src/HOL/Algebra/Group.thy
author paulson
Thu May 01 10:29:44 2003 +0200 (2003-05-01)
changeset 13943 83d842ccd4aa
parent 13940 c67798653056
child 13944 9b34607cd83e
permissions -rw-r--r--
moving Bij.thy from GroupTheory to Algebra
ballarin@13813
     1
(*
ballarin@13813
     2
  Title:  HOL/Algebra/Group.thy
ballarin@13813
     3
  Id:     $Id$
ballarin@13813
     4
  Author: Clemens Ballarin, started 4 February 2003
ballarin@13813
     5
ballarin@13813
     6
Based on work by Florian Kammueller, L C Paulson and Markus Wenzel.
ballarin@13813
     7
*)
ballarin@13813
     8
ballarin@13936
     9
header {* Algebraic Structures up to Commutative Groups *}
ballarin@13813
    10
ballarin@13835
    11
theory Group = FuncSet:
ballarin@13813
    12
ballarin@13936
    13
axclass number < type
ballarin@13936
    14
ballarin@13936
    15
instance nat :: number ..
ballarin@13936
    16
instance int :: number ..
ballarin@13936
    17
ballarin@13936
    18
section {* From Magmas to Groups *}
ballarin@13936
    19
ballarin@13813
    20
text {*
ballarin@13813
    21
  Definitions follow Jacobson, Basic Algebra I, Freeman, 1985; with
ballarin@13813
    22
  the exception of \emph{magma} which, following Bourbaki, is a set
ballarin@13813
    23
  together with a binary, closed operation.
ballarin@13813
    24
*}
ballarin@13813
    25
ballarin@13813
    26
subsection {* Definitions *}
ballarin@13813
    27
ballarin@13817
    28
record 'a semigroup =
ballarin@13813
    29
  carrier :: "'a set"
ballarin@13813
    30
  mult :: "['a, 'a] => 'a" (infixl "\<otimes>\<index>" 70)
ballarin@13813
    31
ballarin@13817
    32
record 'a monoid = "'a semigroup" +
ballarin@13813
    33
  one :: 'a ("\<one>\<index>")
ballarin@13817
    34
ballarin@13936
    35
constdefs
ballarin@13936
    36
  m_inv :: "[('a, 'm) monoid_scheme, 'a] => 'a" ("inv\<index> _" [81] 80)
ballarin@13936
    37
  "m_inv G x == (THE y. y \<in> carrier G &
ballarin@13936
    38
                  mult G x y = one G & mult G y x = one G)"
ballarin@13936
    39
ballarin@13936
    40
  Units :: "('a, 'm) monoid_scheme => 'a set"
ballarin@13936
    41
  "Units G == {y. y \<in> carrier G &
ballarin@13936
    42
                  (EX x : carrier G. mult G x y = one G & mult G y x = one G)}"
ballarin@13936
    43
ballarin@13936
    44
consts
ballarin@13936
    45
  pow :: "[('a, 'm) monoid_scheme, 'a, 'b::number] => 'a" (infixr "'(^')\<index>" 75)
ballarin@13936
    46
ballarin@13936
    47
defs (overloaded)
ballarin@13936
    48
  nat_pow_def: "pow G a n == nat_rec (one G) (%u b. mult G b a) n"
ballarin@13936
    49
  int_pow_def: "pow G a z ==
ballarin@13936
    50
    let p = nat_rec (one G) (%u b. mult G b a)
ballarin@13936
    51
    in if neg z then m_inv G (p (nat (-z))) else p (nat z)"
ballarin@13813
    52
ballarin@13813
    53
locale magma = struct G +
ballarin@13813
    54
  assumes m_closed [intro, simp]:
ballarin@13813
    55
    "[| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G"
ballarin@13813
    56
ballarin@13813
    57
locale semigroup = magma +
ballarin@13813
    58
  assumes m_assoc:
ballarin@13813
    59
    "[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13936
    60
    (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
ballarin@13813
    61
ballarin@13936
    62
locale monoid = semigroup +
ballarin@13813
    63
  assumes one_closed [intro, simp]: "\<one> \<in> carrier G"
ballarin@13813
    64
    and l_one [simp]: "x \<in> carrier G ==> \<one> \<otimes> x = x"
ballarin@13936
    65
    and r_one [simp]: "x \<in> carrier G ==> x \<otimes> \<one> = x"
ballarin@13817
    66
ballarin@13936
    67
lemma monoidI:
ballarin@13936
    68
  assumes m_closed:
ballarin@13936
    69
      "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y \<in> carrier G"
ballarin@13936
    70
    and one_closed: "one G \<in> carrier G"
ballarin@13936
    71
    and m_assoc:
ballarin@13936
    72
      "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13936
    73
      mult G (mult G x y) z = mult G x (mult G y z)"
ballarin@13936
    74
    and l_one: "!!x. x \<in> carrier G ==> mult G (one G) x = x"
ballarin@13936
    75
    and r_one: "!!x. x \<in> carrier G ==> mult G x (one G) = x"
ballarin@13936
    76
  shows "monoid G"
ballarin@13936
    77
  by (fast intro!: monoid.intro magma.intro semigroup_axioms.intro
ballarin@13936
    78
    semigroup.intro monoid_axioms.intro
ballarin@13936
    79
    intro: prems)
ballarin@13936
    80
ballarin@13936
    81
lemma (in monoid) Units_closed [dest]:
ballarin@13936
    82
  "x \<in> Units G ==> x \<in> carrier G"
ballarin@13936
    83
  by (unfold Units_def) fast
ballarin@13936
    84
ballarin@13936
    85
lemma (in monoid) inv_unique:
ballarin@13936
    86
  assumes eq: "y \<otimes> x = \<one>" "x \<otimes> y' = \<one>"
ballarin@13936
    87
    and G: "x \<in> carrier G" "y \<in> carrier G" "y' \<in> carrier G"
ballarin@13936
    88
  shows "y = y'"
ballarin@13936
    89
proof -
ballarin@13936
    90
  from G eq have "y = y \<otimes> (x \<otimes> y')" by simp
ballarin@13936
    91
  also from G have "... = (y \<otimes> x) \<otimes> y'" by (simp add: m_assoc)
ballarin@13936
    92
  also from G eq have "... = y'" by simp
ballarin@13936
    93
  finally show ?thesis .
