src/HOL/Product_Type.thy
author nipkow
Tue Mar 22 12:49:07 2011 +0100 (2011-03-22)
changeset 42059 83f3dc509068
parent 41792 ff3cb0c418b7
child 42083 e1209fc7ecdc
permissions -rw-r--r--
fixed a printing problem for bounded quantifiers and bounded set operators in the case of tuples
nipkow@10213
     1
(*  Title:      HOL/Product_Type.thy
nipkow@10213
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
nipkow@10213
     3
    Copyright   1992  University of Cambridge
wenzelm@11777
     4
*)
nipkow@10213
     5
wenzelm@11838
     6
header {* Cartesian products *}
nipkow@10213
     7
nipkow@15131
     8
theory Product_Type
haftmann@33959
     9
imports Typedef Inductive Fun
haftmann@24699
    10
uses
haftmann@24699
    11
  ("Tools/split_rule.ML")
haftmann@37389
    12
  ("Tools/inductive_codegen.ML")
haftmann@31723
    13
  ("Tools/inductive_set.ML")
nipkow@15131
    14
begin
wenzelm@11838
    15
haftmann@24699
    16
subsection {* @{typ bool} is a datatype *}
haftmann@24699
    17
haftmann@27104
    18
rep_datatype True False by (auto intro: bool_induct)
haftmann@24699
    19
haftmann@24699
    20
declare case_split [cases type: bool]
haftmann@24699
    21
  -- "prefer plain propositional version"
haftmann@24699
    22
haftmann@28346
    23
lemma
haftmann@38857
    24
  shows [code]: "HOL.equal False P \<longleftrightarrow> \<not> P"
haftmann@38857
    25
    and [code]: "HOL.equal True P \<longleftrightarrow> P" 
haftmann@38857
    26
    and [code]: "HOL.equal P False \<longleftrightarrow> \<not> P" 
haftmann@38857
    27
    and [code]: "HOL.equal P True \<longleftrightarrow> P"
haftmann@38857
    28
    and [code nbe]: "HOL.equal P P \<longleftrightarrow> True"
haftmann@38857
    29
  by (simp_all add: equal)
haftmann@25534
    30
haftmann@38857
    31
code_const "HOL.equal \<Colon> bool \<Rightarrow> bool \<Rightarrow> bool"
haftmann@39272
    32
  (Haskell infix 4 "==")
haftmann@25534
    33
haftmann@38857
    34
code_instance bool :: equal
haftmann@25534
    35
  (Haskell -)
haftmann@24699
    36
haftmann@26358
    37
haftmann@37166
    38
subsection {* The @{text unit} type *}
wenzelm@11838
    39
huffman@40590
    40
typedef (open) unit = "{True}"
wenzelm@11838
    41
proof
haftmann@20588
    42
  show "True : ?unit" ..
wenzelm@11838
    43
qed
wenzelm@11838
    44
haftmann@24699
    45
definition
wenzelm@11838
    46
  Unity :: unit    ("'(')")
haftmann@24699
    47
where
haftmann@24699
    48
  "() = Abs_unit True"
wenzelm@11838
    49
blanchet@35828
    50
lemma unit_eq [no_atp]: "u = ()"
huffman@40590
    51
  by (induct u) (simp add: Unity_def)
wenzelm@11838
    52
wenzelm@11838
    53
text {*
wenzelm@11838
    54
  Simplification procedure for @{thm [source] unit_eq}.  Cannot use
wenzelm@11838
    55
  this rule directly --- it loops!
wenzelm@11838
    56
*}
wenzelm@11838
    57
wenzelm@26480
    58
ML {*
wenzelm@13462
    59
  val unit_eq_proc =
haftmann@24699
    60
    let val unit_meta_eq = mk_meta_eq @{thm unit_eq} in
wenzelm@38715
    61
      Simplifier.simproc_global @{theory} "unit_eq" ["x::unit"]
skalberg@15531
    62
      (fn _ => fn _ => fn t => if HOLogic.is_unit t then NONE else SOME unit_meta_eq)
wenzelm@13462
    63
    end;
wenzelm@11838
    64
wenzelm@11838
    65
  Addsimprocs [unit_eq_proc];
wenzelm@11838
    66
*}
wenzelm@11838
    67
haftmann@27104
    68
rep_datatype "()" by simp
haftmann@24699
    69
wenzelm@11838
    70
lemma unit_all_eq1: "(!!x::unit. PROP P x) == PROP P ()"
wenzelm@11838
    71
  by simp
wenzelm@11838
    72
wenzelm@11838
    73
lemma unit_all_eq2: "(!!x::unit. PROP P) == PROP P"
wenzelm@11838
    74
  by (rule triv_forall_equality)
wenzelm@11838
    75
wenzelm@11838
    76
text {*
wenzelm@11838
    77
  This rewrite counters the effect of @{text unit_eq_proc} on @{term
wenzelm@11838
    78
  [source] "%u::unit. f u"}, replacing it by @{term [source]
wenzelm@11838
    79
  f} rather than by @{term [source] "%u. f ()"}.
wenzelm@11838
    80
*}
wenzelm@11838
    81
blanchet@35828
    82
lemma unit_abs_eta_conv [simp,no_atp]: "(%u::unit. f ()) = f"
wenzelm@11838
    83
  by (rule ext) simp
nipkow@10213
    84
haftmann@30924
    85
instantiation unit :: default
haftmann@30924
    86
begin
haftmann@30924
    87
haftmann@30924
    88
definition "default = ()"
haftmann@30924
    89
haftmann@30924
    90
instance ..
haftmann@30924
    91
haftmann@30924
    92
end
nipkow@10213
    93
haftmann@28562
    94
lemma [code]:
haftmann@38857
    95
  "HOL.equal (u\<Colon>unit) v \<longleftrightarrow> True" unfolding equal unit_eq [of u] unit_eq [of v] by rule+
haftmann@26358
    96
haftmann@26358
    97
code_type unit
haftmann@26358
    98
  (SML "unit")
haftmann@26358
    99
  (OCaml "unit")
haftmann@26358
   100
  (Haskell "()")
haftmann@34886
   101
  (Scala "Unit")
haftmann@26358
   102
haftmann@37166
   103
code_const Unity
haftmann@37166
   104
  (SML "()")
haftmann@37166
   105
  (OCaml "()")
haftmann@37166
   106
  (Haskell "()")
haftmann@37166
   107
  (Scala "()")
haftmann@37166
   108
haftmann@38857
   109
code_instance unit :: equal
haftmann@26358
   110
  (Haskell -)
haftmann@26358
   111
haftmann@38857
   112
code_const "HOL.equal \<Colon> unit \<Rightarrow> unit \<Rightarrow> bool"
haftmann@39272
   113
  (Haskell infix 4 "==")
haftmann@26358
   114
haftmann@26358
   115
code_reserved SML
haftmann@26358
   116
  unit
haftmann@26358
   117
haftmann@26358
   118
code_reserved OCaml
haftmann@26358
   119
  unit
haftmann@26358
   120
haftmann@34886
   121
code_reserved Scala
haftmann@34886
   122
  Unit
haftmann@34886
   123
haftmann@26358
   124
haftmann@37166
   125
subsection {* The product type *}
nipkow@10213
   126
haftmann@37166
   127
subsubsection {* Type definition *}
haftmann@37166
   128
haftmann@37166
   129
definition Pair_Rep :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where
haftmann@26358
   130
  "Pair_Rep a b = (\<lambda>x y. x = a \<and> y = b)"
nipkow@10213
   131
haftmann@37678
   132
typedef ('a, 'b) prod (infixr "*" 20)
haftmann@37389
   133
  = "{f. \<exists>a b. f = Pair_Rep (a\<Colon>'a) (b\<Colon>'b)}"
oheimb@11025
   134
proof
haftmann@37389
   135
  fix a b show "Pair_Rep a b \<in> ?prod"
haftmann@26358
   136
    by rule+
oheimb@11025
   137
qed
nipkow@10213
   138
wenzelm@35427
   139
type_notation (xsymbols)
haftmann@37678
   140
  "prod"  ("(_ \<times>/ _)" [21, 20] 20)
wenzelm@35427
   141
type_notation (HTML output)
haftmann@37678
   142
  "prod"  ("(_ \<times>/ _)" [21, 20] 20)
nipkow@10213
   143
haftmann@37389
   144
definition Pair :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<times> 'b" where
haftmann@37389
   145
  "Pair a b = Abs_prod (Pair_Rep a b)"
haftmann@37166
   146
haftmann@37678
   147
rep_datatype Pair proof -
haftmann@37166
   148
  fix P :: "'a \<times> 'b \<Rightarrow> bool" and p
haftmann@37166
   149
  assume "\<And>a b. P (Pair a b)"
haftmann@37389
   150
  then show "P p" by (cases p) (auto simp add: prod_def Pair_def Pair_Rep_def)
haftmann@37166
   151
next
haftmann@37166
   152
  fix a c :: 'a and b d :: 'b
haftmann@37166
   153
  have "Pair_Rep a b = Pair_Rep c d \<longleftrightarrow> a = c \<and> b = d"
nipkow@39302
   154
    by (auto simp add: Pair_Rep_def fun_eq_iff)
haftmann@37389
   155
  moreover have "Pair_Rep a b \<in> prod" and "Pair_Rep c d \<in> prod"
haftmann@37389
   156
    by (auto simp add: prod_def)
haftmann@37166
   157
  ultimately show "Pair a b = Pair c d \<longleftrightarrow> a = c \<and> b = d"
haftmann@37389
   158
    by (simp add: Pair_def Abs_prod_inject)
haftmann@37166
   159
qed
haftmann@37166
   160
blanchet@37704
   161
declare prod.simps(2) [nitpick_simp del]
blanchet@37704
   162
huffman@40929
   163
declare prod.weak_case_cong [cong del]
haftmann@37411
   164
haftmann@37166
   165
haftmann@37166
   166
subsubsection {* Tuple syntax *}
haftmann@37166
   167
haftmann@37591
   168
abbreviation (input) split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c" where
haftmann@37591
   169
  "split \<equiv> prod_case"
wenzelm@19535
   170
wenzelm@11777
   171
text {*
wenzelm@11777
   172
  Patterns -- extends pre-defined type @{typ pttrn} used in
wenzelm@11777
   173
  abstractions.
