src/HOL/Integ/int_arith1.ML
author obua
Tue May 11 20:11:08 2004 +0200 (2004-05-11)
changeset 14738 83f1a514dcb4
parent 14474 00292f6f8d13
child 15013 34264f5e4691
permissions -rw-r--r--
changes made due to new Ring_and_Field theory
wenzelm@9436
     1
(*  Title:      HOL/Integ/int_arith1.ML
wenzelm@9436
     2
    ID:         $Id$
wenzelm@9436
     3
    Authors:    Larry Paulson and Tobias Nipkow
wenzelm@9436
     4
wenzelm@9436
     5
Simprocs and decision procedure for linear arithmetic.
wenzelm@9436
     6
*)
wenzelm@9436
     7
paulson@14329
     8
(** Misc ML bindings **)
paulson@14329
     9
paulson@14272
    10
val NCons_Pls = thm"NCons_Pls";
paulson@14272
    11
val NCons_Min = thm"NCons_Min";
paulson@14272
    12
val NCons_BIT = thm"NCons_BIT";
paulson@14272
    13
val number_of_Pls = thm"number_of_Pls";
paulson@14272
    14
val number_of_Min = thm"number_of_Min";
paulson@14272
    15
val number_of_BIT = thm"number_of_BIT";
paulson@14272
    16
val bin_succ_Pls = thm"bin_succ_Pls";
paulson@14272
    17
val bin_succ_Min = thm"bin_succ_Min";
paulson@14272
    18
val bin_succ_BIT = thm"bin_succ_BIT";
paulson@14272
    19
val bin_pred_Pls = thm"bin_pred_Pls";
paulson@14272
    20
val bin_pred_Min = thm"bin_pred_Min";
paulson@14272
    21
val bin_pred_BIT = thm"bin_pred_BIT";
paulson@14272
    22
val bin_minus_Pls = thm"bin_minus_Pls";
paulson@14272
    23
val bin_minus_Min = thm"bin_minus_Min";
paulson@14272
    24
val bin_minus_BIT = thm"bin_minus_BIT";
paulson@14272
    25
val bin_add_Pls = thm"bin_add_Pls";
paulson@14272
    26
val bin_add_Min = thm"bin_add_Min";
paulson@14272
    27
val bin_mult_Pls = thm"bin_mult_Pls";
paulson@14272
    28
val bin_mult_Min = thm"bin_mult_Min";
paulson@14272
    29
val bin_mult_BIT = thm"bin_mult_BIT";
wenzelm@9436
    30
paulson@14378
    31
val neg_def = thm "neg_def";
paulson@14378
    32
val iszero_def = thm "iszero_def";
paulson@14378
    33
paulson@14272
    34
val NCons_Pls_0 = thm"NCons_Pls_0";
paulson@14272
    35
val NCons_Pls_1 = thm"NCons_Pls_1";
paulson@14272
    36
val NCons_Min_0 = thm"NCons_Min_0";
paulson@14272
    37
val NCons_Min_1 = thm"NCons_Min_1";
paulson@14272
    38
val bin_succ_1 = thm"bin_succ_1";
paulson@14272
    39
val bin_succ_0 = thm"bin_succ_0";
paulson@14272
    40
val bin_pred_1 = thm"bin_pred_1";
paulson@14272
    41
val bin_pred_0 = thm"bin_pred_0";
paulson@14272
    42
val bin_minus_1 = thm"bin_minus_1";
paulson@14272
    43
val bin_minus_0 = thm"bin_minus_0";
paulson@14272
    44
val bin_add_BIT_11 = thm"bin_add_BIT_11";
paulson@14272
    45
val bin_add_BIT_10 = thm"bin_add_BIT_10";
paulson@14272
    46
val bin_add_BIT_0 = thm"bin_add_BIT_0";
paulson@14272
    47
val bin_add_Pls_right = thm"bin_add_Pls_right";
paulson@14272
    48
val bin_add_Min_right = thm"bin_add_Min_right";
paulson@14272
    49
val bin_add_BIT_BIT = thm"bin_add_BIT_BIT";
paulson@14272
    50
val bin_mult_1 = thm"bin_mult_1";
paulson@14272
    51
val bin_mult_0 = thm"bin_mult_0";
paulson@14272
    52
val number_of_NCons = thm"number_of_NCons";
paulson@14272
    53
val number_of_succ = thm"number_of_succ";
paulson@14272
    54
val number_of_pred = thm"number_of_pred";
paulson@14272
    55
val number_of_minus = thm"number_of_minus";
paulson@14272
    56
val number_of_add = thm"number_of_add";
paulson@14272
    57
val diff_number_of_eq = thm"diff_number_of_eq";
paulson@14272
    58
val number_of_mult = thm"number_of_mult";
paulson@14272
    59
val double_number_of_BIT = thm"double_number_of_BIT";
paulson@14387
    60
val numeral_0_eq_0 = thm"numeral_0_eq_0";
paulson@14387
    61
val numeral_1_eq_1 = thm"numeral_1_eq_1";
paulson@14387
    62
val numeral_m1_eq_minus_1 = thm"numeral_m1_eq_minus_1";
paulson@14387
    63
val mult_minus1 = thm"mult_minus1";
paulson@14387
    64
val mult_minus1_right = thm"mult_minus1_right";
paulson@14387
    65
val minus_number_of_mult = thm"minus_number_of_mult";
paulson@14272
    66
val zero_less_nat_eq = thm"zero_less_nat_eq";
paulson@14272
    67
val eq_number_of_eq = thm"eq_number_of_eq";
paulson@14272
    68
val iszero_number_of_Pls = thm"iszero_number_of_Pls";