ballarin@13936
    94
qed
ballarin@13936
    95
ballarin@13940
    96
lemma (in monoid) Units_one_closed [intro, simp]:
ballarin@13940
    97
  "\<one> \<in> Units G"
ballarin@13940
    98
  by (unfold Units_def) auto
ballarin@13940
    99
ballarin@13936
   100
lemma (in monoid) Units_inv_closed [intro, simp]:
ballarin@13936
   101
  "x \<in> Units G ==> inv x \<in> carrier G"
paulson@13943
   102
  apply (unfold Units_def m_inv_def, auto)
ballarin@13936
   103
  apply (rule theI2, fast)
paulson@13943
   104
   apply (fast intro: inv_unique, fast)
ballarin@13936
   105
  done
ballarin@13936
   106
ballarin@13936
   107
lemma (in monoid) Units_l_inv:
ballarin@13936
   108
  "x \<in> Units G ==> inv x \<otimes> x = \<one>"
paulson@13943
   109
  apply (unfold Units_def m_inv_def, auto)
ballarin@13936
   110
  apply (rule theI2, fast)
paulson@13943
   111
   apply (fast intro: inv_unique, fast)
ballarin@13936
   112
  done
ballarin@13936
   113
ballarin@13936
   114
lemma (in monoid) Units_r_inv:
ballarin@13936
   115
  "x \<in> Units G ==> x \<otimes> inv x = \<one>"
paulson@13943
   116
  apply (unfold Units_def m_inv_def, auto)
ballarin@13936
   117
  apply (rule theI2, fast)
paulson@13943
   118
   apply (fast intro: inv_unique, fast)
ballarin@13936
   119
  done
ballarin@13936
   120
ballarin@13936
   121
lemma (in monoid) Units_inv_Units [intro, simp]:
ballarin@13936
   122
  "x \<in> Units G ==> inv x \<in> Units G"
ballarin@13936
   123
proof -
ballarin@13936
   124
  assume x: "x \<in> Units G"
ballarin@13936
   125
  show "inv x \<in> Units G"
ballarin@13936
   126
    by (auto simp add: Units_def
ballarin@13936
   127
      intro: Units_l_inv Units_r_inv x Units_closed [OF x])
ballarin@13936
   128
qed
ballarin@13936
   129
ballarin@13936
   130
lemma (in monoid) Units_l_cancel [simp]:
ballarin@13936
   131
  "[| x \<in> Units G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13936
   132
   (x \<otimes> y = x \<otimes> z) = (y = z)"
ballarin@13936
   133
proof
ballarin@13936
   134
  assume eq: "x \<otimes> y = x \<otimes> z"
ballarin@13936
   135
    and G: "x \<in> Units G" "y \<in> carrier G" "z \<in> carrier G"
ballarin@13936
   136
  then have "(inv x \<otimes> x) \<otimes> y = (inv x \<otimes> x) \<otimes> z"
ballarin@13936
   137
    by (simp add: m_assoc Units_closed)
ballarin@13936
   138
  with G show "y = z" by (simp add: Units_l_inv)
ballarin@13936
   139
next
ballarin@13936
   140
  assume eq: "y = z"
ballarin@13936
   141
    and G: "x \<in> Units G" "y \<in> carrier G" "z \<in> carrier G"
ballarin@13936
   142
  then show "x \<otimes> y = x \<otimes> z" by simp
ballarin@13936
   143
qed
ballarin@13936
   144
ballarin@13936
   145
lemma (in monoid) Units_inv_inv [simp]:
ballarin@13936
   146
  "x \<in> Units G ==> inv (inv x) = x"
ballarin@13936
   147
proof -
ballarin@13936
   148
  assume x: "x \<in> Units G"
ballarin@13936
   149
  then have "inv x \<otimes> inv (inv x) = inv x \<otimes> x"
ballarin@13936
   150
    by (simp add: Units_l_inv Units_r_inv)
ballarin@13936
   151
  with x show ?thesis by (simp add: Units_closed)
ballarin@13936
   152
qed
ballarin@13936
   153
ballarin@13936
   154
lemma (in monoid) inv_inj_on_Units:
ballarin@13936
   155
  "inj_on (m_inv G) (Units G)"
ballarin@13936
   156
proof (rule inj_onI)
ballarin@13936
   157
  fix x y
ballarin@13936
   158
  assume G: "x \<in> Units G" "y \<in> Units G" and eq: "inv x = inv y"
ballarin@13936
   159
  then have "inv (inv x) = inv (inv y)" by simp
ballarin@13936
   160
  with G show "x = y" by simp
ballarin@13936
   161
qed
ballarin@13936
   162
ballarin@13940
   163
lemma (in monoid) Units_inv_comm:
ballarin@13940
   164
  assumes inv: "x \<otimes> y = \<one>"
ballarin@13940
   165
    and G: "x \<in> Units G" "y \<in> Units G"
ballarin@13940
   166
  shows "y \<otimes> x = \<one>"
ballarin@13940
   167
proof -
ballarin@13940
   168
  from G have "x \<otimes> y \<otimes> x = x \<otimes> \<one>" by (auto simp add: inv Units_closed)
ballarin@13940
   169
  with G show ?thesis by (simp del: r_one add: m_assoc Units_closed)
ballarin@13940
   170
qed
ballarin@13940
   171
ballarin@13936
   172
text {* Power *}
ballarin@13936
   173
ballarin@13936
   174
lemma (in monoid) nat_pow_closed [intro, simp]:
ballarin@13936
   175
  "x \<in> carrier G ==> x (^) (n::nat) \<in> carrier G"
ballarin@13936
   176
  by (induct n) (simp_all add: nat_pow_def)
ballarin@13936
   177
ballarin@13936
   178
lemma (in monoid) nat_pow_0 [simp]:
ballarin@13936
   179
  "x (^) (0::nat) = \<one>"
ballarin@13936
   180
  by (simp add: nat_pow_def)
ballarin@13936
   181
ballarin@13936
   182
lemma (in monoid) nat_pow_Suc [simp]:
ballarin@13936
   183
  "x (^) (Suc n) = x (^) n \<otimes> x"
ballarin@13936
   184
  by (simp add: nat_pow_def)
ballarin@13936
   185
ballarin@13936
   186
lemma (in monoid) nat_pow_one [simp]:
ballarin@13936
   187
  "\<one> (^) (n::nat) = \<one>"
ballarin@13936
   188
  by (induct n) simp_all
ballarin@13936
   189
ballarin@13936
   190
lemma (in monoid) nat_pow_mult:
ballarin@13936
   191
  "x \<in> carrier G ==> x (^) (n::nat) \<otimes> x (^) m = x (^) (n + m)"
ballarin@13936
   192
  by (induct m) (simp_all add: m_assoc [THEN sym])
ballarin@13936
   193
ballarin@13936
   194
lemma (in monoid) nat_pow_pow:
ballarin@13936
   195
  "x \<in> carrier G ==> (x (^) n) (^) m = x (^) (n * m::nat)"
ballarin@13936
   196
  by (induct m) (simp, simp add: nat_pow_mult add_commute)
ballarin@13936
   197
ballarin@13936
   198
text {*
ballarin@13936
   199
  A group is a monoid all of whose elements are invertible.