wenzelm@11777
   174
*}
nipkow@10213
   175
wenzelm@41229
   176
nonterminal tuple_args and patterns
nipkow@10213
   177
nipkow@10213
   178
syntax
nipkow@10213
   179
  "_tuple"      :: "'a => tuple_args => 'a * 'b"        ("(1'(_,/ _'))")
nipkow@10213
   180
  "_tuple_arg"  :: "'a => tuple_args"                   ("_")
nipkow@10213
   181
  "_tuple_args" :: "'a => tuple_args => tuple_args"     ("_,/ _")
oheimb@11025
   182
  "_pattern"    :: "[pttrn, patterns] => pttrn"         ("'(_,/ _')")
oheimb@11025
   183
  ""            :: "pttrn => patterns"                  ("_")
oheimb@11025
   184
  "_patterns"   :: "[pttrn, patterns] => patterns"      ("_,/ _")
nipkow@10213
   185
nipkow@10213
   186
translations
wenzelm@35115
   187
  "(x, y)" == "CONST Pair x y"
nipkow@10213
   188
  "_tuple x (_tuple_args y z)" == "_tuple x (_tuple_arg (_tuple y z))"
haftmann@37591
   189
  "%(x, y, zs). b" == "CONST prod_case (%x (y, zs). b)"
haftmann@37591
   190
  "%(x, y). b" == "CONST prod_case (%x y. b)"
wenzelm@35115
   191
  "_abs (CONST Pair x y) t" => "%(x, y). t"
haftmann@37166
   192
  -- {* The last rule accommodates tuples in `case C ... (x,y) ... => ...'
haftmann@37166
   193
     The (x,y) is parsed as `Pair x y' because it is logic, not pttrn *}
nipkow@10213
   194
wenzelm@35115
   195
(*reconstruct pattern from (nested) splits, avoiding eta-contraction of body;
wenzelm@35115
   196
  works best with enclosing "let", if "let" does not avoid eta-contraction*)
schirmer@14359
   197
print_translation {*
wenzelm@35115
   198
let
wenzelm@35115
   199
  fun split_tr' [Abs (x, T, t as (Abs abs))] =
wenzelm@35115
   200
        (* split (%x y. t) => %(x,y) t *)
wenzelm@35115
   201
        let
wenzelm@35115
   202
          val (y, t') = atomic_abs_tr' abs;
wenzelm@35115
   203
          val (x', t'') = atomic_abs_tr' (x, T, t');
wenzelm@35115
   204
        in
wenzelm@35115
   205
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   206
            (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   207
        end
haftmann@37591
   208
    | split_tr' [Abs (x, T, (s as Const (@{const_syntax prod_case}, _) $ t))] =
wenzelm@35115
   209
        (* split (%x. (split (%y z. t))) => %(x,y,z). t *)
wenzelm@35115
   210
        let
wenzelm@35115
   211
          val Const (@{syntax_const "_abs"}, _) $
wenzelm@35115
   212
            (Const (@{syntax_const "_pattern"}, _) $ y $ z) $ t' = split_tr' [t];
wenzelm@35115
   213
          val (x', t'') = atomic_abs_tr' (x, T, t');
wenzelm@35115
   214
        in
wenzelm@35115
   215
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   216
            (Syntax.const @{syntax_const "_pattern"} $ x' $
wenzelm@35115
   217
              (Syntax.const @{syntax_const "_patterns"} $ y $ z)) $ t''
wenzelm@35115
   218
        end
haftmann@37591
   219
    | split_tr' [Const (@{const_syntax prod_case}, _) $ t] =
wenzelm@35115
   220
        (* split (split (%x y z. t)) => %((x, y), z). t *)
wenzelm@35115
   221
        split_tr' [(split_tr' [t])] (* inner split_tr' creates next pattern *)
wenzelm@35115
   222
    | split_tr' [Const (@{syntax_const "_abs"}, _) $ x_y $ Abs abs] =
wenzelm@35115
   223
        (* split (%pttrn z. t) => %(pttrn,z). t *)
wenzelm@35115
   224
        let val (z, t) = atomic_abs_tr' abs in
wenzelm@35115
   225
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   226
            (Syntax.const @{syntax_const "_pattern"} $ x_y $ z) $ t
wenzelm@35115
   227
        end
wenzelm@35115
   228
    | split_tr' _ = raise Match;
haftmann@37591
   229
in [(@{const_syntax prod_case}, split_tr')] end
schirmer@14359
   230
*}
schirmer@14359
   231
schirmer@15422
   232
(* print "split f" as "\<lambda>(x,y). f x y" and "split (\<lambda>x. f x)" as "\<lambda>(x,y). f x y" *) 
schirmer@15422
   233
typed_print_translation {*
schirmer@15422
   234
let
wenzelm@35115
   235
  fun split_guess_names_tr' _ T [Abs (x, _, Abs _)] = raise Match
wenzelm@35115
   236
    | split_guess_names_tr' _ T [Abs (x, xT, t)] =
schirmer@15422
   237
        (case (head_of t) of
haftmann@37591
   238
          Const (@{const_syntax prod_case}, _) => raise Match
wenzelm@35115
   239
        | _ =>
wenzelm@35115
   240
          let 
wenzelm@35115
   241
            val (_ :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
wenzelm@35115
   242
            val (y, t') = atomic_abs_tr' ("y", yT, incr_boundvars 1 t $ Bound 0);
wenzelm@35115
   243
            val (x', t'') = atomic_abs_tr' (x, xT, t');
wenzelm@35115
   244
          in
wenzelm@35115
   245
            Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   246
              (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   247
          end)
schirmer@15422
   248
    | split_guess_names_tr' _ T [t] =
wenzelm@35115
   249
        (case head_of t of
haftmann@37591
   250
          Const (@{const_syntax prod_case}, _) => raise Match
wenzelm@35115
   251
        | _ =>
wenzelm@35115
   252
          let
wenzelm@35115
   253
            val (xT :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
wenzelm@35115
   254
            val (y, t') = atomic_abs_tr' ("y", yT, incr_boundvars 2 t $ Bound 1 $ Bound 0);
wenzelm@35115
   255
            val (x', t'') = atomic_abs_tr' ("x", xT, t');
wenzelm@35115
   256
          in
wenzelm@35115
   257
            Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   258
              (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   259
          end)
schirmer@15422
   260
    | split_guess_names_tr' _ _ _ = raise Match;
haftmann@37591
   261
in [(@{const_syntax prod_case}, split_guess_names_tr')] end
schirmer@15422
   262
*}
schirmer@15422
   263
nipkow@42059
   264
(* Force eta-contraction for terms of the form "Q A (%p. prod_case P p)"
nipkow@42059
   265
   where Q is some bounded quantifier or set operator.
nipkow@42059
   266
   Reason: the above prints as "Q p : A. case p of (x,y) \<Rightarrow> P x y"
nipkow@42059
   267
   whereas we want "Q (x,y):A. P x y".
nipkow@42059
   268
   Otherwise prevent eta-contraction.
nipkow@42059
   269
*)
nipkow@42059
   270
print_translation {*
nipkow@42059
   271
let
nipkow@42059
   272
  fun contract Q f ts =
nipkow@42059
   273
    case ts of
nipkow@42059
   274
      [A, Abs(_, _, (s as Const (@{const_syntax prod_case},_) $ t) $ Bound 0)]
nipkow@42059
   275
      => if loose_bvar1 (t,0) then f ts else Syntax.const Q $ A $ s
nipkow@42059
   276
    | _ => f ts;
nipkow@42059
   277
  fun contract2 (Q,f) = (Q, contract Q f);
nipkow@42059
   278
  val pairs =
nipkow@42059
   279
    [Syntax.preserve_binder_abs2_tr' @{const_syntax Ball} @{syntax_const "_Ball"},
nipkow@42059
   280
     Syntax.preserve_binder_abs2_tr' @{const_syntax Bex} @{syntax_const "_Bex"},
nipkow@42059
   281
     Syntax.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"},
nipkow@42059
   282
     Syntax.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"}]
nipkow@42059
   283
in map contract2 pairs end
nipkow@42059
   284
*}
nipkow@10213
   285
haftmann@37166
   286
subsubsection {* Code generator setup *}
haftmann@37166
   287
haftmann@37678
   288
code_type prod
haftmann@37166
   289
  (SML infix 2 "*")
haftmann@37166
   290
  (OCaml infix 2 "*")
haftmann@37166
   291
  (Haskell "!((_),/ (_))")
haftmann@37166
   292
  (Scala "((_),/ (_))")
haftmann@37166
   293
haftmann@37166
   294
code_const Pair
haftmann@37166
   295
  (SML "!((_),/ (_))")
haftmann@37166
   296
  (OCaml "!((_),/ (_))")
haftmann@37166
   297
  (Haskell "!((_),/ (_))")
haftmann@37166
   298
  (Scala "!((_),/ (_))")
haftmann@37166
   299
haftmann@38857
   300
code_instance prod :: equal
haftmann@37166
   301
  (Haskell -)
haftmann@37166
   302
haftmann@38857
   303
code_const "HOL.equal \<Colon> 'a \<times> 'b \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool"
haftmann@39272
   304
  (Haskell infix 4 "==")
haftmann@37166
   305
haftmann@37166
   306
types_code
haftmann@37678
   307
  "prod"     ("(_ */ _)")
haftmann@37166
   308
attach (term_of) {*
haftmann@37678
   309
fun term_of_prod aF aT bF bT (x, y) = HOLogic.pair_const aT bT $ aF x $ bF y;
haftmann@37166
   310
*}
haftmann@37166
   311
attach (test) {*
bulwahn@37808
   312
fun gen_prod aG aT bG bT i =
haftmann@37166
   313
  let
haftmann@37166
   314
    val (x, t) = aG i;
haftmann@37166
   315
    val (y, u) = bG i
haftmann@37166
   316
  in ((x, y), fn () => HOLogic.pair_const aT bT $ t () $ u ()) end;
haftmann@37166
   317
*}
haftmann@37166