paulson@14272
    69
val nonzero_number_of_Min = thm"nonzero_number_of_Min";
paulson@14272
    70
val iszero_number_of_BIT = thm"iszero_number_of_BIT";
paulson@14272
    71
val iszero_number_of_0 = thm"iszero_number_of_0";
paulson@14272
    72
val iszero_number_of_1 = thm"iszero_number_of_1";
paulson@14272
    73
val less_number_of_eq_neg = thm"less_number_of_eq_neg";
paulson@14387
    74
val le_number_of_eq = thm"le_number_of_eq";
paulson@14272
    75
val not_neg_number_of_Pls = thm"not_neg_number_of_Pls";
paulson@14272
    76
val neg_number_of_Min = thm"neg_number_of_Min";
paulson@14272
    77
val neg_number_of_BIT = thm"neg_number_of_BIT";
paulson@14272
    78
val le_number_of_eq_not_less = thm"le_number_of_eq_not_less";
paulson@14387
    79
val abs_number_of = thm"abs_number_of";
paulson@14272
    80
val number_of_reorient = thm"number_of_reorient";
paulson@14272
    81
val add_number_of_left = thm"add_number_of_left";
paulson@14272
    82
val mult_number_of_left = thm"mult_number_of_left";
paulson@14272
    83
val add_number_of_diff1 = thm"add_number_of_diff1";
paulson@14272
    84
val add_number_of_diff2 = thm"add_number_of_diff2";
paulson@14272
    85
val less_iff_diff_less_0 = thm"less_iff_diff_less_0";
paulson@14272
    86
val eq_iff_diff_eq_0 = thm"eq_iff_diff_eq_0";
paulson@14272
    87
val le_iff_diff_le_0 = thm"le_iff_diff_le_0";
wenzelm@9436
    88
paulson@14272
    89
val NCons_simps = thms"NCons_simps";
paulson@14272
    90
val bin_arith_extra_simps = thms"bin_arith_extra_simps";
paulson@14272
    91
val bin_arith_simps = thms"bin_arith_simps";
paulson@14272
    92
val bin_rel_simps = thms"bin_rel_simps";
wenzelm@9436
    93
paulson@14272
    94
val zless_imp_add1_zle = thm "zless_imp_add1_zle";
wenzelm@9436
    95
paulson@14272
    96
val combine_common_factor = thm"combine_common_factor";
paulson@14272
    97
val eq_add_iff1 = thm"eq_add_iff1";
paulson@14272
    98
val eq_add_iff2 = thm"eq_add_iff2";
paulson@14272
    99
val less_add_iff1 = thm"less_add_iff1";
paulson@14272
   100
val less_add_iff2 = thm"less_add_iff2";
paulson@14272
   101
val le_add_iff1 = thm"le_add_iff1";
paulson@14272
   102
val le_add_iff2 = thm"le_add_iff2";
wenzelm@9436
   103
paulson@14387
   104
val arith_special = thms"arith_special";
wenzelm@9436
   105
paulson@14272
   106
structure Bin_Simprocs =
paulson@14272
   107
  struct
paulson@14272
   108
  fun prove_conv tacs sg (hyps: thm list) xs (t, u) =
paulson@14272
   109
    if t aconv u then None
paulson@14272
   110
    else
paulson@14272
   111
      let val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (t, u))
paulson@14272
   112
      in Some (Tactic.prove sg xs [] eq (K (EVERY tacs))) end
wenzelm@9436
   113
paulson@14272
   114
  fun prove_conv_nohyps tacs sg = prove_conv tacs sg [];
paulson@14272
   115
  fun prove_conv_nohyps_novars tacs sg = prove_conv tacs sg [] [];
paulson@14272
   116
paulson@14272
   117
  fun prep_simproc (name, pats, proc) =
paulson@14272
   118
    Simplifier.simproc (Theory.sign_of (the_context())) name pats proc;
paulson@14272
   119
paulson@14272
   120
  fun is_numeral (Const("Numeral.number_of", _) $ w) = true
paulson@14272
   121
    | is_numeral _ = false
wenzelm@9436
   122
paulson@14272
   123
  fun simplify_meta_eq f_number_of_eq f_eq =
paulson@14272
   124
      mk_meta_eq ([f_eq, f_number_of_eq] MRS trans)
wenzelm@9436
   125
paulson@14272
   126
  (*reorientation simprules using ==, for the following simproc*)
paulson@14272
   127
  val meta_zero_reorient = zero_reorient RS eq_reflection
paulson@14272
   128
  val meta_one_reorient = one_reorient RS eq_reflection
paulson@14272
   129
  val meta_number_of_reorient = number_of_reorient RS eq_reflection
wenzelm@9436
   130
paulson@14272
   131
  (*reorientation simplification procedure: reorients (polymorphic) 
paulson@14272
   132
    0 = x, 1 = x, nnn = x provided x isn't 0, 1 or a numeral.*)
paulson@14272
   133
  fun reorient_proc sg _ (_ $ t $ u) =
paulson@14272
   134
    case u of
paulson@14272
   135
	Const("0", _) => None
paulson@14272
   136
      | Const("1", _) => None
