src/HOL/Library/Efficient_Nat.thy
author haftmann
Fri Jul 23 10:58:13 2010 +0200 (2010-07-23)
changeset 37947 844977c7abeb
parent 37892 3d8857f42a64
child 37958 9728342bcd56
permissions -rw-r--r--
avoid unreliable Haskell Int type
haftmann@23854
     1
(*  Title:      HOL/Library/Efficient_Nat.thy
haftmann@25931
     2
    Author:     Stefan Berghofer, Florian Haftmann, TU Muenchen
haftmann@23854
     3
*)
haftmann@23854
     4
haftmann@25931
     5
header {* Implementation of natural numbers by target-language integers *}
haftmann@23854
     6
haftmann@23854
     7
theory Efficient_Nat
haftmann@31203
     8
imports Code_Integer Main
haftmann@23854
     9
begin
haftmann@23854
    10
haftmann@23854
    11
text {*
haftmann@25931
    12
  When generating code for functions on natural numbers, the
haftmann@25931
    13
  canonical representation using @{term "0::nat"} and
haftmann@37388
    14
  @{term Suc} is unsuitable for computations involving large
haftmann@25931
    15
  numbers.  The efficiency of the generated code can be improved
haftmann@25931
    16
  drastically by implementing natural numbers by target-language
haftmann@25931
    17
  integers.  To do this, just include this theory.
haftmann@23854
    18
*}
haftmann@23854
    19
haftmann@25931
    20
subsection {* Basic arithmetic *}
haftmann@23854
    21
haftmann@23854
    22
text {*
haftmann@23854
    23
  Most standard arithmetic functions on natural numbers are implemented
haftmann@23854
    24
  using their counterparts on the integers:
haftmann@23854
    25
*}
haftmann@23854
    26
haftmann@25931
    27
code_datatype number_nat_inst.number_of_nat
haftmann@24715
    28
haftmann@32069
    29
lemma zero_nat_code [code, code_unfold_post]:
haftmann@25931
    30
  "0 = (Numeral0 :: nat)"
haftmann@25931
    31
  by simp
haftmann@24715
    32
haftmann@32069
    33
lemma one_nat_code [code, code_unfold_post]:
haftmann@25931
    34
  "1 = (Numeral1 :: nat)"
haftmann@25931
    35
  by simp
haftmann@24715
    36
haftmann@25931
    37
lemma Suc_code [code]:
haftmann@25931
    38
  "Suc n = n + 1"
haftmann@25931
    39
  by simp
haftmann@24715
    40
haftmann@25931
    41
lemma plus_nat_code [code]:
haftmann@25931
    42
  "n + m = nat (of_nat n + of_nat m)"
haftmann@25931
    43
  by simp
haftmann@24715
    44
haftmann@25931
    45
lemma minus_nat_code [code]:
haftmann@25931
    46
  "n - m = nat (of_nat n - of_nat m)"
haftmann@25931
    47
  by simp
haftmann@24715
    48
haftmann@25931
    49
lemma times_nat_code [code]:
haftmann@25931
    50
  "n * m = nat (of_nat n * of_nat m)"
haftmann@25931
    51
  unfolding of_nat_mult [symmetric] by simp
haftmann@24715
    52
haftmann@26009
    53
text {* Specialized @{term "op div \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"} 
haftmann@26009
    54
  and @{term "op mod \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"} operations. *}
haftmann@26009
    55
haftmann@28694
    56
definition divmod_aux ::  "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat" where
haftmann@33343
    57
  [code del]: "divmod_aux = divmod_nat"
haftmann@24715
    58
haftmann@28522
    59
lemma [code]:
haftmann@33343
    60
  "divmod_nat n m = (if m = 0 then (0, n) else divmod_aux n m)"
haftmann@33343
    61