   318
haftmann@37166
   319
consts_code
haftmann@37166
   320
  "Pair"    ("(_,/ _)")
haftmann@37166
   321
haftmann@37166
   322
setup {*
haftmann@37166
   323
let
haftmann@37166
   324
haftmann@37166
   325
fun strip_abs_split 0 t = ([], t)
haftmann@37166
   326
  | strip_abs_split i (Abs (s, T, t)) =
haftmann@37166
   327
      let
haftmann@37166
   328
        val s' = Codegen.new_name t s;
haftmann@37166
   329
        val v = Free (s', T)
haftmann@37166
   330
      in apfst (cons v) (strip_abs_split (i-1) (subst_bound (v, t))) end
haftmann@37591
   331
  | strip_abs_split i (u as Const (@{const_name prod_case}, _) $ t) =
haftmann@37166
   332
      (case strip_abs_split (i+1) t of
haftmann@37166
   333
        (v :: v' :: vs, u) => (HOLogic.mk_prod (v, v') :: vs, u)
haftmann@37166
   334
      | _ => ([], u))
haftmann@37166
   335
  | strip_abs_split i t =
haftmann@37166
   336
      strip_abs_split i (Abs ("x", hd (binder_types (fastype_of t)), t $ Bound 0));
haftmann@37166
   337
haftmann@37166
   338
fun let_codegen thy defs dep thyname brack t gr =
haftmann@37166
   339
  (case strip_comb t of
haftmann@37166
   340
    (t1 as Const (@{const_name Let}, _), t2 :: t3 :: ts) =>
haftmann@37166
   341
    let
haftmann@37166
   342
      fun dest_let (l as Const (@{const_name Let}, _) $ t $ u) =
haftmann@37166
   343
          (case strip_abs_split 1 u of
haftmann@37166
   344
             ([p], u') => apfst (cons (p, t)) (dest_let u')
haftmann@37166
   345
           | _ => ([], l))
haftmann@37166
   346
        | dest_let t = ([], t);
haftmann@37166
   347
      fun mk_code (l, r) gr =
haftmann@37166
   348
        let
haftmann@37166
   349
          val (pl, gr1) = Codegen.invoke_codegen thy defs dep thyname false l gr;
haftmann@37166
   350
          val (pr, gr2) = Codegen.invoke_codegen thy defs dep thyname false r gr1;
haftmann@37166
   351
        in ((pl, pr), gr2) end
haftmann@37166
   352
    in case dest_let (t1 $ t2 $ t3) of
haftmann@37166
   353
        ([], _) => NONE
haftmann@37166
   354
      | (ps, u) =>
haftmann@37166
   355
          let
haftmann@37166
   356
            val (qs, gr1) = fold_map mk_code ps gr;
haftmann@37166
   357
            val (pu, gr2) = Codegen.invoke_codegen thy defs dep thyname false u gr1;
haftmann@37166
   358
            val (pargs, gr3) = fold_map
haftmann@37166
   359
              (Codegen.invoke_codegen thy defs dep thyname true) ts gr2
haftmann@37166
   360
          in
haftmann@37166
   361
            SOME (Codegen.mk_app brack
haftmann@37166
   362
              (Pretty.blk (0, [Codegen.str "let ", Pretty.blk (0, flat
haftmann@37166
   363
                  (separate [Codegen.str ";", Pretty.brk 1] (map (fn (pl, pr) =>
haftmann@37166
   364
                    [Pretty.block [Codegen.str "val ", pl, Codegen.str " =",
haftmann@37166
   365
                       Pretty.brk 1, pr]]) qs))),
haftmann@37166
   366
                Pretty.brk 1, Codegen.str "in ", pu,
haftmann@37166
   367
                Pretty.brk 1, Codegen.str "end"])) pargs, gr3)
haftmann@37166
   368
          end
haftmann@37166
   369
    end
haftmann@37166
   370
  | _ => NONE);
haftmann@37166
   371
haftmann@37166
   372
fun split_codegen thy defs dep thyname brack t gr = (case strip_comb t of
haftmann@37591
   373
    (t1 as Const (@{const_name prod_case}, _), t2 :: ts) =>
haftmann@37166
   374
      let
haftmann@37166
   375
        val ([p], u) = strip_abs_split 1 (t1 $ t2);
haftmann@37166
   376
        val (q, gr1) = Codegen.invoke_codegen thy defs dep thyname false p gr;
haftmann@37166
   377
        val (pu, gr2) = Codegen.invoke_codegen thy defs dep thyname false u gr1;
haftmann@37166
   378
        val (pargs, gr3) = fold_map
haftmann@37166
   379
          (Codegen.invoke_codegen thy defs dep thyname true) ts gr2
haftmann@37166
   380
      in
haftmann@37166
   381
        SOME (Codegen.mk_app brack
haftmann@37166
   382
          (Pretty.block [Codegen.str "(fn ", q, Codegen.str " =>",
haftmann@37166
   383
            Pretty.brk 1, pu, Codegen.str ")"]) pargs, gr2)
haftmann@37166
   384
      end
haftmann@37166
   385
  | _ => NONE);
haftmann@37166
   386
haftmann@37166
   387
in
haftmann@37166
   388
haftmann@37166
   389
  Codegen.add_codegen "let_codegen" let_codegen
haftmann@37166
   390
  #> Codegen.add_codegen "split_codegen" split_codegen
haftmann@37166
   391
haftmann@37166
   392
end
haftmann@37166
   393
*}
haftmann@37166
   394
haftmann@37166
   395
haftmann@37166
   396
subsubsection {* Fundamental operations and properties *}
wenzelm@11838
   397
haftmann@26358
   398
lemma surj_pair [simp]: "EX x y. p = (x, y)"
haftmann@37166
   399
  by (cases p) simp
nipkow@10213
   400
haftmann@37389
   401
definition fst :: "'a \<times> 'b \<Rightarrow> 'a" where
haftmann@37389
   402
  "fst p = (case p of (a, b) \<Rightarrow> a)"
wenzelm@11838
   403
haftmann@37389
   404
definition snd :: "'a \<times> 'b \<Rightarrow> 'b" where
haftmann@37389
   405
  "snd p = (case p of (a, b) \<Rightarrow> b)"
wenzelm@11838
   406
haftmann@22886
   407
lemma fst_conv [simp, code]: "fst (a, b) = a"
haftmann@37166
   408
  unfolding fst_def by simp
wenzelm@11838
   409
haftmann@22886
   410
lemma snd_conv [simp, code]: "snd (a, b) = b"
haftmann@37166
   411
  unfolding snd_def by simp
oheimb@11025
   412
haftmann@37166
   413
code_const fst and snd
haftmann@37166
   414
  (Haskell "fst" and "snd")
haftmann@26358
   415
blanchet@41792
   416
lemma prod_case_unfold [nitpick_unfold]: "prod_case = (%c p. c (fst p) (snd p))"
nipkow@39302
   417
  by (simp add: fun_eq_iff split: prod.split)
haftmann@26358
   418
wenzelm@11838
   419
lemma fst_eqD: "fst (x, y) = a ==> x = a"
wenzelm@11838
   420
  by simp
wenzelm@11838
   421
wenzelm@11838
   422
lemma snd_eqD: "snd (x, y) = a ==> y = a"
wenzelm@11838
   423
  by simp
wenzelm@11838
   424
haftmann@26358
   425
lemma pair_collapse [simp]: "(fst p, snd p) = p"
wenzelm@11838
   426
  by (cases p) simp
wenzelm@11838
   427
haftmann@26358
   428
lemmas surjective_pairing = pair_collapse [symmetric]
wenzelm@11838
   429
haftmann@37166
   430
lemma Pair_fst_snd_eq: "s = t \<longleftrightarrow> fst s = fst t \<and> snd s = snd t"
haftmann@37166
   431
  by (cases s, cases t) simp
haftmann@37166
   432
haftmann@37166
   433
lemma prod_eqI [intro?]: "fst p = fst q \<Longrightarrow> snd p = snd q \<Longrightarrow> p = q"
haftmann@37166
   434
  by (simp add: Pair_fst_snd_eq)
haftmann@37166
   435
haftmann@37166
   436
lemma split_conv [simp, code]: "split f (a, b) = f a b"
haftmann@37591
   437
  by (fact prod.cases)
haftmann@37166
   438
haftmann@37166
   439
lemma splitI: "f a b \<Longrightarrow> split f (a, b)"
haftmann@37166
   440
  by (rule split_conv [THEN iffD2])
haftmann@37166
   441
haftmann@37166
   442
lemma splitD: "split f (a, b) \<Longrightarrow> f a b"
haftmann@37166
   443
  by (rule split_conv [THEN iffD1])
haftmann@37166
   444
haftmann@37166
   445
lemma split_Pair [simp]: "(\<lambda>(x, y). (x, y)) = id"
nipkow@39302
   446
  by (simp add: fun_eq_iff split: prod.split)
haftmann@37166
   447
haftmann@37166
   448
lemma split_eta: "(\<lambda>(x, y). f (x, y)) = f"
haftmann@37166
   449
  -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *}
nipkow@39302
   450
  by (simp add: fun_eq_iff split: prod.split)
haftmann@37166
   451
haftmann@37166
   452
lemma split_comp: "split (f \<circ> g) x = f (g (fst x)) (snd x)"
haftmann@37166
   453
  by (cases x) simp
haftmann@37166
   454
haftmann@37166
   455
lemma split_twice: "split f (split g p) = split (\<lambda>x y. split f (g x y)) p"
haftmann@37166
   456
  by (cases p) simp
haftmann@37166
   457
haftmann@37166
   458
lemma The_split: "The (split P) = (THE xy. P (fst xy) (snd xy))"
haftmann@37591
   459
  by (simp add: prod_case_unfold)
haftmann@37166
   460
haftmann@37166
   461
lemma split_weak_cong: "p = q \<Longrightarrow> split c p = split c q"
haftmann@37166
   462
  -- {* Prevents simplification of @{term c}: much faster *}
huffman@40929
   463
  by (fact prod.weak_case_cong)
haftmann@37166
   464
haftmann@37166
   465
lemma cond_split_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g"
haftmann@37166
   466
  by (simp add: split_eta)
haftmann@37166
   467
wenzelm@11838
   468
lemma split_paired_all: "(!!x. PROP P x) == (!!a b. PROP P (a, b))"
wenzelm@11820
   469
proof
wenzelm@11820
   470
  fix a b
wenzelm@11820
   471
  assume "!!x. PROP P x"
wenzelm@19535
   472
  then show "PROP P (a, b)" .