ballarin@13936
   200
*}
ballarin@13936
   201
ballarin@13936
   202
locale group = monoid +
ballarin@13936
   203
  assumes Units: "carrier G <= Units G"
ballarin@13936
   204
ballarin@13936
   205
theorem groupI:
ballarin@13936
   206
  assumes m_closed [simp]:
ballarin@13936
   207
      "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y \<in> carrier G"
ballarin@13936
   208
    and one_closed [simp]: "one G \<in> carrier G"
ballarin@13936
   209
    and m_assoc:
ballarin@13936
   210
      "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13936
   211
      mult G (mult G x y) z = mult G x (mult G y z)"
ballarin@13936
   212
    and l_one [simp]: "!!x. x \<in> carrier G ==> mult G (one G) x = x"
ballarin@13936
   213
    and l_inv_ex: "!!x. x \<in> carrier G ==> EX y : carrier G. mult G y x = one G"
ballarin@13936
   214
  shows "group G"
ballarin@13936
   215
proof -
ballarin@13936
   216
  have l_cancel [simp]:
ballarin@13936
   217
    "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13936
   218
    (mult G x y = mult G x z) = (y = z)"
ballarin@13936
   219
  proof
ballarin@13936
   220
    fix x y z
ballarin@13936
   221
    assume eq: "mult G x y = mult G x z"
ballarin@13936
   222
      and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
ballarin@13936
   223
    with l_inv_ex obtain x_inv where xG: "x_inv \<in> carrier G"
ballarin@13936
   224
      and l_inv: "mult G x_inv x = one G" by fast
ballarin@13936
   225
    from G eq xG have "mult G (mult G x_inv x) y = mult G (mult G x_inv x) z"
ballarin@13936
   226
      by (simp add: m_assoc)
ballarin@13936
   227
    with G show "y = z" by (simp add: l_inv)
ballarin@13936
   228
  next
ballarin@13936
   229
    fix x y z
ballarin@13936
   230
    assume eq: "y = z"
ballarin@13936
   231
      and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
ballarin@13936
   232
    then show "mult G x y = mult G x z" by simp
ballarin@13936
   233
  qed
ballarin@13936
   234
  have r_one:
ballarin@13936
   235
    "!!x. x \<in> carrier G ==> mult G x (one G) = x"
ballarin@13936
   236
  proof -
ballarin@13936
   237
    fix x
ballarin@13936
   238
    assume x: "x \<in> carrier G"
ballarin@13936
   239
    with l_inv_ex obtain x_inv where xG: "x_inv \<in> carrier G"
ballarin@13936
   240
      and l_inv: "mult G x_inv x = one G" by fast
ballarin@13936
   241
    from x xG have "mult G x_inv (mult G x (one G)) = mult G x_inv x"
ballarin@13936
   242
      by (simp add: m_assoc [symmetric] l_inv)
ballarin@13936
   243
    with x xG show "mult G x (one G) = x" by simp 
ballarin@13936
   244
  qed
ballarin@13936
   245
  have inv_ex:
ballarin@13936
   246
    "!!x. x \<in> carrier G ==> EX y : carrier G. mult G y x = one G &
ballarin@13936
   247
      mult G x y = one G"
ballarin@13936
   248
  proof -
ballarin@13936
   249
    fix x
ballarin@13936
   250
    assume x: "x \<in> carrier G"
ballarin@13936
   251
    with l_inv_ex obtain y where y: "y \<in> carrier G"
ballarin@13936
   252
      and l_inv: "mult G y x = one G" by fast
ballarin@13936
   253
    from x y have "mult G y (mult G x y) = mult G y (one G)"
ballarin@13936
   254
      by (simp add: m_assoc [symmetric] l_inv r_one)
ballarin@13936
   255
    with x y have r_inv: "mult G x y = one G"
ballarin@13936
   256
      by simp
ballarin@13936
   257
    from x y show "EX y : carrier G. mult G y x = one G &
ballarin@13936
   258
      mult G x y = one G"
ballarin@13936
   259
      by (fast intro: l_inv r_inv)
ballarin@13936
   260
  qed
ballarin@13936
   261
  then have carrier_subset_Units: "carrier G <= Units G"
ballarin@13936
   262
    by (unfold Units_def) fast
ballarin@13936
   263
  show ?thesis
ballarin@13936
   264
    by (fast intro!: group.intro magma.intro semigroup_axioms.intro
ballarin@13936
   265
      semigroup.intro monoid_axioms.intro group_axioms.intro
ballarin@13936
   266
      carrier_subset_Units intro: prems r_one)
ballarin@13936
   267
qed
ballarin@13936
   268
ballarin@13936
   269
lemma (in monoid) monoid_groupI:
ballarin@13936
   270
  assumes l_inv_ex:
ballarin@13936
   271
    "!!x. x \<in> carrier G ==> EX y : carrier G. mult G y x = one G"
ballarin@13936
   272
  shows "group G"
ballarin@13936
   273
  by (rule groupI) (auto intro: m_assoc l_inv_ex)
ballarin@13936
   274
ballarin@13936
   275
lemma (in group) Units_eq [simp]:
ballarin@13936
   276
  "Units G = carrier G"
ballarin@13936
   277
proof
ballarin@13936
   278
  show "Units G <= carrier G" by fast
ballarin@13936
   279
next
ballarin@13936
   280
  show "carrier G <= Units G" by (rule Units)
ballarin@13936
   281
qed
ballarin@13936
   282
ballarin@13936
   283
lemma (in group) inv_closed [intro, simp]:
ballarin@13936
   284
  "x \<in> carrier G ==> inv x \<in> carrier G"