  unfolding divmod_aux_def divmod_nat_div_mod by simp
haftmann@26009
    62
haftmann@26100
    63
lemma divmod_aux_code [code]:
haftmann@26100
    64
  "divmod_aux n m = (nat (of_nat n div of_nat m), nat (of_nat n mod of_nat m))"
haftmann@33343
    65
  unfolding divmod_aux_def divmod_nat_div_mod zdiv_int [symmetric] zmod_int [symmetric] by simp
haftmann@24715
    66
haftmann@25931
    67
lemma eq_nat_code [code]:
haftmann@28351
    68
  "eq_class.eq n m \<longleftrightarrow> eq_class.eq (of_nat n \<Colon> int) (of_nat m)"
haftmann@28351
    69
  by (simp add: eq)
haftmann@28351
    70
haftmann@28351
    71
lemma eq_nat_refl [code nbe]:
haftmann@28351
    72
  "eq_class.eq (n::nat) n \<longleftrightarrow> True"
haftmann@28351
    73
  by (rule HOL.eq_refl)
haftmann@24715
    74
haftmann@25931
    75
lemma less_eq_nat_code [code]:
haftmann@25931
    76
  "n \<le> m \<longleftrightarrow> (of_nat n \<Colon> int) \<le> of_nat m"
haftmann@25931
    77
  by simp
haftmann@23854
    78
haftmann@25931
    79
lemma less_nat_code [code]:
haftmann@25931
    80
  "n < m \<longleftrightarrow> (of_nat n \<Colon> int) < of_nat m"
haftmann@25931
    81
  by simp
haftmann@23854
    82
haftmann@25931
    83
subsection {* Case analysis *}
haftmann@23854
    84
haftmann@23854
    85
text {*
haftmann@25931
    86
  Case analysis on natural numbers is rephrased using a conditional
haftmann@25931
    87
  expression:
haftmann@23854
    88
*}
haftmann@23854
    89
haftmann@31998
    90
lemma [code, code_unfold]:
haftmann@25931
    91
  "nat_case = (\<lambda>f g n. if n = 0 then f else g (n - 1))"
haftmann@25931
    92
  by (auto simp add: expand_fun_eq dest!: gr0_implies_Suc)
haftmann@25615
    93
haftmann@23854
    94
haftmann@23854
    95
subsection {* Preprocessors *}
haftmann@23854
    96
haftmann@23854
    97
text {*
haftmann@23854
    98
  In contrast to @{term "Suc n"}, the term @{term "n + (1::nat)"} is no longer
haftmann@23854
    99
  a constructor term. Therefore, all occurrences of this term in a position
haftmann@23854
   100
  where a pattern is expected (i.e.\ on the left-hand side of a recursion
haftmann@23854
   101
  equation or in the arguments of an inductive relation in an introduction
haftmann@23854
   102
  rule) must be eliminated.
haftmann@23854
   103
  This can be accomplished by applying the following transformation rules:
haftmann@23854
   104
*}
haftmann@23854
   105
haftmann@29937
   106
lemma Suc_if_eq: "(\<And>n. f (Suc n) \<equiv> h n) \<Longrightarrow> f 0 \<equiv> g \<Longrightarrow>
haftmann@29937
   107
  f n \<equiv> if n = 0 then g else h (n - 1)"
haftmann@31954
   108
  by (rule eq_reflection) (cases n, simp_all)
haftmann@29937
   109
haftmann@25931
   110
lemma Suc_clause: "(\<And>n. P n (Suc n)) \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> P (n - 1) n"
haftmann@29932
   111
  by (cases n) simp_all
haftmann@23854
   112
haftmann@23854
   113
text {*
haftmann@23854
   114
  The rules above are built into a preprocessor that is plugged into
haftmann@23854
   115
  the code generator. Since the preprocessor for introduction rules
haftmann@23854
   116
  does not know anything about modes, some of the modes that worked
haftmann@23854
   117
  for the canonical representation of natural numbers may no longer work.