wenzelm@11820
   473
next
wenzelm@11820
   474
  fix x
wenzelm@11820
   475
  assume "!!a b. PROP P (a, b)"
wenzelm@19535
   476
  from `PROP P (fst x, snd x)` show "PROP P x" by simp
wenzelm@11820
   477
qed
wenzelm@11820
   478
wenzelm@11838
   479
text {*
wenzelm@11838
   480
  The rule @{thm [source] split_paired_all} does not work with the
wenzelm@11838
   481
  Simplifier because it also affects premises in congrence rules,
wenzelm@11838
   482
  where this can lead to premises of the form @{text "!!a b. ... =
wenzelm@11838
   483
  ?P(a, b)"} which cannot be solved by reflexivity.
wenzelm@11838
   484
*}
wenzelm@11838
   485
haftmann@26358
   486
lemmas split_tupled_all = split_paired_all unit_all_eq2
haftmann@26358
   487
wenzelm@26480
   488
ML {*
wenzelm@11838
   489
  (* replace parameters of product type by individual component parameters *)
wenzelm@11838
   490
  val safe_full_simp_tac = generic_simp_tac true (true, false, false);
wenzelm@11838
   491
  local (* filtering with exists_paired_all is an essential optimization *)
wenzelm@16121
   492
    fun exists_paired_all (Const ("all", _) $ Abs (_, T, t)) =
wenzelm@11838
   493
          can HOLogic.dest_prodT T orelse exists_paired_all t
wenzelm@11838
   494
      | exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u
wenzelm@11838
   495
      | exists_paired_all (Abs (_, _, t)) = exists_paired_all t
wenzelm@11838
   496
      | exists_paired_all _ = false;
wenzelm@11838
   497
    val ss = HOL_basic_ss
wenzelm@26340
   498
      addsimps [@{thm split_paired_all}, @{thm unit_all_eq2}, @{thm unit_abs_eta_conv}]
wenzelm@11838
   499
      addsimprocs [unit_eq_proc];
wenzelm@11838
   500
  in
wenzelm@11838
   501
    val split_all_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   502
      if exists_paired_all t then safe_full_simp_tac ss i else no_tac);
wenzelm@11838
   503
    val unsafe_split_all_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   504
      if exists_paired_all t then full_simp_tac ss i else no_tac);
wenzelm@11838
   505
    fun split_all th =
wenzelm@26340
   506
   if exists_paired_all (Thm.prop_of th) then full_simplify ss th else th;
wenzelm@11838
   507
  end;
wenzelm@26340
   508
*}
wenzelm@11838
   509
wenzelm@26340
   510
declaration {* fn _ =>
wenzelm@26340
   511
  Classical.map_cs (fn cs => cs addSbefore ("split_all_tac", split_all_tac))
wenzelm@16121
   512
*}
wenzelm@11838
   513
wenzelm@11838
   514
lemma split_paired_All [simp]: "(ALL x. P x) = (ALL a b. P (a, b))"
wenzelm@11838
   515
  -- {* @{text "[iff]"} is not a good idea because it makes @{text blast} loop *}
wenzelm@11838
   516
  by fast
wenzelm@11838
   517
haftmann@26358
   518
lemma split_paired_Ex [simp]: "(EX x. P x) = (EX a b. P (a, b))"
haftmann@26358
   519
  by fast
haftmann@26358
   520
wenzelm@11838
   521
lemma split_paired_The: "(THE x. P x) = (THE (a, b). P (a, b))"
wenzelm@11838
   522
  -- {* Can't be added to simpset: loops! *}
haftmann@26358
   523
  by (simp add: split_eta)
wenzelm@11838
   524
wenzelm@11838
   525
text {*
wenzelm@11838
   526
  Simplification procedure for @{thm [source] cond_split_eta}.  Using
wenzelm@11838
   527
  @{thm [source] split_eta} as a rewrite rule is not general enough,
wenzelm@11838
   528
  and using @{thm [source] cond_split_eta} directly would render some
wenzelm@11838
   529
  existing proofs very inefficient; similarly for @{text
haftmann@26358
   530
  split_beta}.
haftmann@26358
   531
*}
wenzelm@11838
   532
wenzelm@26480
   533
ML {*
wenzelm@11838
   534
local
wenzelm@35364
   535
  val cond_split_eta_ss = HOL_basic_ss addsimps @{thms cond_split_eta};
wenzelm@35364
   536
  fun Pair_pat k 0 (Bound m) = (m = k)
wenzelm@35364
   537
    | Pair_pat k i (Const (@{const_name Pair},  _) $ Bound m $ t) =
wenzelm@35364
   538
        i > 0 andalso m = k + i andalso Pair_pat k (i - 1) t
wenzelm@35364
   539
    | Pair_pat _ _ _ = false;
wenzelm@35364
   540
  fun no_args k i (Abs (_, _, t)) = no_args (k + 1) i t
wenzelm@35364
   541
    | no_args k i (t $ u) = no_args k i t andalso no_args k i u
wenzelm@35364
   542
    | no_args k i (Bound m) = m < k orelse m > k + i
wenzelm@35364
   543
    | no_args _ _ _ = true;
wenzelm@35364
   544
  fun split_pat tp i (Abs  (_, _, t)) = if tp 0 i t then SOME (i, t) else NONE
haftmann@37591
   545
    | split_pat tp i (Const (@{const_name prod_case}, _) $ Abs (_, _, t)) = split_pat tp (i + 1) t
wenzelm@35364
   546
    | split_pat tp i _ = NONE;
wenzelm@20044
   547
  fun metaeq ss lhs rhs = mk_meta_eq (Goal.prove (Simplifier.the_context ss) [] []
wenzelm@35364
   548
        (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)))
wenzelm@18328
   549
        (K (simp_tac (Simplifier.inherit_context ss cond_split_eta_ss) 1)));
wenzelm@11838
   550
wenzelm@35364
   551
  fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k + 1) i t
wenzelm@35364
   552
    | beta_term_pat k i (t $ u) =
wenzelm@35364
   553
        Pair_pat k i (t $ u) orelse (beta_term_pat k i t andalso beta_term_pat k i u)
wenzelm@35364
   554
    | beta_term_pat k i t = no_args k i t;
wenzelm@35364
   555
  fun eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg
wenzelm@35364
   556
    | eta_term_pat _ _ _ = false;
wenzelm@11838
   557
  fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t)
wenzelm@35364
   558
    | subst arg k i (t $ u) =
wenzelm@35364
   559
        if Pair_pat k i (t $ u) then incr_boundvars k arg
wenzelm@35364
   560
        else (subst arg k i t $ subst arg k i u)
wenzelm@35364
   561
    | subst arg k i t = t;
haftmann@37591
   562
  fun beta_proc ss (s as Const (@{const_name prod_case}, _) $ Abs (_, _, t) $ arg) =
wenzelm@11838
   563
        (case split_pat beta_term_pat 1 t of
wenzelm@35364
   564
          SOME (i, f) => SOME (metaeq ss s (subst arg 0 i f))
skalberg@15531
   565
        | NONE => NONE)
wenzelm@35364
   566
    | beta_proc _ _ = NONE;
haftmann@37591
   567
  fun eta_proc ss (s as Const (@{const_name prod_case}, _) $ Abs (_, _, t)) =
wenzelm@11838
   568
        (case split_pat eta_term_pat 1 t of
wenzelm@35364
   569
          SOME (_, ft) => SOME (metaeq ss s (let val (f $ arg) = ft in f end))
skalberg@15531
   570
        | NONE => NONE)
wenzelm@35364
   571
    | eta_proc _ _ = NONE;
wenzelm@11838
   572
in
wenzelm@38715
   573
  val split_beta_proc = Simplifier.simproc_global @{theory} "split_beta" ["split f z"] (K beta_proc);
wenzelm@38715
   574
  val split_eta_proc = Simplifier.simproc_global @{theory} "split_eta" ["split f"] (K eta_proc);
wenzelm@11838
   575
end;
wenzelm@11838
   576
wenzelm@11838
   577
Addsimprocs [split_beta_proc, split_eta_proc];
wenzelm@11838
   578
*}
wenzelm@11838
   579
berghofe@26798
   580
lemma split_beta [mono]: "(%(x, y). P x y) z = P (fst z) (snd z)"
wenzelm@11838
   581
  by (subst surjective_pairing, rule split_conv)
wenzelm@11838
   582
blanchet@35828
   583
lemma split_split [no_atp]: "R(split c p) = (ALL x y. p = (x, y) --> R(c x y))"
wenzelm@11838
   584
  -- {* For use with @{text split} and the Simplifier. *}
paulson@15481
   585
  by (insert surj_pair [of p], clarify, simp)
wenzelm@11838
   586
wenzelm@11838
   587
text {*
wenzelm@11838
   588
  @{thm [source] split_split} could be declared as @{text "[split]"}
wenzelm@11838
   589
  done after the Splitter has been speeded up significantly;
wenzelm@11838
   590
  precompute the constants involved and don't do anything unless the
wenzelm@11838
   591
  current goal contains one of those constants.
wenzelm@11838
   592
*}
wenzelm@11838
   593
blanchet@35828
   594
lemma split_split_asm [no_atp]: "R (split c p) = (~(EX x y. p = (x, y) & (~R (c x y))))"
paulson@14208
   595
by (subst split_split, simp)
wenzelm@11838
   596
wenzelm@11838
   597
text {*
wenzelm@11838
   598
  \medskip @{term split} used as a logical connective or set former.