ballarin@13936
   285
  using Units_inv_closed by simp
ballarin@13936
   286
ballarin@13936
   287
lemma (in group) l_inv:
ballarin@13936
   288
  "x \<in> carrier G ==> inv x \<otimes> x = \<one>"
ballarin@13936
   289
  using Units_l_inv by simp
ballarin@13813
   290
ballarin@13813
   291
subsection {* Cancellation Laws and Basic Properties *}
ballarin@13813
   292
ballarin@13813
   293
lemma (in group) l_cancel [simp]:
ballarin@13813
   294
  "[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13813
   295
   (x \<otimes> y = x \<otimes> z) = (y = z)"
ballarin@13936
   296
  using Units_l_inv by simp
ballarin@13940
   297
ballarin@13813
   298
lemma (in group) r_inv:
ballarin@13813
   299
  "x \<in> carrier G ==> x \<otimes> inv x = \<one>"
ballarin@13813
   300
proof -
ballarin@13813
   301
  assume x: "x \<in> carrier G"
ballarin@13813
   302
  then have "inv x \<otimes> (x \<otimes> inv x) = inv x \<otimes> \<one>"
ballarin@13813
   303
    by (simp add: m_assoc [symmetric] l_inv)
ballarin@13813
   304
  with x show ?thesis by (simp del: r_one)
ballarin@13813
   305
qed
ballarin@13813
   306
ballarin@13813
   307
lemma (in group) r_cancel [simp]:
ballarin@13813
   308
  "[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13813
   309
   (y \<otimes> x = z \<otimes> x) = (y = z)"
ballarin@13813
   310
proof
ballarin@13813
   311
  assume eq: "y \<otimes> x = z \<otimes> x"
ballarin@13813
   312
    and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
ballarin@13813
   313
  then have "y \<otimes> (x \<otimes> inv x) = z \<otimes> (x \<otimes> inv x)"
ballarin@13813
   314
    by (simp add: m_assoc [symmetric])
ballarin@13813
   315
  with G show "y = z" by (simp add: r_inv)
ballarin@13813
   316
next
ballarin@13813
   317
  assume eq: "y = z"
ballarin@13813
   318
    and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
ballarin@13813
   319
  then show "y \<otimes> x = z \<otimes> x" by simp
ballarin@13813
   320
qed
ballarin@13813
   321
ballarin@13854
   322
lemma (in group) inv_one [simp]:
ballarin@13854
   323
  "inv \<one> = \<one>"
ballarin@13854
   324
proof -
ballarin@13854
   325
  have "inv \<one> = \<one> \<otimes> (inv \<one>)" by simp
ballarin@13854
   326
  moreover have "... = \<one>" by (simp add: r_inv)
ballarin@13854
   327
  finally show ?thesis .
ballarin@13854
   328
qed
ballarin@13854
   329
ballarin@13813
   330
lemma (in group) inv_inv [simp]:
ballarin@13813
   331
  "x \<in> carrier G ==> inv (inv x) = x"
ballarin@13936
   332
  using Units_inv_inv by simp
ballarin@13936
   333
ballarin@13936
   334
lemma (in group) inv_inj:
ballarin@13936
   335
  "inj_on (m_inv G) (carrier G)"
ballarin@13936
   336
  using inv_inj_on_Units by simp
ballarin@13813
   337
ballarin@13854
   338
lemma (in group) inv_mult_group:
ballarin@13813
   339
  "[| x \<in> carrier G; y \<in> carrier G |] ==> inv (x \<otimes> y) = inv y \<otimes> inv x"
ballarin@13813
   340
proof -
ballarin@13813
   341
  assume G: "x \<in> carrier G" "y \<in> carrier G"
ballarin@13813
   342
  then have "inv (x \<otimes> y) \<otimes> (x \<otimes> y) = (inv y \<otimes> inv x) \<otimes> (x \<otimes> y)"
ballarin@13813
   343
    by (simp add: m_assoc l_inv) (simp add: m_assoc [symmetric] l_inv)
ballarin@13813
   344
  with G show ?thesis by simp
ballarin@13813
   345
qed
ballarin@13813
   346
ballarin@13940
   347
lemma (in group) inv_comm:
ballarin@13940
   348
  "[| x \<otimes> y = \<one>; x \<in> carrier G; y \<in> carrier G |] ==> y \<otimes> x = \<one>"
ballarin@13940
   349
  by (rule Units_inv_comm) auto                          
ballarin@13940
   350
paulson@13943
   351
lemma (in group) m_inv_equality:
paulson@13943
   352
     "[|y \<otimes> x = \<one>; x \<in> carrier G; y \<in> carrier G|] ==> inv x = y"
paulson@13943
   353
apply (simp add: m_inv_def)
paulson@13943
   354
apply (rule the_equality)
paulson@13943
   355
 apply (simp add: inv_comm [of y x]) 
paulson@13943
   356
apply (rule r_cancel [THEN iffD1], auto) 
paulson@13943
   357
done
paulson@13943
   358
ballarin@13936
   359
text {* Power *}
ballarin@13936
   360
ballarin@13936
   361
lemma (in group) int_pow_def2:
ballarin@13936
   362
  "a (^) (z::int) = (if neg z then inv (a (^) (nat (-z))) else a (^) (nat z))"
ballarin@13936
   363
  by (simp add: int_pow_def nat_pow_def Let_def)
ballarin@13936
   364
ballarin@13936
   365
lemma (in group) int_pow_0 [simp]:
ballarin@13936
   366
  "x (^) (0::int) = \<one>"
ballarin@13936
   367
  by (simp add: int_pow_def2)
ballarin@13936
   368
ballarin@13936
   369
lemma (in group) int_pow_one [simp]:
ballarin@13936
   370
  "\<one> (^) (z::int) = \<one>"
ballarin@13936
   371
  by (simp add: int_pow_def2)
ballarin@13936
   372
ballarin@13813
   373
subsection {* Substructures *}
ballarin@13813
