> x"
ballarin@14551
   675
        with L have "least L x (Upper L {x, y})"
wenzelm@14693
   676
          by (rule_tac least_UpperI) auto
ballarin@14551
   677
      }
ballarin@14551
   678
      ultimately show ?thesis by blast
ballarin@14551
   679
    qed
ballarin@14551
   680
  next
ballarin@14551
   681
    fix x y
wenzelm@14693
   682
    assume L: "x \<in> carrier L"  "y \<in> carrier L"
ballarin@14551
   683
    show "EX i. greatest L i (Lower L {x, y})"
ballarin@14551
   684
    proof -
ballarin@14551
   685
      note total L
ballarin@14551
   686
      moreover
ballarin@14551
   687
      {
wenzelm@14693
   688
        assume "y \<sqsubseteq> x"
ballarin@14551
   689
        with L have "greatest L y (Lower L {x, y})"
wenzelm@14693
   690
          by (rule_tac greatest_LowerI) auto
ballarin@14551
   691
      }
ballarin@14551
   692
      moreover
ballarin@14551
   693
      {
wenzelm@14693
   694
        assume "x \<sqsubseteq> y"
ballarin@14551
   695
        with L have "greatest L x (Lower L {x, y})"
wenzelm@14693
   696
          by (rule_tac greatest_LowerI) auto
ballarin@14551
   697
      }
ballarin@14551
   698
      ultimately show ?thesis by blast
ballarin@14551
   699
    qed
ballarin@14551
   700
  qed
ballarin@14551
   701
qed (assumption | rule total_order_axioms.intro)+
ballarin@14551
   702
wenzelm@14693
   703
ballarin@14551
   704
subsection {* Complete lattices *}
ballarin@14551
   705
ballarin@14551
   706
locale complete_lattice = lattice +
ballarin@14551
   707
  assumes sup_exists:
ballarin@14551
   708
    "[| A \<subseteq> carrier L |] ==> EX s. least L s (Upper L A)"
ballarin@14551
   709
    and inf_exists:
ballarin@14551
   710
    "[| A \<subseteq> carrier L |] ==> EX i. greatest L i (Lower L A)"
ballarin@14551
   711
ballarin@14551
   712
text {* Introduction rule: the usual definition of complete lattice *}
ballarin@14551
   713
ballarin@14551
   714
lemma (in partial_order) complete_latticeI:
ballarin@14551
   715
  assumes sup_exists:
ballarin@14551
   716
    "!!A. [| A \<subseteq> carrier L |] ==> EX s. least L s (Upper L A)"
ballarin@14551
   717
    and inf_exists:
ballarin@14551
   718
    "!!A. [| A \<subseteq> carrier L |] ==> EX i. greatest L i (Lower L A)"
ballarin@14551
   719
  shows "complete_lattice L"
ballarin@14551
   720
proof (rule complete_lattice.intro)
ballarin@14551
   721
  show "lattice_axioms L"
wenzelm@14693
   722
    by (rule lattice_axioms.intro) (blast intro: sup_exists inf_exists)+
ballarin@14551
   723
qed (assumption | rule complete_lattice_axioms.intro)+
ballarin@14551
   724
wenzelm@14651
   725
constdefs (structure L)
wenzelm@14651
   726
  top :: "_ => 'a" ("\<top>\<index>")
wenzelm@14651
   727
  "\<top> == sup L (carrier L)"
ballarin@14551
   728
wenzelm@14651
   729
  bottom :: "_ => 'a" ("\<bottom>\<index>")
wenzelm@14651
   730
  "\<bottom> == inf L (carrier L)"
ballarin@14551
   731
ballarin@14551
   732
ballarin@14551
   733
lemma (in complete_lattice) supI:
ballarin@14551
   734
  "[| !!l. least L l (Upper L A) ==> P l; A \<subseteq> carrier L |]
wenzelm@14651
   735
  ==> P (\<Squnion>A)"
ballarin@14551
   736
proof (unfold sup_def)
ballarin@14551
   737
  assume L: "A \<subseteq> carrier L"
ballarin@14551
   738
    and P: "!!l. least L l (Upper L A) ==> P l"
ballarin@14551
   739
  with sup_exists obtain s where "least L s (Upper L A)" by blast
ballarin@14551
   740
  with L show "P (THE l. least L l (Upper L A))"
ballarin@14551
   741
  by (fast intro: theI2 least_unique P)
ballarin@14551
   742
qed
ballarin@14551
   743
ballarin@14551
   744
lemma (in complete_lattice) sup_closed [simp]:
wenzelm@14693
   745
  "A \<subseteq> carrier L ==> \<Squnion>A \<in> carrier L"
ballarin@14551
   746
  by (rule supI) simp_all
ballarin@14551
   747
ballarin@14551
   748
lemma (in complete_lattice) top_closed [simp, intro]:
ballarin@14551
   749
  "\<top> \<in> carrier L"
ballarin@14551
   750
  by (unfold top_def) simp
ballarin@14551
   751
ballarin@14551
   752
lemma (in complete_lattice) infI:
ballarin@14551
   753
  "[| !!i. greatest L i (Lower L A) ==> P i; A \<subseteq> carrier L |]
wenzelm@14693
   754
  ==> P (\<Sqinter>A)"
ballarin@14551
   755
proof (unfold inf_def)
ballarin@14551
   756
  assume L: "A \<subseteq> carrier L"
ballarin@14551
   757
    and P: "!!l. greatest L l (Lower L A) ==> P l"
ballarin@14551
   758
  with inf_exists obtain s where "greatest L s (Lower L A)" by blast
ballarin@14551
   759
  with L show "P (THE l. greatest L l (Lower L A))"
ballarin@14551
   760
  by (fast intro: theI2 greatest_unique P)
ballarin@14551
   761
qed
ballarin@14551
   762
ballarin@14551
   763
lemma (in complete_lattice) inf_closed [simp]:
wenzelm@14693
   764
  "A \<subseteq> carrier L ==> \<Sqinter>A \<in> carrier L"
ballarin@14551
   765
  by (rule infI) simp_all
ballarin@14551
   766
ballarin@14551
   767
lemma (in complete_lattice) bottom_closed [simp, intro]:
ballarin@14551
   768
  "\<bottom> \<in> carrier L"
ballarin@14551
   769
  by (unfold bottom_def) simp
ballarin@14551
   770
ballarin@14551
   771
text {* Jacobson: Theorem 8.1 *}
ballarin@14551
   772
ballarin@14551
   773
lemma Lower_empty [simp]:
ballarin@14551
   774
  "Lower L {} = carrier L"
ballarin@14551
   775
  by (unfold Lower_def) simp
ballarin@14551
   776
ballarin@14551
   777
lemma Upper_empty [simp]:
ballarin@14551
   778
  "Upper L {} = carrier L"
ballarin@14551
   779
  by (unfold Upper_def) simp
ballarin@14551
   780
ballarin@14551
   781
theorem (in partial_order) complete_lattice_criterion1:
ballarin@14551
   782
  assumes top_exists: "EX g. greatest L g (carrier L)"
ballarin@14551
   783
    and inf_exists:
ballarin@14551
   784
      "!!A. [| A \<subseteq> carrier L; A ~= {} |] ==> EX i. greatest L i (Lower L A)"
ballarin@14551
   785
  shows "complete_lattice L"
ballarin@14551
   786
proof (rule complete_latticeI)
ballarin@14551
   787
  from top_exists obtain top where top: "greatest L top (carrier L)" ..