wenzelm@11838
   599
wenzelm@11838
   600
  \medskip These rules are for use with @{text blast}; could instead
huffman@40929
   601
  call @{text simp} using @{thm [source] prod.split} as rewrite. *}
wenzelm@11838
   602
wenzelm@11838
   603
lemma splitI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> split c p"
wenzelm@11838
   604
  apply (simp only: split_tupled_all)
wenzelm@11838
   605
  apply (simp (no_asm_simp))
wenzelm@11838
   606
  done
wenzelm@11838
   607
wenzelm@11838
   608
lemma splitI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> split c p x"
wenzelm@11838
   609
  apply (simp only: split_tupled_all)
wenzelm@11838
   610
  apply (simp (no_asm_simp))
wenzelm@11838
   611
  done
wenzelm@11838
   612
wenzelm@11838
   613
lemma splitE: "split c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
haftmann@37591
   614
  by (induct p) auto
wenzelm@11838
   615
wenzelm@11838
   616
lemma splitE': "split c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
haftmann@37591
   617
  by (induct p) auto
wenzelm@11838
   618
wenzelm@11838
   619
lemma splitE2:
wenzelm@11838
   620
  "[| Q (split P z);  !!x y. [|z = (x, y); Q (P x y)|] ==> R |] ==> R"
wenzelm@11838
   621
proof -
wenzelm@11838
   622
  assume q: "Q (split P z)"
wenzelm@11838
   623
  assume r: "!!x y. [|z = (x, y); Q (P x y)|] ==> R"
wenzelm@11838
   624
  show R
wenzelm@11838
   625
    apply (rule r surjective_pairing)+
wenzelm@11838
   626
    apply (rule split_beta [THEN subst], rule q)
wenzelm@11838
   627
    done
wenzelm@11838
   628
qed
wenzelm@11838
   629
wenzelm@11838
   630
lemma splitD': "split R (a,b) c ==> R a b c"
wenzelm@11838
   631
  by simp
wenzelm@11838
   632
wenzelm@11838
   633
lemma mem_splitI: "z: c a b ==> z: split c (a, b)"
wenzelm@11838
   634
  by simp
wenzelm@11838
   635
wenzelm@11838
   636
lemma mem_splitI2: "!!p. [| !!a b. p = (a, b) ==> z: c a b |] ==> z: split c p"
paulson@14208
   637
by (simp only: split_tupled_all, simp)
wenzelm@11838
   638
wenzelm@18372
   639
lemma mem_splitE:
haftmann@37166
   640
  assumes major: "z \<in> split c p"
haftmann@37166
   641
    and cases: "\<And>x y. p = (x, y) \<Longrightarrow> z \<in> c x y \<Longrightarrow> Q"
wenzelm@18372
   642
  shows Q
haftmann@37591
   643
  by (rule major [unfolded prod_case_unfold] cases surjective_pairing)+
wenzelm@11838
   644
wenzelm@11838
   645
declare mem_splitI2 [intro!] mem_splitI [intro!] splitI2' [intro!] splitI2 [intro!] splitI [intro!]
wenzelm@11838
   646
declare mem_splitE [elim!] splitE' [elim!] splitE [elim!]
wenzelm@11838
   647
wenzelm@26340
   648
ML {*
wenzelm@11838
   649
local (* filtering with exists_p_split is an essential optimization *)
haftmann@37591
   650
  fun exists_p_split (Const (@{const_name prod_case},_) $ _ $ (Const (@{const_name Pair},_)$_$_)) = true
wenzelm@11838
   651
    | exists_p_split (t $ u) = exists_p_split t orelse exists_p_split u
wenzelm@11838
   652
    | exists_p_split (Abs (_, _, t)) = exists_p_split t
wenzelm@11838
   653
    | exists_p_split _ = false;
wenzelm@35364
   654
  val ss = HOL_basic_ss addsimps @{thms split_conv};
wenzelm@11838
   655
in
wenzelm@11838
   656
val split_conv_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   657
    if exists_p_split t then safe_full_simp_tac ss i else no_tac);
wenzelm@11838
   658
end;
wenzelm@26340
   659
*}
wenzelm@26340
   660
wenzelm@11838
   661
(* This prevents applications of splitE for already splitted arguments leading
wenzelm@11838
   662
   to quite time-consuming computations (in particular for nested tuples) *)
wenzelm@26340
   663
declaration {* fn _ =>
wenzelm@26340
   664
  Classical.map_cs (fn cs => cs addSbefore ("split_conv_tac", split_conv_tac))
wenzelm@16121
   665
*}
wenzelm@11838
   666
blanchet@35828
   667
lemma split_eta_SetCompr [simp,no_atp]: "(%u. EX x y. u = (x, y) & P (x, y)) = P"
wenzelm@18372
   668
  by (rule ext) fast
wenzelm@11838
   669
blanchet@35828
   670
lemma split_eta_SetCompr2 [simp,no_atp]: "(%u. EX x y. u = (x, y) & P x y) = split P"
wenzelm@18372
   671
  by (rule ext) fast
wenzelm@11838
   672
wenzelm@11838
   673
lemma split_part [simp]: "(%(a,b). P & Q a b) = (%ab. P & split Q ab)"
wenzelm@11838
   674
  -- {* Allows simplifications of nested splits in case of independent predicates. *}
wenzelm@18372
   675
  by (rule ext) blast
wenzelm@11838
   676
nipkow@14337
   677
(* Do NOT make this a simp rule as it
nipkow@14337
   678
   a) only helps in special situations
nipkow@14337
   679
   b) can lead to nontermination in the presence of split_def
nipkow@14337
   680
*)
nipkow@14337
   681
lemma split_comp_eq: 
paulson@20415
   682
  fixes f :: "'a => 'b => 'c" and g :: "'d => 'a"
paulson@20415
   683
  shows "(%u. f (g (fst u)) (snd u)) = (split (%x. f (g x)))"
wenzelm@18372
   684
  by (rule ext) auto
oheimb@14101
   685
haftmann@26358
   686
lemma pair_imageI [intro]: "(a, b) : A ==> f a b : (%(a, b). f a b) ` A"
haftmann@26358
   687
  apply (rule_tac x = "(a, b)" in image_eqI)
haftmann@26358
   688
   apply auto
haftmann@26358
   689
  done
haftmann@26358
   690
wenzelm@11838
   691
lemma The_split_eq [simp]: "(THE (x',y'). x = x' & y = y') = (x, y)"
wenzelm@11838
   692
  by blast
wenzelm@11838
   693
wenzelm@11838
   694
(*
wenzelm@11838
   695
the following  would be slightly more general,
wenzelm@11838
   696
but cannot be used as rewrite rule:
wenzelm@11838
   697
### Cannot add premise as rewrite rule because it contains (type) unknowns:
wenzelm@11838
   698
### ?y = .x
wenzelm@11838
   699
Goal "[| P y; !!x. P x ==> x = y |] ==> (@(x',y). x = x' & P y) = (x,y)"
paulson@14208
   700
by (rtac some_equality 1)
paulson@14208
   701
by ( Simp_tac 1)
paulson@14208
   702
by (split_all_tac 1)
paulson@14208
   703
by (Asm_full_simp_tac 1)
wenzelm@11838
   704
qed "The_split_eq";
wenzelm@11838
   705
*)
wenzelm@11838
   706
wenzelm@11838
   707
text {*
wenzelm@11838
   708
  Setup of internal @{text split_rule}.
wenzelm@11838
   709
*}
wenzelm@11838
   710
haftmann@24699
   711
lemmas prod_caseI = prod.cases [THEN iffD2, standard]
haftmann@24699
   712
haftmann@24699
   713
lemma prod_caseI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> prod_case c p"
haftmann@37678
   714
  by (fact splitI2)
haftmann@24699
   715
haftmann@24699
   716
lemma prod_caseI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> prod_case c p x"
haftmann@37678
   717
  by (fact splitI2')
haftmann@24699
   718
haftmann@24699
   719
lemma prod_caseE: "prod_case c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
haftmann@37678
   720
  by (fact splitE)
haftmann@24699
   721
haftmann@24699
   722
lemma prod_caseE': "prod_case c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
haftmann@37678
   723
  by (fact splitE')
haftmann@24699
   724
haftmann@37678
   725
declare prod_caseI [intro!]
haftmann@24699
   726
bulwahn@26143
   727
lemma prod_case_beta:
bulwahn@26143
   728
  "prod_case f p = f (fst p) (snd p)"
haftmann@37591
   729
  by (fact split_beta)
bulwahn@26143
   730
haftmann@24699
   731
lemma prod_cases3 [cases type]:
haftmann@24699
   732
  obtains (fields) a b c where "y = (a, b, c)"
haftmann@24699
   733
  by (cases y, case_tac b) blast
haftmann@24699
   734
haftmann@24699
   735
lemma prod_induct3 [case_names fields, induct type]:
haftmann@24699
   736
    "(!!a b c. P (a, b, c)) ==> P x"
haftmann@24699
   737
  by (cases x) blast
haftmann@24699
   738
haftmann@24699
   739
lemma prod_cases4 [cases type]:
haftmann@24699
   740
  obtains (fields) a b c d where "y = (a, b, c, d)"
haftmann@24699
   741
  by (cases y, case_tac c) blast
haftmann@24699
   742
haftmann@24699
   743
lemma prod_induct4 [case_names fields, induct type]:
haftmann@24699
   744
    "(!!a b c d. P (a, b, c, d)) ==> P x"
haftmann@24699
   745
  by (cases x) blast
haftmann@24699
   746
haftmann@24699
   747
lemma prod_cases5 [cases type]:
haftmann@24699
   748
  obtains (fields) a b c d e where "y = (a, b, c, d, e)"
haftmann@24699
   749
  by (cases y, case_tac d) blast
haftmann@24699
   750
haftmann@24699
   751
lemma prod_induct5 [case_names fields, induct type]:
haftmann@24699
   752
    "(!!a b c d e. P (a, b, c, d, e)) ==> P x"
haftmann@24699
   753
  by (cases x) blast
haftmann@24699
   754
haftmann@24699
   755
lemma prod_cases6 [cases type]:
haftmann@24699
   756
  obtains (fields) a b c d e f where "y = (a, b, c, d, e, f)"
haftmann@24699
   757
  by (cases y, case_tac e) blast
haftmann@24699
   758
haftmann@24699
   759
lemma prod_induct6 [case_names fields, induct type]:
haftmann@24699
   760
    "(!!a b c d e f. P (a, b, c, d, e, f)) ==> P x"
haftmann@24699
   761
  by (cases x) blast
haftmann@24699
   762
haftmann@24699
   763
lemma prod_cases7 [cases type]:
haftmann@24699
   764
  obtains (fields) a b c d e f g where "y = (a, b, c, d, e, f, g)"
haftmann@24699
   765
  by (cases y, case_tac f) blast
haftmann@24699
   766
haftmann@24699
   767
lemma prod_induct7 [case_names fields, induct type]:
haftmann@24699
   768
    "(!!a b c d e f g. P (a, b, c, d, e, f, g)) ==> P x"
haftmann@24699
   769
  by (cases x) blast
haftmann@24699
   770
haftmann@37166
   771
lemma split_def:
haftmann@37166
   772
  "split = (\<lambda>c p. c (fst p) (snd p))"
haftmann@37591
   773
  by (fact prod_case_unfold)
haftmann@37166
   774
haftmann@37166
   775
definition internal_split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c" where
haftmann@37166
   776
  "internal_split == split"
haftmann@37166
   777
haftmann@37166
   778
lemma internal_split_conv: "internal_split c (a, b) = c a b"
haftmann@37166
   779
  by (simp only: internal_split_def split_conv)
haftmann@37166
   780
haftmann@37166
   781
use "Tools/split_rule.ML"
haftmann@37166
   782
setup Split_Rule.setup
haftmann@37166
   783
haftmann@37166
   784
hide_const internal_split
haftmann@37166
   785
haftmann@24699
   786
haftmann@26358
   787
subsubsection {* Derived operations *}
haftmann@26358
   788
haftmann@37387
   789
definition curry    :: "('a \<times> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'c" where
haftmann@37387
   790
  "curry = (\<lambda>c x y. c (x, y))"
haftmann@37166
   791
haftmann@37166
   792
lemma curry_conv [simp, code]: "curry f a b = f (a, b)"
haftmann@37166
   793
  by (simp add: curry_def)
haftmann@37166
   794
haftmann@37166
   795
lemma curryI [intro!]: "f (a, b) \<Longrightarrow> curry f a b"
haftmann@37166
   796
  by (simp add: curry_def)
haftmann@37166
   797
haftmann@37166
   798
lemma curryD [dest!]: "curry f a b \<Longrightarrow> f (a, b)"
haftmann@37166
   799
  by (simp add: curry_def)
haftmann@37166
   800
haftmann@37166
   801
lemma curryE: "curry f a b \<Longrightarrow> (f (a, b) \<Longrightarrow> Q) \<Longrightarrow> Q"
haftmann@37166
   802
  by (simp add: curry_def)
haftmann@37166
   803
haftmann@37166
   804
lemma curry_split [simp]: "curry (split f) = f"
haftmann@37166
   805
  by (simp add: curry_def split_def)
haftmann@37166
   806
haftmann@37166
   807
lemma split_curry [simp]: "split (curry f) = f"
haftmann@37166
   808
  by (simp add: curry_def split_def)
haftmann@37166
   809
haftmann@26358
   810
text {*
haftmann@26358
   811
  The composition-uncurry combinator.