   374
ballarin@13813
   375
locale submagma = var H + struct G +
ballarin@13813
   376
  assumes subset [intro, simp]: "H \<subseteq> carrier G"
ballarin@13813
   377
    and m_closed [intro, simp]: "[| x \<in> H; y \<in> H |] ==> x \<otimes> y \<in> H"
ballarin@13813
   378
ballarin@13813
   379
declare (in submagma) magma.intro [intro] semigroup.intro [intro]
ballarin@13936
   380
  semigroup_axioms.intro [intro]
ballarin@13813
   381
(*
ballarin@13813
   382
alternative definition of submagma
ballarin@13813
   383
ballarin@13813
   384
locale submagma = var H + struct G +
ballarin@13813
   385
  assumes subset [intro, simp]: "carrier H \<subseteq> carrier G"
ballarin@13813
   386
    and m_equal [simp]: "mult H = mult G"
ballarin@13813
   387
    and m_closed [intro, simp]:
ballarin@13813
   388
      "[| x \<in> carrier H; y \<in> carrier H |] ==> x \<otimes> y \<in> carrier H"
ballarin@13813
   389
*)
ballarin@13813
   390
ballarin@13813
   391
lemma submagma_imp_subset:
ballarin@13813
   392
  "submagma H G ==> H \<subseteq> carrier G"
ballarin@13813
   393
  by (rule submagma.subset)
ballarin@13813
   394
ballarin@13813
   395
lemma (in submagma) subsetD [dest, simp]:
ballarin@13813
   396
  "x \<in> H ==> x \<in> carrier G"
ballarin@13813
   397
  using subset by blast
ballarin@13813
   398
ballarin@13813
   399
lemma (in submagma) magmaI [intro]:
ballarin@13813
   400
  includes magma G
ballarin@13813
   401
  shows "magma (G(| carrier := H |))"
ballarin@13813
   402
  by rule simp
ballarin@13813
   403
ballarin@13813
   404
lemma (in submagma) semigroup_axiomsI [intro]:
ballarin@13813
   405
  includes semigroup G
ballarin@13813
   406
  shows "semigroup_axioms (G(| carrier := H |))"
ballarin@13813
   407
    by rule (simp add: m_assoc)
ballarin@13813
   408
ballarin@13813
   409
lemma (in submagma) semigroupI [intro]:
ballarin@13813
   410
  includes semigroup G
ballarin@13813
   411
  shows "semigroup (G(| carrier := H |))"
ballarin@13813
   412
  using prems by fast
ballarin@13813
   413
ballarin@13813
   414
locale subgroup = submagma H G +
ballarin@13813
   415
  assumes one_closed [intro, simp]: "\<one> \<in> H"
ballarin@13813
   416
    and m_inv_closed [intro, simp]: "x \<in> H ==> inv x \<in> H"
ballarin@13813
   417
ballarin@13813
   418
declare (in subgroup) group.intro [intro]
ballarin@13936
   419
(*
ballarin@13817
   420
lemma (in subgroup) l_oneI [intro]:
ballarin@13817
   421
  includes l_one G
ballarin@13817
   422
  shows "l_one (G(| carrier := H |))"
ballarin@13817
   423
  by rule simp_all
ballarin@13936
   424
*)
ballarin@13813
   425
lemma (in subgroup) group_axiomsI [intro]:
ballarin@13813
   426
  includes group G
ballarin@13813
   427
  shows "group_axioms (G(| carrier := H |))"
ballarin@13936
   428
  by rule (auto intro: l_inv r_inv simp add: Units_def)
ballarin@13813
   429
ballarin@13813
   430
lemma (in subgroup) groupI [intro]:
ballarin@13813
   431
  includes group G
ballarin@13813
   432
  shows "group (G(| carrier := H |))"
ballarin@13936
   433
  by (rule groupI) (auto intro: m_assoc l_inv)
ballarin@13813
   434
ballarin@13813
   435
text {*
ballarin@13813
   436
  Since @{term H} is nonempty, it contains some element @{term x}.  Since
ballarin@13813
   437
  it is closed under inverse, it contains @{text "inv x"}.  Since
ballarin@13813
   438
  it is closed under product, it contains @{text "x \<otimes> inv x = \<one>"}.
ballarin@13813
   439
*}
ballarin@13813
   440
ballarin@13813
   441
lemma (in group) one_in_subset:
ballarin@13813
   442
  "[| H \<subseteq> carrier G; H \<noteq> {}; \<forall>a \<in> H. inv a \<in> H; \<forall>a\<in>H. \<forall>b\<in>H. a \<otimes> b \<in> H |]
ballarin@13813
   443
   ==> \<one> \<in> H"
ballarin@13813
   444
by (force simp add: l_inv)
ballarin@13813
   445
ballarin@13813
   446
text {* A characterization of subgroups: closed, non-empty subset. *}
ballarin@13813
   447
ballarin@13813
   448
lemma (in group) subgroupI:
ballarin@13813
   449
  assumes subset: "H \<subseteq> carrier G" and non_empty: "H \<noteq> {}"
ballarin@13813
   450
    and inv: "!!a. a \<in> H ==> inv a \<in> H"
ballarin@13813
   451
    and mult: "!!a b. [|a \<in> H; b \<in> H|] ==> a \<otimes> b \<in> H"
ballarin@13813
   452
  shows "subgroup H G"
ballarin@13813
   453
proof
ballarin@13813
   454
  from subset and mult show "submagma H G" ..
ballarin@13813
   455
next
ballarin@13813
   456
  have "\<one> \<in> H" by (rule one_in_subset) (auto simp only: prems)
ballarin@13813
   457
  with inv show "subgroup_axioms H G"
ballarin@13813
   458
    by (intro subgroup_axioms.intro) simp_all
ballarin@13813
   459
qed
ballarin@13813
   460
ballarin@13813
   461
text {*
ballarin@13813
   462
  Repeat facts of submagmas for subgroups.  Necessary???