haftmann@23854
   118
*}
haftmann@23854
   119
haftmann@23854
   120
(*<*)
haftmann@27609
   121
setup {*
haftmann@27609
   122
let
haftmann@23854
   123
haftmann@31954
   124
fun remove_suc thy thms =
haftmann@23854
   125
  let
haftmann@23854
   126
    val vname = Name.variant (map fst
haftmann@29937
   127
      (fold (Term.add_var_names o Thm.full_prop_of) thms [])) "n";
haftmann@23854
   128
    val cv = cterm_of thy (Var ((vname, 0), HOLogic.natT));
haftmann@23854
   129
    fun lhs_of th = snd (Thm.dest_comb
haftmann@31954
   130
      (fst (Thm.dest_comb (cprop_of th))));
haftmann@31954
   131
    fun rhs_of th = snd (Thm.dest_comb (cprop_of th));
haftmann@23854
   132
    fun find_vars ct = (case term_of ct of
haftmann@29932
   133
        (Const (@{const_name Suc}, _) $ Var _) => [(cv, snd (Thm.dest_comb ct))]
haftmann@23854
   134
      | _ $ _ =>
haftmann@23854
   135
        let val (ct1, ct2) = Thm.dest_comb ct
haftmann@23854
   136
        in 
haftmann@23854
   137
          map (apfst (fn ct => Thm.capply ct ct2)) (find_vars ct1) @
haftmann@23854
   138
          map (apfst (Thm.capply ct1)) (find_vars ct2)
haftmann@23854
   139
        end
haftmann@23854
   140
      | _ => []);
haftmann@23854
   141
    val eqs = maps
haftmann@23854
   142
      (fn th => map (pair th) (find_vars (lhs_of th))) thms;
haftmann@23854
   143
    fun mk_thms (th, (ct, cv')) =
haftmann@23854
   144
      let
haftmann@23854
   145
        val th' =
haftmann@23854
   146
          Thm.implies_elim
haftmann@23854
   147
           (Conv.fconv_rule (Thm.beta_conversion true)
haftmann@23854
   148
             (Drule.instantiate'
haftmann@23854
   149
               [SOME (ctyp_of_term ct)] [SOME (Thm.cabs cv ct),
haftmann@23854
   150
                 SOME (Thm.cabs cv' (rhs_of th)), NONE, SOME cv']
haftmann@31954
   151
               @{thm Suc_if_eq})) (Thm.forall_intr cv' th)
haftmann@23854
   152
      in
haftmann@23854
   153
        case map_filter (fn th'' =>
haftmann@23854
   154
            SOME (th'', singleton
wenzelm@36603
   155
              (Variable.trade (K (fn [th'''] => [th''' RS th']))
wenzelm@36603
   156
                (Variable.global_thm_context th'')) th'')
haftmann@23854
   157
          handle THM _ => NONE) thms of
haftmann@23854
   158
            [] => NONE
haftmann@23854
   159
          | thps =>
haftmann@23854
   160
              let val (ths1, ths2) = split_list thps
haftmann@23854
   161
              in SOME (subtract Thm.eq_thm (th :: ths1) thms @ ths2) end
haftmann@23854
   162
      end
haftmann@29937
   163
  in get_first mk_thms eqs end;
haftmann@29937
   164
haftmann@34893
   165
fun eqn_suc_base_preproc thy thms =
haftmann@29937
   166
  let
haftmann@31954
   167
    val dest = fst o Logic.dest_equals o prop_of;
haftmann@29937
   168
    val contains_suc = exists_Const (fn (c, _) => c = @{const_name Suc});
haftmann@29937
   169
  in
haftmann@29937
   170
    if forall (can dest) thms andalso exists (contains_suc o dest) thms
haftmann@32348
   171
      then thms |> perhaps_loop (remove_suc thy) |> (Option.map o map) Drule.zero_var_indexes
haftmann@29937
   172
       else NONE
haftmann@23854