haftmann@26358
   812
*}
haftmann@26358
   813
haftmann@37751
   814
notation fcomp (infixl "\<circ>>" 60)
haftmann@26358
   815
haftmann@37751
   816
definition scomp :: "('a \<Rightarrow> 'b \<times> 'c) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> 'd) \<Rightarrow> 'a \<Rightarrow> 'd" (infixl "\<circ>\<rightarrow>" 60) where
haftmann@37751
   817
  "f \<circ>\<rightarrow> g = (\<lambda>x. prod_case g (f x))"
haftmann@26358
   818
haftmann@37678
   819
lemma scomp_unfold: "scomp = (\<lambda>f g x. g (fst (f x)) (snd (f x)))"
nipkow@39302
   820
  by (simp add: fun_eq_iff scomp_def prod_case_unfold)
haftmann@37678
   821
haftmann@37751
   822
lemma scomp_apply [simp]: "(f \<circ>\<rightarrow> g) x = prod_case g (f x)"
haftmann@37751
   823
  by (simp add: scomp_unfold prod_case_unfold)
haftmann@26358
   824
haftmann@37751
   825
lemma Pair_scomp: "Pair x \<circ>\<rightarrow> f = f x"
nipkow@39302
   826
  by (simp add: fun_eq_iff scomp_apply)
haftmann@26358
   827
haftmann@37751
   828
lemma scomp_Pair: "x \<circ>\<rightarrow> Pair = x"
nipkow@39302
   829
  by (simp add: fun_eq_iff scomp_apply)
haftmann@26358
   830
haftmann@37751
   831
lemma scomp_scomp: "(f \<circ>\<rightarrow> g) \<circ>\<rightarrow> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>\<rightarrow> h)"
nipkow@39302
   832
  by (simp add: fun_eq_iff scomp_unfold)
haftmann@26358
   833
haftmann@37751
   834
lemma scomp_fcomp: "(f \<circ>\<rightarrow> g) \<circ>> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>> h)"
nipkow@39302
   835
  by (simp add: fun_eq_iff scomp_unfold fcomp_def)
haftmann@26358
   836
haftmann@37751
   837
lemma fcomp_scomp: "(f \<circ>> g) \<circ>\<rightarrow> h = f \<circ>> (g \<circ>\<rightarrow> h)"
nipkow@39302
   838
  by (simp add: fun_eq_iff scomp_unfold fcomp_apply)
haftmann@26358
   839
haftmann@31202
   840
code_const scomp
haftmann@31202
   841
  (Eval infixl 3 "#->")
haftmann@31202
   842
haftmann@37751
   843
no_notation fcomp (infixl "\<circ>>" 60)
haftmann@37751
   844
no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
haftmann@26358
   845
haftmann@26358
   846
text {*
haftmann@40607
   847
  @{term map_pair} --- action of the product functor upon
krauss@36664
   848
  functions.
haftmann@26358
   849
*}
haftmann@21195
   850
haftmann@40607
   851
definition map_pair :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'd" where
haftmann@40607
   852
  "map_pair f g = (\<lambda>(x, y). (f x, g y))"
haftmann@26358
   853
haftmann@40607
   854
lemma map_pair_simp [simp, code]:
haftmann@40607
   855
  "map_pair f g (a, b) = (f a, g b)"
haftmann@40607
   856
  by (simp add: map_pair_def)
haftmann@26358
   857
haftmann@41505
   858
enriched_type map_pair: map_pair
haftmann@41372
   859
  by (auto simp add: split_paired_all intro: ext)
nipkow@37278
   860
haftmann@40607
   861
lemma fst_map_pair [simp]:
haftmann@40607
   862
  "fst (map_pair f g x) = f (fst x)"
haftmann@40607
   863
  by (cases x) simp_all
nipkow@37278
   864
haftmann@40607
   865
lemma snd_prod_fun [simp]:
haftmann@40607
   866
  "snd (map_pair f g x) = g (snd x)"
haftmann@40607
   867
  by (cases x) simp_all
nipkow@37278
   868
haftmann@40607
   869
lemma fst_comp_map_pair [simp]:
haftmann@40607
   870
  "fst \<circ> map_pair f g = f \<circ> fst"
haftmann@40607
   871
  by (rule ext) simp_all
nipkow@37278
   872
haftmann@40607
   873
lemma snd_comp_map_pair [simp]:
haftmann@40607
   874
  "snd \<circ> map_pair f g = g \<circ> snd"
haftmann@40607
   875
  by (rule ext) simp_all
haftmann@26358
   876
haftmann@40607
   877
lemma map_pair_compose:
haftmann@40607
   878
  "map_pair (f1 o f2) (g1 o g2) = (map_pair f1 g1 o map_pair f2 g2)"
haftmann@40607
   879
  by (rule ext) (simp add: map_pair.compositionality comp_def)
haftmann@26358
   880
haftmann@40607
   881
lemma map_pair_ident [simp]:
haftmann@40607
   882
  "map_pair (%x. x) (%y. y) = (%z. z)"
haftmann@40607
   883
  by (rule ext) (simp add: map_pair.identity)
haftmann@40607
   884
haftmann@40607
   885
lemma map_pair_imageI [intro]:
haftmann@40607
   886
  "(a, b) \<in> R \<Longrightarrow> (f a, g b) \<in> map_pair f g ` R"
haftmann@40607
   887
  by (rule image_eqI) simp_all
haftmann@21195
   888
haftmann@26358
   889
lemma prod_fun_imageE [elim!]:
haftmann@40607
   890
  assumes major: "c \<in> map_pair f g ` R"
haftmann@40607
   891
    and cases: "\<And>x y. c = (f x, g y) \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> P"
haftmann@26358
   892
  shows P
haftmann@26358
   893
  apply (rule major [THEN imageE])
haftmann@37166
   894
  apply (case_tac x)
haftmann@26358
   895
  apply (rule cases)
haftmann@40607
   896
  apply simp_all
haftmann@26358
   897
  done
haftmann@26358
   898
haftmann@37166
   899
definition apfst :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'b" where
haftmann@40607
   900
  "apfst f = map_pair f id"
haftmann@26358
   901
haftmann@37166
   902
definition apsnd :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'a \<times> 'c" where
haftmann@40607
   903
  "apsnd f = map_pair id f"
haftmann@26358
   904
haftmann@26358
   905
lemma apfst_conv [simp, code]:
haftmann@26358
   906
  "apfst f (x, y) = (f x, y)" 
haftmann@26358
   907
  by (simp add: apfst_def)
haftmann@26358
   908
hoelzl@33638
   909
lemma apsnd_conv [simp, code]:
haftmann@26358
   910
  "apsnd f (x, y) = (x, f y)" 
haftmann@26358
   911
  by (simp add: apsnd_def)
haftmann@21195
   912
haftmann@33594
   913
lemma fst_apfst [simp]:
haftmann@33594
   914
  "fst (apfst f x) = f (fst x)"
haftmann@33594
   915
  by (cases x) simp
haftmann@33594
   916
haftmann@33594
   917
lemma fst_apsnd [simp]:
haftmann@33594
   918
  "fst (apsnd f x) = fst x"
haftmann@33594
   919
  by (cases x) simp
haftmann@33594
   920
haftmann@33594
   921
lemma snd_apfst [simp]:
haftmann@33594
   922
  "snd (apfst f x) = snd x"
haftmann@33594
   923
  by (cases x) simp
haftmann@33594
   924
haftmann@33594
   925
lemma snd_apsnd [simp]:
haftmann@33594
   926
  "snd (apsnd f x) = f (snd x)"
haftmann@33594
   927
  by (cases x) simp
haftmann@33594
   928
haftmann@33594
   929
lemma apfst_compose:
haftmann@33594
   930
  "apfst f (apfst g x) = apfst (f \<circ> g) x"
haftmann@33594
   931
  by (cases x) simp
haftmann@33594
   932
haftmann@33594
   933
lemma apsnd_compose:
haftmann@33594
   934
  "apsnd f (apsnd g x) = apsnd (f \<circ> g) x"
haftmann@33594
   935
  by (cases x) simp
haftmann@33594
   936
haftmann@33594
   937
lemma apfst_apsnd [simp]:
haftmann@33594
   938
  "apfst f (apsnd g x) = (f (fst x), g (snd x))"
haftmann@33594
   939
  by (cases x) simp
haftmann@33594
   940
haftmann@33594
   941
lemma apsnd_apfst [simp]:
haftmann@33594
   942
  "apsnd f (apfst g x) = (g (fst x), f (snd x))"
haftmann@33594
   943
  by (cases x) simp
haftmann@33594
   944
haftmann@33594
   945
lemma apfst_id [simp] :
haftmann@33594
   946
  "apfst id = id"
nipkow@39302
   947
  by (simp add: fun_eq_iff)
haftmann@33594
   948
haftmann@33594
   949
lemma apsnd_id [simp] :
haftmann@33594
   950
  "apsnd id = id"
nipkow@39302
   951
  by (simp add: fun_eq_iff)
haftmann@33594
   952
haftmann@33594
   953
lemma apfst_eq_conv [simp]:
haftmann@33594
   954
  "apfst f x = apfst g x \<longleftrightarrow> f (fst x) = g (fst x)"
haftmann@33594
   955
  by (cases x) simp
haftmann@33594
   956
haftmann@33594
   957
lemma apsnd_eq_conv [simp]:
haftmann@33594
   958
  "apsnd f x = apsnd g x \<longleftrightarrow> f (snd x) = g (snd x)"
haftmann@33594
   959
  by (cases x) simp
haftmann@33594
   960
hoelzl@33638
   961
lemma apsnd_apfst_commute:
hoelzl@33638
   962
  "apsnd f (apfst g p) = apfst g (apsnd f p)"
hoelzl@33638
   963
  by simp
haftmann@21195
   964
haftmann@26358
   965
text {*
haftmann@26358
   966
  Disjoint union of a family of sets -- Sigma.