ballarin@13813
   463
*}
ballarin@13813
   464
ballarin@13813
   465
lemma (in subgroup) subset:
ballarin@13813
   466
  "H \<subseteq> carrier G"
ballarin@13813
   467
  ..
ballarin@13813
   468
ballarin@13813
   469
lemma (in subgroup) m_closed:
ballarin@13813
   470
  "[| x \<in> H; y \<in> H |] ==> x \<otimes> y \<in> H"
ballarin@13813
   471
  ..
ballarin@13813
   472
ballarin@13813
   473
declare magma.m_closed [simp]
ballarin@13813
   474
ballarin@13936
   475
declare monoid.one_closed [iff] group.inv_closed [simp]
ballarin@13936
   476
  monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]
ballarin@13813
   477
ballarin@13813
   478
lemma subgroup_nonempty:
ballarin@13813
   479
  "~ subgroup {} G"
ballarin@13813
   480
  by (blast dest: subgroup.one_closed)
ballarin@13813
   481
ballarin@13813
   482
lemma (in subgroup) finite_imp_card_positive:
ballarin@13813
   483
  "finite (carrier G) ==> 0 < card H"
ballarin@13813
   484
proof (rule classical)
ballarin@13813
   485
  have sub: "subgroup H G" using prems ..
ballarin@13813
   486
  assume fin: "finite (carrier G)"
ballarin@13813
   487
    and zero: "~ 0 < card H"
ballarin@13813
   488
  then have "finite H" by (blast intro: finite_subset dest: subset)
ballarin@13813
   489
  with zero sub have "subgroup {} G" by simp
ballarin@13813
   490
  with subgroup_nonempty show ?thesis by contradiction
ballarin@13813
   491
qed
ballarin@13813
   492
ballarin@13936
   493
(*
ballarin@13936
   494
lemma (in monoid) Units_subgroup:
ballarin@13936
   495
  "subgroup (Units G) G"
ballarin@13936
   496
*)
ballarin@13936
   497
ballarin@13813
   498
subsection {* Direct Products *}
ballarin@13813
   499
ballarin@13813
   500
constdefs
ballarin@13817
   501
  DirProdSemigroup ::
ballarin@13854
   502
    "[('a, 'm) semigroup_scheme, ('b, 'n) semigroup_scheme]
ballarin@13817
   503
    => ('a \<times> 'b) semigroup"
ballarin@13817
   504
    (infixr "\<times>\<^sub>s" 80)
ballarin@13817
   505
  "G \<times>\<^sub>s H == (| carrier = carrier G \<times> carrier H,
ballarin@13817
   506
    mult = (%(xg, xh) (yg, yh). (mult G xg yg, mult H xh yh)) |)"
ballarin@13817
   507
ballarin@13936
   508
  DirProdGroup ::
ballarin@13854
   509
    "[('a, 'm) monoid_scheme, ('b, 'n) monoid_scheme] => ('a \<times> 'b) monoid"
ballarin@13936
   510
    (infixr "\<times>\<^sub>g" 80)
ballarin@13936
   511
  "G \<times>\<^sub>g H == (| carrier = carrier (G \<times>\<^sub>s H),
ballarin@13817
   512
    mult = mult (G \<times>\<^sub>s H),
ballarin@13817
   513
    one = (one G, one H) |)"
ballarin@13936
   514
(*
ballarin@13813
   515
  DirProdGroup ::
ballarin@13854
   516
    "[('a, 'm) group_scheme, ('b, 'n) group_scheme] => ('a \<times> 'b) group"
ballarin@13813
   517
    (infixr "\<times>\<^sub>g" 80)
ballarin@13813
   518
  "G \<times>\<^sub>g H == (| carrier = carrier (G \<times>\<^sub>m H),
ballarin@13813
   519
    mult = mult (G \<times>\<^sub>m H),
ballarin@13817
   520
    one = one (G \<times>\<^sub>m H),
ballarin@13813
   521
    m_inv = (%(g, h). (m_inv G g, m_inv H h)) |)"
ballarin@13936
   522
*)
ballarin@13813
   523
ballarin@13817
   524
lemma DirProdSemigroup_magma:
ballarin@13813
   525
  includes magma G + magma H
ballarin@13817
   526
  shows "magma (G \<times>\<^sub>s H)"
ballarin@13817
   527
  by rule (auto simp add: DirProdSemigroup_def)
ballarin@13813
   528
ballarin@13817
   529
lemma DirProdSemigroup_semigroup_axioms:
ballarin@13813
   530
  includes semigroup G + semigroup H
ballarin@13817
   531
  shows "semigroup_axioms (G \<times>\<^sub>s H)"
ballarin@13817
   532
  by rule (auto simp add: DirProdSemigroup_def G.m_assoc H.m_assoc)
ballarin@13813
   533
ballarin@13817
   534
lemma DirProdSemigroup_semigroup:
ballarin@13813
   535
  includes semigroup G + semigroup H
ballarin@13817
   536
  shows "semigroup (G \<times>\<^sub>s H)"
ballarin@13813
   537
  using prems
ballarin@13813
   538
  by (fast intro: semigroup.intro
ballarin@13817
   539
    DirProdSemigroup_magma DirProdSemigroup_semigroup_axioms)
ballarin@13813
   540
ballarin@13813
   541
lemma DirProdGroup_magma:
ballarin@13813
   542
  includes magma G + magma H
ballarin@13813
   543
  shows "magma (G \<times>\<^sub>g H)"
ballarin@13817
   544
  by rule
ballarin@13936
   545
    (auto simp add: DirProdGroup_def DirProdSemigroup_def)
ballarin@13813
   546
ballarin@13813
   547
lemma DirProdGroup_semigroup_axioms:
ballarin@13813
   548
  includes semigroup G + semigroup H
ballarin@13813
   549
  shows "semigroup_axioms (G \<times>\<^sub>g H)"
ballarin@13813
   550
  by rule
ballarin@13936
   551
    (auto simp add: DirProdGroup_def DirProdSemigroup_def
ballarin@13817