   173
  end;
haftmann@23854
   174
haftmann@34893
   175
val eqn_suc_preproc = Code_Preproc.simple_functrans eqn_suc_base_preproc;
haftmann@23854
   176
haftmann@23854
   177
fun remove_suc_clause thy thms =
haftmann@23854
   178
  let
haftmann@23854
   179
    val vname = Name.variant (map fst
wenzelm@29258
   180
      (fold (Term.add_var_names o Thm.full_prop_of) thms [])) "x";
haftmann@24222
   181
    fun find_var (t as Const (@{const_name Suc}, _) $ (v as Var _)) = SOME (t, v)
haftmann@23854
   182
      | find_var (t $ u) = (case find_var t of NONE => find_var u | x => x)
haftmann@23854
   183
      | find_var _ = NONE;
haftmann@23854
   184
    fun find_thm th =
wenzelm@35625
   185
      let val th' = Conv.fconv_rule Object_Logic.atomize th
haftmann@23854
   186
      in Option.map (pair (th, th')) (find_var (prop_of th')) end
haftmann@23854
   187
  in
haftmann@23854
   188
    case get_first find_thm thms of
haftmann@23854
   189
      NONE => thms
haftmann@23854
   190
    | SOME ((th, th'), (Sucv, v)) =>
haftmann@23854
   191
        let
haftmann@23854
   192
          val cert = cterm_of (Thm.theory_of_thm th);
wenzelm@35625
   193
          val th'' = Object_Logic.rulify (Thm.implies_elim
haftmann@23854
   194
            (Conv.fconv_rule (Thm.beta_conversion true)
haftmann@23854
   195
              (Drule.instantiate' []
haftmann@23854
   196
                [SOME (cert (lambda v (Abs ("x", HOLogic.natT,
haftmann@23854
   197
                   abstract_over (Sucv,
haftmann@23854
   198
                     HOLogic.dest_Trueprop (prop_of th')))))),
haftmann@24222
   199
                 SOME (cert v)] @{thm Suc_clause}))
haftmann@23854
   200
            (Thm.forall_intr (cert v) th'))
haftmann@23854
   201
        in
haftmann@23854
   202
          remove_suc_clause thy (map (fn th''' =>
haftmann@23854
   203
            if (op = o pairself prop_of) (th''', th) then th'' else th''') thms)
haftmann@23854
   204
        end
haftmann@23854
   205
  end;
haftmann@23854
   206
haftmann@23854
   207
fun clause_suc_preproc thy ths =
haftmann@23854
   208
  let
haftmann@23854
   209
    val dest = fst o HOLogic.dest_mem o HOLogic.dest_Trueprop
haftmann@23854
   210
  in
haftmann@23854
   211
    if forall (can (dest o concl_of)) ths andalso
wenzelm@29287
   212
      exists (fn th => exists (exists_Const (fn (c, _) => c = @{const_name Suc}))
wenzelm@29287
   213
        (map_filter (try dest) (concl_of th :: prems_of th))) ths
haftmann@23854
   214
    then remove_suc_clause thy ths else ths
haftmann@23854
   215
  end;
haftmann@27609
   216
in
haftmann@27609
   217
haftmann@34893
   218
  Code_Preproc.add_functrans ("eqn_Suc", eqn_suc_preproc)
haftmann@23854
   219
  #> Codegen.add_preprocessor clause_suc_preproc
haftmann@27609
   220
haftmann@27609
   221
end;
haftmann@23854
   222
*}
haftmann@23854
   223
(*>*)
haftmann@23854
   224
haftmann@27609
   225
haftmann@25931
   226
subsection {* Target language setup *}
haftmann@25931
   227
haftmann@25931
   228
text {*
haftmann@25967
   229
  For ML, we map @{typ nat} to target language integers, where we
haftmann@34899
   230
  ensure that values are always non-negative.