haftmann@26358
   967
*}
haftmann@26358
   968
haftmann@40607
   969
definition Sigma :: "['a set, 'a => 'b set] => ('a \<times> 'b) set" where
haftmann@26358
   970
  Sigma_def: "Sigma A B == UN x:A. UN y:B x. {Pair x y}"
haftmann@26358
   971
haftmann@26358
   972
abbreviation
haftmann@26358
   973
  Times :: "['a set, 'b set] => ('a * 'b) set"
haftmann@26358
   974
    (infixr "<*>" 80) where
haftmann@26358
   975
  "A <*> B == Sigma A (%_. B)"
haftmann@26358
   976
haftmann@26358
   977
notation (xsymbols)
haftmann@26358
   978
  Times  (infixr "\<times>" 80)
berghofe@15394
   979
haftmann@26358
   980
notation (HTML output)
haftmann@26358
   981
  Times  (infixr "\<times>" 80)
haftmann@26358
   982
haftmann@26358
   983
syntax
wenzelm@35115
   984
  "_Sigma" :: "[pttrn, 'a set, 'b set] => ('a * 'b) set"  ("(3SIGMA _:_./ _)" [0, 0, 10] 10)
haftmann@26358
   985
translations
wenzelm@35115
   986
  "SIGMA x:A. B" == "CONST Sigma A (%x. B)"
haftmann@26358
   987
haftmann@26358
   988
lemma SigmaI [intro!]: "[| a:A;  b:B(a) |] ==> (a,b) : Sigma A B"
haftmann@26358
   989
  by (unfold Sigma_def) blast
haftmann@26358
   990
haftmann@26358
   991
lemma SigmaE [elim!]:
haftmann@26358
   992
    "[| c: Sigma A B;
haftmann@26358
   993
        !!x y.[| x:A;  y:B(x);  c=(x,y) |] ==> P
haftmann@26358
   994
     |] ==> P"
haftmann@26358
   995
  -- {* The general elimination rule. *}
haftmann@26358
   996
  by (unfold Sigma_def) blast
haftmann@20588
   997
haftmann@26358
   998
text {*
haftmann@26358
   999
  Elimination of @{term "(a, b) : A \<times> B"} -- introduces no
haftmann@26358
  1000
  eigenvariables.
haftmann@26358
  1001
*}
haftmann@26358
  1002
haftmann@26358
  1003
lemma SigmaD1: "(a, b) : Sigma A B ==> a : A"
haftmann@26358
  1004
  by blast
haftmann@26358
  1005
haftmann@26358
  1006
lemma SigmaD2: "(a, b) : Sigma A B ==> b : B a"
haftmann@26358
  1007
  by blast
haftmann@26358
  1008
haftmann@26358
  1009
lemma SigmaE2:
haftmann@26358
  1010
    "[| (a, b) : Sigma A B;
haftmann@26358
  1011
        [| a:A;  b:B(a) |] ==> P
haftmann@26358
  1012
     |] ==> P"
haftmann@26358
  1013
  by blast
haftmann@20588
  1014
haftmann@26358
  1015
lemma Sigma_cong:
haftmann@26358
  1016
     "\<lbrakk>A = B; !!x. x \<in> B \<Longrightarrow> C x = D x\<rbrakk>
haftmann@26358
  1017
      \<Longrightarrow> (SIGMA x: A. C x) = (SIGMA x: B. D x)"
haftmann@26358
  1018
  by auto
haftmann@26358
  1019
haftmann@26358
  1020
lemma Sigma_mono: "[| A <= C; !!x. x:A ==> B x <= D x |] ==> Sigma A B <= Sigma C D"
haftmann@26358
  1021
  by blast
haftmann@26358
  1022
haftmann@26358
  1023
lemma Sigma_empty1 [simp]: "Sigma {} B = {}"
haftmann@26358
  1024
  by blast
haftmann@26358
  1025
haftmann@26358
  1026
lemma Sigma_empty2 [simp]: "A <*> {} = {}"
haftmann@26358
  1027
  by blast
haftmann@26358
  1028
haftmann@26358
  1029
lemma UNIV_Times_UNIV [simp]: "UNIV <*> UNIV = UNIV"
haftmann@26358
  1030
  by auto
haftmann@21908
  1031
haftmann@26358
  1032
lemma Compl_Times_UNIV1 [simp]: "- (UNIV <*> A) = UNIV <*> (-A)"
haftmann@26358
  1033
  by auto
haftmann@26358
  1034
haftmann@26358
  1035
lemma Compl_Times_UNIV2 [simp]: "- (A <*> UNIV) = (-A) <*> UNIV"
haftmann@26358
  1036
  by auto
haftmann@26358
  1037
haftmann@26358
  1038
lemma mem_Sigma_iff [iff]: "((a,b): Sigma A B) = (a:A & b:B(a))"
haftmann@26358
  1039
  by blast
haftmann@26358
  1040
haftmann@26358
  1041
lemma Times_subset_cancel2: "x:C ==> (A <*> C <= B <*> C) = (A <= B)"
haftmann@26358
  1042
  by blast
haftmann@26358
  1043
haftmann@26358
  1044
lemma Times_eq_cancel2: "x:C ==> (A <*> C = B <*> C) = (A = B)"
haftmann@26358
  1045
  by (blast elim: equalityE)
haftmann@20588
  1046
haftmann@26358
  1047
lemma SetCompr_Sigma_eq:
haftmann@26358
  1048
    "Collect (split (%x y. P x & Q x y)) = (SIGMA x:Collect P. Collect (Q x))"
haftmann@26358
  1049
  by blast
haftmann@26358
  1050
haftmann@26358
  1051
lemma Collect_split [simp]: "{(a,b). P a & Q b} = Collect P <*> Collect Q"
haftmann@26358
  1052
  by blast
haftmann@26358
  1053
haftmann@26358
  1054
lemma UN_Times_distrib:
haftmann@26358
  1055
  "(UN (a,b):(A <*> B). E a <*> F b) = (UNION A E) <*> (UNION B F)"
haftmann@26358
  1056
  -- {* Suggested by Pierre Chartier *}
haftmann@26358
  1057
  by blast
haftmann@26358
  1058
blanchet@35828
  1059
lemma split_paired_Ball_Sigma [simp,no_atp]:
haftmann@26358
  1060
    "(ALL z: Sigma A B. P z) = (ALL x:A. ALL y: B x. P(x,y))"
haftmann@26358
  1061
  by blast
haftmann@26358
  1062
blanchet@35828
  1063
lemma split_paired_Bex_Sigma [simp,no_atp]:
haftmann@26358
  1064
    "(EX z: Sigma A B. P z) = (EX x:A. EX y: B x. P(x,y))"
haftmann@26358
  1065
  by blast
haftmann@21908
  1066
haftmann@26358
  1067
lemma Sigma_Un_distrib1: "(SIGMA i:I Un J. C(i)) = (SIGMA i:I. C(i)) Un (SIGMA j:J. C(j))"
haftmann@26358
  1068
  by blast
haftmann@26358
  1069
haftmann@26358
  1070
lemma Sigma_Un_distrib2: "(SIGMA i:I. A(i) Un B(i)) = (SIGMA i:I. A(i)) Un (SIGMA i:I. B(i))"
haftmann@26358
  1071
  by blast
haftmann@26358
  1072
haftmann@26358
  1073
lemma Sigma_Int_distrib1: "(SIGMA i:I Int J. C(i)) = (SIGMA i:I. C(i)) Int (SIGMA j:J. C(j))"
haftmann@26358
  1074
  by blast
haftmann@26358
  1075
haftmann@26358
  1076
lemma Sigma_Int_distrib2: "(SIGMA i:I. A(i) Int B(i)) = (SIGMA i:I. A(i)) Int (SIGMA i:I. B(i))"
haftmann@26358
  1077
  by blast
haftmann@26358
  1078
haftmann@26358
  1079
lemma Sigma_Diff_distrib1: "(SIGMA i:I - J. C(i)) = (SIGMA i:I. C(i)) - (SIGMA j:J. C(j))"
haftmann@26358
  1080
  by blast
haftmann@26358
  1081
haftmann@26358
  1082
lemma Sigma_Diff_distrib2: "(SIGMA i:I. A(i) - B(i)) = (SIGMA i:I. A(i)) - (SIGMA i:I. B(i))"
haftmann@26358
  1083
  by blast
haftmann@21908
  1084
haftmann@26358
  1085
lemma Sigma_Union: "Sigma (Union X) B = (UN A:X. Sigma A B)"
haftmann@26358
  1086
  by blast
haftmann@26358
  1087
haftmann@26358
  1088
text {*
haftmann@26358
  1089
  Non-dependent versions are needed to avoid the need for higher-order
haftmann@26358
  1090
  matching, especially when the rules are re-oriented.