paulson@14272
   137
      | Const("Numeral.number_of", _) $ _ => None
paulson@14272
   138
      | _ => Some (case t of
paulson@14272
   139
		  Const("0", _) => meta_zero_reorient
paulson@14272
   140
		| Const("1", _) => meta_one_reorient
paulson@14272
   141
		| Const("Numeral.number_of", _) $ _ => meta_number_of_reorient)
paulson@14272
   142
paulson@14272
   143
  val reorient_simproc = 
paulson@14272
   144
      prep_simproc ("reorient_simproc", ["0=x", "1=x", "number_of w = x"], reorient_proc)
paulson@14272
   145
paulson@14272
   146
  end;
paulson@14272
   147
paulson@14272
   148
paulson@14387
   149
Addsimps arith_special;
paulson@14272
   150
Addsimprocs [Bin_Simprocs.reorient_simproc];
wenzelm@9436
   151
wenzelm@9436
   152
wenzelm@9436
   153
structure Int_Numeral_Simprocs =
wenzelm@9436
   154
struct
wenzelm@9436
   155
paulson@11868
   156
(*Maps 0 to Numeral0 and 1 to Numeral1 so that arithmetic in simprocs
paulson@11868
   157
  isn't complicated by the abstract 0 and 1.*)
paulson@14387
   158
val numeral_syms = [numeral_0_eq_0 RS sym, numeral_1_eq_1 RS sym];
paulson@11868
   159
paulson@14474
   160
(** New term ordering so that AC-rewriting brings numerals to the front **)
paulson@14474
   161
paulson@14474
   162
(*Order integers by absolute value and then by sign. The standard integer
paulson@14474
   163
  ordering is not well-founded.*)
paulson@14474
   164
fun num_ord (i,j) =
paulson@14474
   165
      (case Int.compare (abs i, abs j) of
paulson@14474
   166
            EQUAL => Int.compare (Int.sign i, Int.sign j) 
paulson@14474
   167
          | ord => ord);
paulson@14474
   168
paulson@14474
   169
(*This resembles Term.term_ord, but it puts binary numerals before other
paulson@14474
   170
  non-atomic terms.*)
paulson@14474
   171
local open Term 
paulson@14474
   172
in 
paulson@14474
   173
fun numterm_ord (Abs (_, T, t), Abs(_, U, u)) =
paulson@14474
   174
      (case numterm_ord (t, u) of EQUAL => typ_ord (T, U) | ord => ord)
paulson@14474
   175
  | numterm_ord
paulson@14474
   176
     (Const("Numeral.number_of", _) $ v, Const("Numeral.number_of", _) $ w) =
paulson@14474
   177
     num_ord (HOLogic.dest_binum v, HOLogic.dest_binum w)
paulson@14474
   178
  | numterm_ord (Const("Numeral.number_of", _) $ _, _) = LESS
paulson@14474
   179
  | numterm_ord (_, Const("Numeral.number_of", _) $ _) = GREATER
paulson@14474
   180
  | numterm_ord (t, u) =
paulson@14474
   181
      (case Int.compare (size_of_term t, size_of_term u) of
paulson@14474
   182
        EQUAL =>
paulson@14474
   183
          let val (f, ts) = strip_comb t and (g, us) = strip_comb u in
paulson@14474
   184
            (case hd_ord (f, g) of EQUAL => numterms_ord (ts, us) | ord => ord)
paulson@14474
   185
          end
paulson@14474
   186
      | ord => ord)
paulson@14474
   187
and numterms_ord (ts, us) = list_ord numterm_ord (ts, us)
paulson@14474
   188
end;
paulson@14474
   189
paulson@14474
   190
fun numtermless tu = (numterm_ord tu = LESS);
paulson@14474
   191
paulson@14474
   192
(*Defined in this file, but perhaps needed only for simprocs of type nat.*)
paulson@14474
   193
val num_ss = HOL_ss settermless numtermless;
paulson@14474
   194
paulson@14474
   195
paulson@14474
   196
(** Utilities **)
wenzelm@9436
   197
paulson@14387
   198
fun mk_numeral T n = HOLogic.number_of_const T $ HOLogic.mk_bin n;
wenzelm@9436
   199
wenzelm@9436
   200
(*Decodes a binary INTEGER*)
paulson@11868
   201
fun dest_numeral (Const("0", _)) = 0
paulson@11868
   202
  | dest_numeral (Const("1", _)) = 1
wenzelm@13462
   203
  | dest_numeral (Const("Numeral.number_of", _) $ w) =
wenzelm@10890
   204
     (HOLogic.dest_binum w
wenzelm@10890
   205
      handle TERM _ => raise TERM("Int_Numeral_Simprocs.dest_numeral:1", [w]))
wenzelm@9436
   206
  | dest_numeral t = raise TERM("Int_Numeral_Simprocs.dest_numeral:2", [t]);
wenzelm@9436
   207
wenzelm@9436
   208
fun find_first_numeral past (t::terms) =
wenzelm@13462
   209
        ((dest_numeral t, rev past @ terms)
wenzelm@13462
   210
         handle TERM _ => find_first_numeral (t::past) terms)