   552
      G.m_assoc H.m_assoc)
ballarin@13813
   553
ballarin@13813
   554
lemma DirProdGroup_semigroup:
ballarin@13813
   555
  includes semigroup G + semigroup H
ballarin@13813
   556
  shows "semigroup (G \<times>\<^sub>g H)"
ballarin@13813
   557
  using prems
ballarin@13813
   558
  by (fast intro: semigroup.intro
ballarin@13813
   559
    DirProdGroup_magma DirProdGroup_semigroup_axioms)
ballarin@13813
   560
ballarin@13813
   561
(* ... and further lemmas for group ... *)
ballarin@13813
   562
ballarin@13817
   563
lemma DirProdGroup_group:
ballarin@13813
   564
  includes group G + group H
ballarin@13813
   565
  shows "group (G \<times>\<^sub>g H)"
ballarin@13936
   566
  by (rule groupI)
ballarin@13936
   567
    (auto intro: G.m_assoc H.m_assoc G.l_inv H.l_inv
ballarin@13936
   568
      simp add: DirProdGroup_def DirProdSemigroup_def)
ballarin@13813
   569
ballarin@13813
   570
subsection {* Homomorphisms *}
ballarin@13813
   571
ballarin@13813
   572
constdefs
ballarin@13817
   573
  hom :: "[('a, 'c) semigroup_scheme, ('b, 'd) semigroup_scheme]
ballarin@13817
   574
    => ('a => 'b)set"
ballarin@13813
   575
  "hom G H ==
ballarin@13813
   576
    {h. h \<in> carrier G -> carrier H &
ballarin@13813
   577
      (\<forall>x \<in> carrier G. \<forall>y \<in> carrier G. h (mult G x y) = mult H (h x) (h y))}"
ballarin@13813
   578
ballarin@13813
   579
lemma (in semigroup) hom:
ballarin@13813
   580
  includes semigroup G
ballarin@13813
   581
  shows "semigroup (| carrier = hom G G, mult = op o |)"
ballarin@13813
   582
proof
ballarin@13813
   583
  show "magma (| carrier = hom G G, mult = op o |)"
ballarin@13813
   584
    by rule (simp add: Pi_def hom_def)
ballarin@13813
   585
next
ballarin@13813
   586
  show "semigroup_axioms (| carrier = hom G G, mult = op o |)"
ballarin@13813
   587
    by rule (simp add: o_assoc)
ballarin@13813
   588
qed
ballarin@13813
   589
ballarin@13813
   590
lemma hom_mult:
ballarin@13813
   591
  "[| h \<in> hom G H; x \<in> carrier G; y \<in> carrier G |] 
ballarin@13813
   592
   ==> h (mult G x y) = mult H (h x) (h y)"
ballarin@13813
   593
  by (simp add: hom_def) 
ballarin@13813
   594
ballarin@13813
   595
lemma hom_closed:
ballarin@13813
   596
  "[| h \<in> hom G H; x \<in> carrier G |] ==> h x \<in> carrier H"
ballarin@13813
   597
  by (auto simp add: hom_def funcset_mem)
ballarin@13813
   598
paulson@13943
   599
lemma compose_hom:
paulson@13943
   600
     "[|group G; h \<in> hom G G; h' \<in> hom G G; h' \<in> carrier G -> carrier G|]
paulson@13943
   601
      ==> compose (carrier G) h h' \<in> hom G G"
paulson@13943
   602
apply (simp (no_asm_simp) add: hom_def)
paulson@13943
   603
apply (intro conjI) 
paulson@13943
   604
 apply (force simp add: funcset_compose hom_def)
paulson@13943
   605
apply (simp add: compose_def group.axioms hom_mult funcset_mem) 
paulson@13943
   606
done
paulson@13943
   607
ballarin@13813
   608
locale group_hom = group G + group H + var h +
ballarin@13813
   609
  assumes homh: "h \<in> hom G H"
ballarin@13813
   610
  notes hom_mult [simp] = hom_mult [OF homh]
ballarin@13813
   611
    and hom_closed [simp] = hom_closed [OF homh]
ballarin@13813
   612
ballarin@13813
   613
lemma (in group_hom) one_closed [simp]:
ballarin@13813
   614
  "h \<one> \<in> carrier H"
ballarin@13813
   615
  by simp
ballarin@13813
   616
ballarin@13813
   617
lemma (in group_hom) hom_one [simp]:
ballarin@13813
   618
  "h \<one> = \<one>\<^sub>2"
ballarin@13813
   619
proof -
ballarin@13813
   620
  have "h \<one> \<otimes>\<^sub>2 \<one>\<^sub>2 = h \<one> \<otimes>\<^sub>2 h \<one>"
ballarin@13813
   621
    by (simp add: hom_mult [symmetric] del: hom_mult)
ballarin@13813
   622
  then show ?thesis by (simp del: r_one)
ballarin@13813
   623
qed
ballarin@13813
   624
ballarin@13813
   625
lemma (in group_hom) inv_closed [simp]:
ballarin@13813
   626
  "x \<in> carrier G ==> h (inv x) \<in> carrier H"
ballarin@13813
   627
  by simp
ballarin@13813
   628
ballarin@13813
   629
lemma (in group_hom) hom_inv [simp]:
ballarin@13813
   630
  "x \<in> carrier G ==> h (inv x) = inv\<^sub>2 (h x)"
ballarin@13813
   631
proof -
ballarin@13813
   632
  assume x: "x \<in> carrier G"
ballarin@13813
   633
  then have "h x \<otimes>\<^sub>2 h (inv x) = \<one>\<^sub>2"
ballarin@13813
   634
    by (simp add: hom_mult [symmetric] G.r_inv del: hom_mult)
ballarin@13813
   635
  also from x have "... = h x \<otimes>\<^sub>2 inv\<^sub>2 (h x)"
ballarin@13813
   636
    by (simp add: hom_mult [symmetric] H.r_inv del: hom_mult)
ballarin@13813
   637
  finally have "h x \<otimes>\<^sub>2 h (inv x) = h x \<otimes>\<^sub>2 inv\<^sub>2 (h x)" .