haftmann@25931
   231
*}
haftmann@25931
   232
haftmann@25931
   233
code_type nat
haftmann@27496
   234
  (SML "IntInf.int")
haftmann@25931
   235
  (OCaml "Big'_int.big'_int")
haftmann@25931
   236
haftmann@25931
   237
types_code
haftmann@25931
   238
  nat ("int")
haftmann@25931
   239
attach (term_of) {*
haftmann@25931
   240
val term_of_nat = HOLogic.mk_number HOLogic.natT;
haftmann@25931
   241
*}
haftmann@25931
   242
attach (test) {*
haftmann@25931
   243
fun gen_nat i =
haftmann@25931
   244
  let val n = random_range 0 i
haftmann@25931
   245
  in (n, fn () => term_of_nat n) end;
haftmann@25931
   246
*}
haftmann@25931
   247
haftmann@25931
   248
text {*
haftmann@34899
   249
  For Haskell ans Scala we define our own @{typ nat} type.  The reason
haftmann@34899
   250
  is that we have to distinguish type class instances for @{typ nat}
haftmann@34899
   251
  and @{typ int}.
haftmann@25967
   252
*}
haftmann@25967
   253
haftmann@25967
   254
code_include Haskell "Nat" {*
haftmann@37050
   255
newtype Nat = Nat Integer deriving (Eq, Show, Read);
haftmann@25967
   256
haftmann@25967
   257
instance Num Nat where {
haftmann@25967
   258
  fromInteger k = Nat (if k >= 0 then k else 0);
haftmann@25967
   259
  Nat n + Nat m = Nat (n + m);
haftmann@25967
   260
  Nat n - Nat m = fromInteger (n - m);
haftmann@25967
   261
  Nat n * Nat m = Nat (n * m);
haftmann@25967
   262
  abs n = n;
haftmann@25967
   263
  signum _ = 1;
haftmann@25967
   264
  negate n = error "negate Nat";
haftmann@25967
   265
};
haftmann@25967
   266
haftmann@25967
   267
instance Ord Nat where {
haftmann@25967
   268
  Nat n <= Nat m = n <= m;
haftmann@25967
   269
  Nat n < Nat m = n < m;
haftmann@25967
   270
};
haftmann@25967
   271
haftmann@25967
   272
instance Real Nat where {
haftmann@25967
   273
  toRational (Nat n) = toRational n;
haftmann@25967
   274
};
haftmann@25967
   275
haftmann@25967
   276
instance Enum Nat where {
haftmann@25967
   277
  toEnum k = fromInteger (toEnum k);
haftmann@25967
   278
  fromEnum (Nat n) = fromEnum n;
haftmann@25967
   279
};
haftmann@25967
   280
haftmann@25967
   281
instance Integral Nat where {
haftmann@25967
   282
  toInteger (Nat n) = n;
haftmann@25967
   283
  divMod n m = quotRem n m;
haftmann@25967
   284
  quotRem (Nat n) (Nat m) = (Nat k, Nat l) where (k, l) = quotRem n m;
haftmann@25967
   285
};
haftmann@25967
   286
*}
haftmann@25967
   287
haftmann@25967
   288
code_reserved Haskell Nat
haftmann@25967
   289
haftmann@34899
   290
code_include Scala "Nat" {*
haftmann@34944
   291
import scala.Math
haftmann@34944
   292
haftmann@34899
   293
object Nat {
haftmann@34899
   294
haftmann@34899
   295
  def apply(numeral: BigInt): Nat = new Nat(numeral max 0)
haftmann@34899
   296
  def apply(numeral: Int): Nat = Nat(BigInt(numeral))
haftmann@34899
   297
  def apply(numeral: String): Nat = Nat(BigInt(numeral))
haftmann@34899
   298
haftmann@34899
   299
}
haftmann@34899
   300
haftmann@34899
   301
class Nat private(private val value: BigInt) {
haftmann@34899
   302
haftmann@34899
   303
  override def hashCode(): Int = this.value.hashCode()
haftmann@34899
   304
haftmann@34899
   305
  override def equals(that: Any): Boolean = that match {
haftmann@34899
   306
    case that: Nat => this equals that
haftmann@34899
   307
    case _ => false
haftmann@34899
   308
  }
haftmann@34899
   309
haftmann@34899
   310
  override def toString(): String = this.value.toString