wenzelm@9436
   211
  | find_first_numeral past [] = raise TERM("find_first_numeral", []);
wenzelm@9436
   212
wenzelm@9436
   213
val mk_plus = HOLogic.mk_binop "op +";
wenzelm@9436
   214
paulson@14387
   215
fun mk_minus t = 
paulson@14387
   216
  let val T = Term.fastype_of t
paulson@14387
   217
  in Const ("uminus", T --> T) $ t
paulson@14387
   218
  end;
wenzelm@9436
   219
paulson@11868
   220
(*Thus mk_sum[t] yields t+0; longer sums don't have a trailing zero*)
paulson@14387
   221
fun mk_sum T []        = mk_numeral T 0
paulson@14387
   222
  | mk_sum T [t,u]     = mk_plus (t, u)
paulson@14387
   223
  | mk_sum T (t :: ts) = mk_plus (t, mk_sum T ts);
wenzelm@9436
   224
wenzelm@9436
   225
(*this version ALWAYS includes a trailing zero*)
paulson@14387
   226
fun long_mk_sum T []        = mk_numeral T 0
paulson@14387
   227
  | long_mk_sum T (t :: ts) = mk_plus (t, mk_sum T ts);
wenzelm@9436
   228
paulson@14387
   229
val dest_plus = HOLogic.dest_bin "op +" Term.dummyT;
wenzelm@9436
   230
wenzelm@9436
   231
(*decompose additions AND subtractions as a sum*)
wenzelm@9436
   232
fun dest_summing (pos, Const ("op +", _) $ t $ u, ts) =
wenzelm@9436
   233
        dest_summing (pos, t, dest_summing (pos, u, ts))
wenzelm@9436
   234
  | dest_summing (pos, Const ("op -", _) $ t $ u, ts) =
wenzelm@9436
   235
        dest_summing (pos, t, dest_summing (not pos, u, ts))
wenzelm@9436
   236
  | dest_summing (pos, t, ts) =
paulson@14387
   237
        if pos then t::ts else mk_minus t :: ts;
wenzelm@9436
   238
wenzelm@9436
   239
fun dest_sum t = dest_summing (true, t, []);
wenzelm@9436
   240
wenzelm@9436
   241
val mk_diff = HOLogic.mk_binop "op -";
paulson@14387
   242
val dest_diff = HOLogic.dest_bin "op -" Term.dummyT;
wenzelm@9436
   243
wenzelm@9436
   244
val mk_times = HOLogic.mk_binop "op *";
wenzelm@9436
   245
paulson@14387
   246
fun mk_prod T = 
paulson@14387
   247
  let val one = mk_numeral T 1
paulson@14387
   248
  fun mk [] = one
paulson@14387
   249
    | mk [t] = t
paulson@14387
   250
    | mk (t :: ts) = if t = one then mk ts else mk_times (t, mk ts)
paulson@14387
   251
  in mk end;
wenzelm@9436
   252
paulson@14387
   253
(*This version ALWAYS includes a trailing one*)
paulson@14387
   254
fun long_mk_prod T []        = mk_numeral T 1
paulson@14387
   255
  | long_mk_prod T (t :: ts) = mk_times (t, mk_prod T ts);
paulson@14387
   256
paulson@14387
   257
val dest_times = HOLogic.dest_bin "op *" Term.dummyT;
wenzelm@9436
   258
wenzelm@9436
   259
fun dest_prod t =
wenzelm@13462
   260
      let val (t,u) = dest_times t
wenzelm@9436
   261
      in  dest_prod t @ dest_prod u  end
wenzelm@9436
   262
      handle TERM _ => [t];
wenzelm@9436
   263
wenzelm@13462
   264
(*DON'T do the obvious simplifications; that would create special cases*)
paulson@14387
   265
fun mk_coeff (k, t) = mk_times (mk_numeral (Term.fastype_of t) k, t);
wenzelm@9436
   266
wenzelm@9436
   267
(*Express t as a product of (possibly) a numeral with other sorted terms*)
wenzelm@9436
   268
fun dest_coeff sign (Const ("uminus", _) $ t) = dest_coeff (~sign) t
wenzelm@9436
   269
  | dest_coeff sign t =
wenzelm@9436
   270
    let val ts = sort Term.term_ord (dest_prod t)
wenzelm@13462
   271
        val (n, ts') = find_first_numeral [] ts
wenzelm@9436
   272
                          handle TERM _ => (1, ts)
paulson@14387
   273
    in (sign*n, mk_prod (Term.fastype_of t) ts') end;
wenzelm@9436
   274
wenzelm@9436
   275
(*Find first coefficient-term THAT MATCHES u*)
wenzelm@13462
   276
fun find_first_coeff past u [] = raise TERM("find_first_coeff", [])
wenzelm@9436
   277
  | find_first_coeff past u (t::terms) =
wenzelm@13462
   278
        let val (n,u') = dest_coeff 1 t
wenzelm@13462
   279
        in  if u aconv u' then (n, rev past @ terms)
wenzelm@13462
   280
                          else find_first_coeff (t::past) u terms
wenzelm@13462
   281
        end
wenzelm@13462
   282
        handle TERM _ => find_first_coeff (t::past) u terms;
wenzelm@9436
   283
wenzelm@9436
   284
paulson@11868
   285