haftmann@26358
  1091
*}
haftmann@21908
  1092
haftmann@26358
  1093
lemma Times_Un_distrib1: "(A Un B) <*> C = (A <*> C) Un (B <*> C)"
nipkow@28719
  1094
by blast
haftmann@26358
  1095
haftmann@26358
  1096
lemma Times_Int_distrib1: "(A Int B) <*> C = (A <*> C) Int (B <*> C)"
nipkow@28719
  1097
by blast
haftmann@26358
  1098
haftmann@26358
  1099
lemma Times_Diff_distrib1: "(A - B) <*> C = (A <*> C) - (B <*> C)"
nipkow@28719
  1100
by blast
haftmann@26358
  1101
hoelzl@36622
  1102
lemma Times_empty[simp]: "A \<times> B = {} \<longleftrightarrow> A = {} \<or> B = {}"
hoelzl@36622
  1103
  by auto
hoelzl@36622
  1104
hoelzl@36622
  1105
lemma fst_image_times[simp]: "fst ` (A \<times> B) = (if B = {} then {} else A)"
hoelzl@36622
  1106
  by (auto intro!: image_eqI)
hoelzl@36622
  1107
hoelzl@36622
  1108
lemma snd_image_times[simp]: "snd ` (A \<times> B) = (if A = {} then {} else B)"
hoelzl@36622
  1109
  by (auto intro!: image_eqI)
hoelzl@36622
  1110
nipkow@28719
  1111
lemma insert_times_insert[simp]:
nipkow@28719
  1112
  "insert a A \<times> insert b B =
nipkow@28719
  1113
   insert (a,b) (A \<times> insert b B \<union> insert a A \<times> B)"
nipkow@28719
  1114
by blast
haftmann@26358
  1115
paulson@33271
  1116
lemma vimage_Times: "f -` (A \<times> B) = ((fst \<circ> f) -` A) \<inter> ((snd \<circ> f) -` B)"
haftmann@37166
  1117
  by (auto, case_tac "f x", auto)
paulson@33271
  1118
haftmann@35822
  1119
lemma swap_inj_on:
hoelzl@36622
  1120
  "inj_on (\<lambda>(i, j). (j, i)) A"
hoelzl@36622
  1121
  by (auto intro!: inj_onI)
haftmann@35822
  1122
haftmann@35822
  1123
lemma swap_product:
haftmann@35822
  1124
  "(%(i, j). (j, i)) ` (A \<times> B) = B \<times> A"
haftmann@35822
  1125
  by (simp add: split_def image_def) blast
haftmann@35822
  1126
hoelzl@36622
  1127
lemma image_split_eq_Sigma:
hoelzl@36622
  1128
  "(\<lambda>x. (f x, g x)) ` A = Sigma (f ` A) (\<lambda>x. g ` (f -` {x} \<inter> A))"
hoelzl@36622
  1129
proof (safe intro!: imageI vimageI)
hoelzl@36622
  1130
  fix a b assume *: "a \<in> A" "b \<in> A" and eq: "f a = f b"
hoelzl@36622
  1131
  show "(f b, g a) \<in> (\<lambda>x. (f x, g x)) ` A"
hoelzl@36622
  1132
    using * eq[symmetric] by auto
hoelzl@36622
  1133
qed simp_all
haftmann@35822
  1134
haftmann@40607
  1135
text {* The following @{const map_pair} lemmas are due to Joachim Breitner: *}
haftmann@40607
  1136
haftmann@40607
  1137
lemma map_pair_inj_on:
haftmann@40607
  1138
  assumes "inj_on f A" and "inj_on g B"
haftmann@40607
  1139
  shows "inj_on (map_pair f g) (A \<times> B)"
haftmann@40607
  1140
proof (rule inj_onI)
haftmann@40607
  1141
  fix x :: "'a \<times> 'c" and y :: "'a \<times> 'c"
haftmann@40607
  1142
  assume "x \<in> A \<times> B" hence "fst x \<in> A" and "snd x \<in> B" by auto
haftmann@40607
  1143
  assume "y \<in> A \<times> B" hence "fst y \<in> A" and "snd y \<in> B" by auto
haftmann@40607
  1144
  assume "map_pair f g x = map_pair f g y"
haftmann@40607
  1145
  hence "fst (map_pair f g x) = fst (map_pair f g y)" by (auto)
haftmann@40607
  1146
  hence "f (fst x) = f (fst y)" by (cases x,cases y,auto)
haftmann@40607
  1147
  with `inj_on f A` and `fst x \<in> A` and `fst y \<in> A`
haftmann@40607
  1148
  have "fst x = fst y" by (auto dest:dest:inj_onD)
haftmann@40607
  1149
  moreover from `map_pair f g x = map_pair f g y`
haftmann@40607
  1150
  have "snd (map_pair f g x) = snd (map_pair f g y)" by (auto)
haftmann@40607
  1151
  hence "g (snd x) = g (snd y)" by (cases x,cases y,auto)
haftmann@40607
  1152
  with `inj_on g B` and `snd x \<in> B` and `snd y \<in> B`
haftmann@40607
  1153
  have "snd x = snd y" by (auto dest:dest:inj_onD)
haftmann@40607
  1154
  ultimately show "x = y" by(rule prod_eqI)
haftmann@40607
  1155
qed
haftmann@40607
  1156
haftmann@40607
  1157
lemma map_pair_surj:
hoelzl@40702
  1158
  fixes f :: "'a \<Rightarrow> 'b" and g :: "'c \<Rightarrow> 'd"
haftmann@40607
  1159
  assumes "surj f" and "surj g"
haftmann@40607
  1160
  shows "surj (map_pair f g)"
haftmann@40607
  1161
unfolding surj_def
haftmann@40607
  1162
proof
haftmann@40607
  1163
  fix y :: "'b \<times> 'd"
haftmann@40607
  1164
  from `surj f` obtain a where "fst y = f a" by (auto elim:surjE)
haftmann@40607
  1165
  moreover
haftmann@40607
  1166
  from `surj g` obtain b where "snd y = g b" by (auto elim:surjE)
haftmann@40607
  1167
  ultimately have "(fst y, snd y) = map_pair f g (a,b)" by auto
haftmann@40607
  1168
  thus "\<exists>x. y = map_pair f g x" by auto
haftmann@40607
  1169
qed
haftmann@40607
  1170
haftmann@40607
  1171
lemma map_pair_surj_on:
haftmann@40607
  1172
  assumes "f ` A = A'" and "g ` B = B'"
haftmann@40607
  1173
  shows "map_pair f g ` (A \<times> B) = A' \<times> B'"
haftmann@40607
  1174
unfolding image_def
haftmann@40607
  1175
proof(rule set_eqI,rule iffI)
haftmann@40607
  1176
  fix x :: "'a \<times> 'c"
haftmann@40607
  1177
  assume "x \<in> {y\<Colon>'a \<times> 'c. \<exists>x\<Colon>'b \<times> 'd\<in>A \<times> B. y = map_pair f g x}"
haftmann@40607
  1178
  then obtain y where "y \<in> A \<times> B" and "x = map_pair f g y" by blast
haftmann@40607
  1179
  from `image f A = A'` and `y \<in> A \<times> B` have "f (fst y) \<in> A'" by auto
haftmann@40607
  1180
  moreover from `image g B = B'` and `y \<in> A \<times> B` have "g (snd y) \<in> B'" by auto
haftmann@40607
  1181
  ultimately have "(f (fst y), g (snd y)) \<in> (A' \<times> B')" by auto
haftmann@40607
  1182
  with `x = map_pair f g y` show "x \<in> A' \<times> B'" by (cases y, auto)
haftmann@40607
  1183
next
haftmann@40607
  1184
  fix x :: "'a \<times> 'c"
haftmann@40607
  1185
  assume "x \<in> A' \<times> B'" hence "fst x \<in> A'" and "snd x \<in> B'" by auto
haftmann@40607
  1186
  from `image f A = A'` and `fst x \<in> A'` have "fst x \<in> image f A" by auto
haftmann@40607
  1187
  then obtain a where "a \<in> A" and "fst x = f a" by (rule imageE)
haftmann@40607
  1188
  moreover from `image g B = B'` and `snd x \<in> B'`
haftmann@40607
  1189
  obtain b where "b \<in> B" and "snd x = g b" by auto
haftmann@40607
  1190
  ultimately have "(fst x, snd x) = map_pair f g (a,b)" by auto
haftmann@40607
  1191
  moreover from `a \<in> A` and  `b \<in> B` have "(a , b) \<in> A \<times> B" by auto
haftmann@40607
  1192
  ultimately have "\<exists>y \<in> A \<times> B. x = map_pair f g y" by auto
haftmann@40607
  1193
  thus "x \<in> {x. \<exists>y \<in> A \<times> B. x = map_pair f g y}" by auto
haftmann@40607
  1194
qed
haftmann@40607
  1195
haftmann@21908
  1196
haftmann@37166
  1197
subsection {* Inductively defined sets *}
berghofe@15394
  1198
haftmann@37389
  1199
use "Tools/inductive_codegen.ML"
haftmann@37389
  1200
setup Inductive_Codegen.setup
haftmann@37389
  1201
haftmann@31723
  1202
use "Tools/inductive_set.ML"
haftmann@31723
  1203
setup Inductive_Set.setup
haftmann@24699
  1204
haftmann@37166
  1205
haftmann@37166
  1206
subsection {* Legacy theorem bindings and duplicates *}
haftmann@37166
  1207
haftmann@37166
  1208
lemma PairE:
haftmann@37166
  1209
  obtains x y where "p = (x, y)"
haftmann@37166
  1210
  by (fact prod.exhaust)
haftmann@37166
  1211
haftmann@37166
  1212
lemma Pair_inject:
haftmann@37166
  1213
  assumes "(a, b) = (a', b')"
haftmann@37166
  1214
    and "a = a' ==> b = b' ==> R"
haftmann@37166
  1215
  shows R
haftmann@37166
  1216
  using assms by simp
haftmann@37166
  1217
haftmann@37166
  1218
lemmas Pair_eq = prod.inject
haftmann@37166
  1219
haftmann@37166
  1220
lemmas split = split_conv  -- {* for backwards compatibility *}
haftmann@37166
  1221
nipkow@10213
  1222
end