haftmann@34899
   311
haftmann@34899
   312
  def equals(that: Nat): Boolean = this.value == that.value
haftmann@34899
   313
haftmann@34899
   314
  def as_BigInt: BigInt = this.value
haftmann@37892
   315
  def as_Int: Int = if (this.value >= Int.MinValue && this.value <= Int.MaxValue)
haftmann@34944
   316
      this.value.intValue
haftmann@37846
   317
    else this.value.intValue
haftmann@34899
   318
haftmann@34899
   319
  def +(that: Nat): Nat = new Nat(this.value + that.value)
haftmann@37223
   320
  def -(that: Nat): Nat = Nat(this.value - that.value)
haftmann@34899
   321
  def *(that: Nat): Nat = new Nat(this.value * that.value)
haftmann@34899
   322
haftmann@34899
   323
  def /%(that: Nat): (Nat, Nat) = if (that.value == 0) (new Nat(0), this)
haftmann@34899
   324
    else {
haftmann@34899
   325
      val (k, l) = this.value /% that.value
haftmann@34899
   326
      (new Nat(k), new Nat(l))
haftmann@34899
   327
    }
haftmann@34899
   328
haftmann@34899
   329
  def <=(that: Nat): Boolean = this.value <= that.value
haftmann@34899
   330
haftmann@34899
   331
  def <(that: Nat): Boolean = this.value < that.value
haftmann@34899
   332
haftmann@34899
   333
}
haftmann@34899
   334
*}
haftmann@34899
   335
haftmann@34899
   336
code_reserved Scala Nat
haftmann@34899
   337
haftmann@25967
   338
code_type nat
haftmann@29793
   339
  (Haskell "Nat.Nat")
haftmann@37878
   340
  (Scala "Nat")
haftmann@25967
   341
haftmann@25967
   342
code_instance nat :: eq
haftmann@25967
   343
  (Haskell -)
haftmann@25967
   344
haftmann@25967
   345
text {*
haftmann@25931
   346
  Natural numerals.
haftmann@25931
   347
*}
haftmann@25931
   348
haftmann@32069
   349
lemma [code_unfold_post]:
haftmann@25931
   350
  "nat (number_of i) = number_nat_inst.number_of_nat i"
haftmann@25931
   351
  -- {* this interacts as desired with @{thm nat_number_of_def} *}
haftmann@25931
   352
  by (simp add: number_nat_inst.number_of_nat)
haftmann@25931
   353
haftmann@25931
   354
setup {*
haftmann@25931
   355
  fold (Numeral.add_code @{const_name number_nat_inst.number_of_nat}
haftmann@34944
   356
    false Code_Printer.literal_positive_numeral) ["SML", "OCaml", "Haskell"]
haftmann@34899
   357
  #> Numeral.add_code @{const_name number_nat_inst.number_of_nat}
haftmann@34944
   358
    false Code_Printer.literal_positive_numeral "Scala"
haftmann@25931
   359
*}
haftmann@25931
   360
haftmann@25931
   361
text {*
haftmann@25931
   362
  Since natural numbers are implemented
haftmann@25967
   363
  using integers in ML, the coercion function @{const "of_nat"} of type
haftmann@25931
   364
  @{typ "nat \<Rightarrow> int"} is simply implemented by the identity function.
haftmann@37388
   365
  For the @{const nat} function for converting an integer to a natural
haftmann@25931
   366
  number, we give a specific implementation using an ML function that
haftmann@25931
   367
  returns its input value, provided that it is non-negative, and otherwise
haftmann@25931
   368
  returns @{text "0"}.
haftmann@25931
   369
*}
haftmann@25931
   370
haftmann@32073
   371
definition int :: "nat \<Rightarrow> int" where
haftmann@28562
   372
  [code del]: "int = of_nat"
haftmann@25931
   373
haftmann@28562
   374
lemma int_code' [code]:
haftmann@25931
   375
  "int (number_of l) = (if neg (number_of l \<Colon> int) then 0 else number_of l)"
haftmann@25931
   376
  unfolding int_nat_number_of [folded int_def] ..