(*Simplify Numeral0+n, n+Numeral0, Numeral1*n, n*Numeral1*)
paulson@14387
   286
val add_0s =  thms "add_0s";
paulson@14387
   287
val mult_1s = thms "mult_1s";
wenzelm@9436
   288
paulson@11868
   289
(*To perform binary arithmetic.  The "left" rewriting handles patterns
paulson@11868
   290
  created by the simprocs, such as 3 * (5 * x). *)
paulson@14387
   291
val bin_simps = [numeral_0_eq_0 RS sym, numeral_1_eq_1 RS sym,
wenzelm@13462
   292
                 add_number_of_left, mult_number_of_left] @
paulson@11868
   293
                bin_arith_simps @ bin_rel_simps;
wenzelm@9436
   294
paulson@14113
   295
(*Binary arithmetic BUT NOT ADDITION since it may collapse adjacent terms
paulson@14113
   296
  during re-arrangement*)
paulson@14113
   297
val non_add_bin_simps = 
paulson@14113
   298
    bin_simps \\ [add_number_of_left, number_of_add RS sym];
paulson@14113
   299
wenzelm@9436
   300
(*To evaluate binary negations of coefficients*)
paulson@14387
   301
val minus_simps = NCons_simps @
paulson@14387
   302
                   [numeral_m1_eq_minus_1 RS sym, number_of_minus RS sym,
wenzelm@13462
   303
                    bin_minus_1, bin_minus_0, bin_minus_Pls, bin_minus_Min,
wenzelm@13462
   304
                    bin_pred_1, bin_pred_0, bin_pred_Pls, bin_pred_Min];
wenzelm@9436
   305
wenzelm@9436
   306
(*To let us treat subtraction as addition*)
paulson@14387
   307
val diff_simps = [diff_minus, minus_add_distrib, minus_minus];
wenzelm@9436
   308
paulson@10713
   309
(*push the unary minus down: - x * y = x * - y *)
paulson@14387
   310
val minus_mult_eq_1_to_2 =
paulson@14387
   311
    [minus_mult_left RS sym, minus_mult_right] MRS trans |> standard;
paulson@10713
   312
paulson@10713
   313
(*to extract again any uncancelled minuses*)
paulson@14387
   314
val minus_from_mult_simps =
paulson@14387
   315
    [minus_minus, minus_mult_left RS sym, minus_mult_right RS sym];
paulson@10713
   316
paulson@10713
   317
(*combine unary minus with numeric literals, however nested within a product*)
paulson@14387
   318
val mult_minus_simps =
paulson@14387
   319
    [mult_assoc, minus_mult_left, minus_mult_eq_1_to_2];
paulson@10713
   320
wenzelm@9436
   321
(*Apply the given rewrite (if present) just once*)
wenzelm@9436
   322
fun trans_tac None      = all_tac
wenzelm@9436
   323
  | trans_tac (Some th) = ALLGOALS (rtac (th RS trans));
wenzelm@9436
   324
wenzelm@9436
   325
fun simplify_meta_eq rules =
wenzelm@9436
   326
    simplify (HOL_basic_ss addeqcongs[eq_cong2] addsimps rules)
paulson@12975
   327
    o mk_meta_eq;
wenzelm@9436
   328
wenzelm@9436
   329
structure CancelNumeralsCommon =
wenzelm@9436
   330
  struct
wenzelm@13462
   331
  val mk_sum            = mk_sum
wenzelm@13462
   332
  val dest_sum          = dest_sum
wenzelm@13462
   333
  val mk_coeff          = mk_coeff
wenzelm@13462
   334
  val dest_coeff        = dest_coeff 1
wenzelm@13462
   335
  val find_first_coeff  = find_first_coeff []
wenzelm@9436
   336
  val trans_tac         = trans_tac
wenzelm@13462
   337
  val norm_tac =
paulson@11868
   338
     ALLGOALS (simp_tac (HOL_ss addsimps numeral_syms@add_0s@mult_1s@
paulson@14387
   339
                                         diff_simps@minus_simps@add_ac))
paulson@14387
   340
     THEN ALLGOALS (simp_tac (HOL_ss addsimps non_add_bin_simps@mult_minus_simps))
paulson@14387
   341
     THEN ALLGOALS (simp_tac (HOL_ss addsimps minus_from_mult_simps@
paulson@14387
   342
                                              add_ac@mult_ac))
wenzelm@13462
   343
  val numeral_simp_tac  = ALLGOALS (simp_tac (HOL_ss addsimps add_0s@bin_simps))
wenzelm@9436
   344
  val simplify_meta_eq  = simplify_meta_eq (add_0s@mult_1s)
wenzelm@9436
   345
  end;
wenzelm@9436
   346
wenzelm@9436
   347
wenzelm@9436
   348
structure EqCancelNumerals = CancelNumeralsFun
wenzelm@9436
   349
 (open CancelNumeralsCommon
wenzelm@13485
   350
  val prove_conv = Bin_Simprocs.prove_conv
wenzelm@9436
   351
  val mk_bal   = HOLogic.mk_eq
paulson@14387
   352
  val dest_bal = HOLogic.dest_bin "op =" Term.dummyT
wenzelm@9436
   353
  val bal_add1 = eq_add_iff1 RS trans