ballarin@14551
   788
  fix A
ballarin@14551
   789
  assume L: "A \<subseteq> carrier L"
ballarin@14551
   790
  let ?B = "Upper L A"
ballarin@14551
   791
  from L top have "top \<in> ?B" by (fast intro!: Upper_memI intro: greatest_le)
ballarin@14551
   792
  then have B_non_empty: "?B ~= {}" by fast
ballarin@14551
   793
  have B_L: "?B \<subseteq> carrier L" by simp
ballarin@14551
   794
  from inf_exists [OF B_L B_non_empty]
ballarin@14551
   795
  obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
ballarin@14551
   796
  have "least L b (Upper L A)"
ballarin@14551
   797
apply (rule least_UpperI)
wenzelm@14693
   798
   apply (rule greatest_le [where A = "Lower L ?B"])
ballarin@14551
   799
    apply (rule b_inf_B)
ballarin@14551
   800
   apply (rule Lower_memI)
ballarin@14551
   801
    apply (erule UpperD)
ballarin@14551
   802
     apply assumption
ballarin@14551
   803
    apply (rule L)
ballarin@14551
   804
   apply (fast intro: L [THEN subsetD])
ballarin@14551
   805
  apply (erule greatest_Lower_above [OF b_inf_B])
ballarin@14551
   806
  apply simp
ballarin@14551
   807
 apply (rule L)
ballarin@14551
   808
apply (rule greatest_carrier [OF b_inf_B]) (* rename rule: _closed *)
ballarin@14551
   809
done
ballarin@14551
   810
  then show "EX s. least L s (Upper L A)" ..
ballarin@14551
   811
next
ballarin@14551
   812
  fix A
ballarin@14551
   813
  assume L: "A \<subseteq> carrier L"
ballarin@14551
   814
  show "EX i. greatest L i (Lower L A)"
ballarin@14551
   815
  proof (cases "A = {}")
ballarin@14551
   816
    case True then show ?thesis
ballarin@14551
   817
      by (simp add: top_exists)
ballarin@14551
   818
  next
ballarin@14551
   819
    case False with L show ?thesis
ballarin@14551
   820
      by (rule inf_exists)
ballarin@14551
   821
  qed
ballarin@14551
   822
qed
ballarin@14551
   823
ballarin@14551
   824
(* TODO: prove dual version *)
ballarin@14551
   825
ballarin@14551
   826
subsection {* Examples *}
ballarin@14551
   827
ballarin@14551
   828
subsubsection {* Powerset of a set is a complete lattice *}
ballarin@14551
   829
ballarin@14551
   830
theorem powerset_is_complete_lattice:
ballarin@14551
   831
  "complete_lattice (| carrier = Pow A, le = op \<subseteq> |)"
ballarin@14551
   832
  (is "complete_lattice ?L")
ballarin@14551
   833
proof (rule partial_order.complete_latticeI)
ballarin@14551
   834
  show "partial_order ?L"
ballarin@14551
   835
    by (rule partial_order.intro) auto
ballarin@14551
   836
next
ballarin@14551
   837
  fix B
ballarin@14551
   838
  assume "B \<subseteq> carrier ?L"
ballarin@14551
   839
  then have "least ?L (\<Union> B) (Upper ?L B)"
ballarin@14551
   840
    by (fastsimp intro!: least_UpperI simp: Upper_def)
ballarin@14551
   841
  then show "EX s. least ?L s (Upper ?L B)" ..
ballarin@14551
   842
next
ballarin@14551
   843
  fix B
ballarin@14551
   844
  assume "B \<subseteq> carrier ?L"
ballarin@14551
   845
  then have "greatest ?L (\<Inter> B \<inter> A) (Lower ?L B)"
ballarin@14551
   846
    txt {* @{term "\<Inter> B"} is not the infimum of @{term B}:
ballarin@14551
   847
      @{term "\<Inter> {} = UNIV"} which is in general bigger than @{term "A"}! *}
ballarin@14551
   848
    by (fastsimp intro!: greatest_LowerI simp: Lower_def)
ballarin@14551
   849
  then show "EX i. greatest ?L i (Lower ?L B)" ..
ballarin@14551
   850
qed
ballarin@14551
   851
ballarin@14751
   852
text {* An other example, that of the lattice of subgroups of a group,
ballarin@14751
   853
  can be found in Group theory (Section~\ref{sec:subgroup-lattice}). *}
ballarin@14551
   854
wenzelm@14693
   855
end