haftmann@25931
   377
haftmann@28562
   378
lemma nat_code' [code]:
haftmann@25931
   379
  "nat (number_of l) = (if neg (number_of l \<Colon> int) then 0 else number_of l)"
huffman@28969
   380
  unfolding nat_number_of_def number_of_is_id neg_def by simp
haftmann@25931
   381
haftmann@32069
   382
lemma of_nat_int [code_unfold_post]:
haftmann@25931
   383
  "of_nat = int" by (simp add: int_def)
haftmann@25931
   384
haftmann@32073
   385
lemma of_nat_aux_int [code_unfold]:
haftmann@32073
   386
  "of_nat_aux (\<lambda>i. i + 1) k 0 = int k"
haftmann@32073
   387
  by (simp add: int_def Nat.of_nat_code)
haftmann@32073
   388
haftmann@25931
   389
code_const int
haftmann@25931
   390
  (SML "_")
haftmann@25931
   391
  (OCaml "_")
haftmann@25931
   392
haftmann@25931
   393
consts_code
haftmann@25931
   394
  int ("(_)")
haftmann@25931
   395
  nat ("\<module>nat")
haftmann@25931
   396
attach {*
haftmann@25931
   397
fun nat i = if i < 0 then 0 else i;
haftmann@25931
   398
*}
haftmann@25931
   399
haftmann@25967
   400
code_const nat
haftmann@25967
   401
  (SML "IntInf.max/ (/0,/ _)")
haftmann@25967
   402
  (OCaml "Big'_int.max'_big'_int/ Big'_int.zero'_big'_int")
haftmann@25967
   403
haftmann@35689
   404
text {* For Haskell and Scala, things are slightly different again. *}
haftmann@25967
   405
haftmann@25967
   406
code_const int and nat
haftmann@25967
   407
  (Haskell "toInteger" and "fromInteger")
haftmann@37878
   408
  (Scala "!_.as'_BigInt" and "Nat")
haftmann@25931
   409
haftmann@25931
   410
text {* Conversion from and to indices. *}
haftmann@25931
   411
haftmann@31205
   412
code_const Code_Numeral.of_nat
haftmann@25967
   413
  (SML "IntInf.toInt")
haftmann@31377
   414
  (OCaml "_")
haftmann@37947
   415
  (Haskell "toInteger")
haftmann@34902
   416
  (Scala "!_.as'_Int")
haftmann@25967
   417
haftmann@31205
   418
code_const Code_Numeral.nat_of
haftmann@25931
   419
  (SML "IntInf.fromInt")
haftmann@31377
   420
  (OCaml "_")
haftmann@37947
   421
  (Haskell "fromInteger")
haftmann@37878
   422
  (Scala "Nat")
haftmann@25931
   423
haftmann@25931
   424
text {* Using target language arithmetic operations whenever appropriate *}
haftmann@25931
   425
haftmann@25931
   426
code_const "op + \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"
haftmann@25931
   427
  (SML "IntInf.+ ((_), (_))")
haftmann@25931
   428
  (OCaml "Big'_int.add'_big'_int")
haftmann@25931
   429
  (Haskell infixl 6 "+")
haftmann@34899
   430
  (Scala infixl 7 "+")
haftmann@34899
   431
haftmann@34899
   432
code_const "op - \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"
haftmann@34899
   433
  (Haskell infixl 6 "-")
haftmann@34899
   434
  (Scala infixl 7 "-")
haftmann@25931
   435
haftmann@25931
   436
code_const "op * \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"
haftmann@25931
   437
  (SML "IntInf.* ((_), (_))")
haftmann@25931
   438
  (OCaml "Big'_int.mult'_big'_int")
haftmann@25931
   439
  (Haskell infixl 7 "*")
haftmann@34899
   440