wenzelm@9436
   354
  val bal_add2 = eq_add_iff2 RS trans
wenzelm@9436
   355
);
wenzelm@9436
   356
wenzelm@9436
   357
structure LessCancelNumerals = CancelNumeralsFun
wenzelm@9436
   358
 (open CancelNumeralsCommon
wenzelm@13485
   359
  val prove_conv = Bin_Simprocs.prove_conv
wenzelm@9436
   360
  val mk_bal   = HOLogic.mk_binrel "op <"
paulson@14387
   361
  val dest_bal = HOLogic.dest_bin "op <" Term.dummyT
wenzelm@9436
   362
  val bal_add1 = less_add_iff1 RS trans
wenzelm@9436
   363
  val bal_add2 = less_add_iff2 RS trans
wenzelm@9436
   364
);
wenzelm@9436
   365
wenzelm@9436
   366
structure LeCancelNumerals = CancelNumeralsFun
wenzelm@9436
   367
 (open CancelNumeralsCommon
wenzelm@13485
   368
  val prove_conv = Bin_Simprocs.prove_conv
wenzelm@9436
   369
  val mk_bal   = HOLogic.mk_binrel "op <="
paulson@14387
   370
  val dest_bal = HOLogic.dest_bin "op <=" Term.dummyT
wenzelm@9436
   371
  val bal_add1 = le_add_iff1 RS trans
wenzelm@9436
   372
  val bal_add2 = le_add_iff2 RS trans
wenzelm@9436
   373
);
wenzelm@9436
   374
wenzelm@13462
   375
val cancel_numerals =
paulson@11868
   376
  map Bin_Simprocs.prep_simproc
wenzelm@9436
   377
   [("inteq_cancel_numerals",
paulson@14387
   378
     ["(l::'a::number_ring) + m = n",
paulson@14387
   379
      "(l::'a::number_ring) = m + n",
paulson@14387
   380
      "(l::'a::number_ring) - m = n",
paulson@14387
   381
      "(l::'a::number_ring) = m - n",
paulson@14387
   382
      "(l::'a::number_ring) * m = n",
paulson@14387
   383
      "(l::'a::number_ring) = m * n"],
wenzelm@9436
   384
     EqCancelNumerals.proc),
wenzelm@13462
   385
    ("intless_cancel_numerals",
obua@14738
   386
     ["(l::'a::{ordered_idom,number_ring}) + m < n",
obua@14738
   387
      "(l::'a::{ordered_idom,number_ring}) < m + n",
obua@14738
   388
      "(l::'a::{ordered_idom,number_ring}) - m < n",
obua@14738
   389
      "(l::'a::{ordered_idom,number_ring}) < m - n",
obua@14738
   390
      "(l::'a::{ordered_idom,number_ring}) * m < n",
obua@14738
   391
      "(l::'a::{ordered_idom,number_ring}) < m * n"],
wenzelm@9436
   392
     LessCancelNumerals.proc),
wenzelm@13462
   393
    ("intle_cancel_numerals",
obua@14738
   394
     ["(l::'a::{ordered_idom,number_ring}) + m <= n",
obua@14738
   395
      "(l::'a::{ordered_idom,number_ring}) <= m + n",
obua@14738
   396
      "(l::'a::{ordered_idom,number_ring}) - m <= n",
obua@14738
   397
      "(l::'a::{ordered_idom,number_ring}) <= m - n",
obua@14738
   398
      "(l::'a::{ordered_idom,number_ring}) * m <= n",
obua@14738
   399
      "(l::'a::{ordered_idom,number_ring}) <= m * n"],
wenzelm@9436
   400
     LeCancelNumerals.proc)];
wenzelm@9436
   401
wenzelm@9436
   402
wenzelm@9436
   403
structure CombineNumeralsData =
wenzelm@9436
   404
  struct
wenzelm@13462
   405
  val add               = op + : int*int -> int
wenzelm@13462
   406
  val mk_sum            = long_mk_sum    (*to work for e.g. 2*x + 3*x *)
wenzelm@13462
   407
  val dest_sum          = dest_sum
wenzelm@13462
   408
  val mk_coeff          = mk_coeff
wenzelm@13462
   409
  val dest_coeff        = dest_coeff 1
paulson@14272
   410
  val left_distrib      = combine_common_factor RS trans
wenzelm@13485
   411
  val prove_conv        = Bin_Simprocs.prove_conv_nohyps
wenzelm@9436
   412
  val trans_tac          = trans_tac
wenzelm@13462
   413
  val norm_tac =
paulson@11868
   414
     ALLGOALS (simp_tac (HOL_ss addsimps numeral_syms@add_0s@mult_1s@
paulson@14387
   415
                                         diff_simps@minus_simps@add_ac))
paulson@14387
   416
     THEN ALLGOALS (simp_tac (HOL_ss addsimps non_add_bin_simps@mult_minus_simps))
paulson@14387
   417
     THEN ALLGOALS (simp_tac (HOL_ss addsimps minus_from_mult_simps@
paulson@14387
   418
                                              add_ac@mult_ac))
wenzelm@13462
   419
  val numeral_simp_tac  = ALLGOALS
wenzelm@9436
   420
                    (simp_tac (HOL_ss addsimps add_0s@bin_simps))
wenzelm@9436
   421
  val simplify_meta_eq  = simplify_meta_eq (add_0s@mult_1s)
wenzelm@9436
   422
  end;
wenzelm@9436