ballarin@13813
   638
  with x show ?thesis by simp
ballarin@13813
   639
qed
ballarin@13813
   640
ballarin@13936
   641
section {* Commutative Structures *}
ballarin@13936
   642
ballarin@13936
   643
text {*
ballarin@13936
   644
  Naming convention: multiplicative structures that are commutative
ballarin@13936
   645
  are called \emph{commutative}, additive structures are called
ballarin@13936
   646
  \emph{Abelian}.
ballarin@13936
   647
*}
ballarin@13813
   648
ballarin@13813
   649
subsection {* Definition *}
ballarin@13813
   650
ballarin@13936
   651
locale comm_semigroup = semigroup +
ballarin@13813
   652
  assumes m_comm: "[| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y = y \<otimes> x"
ballarin@13813
   653
ballarin@13936
   654
lemma (in comm_semigroup) m_lcomm:
ballarin@13813
   655
  "[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13813
   656
   x \<otimes> (y \<otimes> z) = y \<otimes> (x \<otimes> z)"
ballarin@13813
   657
proof -
ballarin@13813
   658
  assume xyz: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
ballarin@13813
   659
  from xyz have "x \<otimes> (y \<otimes> z) = (x \<otimes> y) \<otimes> z" by (simp add: m_assoc)
ballarin@13813
   660
  also from xyz have "... = (y \<otimes> x) \<otimes> z" by (simp add: m_comm)
ballarin@13813
   661
  also from xyz have "... = y \<otimes> (x \<otimes> z)" by (simp add: m_assoc)
ballarin@13813
   662
  finally show ?thesis .
ballarin@13813
   663
qed
ballarin@13813
   664
ballarin@13936
   665
lemmas (in comm_semigroup) m_ac = m_assoc m_comm m_lcomm
ballarin@13936
   666
ballarin@13936
   667
locale comm_monoid = comm_semigroup + monoid
ballarin@13813
   668
ballarin@13936
   669
lemma comm_monoidI:
ballarin@13936
   670
  assumes m_closed:
ballarin@13936
   671
      "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y \<in> carrier G"
ballarin@13936
   672
    and one_closed: "one G \<in> carrier G"
ballarin@13936
   673
    and m_assoc:
ballarin@13936
   674
      "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13936
   675
      mult G (mult G x y) z = mult G x (mult G y z)"
ballarin@13936
   676
    and l_one: "!!x. x \<in> carrier G ==> mult G (one G) x = x"
ballarin@13936
   677
    and m_comm:
ballarin@13936
   678
      "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y = mult G y x"
ballarin@13936
   679
  shows "comm_monoid G"
ballarin@13936
   680
  using l_one
ballarin@13936
   681
  by (auto intro!: comm_monoid.intro magma.intro semigroup_axioms.intro
ballarin@13936
   682
    comm_semigroup_axioms.intro monoid_axioms.intro
ballarin@13936
   683
    intro: prems simp: m_closed one_closed m_comm)
ballarin@13817
   684
ballarin@13936
   685
lemma (in monoid) monoid_comm_monoidI:
ballarin@13936
   686
  assumes m_comm:
ballarin@13936
   687
      "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y = mult G y x"
ballarin@13936
   688
  shows "comm_monoid G"
ballarin@13936
   689
  by (rule comm_monoidI) (auto intro: m_assoc m_comm)
ballarin@13936
   690
(*
ballarin@13936
   691
lemma (in comm_monoid) r_one [simp]:
ballarin@13817
   692
  "x \<in> carrier G ==> x \<otimes> \<one> = x"
ballarin@13817
   693
proof -
ballarin@13817
   694
  assume G: "x \<in> carrier G"
ballarin@13817
   695
  then have "x \<otimes> \<one> = \<one> \<otimes> x" by (simp add: m_comm)
ballarin@13817
   696
  also from G have "... = x" by simp
ballarin@13817
   697
  finally show ?thesis .
ballarin@13817
   698
qed
ballarin@13936
   699
*)
ballarin@13817
   700
ballarin@13936
   701
lemma (in comm_monoid) nat_pow_distr:
ballarin@13936
   702
  "[| x \<in> carrier G; y \<in> carrier G |] ==>
ballarin@13936
   703
  (x \<otimes> y) (^) (n::nat) = x (^) n \<otimes> y (^) n"
ballarin@13936
   704
  by (induct n) (simp, simp add: m_ac)
ballarin@13936
   705
ballarin@13936
   706
locale comm_group = comm_monoid + group
ballarin@13936
   707
ballarin@13936
   708
lemma (in group) group_comm_groupI:
ballarin@13936
   709
  assumes m_comm: "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==>
ballarin@13936
   710
      mult G x y = mult G y x"
ballarin@13936
   711
  shows "comm_group G"
ballarin@13936
   712
  by (fast intro: comm_group.intro comm_semigroup_axioms.intro
ballarin@13936
   713
    group.axioms prems)
ballarin@13817
   714
ballarin@13936
   715
lemma comm_groupI:
ballarin@13936
   716
  assumes m_closed:
ballarin@13936
   717
      "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y \<in> carrier G"
ballarin@13936
   718
    and one_closed: "one G \<in> carrier G"
ballarin@13936
   719
    and m_assoc:
ballarin@13936
   720
      "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13936
   721
      mult G (mult G x y) z = mult G x (mult G y z)"
ballarin@13936
   722
    and m_comm:
ballarin@13936
   723
      "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y = mult G y x"
ballarin@13936
   724
    and l_one: "!!x. x \<in> carrier G ==> mult G (one G) x = x"
ballarin@13936
   725
    and l_inv_ex: "!!x. x \<in> carrier G ==> EX y : carrier G. mult G y x = one G"
ballarin@13936
   726
  shows "comm_group G"
ballarin@13936
   727
  by (fast intro: group.group_comm_groupI groupI prems)
ballarin@13936
   728
ballarin@13936
   729
lemma (in comm_group) inv_mult:
ballarin@13854
   730
  "[| x \<in> carrier G; y \<in> carrier G |] ==> inv (x \<otimes> y) = inv x \<otimes> inv y"
ballarin@13936
   731
  by (simp add: m_ac inv_mult_group)
ballarin@13854
   732
ballarin@13813
   733
end