  (Scala infixl 8 "*")
haftmann@25931
   441
haftmann@26100
   442
code_const divmod_aux
haftmann@26009
   443
  (SML "IntInf.divMod/ ((_),/ (_))")
haftmann@26009
   444
  (OCaml "Big'_int.quomod'_big'_int")
haftmann@26009
   445
  (Haskell "divMod")
haftmann@34899
   446
  (Scala infixl 8 "/%")
haftmann@34899
   447
haftmann@34899
   448
code_const divmod_nat
haftmann@34899
   449
  (Haskell "divMod")
haftmann@34899
   450
  (Scala infixl 8 "/%")
haftmann@25931
   451
haftmann@28346
   452
code_const "eq_class.eq \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool"
haftmann@25931
   453
  (SML "!((_ : IntInf.int) = _)")
haftmann@25931
   454
  (OCaml "Big'_int.eq'_big'_int")
haftmann@25931
   455
  (Haskell infixl 4 "==")
haftmann@34899
   456
  (Scala infixl 5 "==")
haftmann@25931
   457
haftmann@25931
   458
code_const "op \<le> \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool"
haftmann@25931
   459
  (SML "IntInf.<= ((_), (_))")
haftmann@25931
   460
  (OCaml "Big'_int.le'_big'_int")
haftmann@25931
   461
  (Haskell infix 4 "<=")
haftmann@34899
   462
  (Scala infixl 4 "<=")
haftmann@25931
   463
haftmann@25931
   464
code_const "op < \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool"
haftmann@25931
   465
  (SML "IntInf.< ((_), (_))")
haftmann@25931
   466
  (OCaml "Big'_int.lt'_big'_int")
haftmann@25931
   467
  (Haskell infix 4 "<")
haftmann@34899
   468
  (Scala infixl 4 "<")
haftmann@25931
   469
haftmann@25931
   470
consts_code
haftmann@28522
   471
  "0::nat"                     ("0")
haftmann@28522
   472
  "1::nat"                     ("1")
haftmann@25931
   473
  Suc                          ("(_ +/ 1)")
haftmann@25931
   474
  "op + \<Colon>  nat \<Rightarrow> nat \<Rightarrow> nat"   ("(_ +/ _)")
haftmann@25931
   475
  "op * \<Colon>  nat \<Rightarrow> nat \<Rightarrow> nat"   ("(_ */ _)")
haftmann@25931
   476
  "op \<le> \<Colon>  nat \<Rightarrow> nat \<Rightarrow> bool"  ("(_ <=/ _)")
haftmann@25931
   477
  "op < \<Colon>  nat \<Rightarrow> nat \<Rightarrow> bool"  ("(_ </ _)")
haftmann@25931
   478
haftmann@25931
   479
haftmann@28228
   480
text {* Evaluation *}
haftmann@28228
   481
haftmann@28562
   482
lemma [code, code del]:
haftmann@32657
   483
  "(Code_Evaluation.term_of \<Colon> nat \<Rightarrow> term) = Code_Evaluation.term_of" ..
haftmann@28228
   484
haftmann@32657
   485
code_const "Code_Evaluation.term_of \<Colon> nat \<Rightarrow> term"
haftmann@28228
   486
  (SML "HOLogic.mk'_number/ HOLogic.natT")
haftmann@28228
   487
haftmann@28228
   488
haftmann@25931
   489
text {* Module names *}
haftmann@23854
   490
haftmann@23854
   491
code_modulename SML
haftmann@33364
   492
  Efficient_Nat Arith
haftmann@23854
   493
haftmann@23854
   494
code_modulename OCaml
haftmann@33364
   495
  Efficient_Nat Arith
haftmann@23854
   496
haftmann@23854
   497
code_modulename Haskell
haftmann@33364
   498
  Efficient_Nat Arith
haftmann@23854
   499
wenzelm@36176
   500
hide_const int
haftmann@23854
   501
haftmann@23854
   502
end