   423
wenzelm@9436
   424
structure CombineNumerals = CombineNumeralsFun(CombineNumeralsData);
wenzelm@13462
   425
wenzelm@13462
   426
val combine_numerals =
wenzelm@13462
   427
  Bin_Simprocs.prep_simproc
paulson@14387
   428
    ("int_combine_numerals", 
paulson@14387
   429
     ["(i::'a::number_ring) + j", "(i::'a::number_ring) - j"], 
paulson@14387
   430
     CombineNumerals.proc);
wenzelm@9436
   431
wenzelm@9436
   432
end;
wenzelm@9436
   433
wenzelm@9436
   434
Addsimprocs Int_Numeral_Simprocs.cancel_numerals;
wenzelm@9436
   435
Addsimprocs [Int_Numeral_Simprocs.combine_numerals];
wenzelm@9436
   436
wenzelm@9436
   437
(*examples:
wenzelm@9436
   438
print_depth 22;
wenzelm@9436
   439
set timing;
wenzelm@9436
   440
set trace_simp;
wenzelm@13462
   441
fun test s = (Goal s, by (Simp_tac 1));
wenzelm@9436
   442
wenzelm@11704
   443
test "l + 2 + 2 + 2 + (l + 2) + (oo + 2) = (uu::int)";
wenzelm@9436
   444
wenzelm@11704
   445
test "2*u = (u::int)";
wenzelm@11704
   446
test "(i + j + 12 + (k::int)) - 15 = y";
wenzelm@11704
   447
test "(i + j + 12 + (k::int)) - 5 = y";
wenzelm@9436
   448
wenzelm@9436
   449
test "y - b < (b::int)";
wenzelm@11704
   450
test "y - (3*b + c) < (b::int) - 2*c";
wenzelm@9436
   451
wenzelm@11704
   452
test "(2*x - (u*v) + y) - v*3*u = (w::int)";
wenzelm@11704
   453
test "(2*x*u*v + (u*v)*4 + y) - v*u*4 = (w::int)";
wenzelm@11704
   454
test "(2*x*u*v + (u*v)*4 + y) - v*u = (w::int)";
wenzelm@11704
   455
test "u*v - (x*u*v + (u*v)*4 + y) = (w::int)";
wenzelm@9436
   456
wenzelm@11704
   457
test "(i + j + 12 + (k::int)) = u + 15 + y";
wenzelm@11704
   458
test "(i + j*2 + 12 + (k::int)) = j + 5 + y";
wenzelm@9436
   459
wenzelm@11704
   460
test "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = 2*y' + 3*z' + 6*w' + 2*y' + 3*z' + u + (vv::int)";
wenzelm@9436
   461
wenzelm@9436
   462
test "a + -(b+c) + b = (d::int)";
wenzelm@9436
   463
test "a + -(b+c) - b = (d::int)";
wenzelm@9436
   464
wenzelm@9436
   465
(*negative numerals*)
wenzelm@11704
   466
test "(i + j + -2 + (k::int)) - (u + 5 + y) = zz";
wenzelm@11704
   467
test "(i + j + -3 + (k::int)) < u + 5 + y";
wenzelm@11704
   468
test "(i + j + 3 + (k::int)) < u + -6 + y";
wenzelm@11704
   469
test "(i + j + -12 + (k::int)) - 15 = y";
wenzelm@11704
   470
test "(i + j + 12 + (k::int)) - -15 = y";
wenzelm@11704
   471
test "(i + j + -12 + (k::int)) - -15 = y";
wenzelm@9436
   472
*)
wenzelm@9436
   473
wenzelm@9436
   474
paulson@14387
   475
(** Constant folding for multiplication in semirings **)
wenzelm@9436
   476
paulson@14387
   477
(*We do not need folding for addition: combine_numerals does the same thing*)
wenzelm@9436
   478
paulson@14387
   479
structure Semiring_Times_Assoc_Data : ASSOC_FOLD_DATA =
wenzelm@9436
   480
struct
wenzelm@13462
   481
  val ss                = HOL_ss
wenzelm@13462
   482
  val eq_reflection     = eq_reflection
wenzelm@9436
   483
  val sg_ref = Sign.self_ref (Theory.sign_of (the_context ()))
wenzelm@9436
   484
  val add_ac = mult_ac
wenzelm@9436
   485
end;
wenzelm@9436
   486
paulson@14387
   487
structure Semiring_Times_Assoc = Assoc_Fold (Semiring_Times_Assoc_Data);
wenzelm@9436
   488
paulson@14387
   489
val assoc_fold_simproc =
paulson@14387
   490
  Bin_Simprocs.prep_simproc
obua@14738
   491
   ("semiring_assoc_fold", ["(a::'a::comm_semiring_1_cancel) * b"],
paulson@14387
   492
    Semiring_Times_Assoc.proc);
paulson@14387
   493
paulson@14387
   494
Addsimprocs [assoc_fold_simproc];
paulson@14387
   495
paulson@14387
   496
wenzelm@9436
   497
wenzelm@9436
   498
wenzelm@9436
   499
(*** decision procedure for linear arithmetic ***)
wenzelm@9436
   500
wenzelm@9436
   501
(*---------------------------------------------------------------------------*)
wenzelm@9436
   502
(* Linear arithmetic                                                         *)
wenzelm@9436
   503
(*---------------------------------------------------------------------------*)
wenzelm@9436
   504
wenzelm@9436
   505
(*
wenzelm@9436
   506
Instantiation of the generic linear arithmetic package for int.
wenzelm@9436
   507
*)
wenzelm@9436
   508
wenzelm@9436
   509
(* Update parameters of arithmetic prover *)
wenzelm@9436
   510
local
wenzelm@9436
   511
wenzelm@9436
   512
(* reduce contradictory <= to False *)
wenzelm@13462
   513
val add_rules =
paulson@14387
   514
    simp_thms @ bin_arith_simps @ bin_rel_simps @ arith_special @
paulson@14390
   515
    [neg_le_iff_le, numeral_0_eq_0, numeral_1_eq_1,
paulson@14369
   516
     minus_zero, diff_minus, left_minus, right_minus,
paulson@14369
   517
     mult_zero_left, mult_zero_right, mult_1, mult_1_right,
paulson@14369
   518
     minus_mult_left RS sym, minus_mult_right RS sym,
paulson@14369
   519
     minus_add_distrib, minus_minus, mult_assoc,
paulson@14387
   520
     of_nat_0, of_nat_1, of_nat_Suc, of_nat_add, of_nat_mult,
paulson@14387
   521
     of_int_0, of_int_1, of_int_add, of_int_mult, int_eq_of_nat,
paulson@14387
   522
     zero_neq_one, zero_less_one, zero_le_one, 
paulson@14387
   523
     zero_neq_one RS not_sym, not_one_le_zero, not_one_less_zero];
wenzelm@9436
   524
paulson@14387
   525
val simprocs = [assoc_fold_simproc, Int_Numeral_Simprocs.combine_numerals]@
paulson@14387
   526
               Int_Numeral_Simprocs.cancel_numerals;
wenzelm@9436
   527
wenzelm@9436
   528
in
wenzelm@9436
   529
wenzelm@9436
   530
val int_arith_setup =
nipkow@10693
   531
 [Fast_Arith.map_data (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, simpset} =>
paulson@14368
   532
   {add_mono_thms = add_mono_thms,
nipkow@10693
   533
    mult_mono_thms = mult_mono_thms,
nipkow@10574
   534
    inj_thms = [zle_int RS iffD2,int_int_eq RS iffD2] @ inj_thms,
paulson@14272
   535
    lessD = lessD @ [zless_imp_add1_zle],
wenzelm@9436
   536
    simpset = simpset addsimps add_rules
wenzelm@9436
   537
                      addsimprocs simprocs
wenzelm@9436
   538
                      addcongs [if_weak_cong]}),
paulson@14387
   539
  arith_inj_const ("IntDef.of_nat", HOLogic.natT --> HOLogic.intT),
nipkow@10834
   540
  arith_inj_const ("IntDef.int", HOLogic.natT --> HOLogic.intT),
wenzelm@9436
   541
  arith_discrete ("IntDef.int", true)];
wenzelm@9436
   542
wenzelm@9436
   543
end;
wenzelm@9436
   544
wenzelm@13462
   545
val fast_int_arith_simproc =
wenzelm@13462
   546
  Simplifier.simproc (Theory.sign_of (the_context()))
paulson@14387
   547
  "fast_int_arith" 
obua@14738
   548
     ["(m::'a::{ordered_idom,number_ring}) < n",
obua@14738
   549
      "(m::'a::{ordered_idom,number_ring}) <= n",
obua@14738
   550
      "(m::'a::{ordered_idom,number_ring}) = n"] Fast_Arith.lin_arith_prover;
wenzelm@9436
   551
wenzelm@9436
   552
Addsimprocs [fast_int_arith_simproc]
wenzelm@13462
   553
wenzelm@9436
   554
wenzelm@9436
   555
(* Some test data
wenzelm@9436
   556
Goal "!!a::int. [| a <= b; c <= d; x+y<z |] ==> a+c <= b+d";
wenzelm@9436
   557
by (fast_arith_tac 1);
wenzelm@11704
   558
Goal "!!a::int. [| a < b; c < d |] ==> a-d+ 2 <= b+(-c)";
wenzelm@9436
   559
by (fast_arith_tac 1);
paulson@11868
   560
Goal "!!a::int. [| a < b; c < d |] ==> a+c+ 1 < b+d";
wenzelm@9436
   561
by (fast_arith_tac 1);
wenzelm@9436
   562
Goal "!!a::int. [| a <= b; b+b <= c |] ==> a+a <= c";
wenzelm@9436
   563
by (fast_arith_tac 1);
wenzelm@9436
   564
Goal "!!a::int. [| a+b <= i+j; a<=b; i<=j |] \
wenzelm@9436
   565
\     ==> a+a <= j+j";
wenzelm@9436
   566
by (fast_arith_tac 1);
wenzelm@9436
   567
Goal "!!a::int. [| a+b < i+j; a<b; i<j |] \
wenzelm@11704
   568
\     ==> a+a - - -1 < j+j - 3";
wenzelm@9436
   569
by (fast_arith_tac 1);
wenzelm@9436
   570
Goal "!!a::int. a+b+c <= i+j+k & a<=b & b<=c & i<=j & j<=k --> a+a+a <= k+k+k";
wenzelm@9436
   571
by (arith_tac 1);
wenzelm@9436
   572
Goal "!!a::int. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |] \
wenzelm@9436
   573
\     ==> a <= l";
wenzelm@9436
   574
by (fast_arith_tac 1);
wenzelm@9436
   575
Goal "!!a::int. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |] \
wenzelm@9436
   576
\     ==> a+a+a+a <= l+l+l+l";
wenzelm@9436
   577
by (fast_arith_tac 1);
wenzelm@9436
   578
Goal "!!a::int. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |] \
wenzelm@9436
   579
\     ==> a+a+a+a+a <= l+l+l+l+i";
wenzelm@9436
   580
by (fast_arith_tac 1);
wenzelm@9436
   581
Goal "!!a::int. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |] \
wenzelm@9436
   582
\     ==> a+a+a+a+a+a <= l+l+l+l+i+l";
wenzelm@9436
   583
by (fast_arith_tac 1);
wenzelm@9436
   584
Goal "!!a::int. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |] \
wenzelm@11704
   585
\     ==> 6*a <= 5*l+i";
wenzelm@9436
   586
by (fast_arith_tac 1);
wenzelm@9436
   587
*)