src/HOL/Library/Quickcheck_Narrowing.thy
author bulwahn
Thu May 26 09:42:04 2011 +0200 (2011-05-26)
changeset 42980 859fe9cc0838
parent 42024 51df23535105
child 43047 26774ccb1c74
permissions -rw-r--r--
improving code_int setup in Quickcheck_Narrowing; adding partial_term_of class in Quickcheck_Narrowing
bulwahn@41905
     1
(* Author: Lukas Bulwahn, TU Muenchen *)
bulwahn@41905
     2
bulwahn@41930
     3
header {* Counterexample generator preforming narrowing-based testing *}
bulwahn@41905
     4
bulwahn@41930
     5
theory Quickcheck_Narrowing
bulwahn@41905
     6
imports Main "~~/src/HOL/Library/Code_Char"
bulwahn@41962
     7
uses
bulwahn@41962
     8
  ("~~/src/HOL/Tools/Quickcheck/narrowing_generators.ML")
bulwahn@41905
     9
begin
bulwahn@41905
    10
bulwahn@41905
    11
subsection {* Counterexample generator *}
bulwahn@41905
    12
bulwahn@41909
    13
subsubsection {* Code generation setup *}
bulwahn@41909
    14
bulwahn@41909
    15
code_type typerep
bulwahn@41909
    16
  ("Haskell" "Typerep")
bulwahn@41909
    17
bulwahn@41909
    18
code_const Typerep.Typerep
bulwahn@41909
    19
  ("Haskell" "Typerep")
bulwahn@41909
    20
bulwahn@41909
    21
code_reserved Haskell Typerep
bulwahn@41909
    22
bulwahn@41964
    23
subsubsection {* Type @{text "code_int"} for Haskell's Int type *}
bulwahn@41908
    24
bulwahn@41908
    25
typedef (open) code_int = "UNIV \<Colon> int set"
bulwahn@41908
    26
  morphisms int_of of_int by rule
bulwahn@41908
    27
bulwahn@42021
    28
lemma of_int_int_of [simp]:
bulwahn@42021
    29
  "of_int (int_of k) = k"
bulwahn@42021
    30
  by (rule int_of_inverse)
bulwahn@42021
    31
bulwahn@42021
    32
lemma int_of_of_int [simp]:
bulwahn@42021
    33
  "int_of (of_int n) = n"
bulwahn@42021
    34
  by (rule of_int_inverse) (rule UNIV_I)
bulwahn@42021
    35
bulwahn@42021
    36
lemma code_int:
bulwahn@42021
    37
  "(\<And>n\<Colon>code_int. PROP P n) \<equiv> (\<And>n\<Colon>int. PROP P (of_int n))"
bulwahn@42021
    38
proof
bulwahn@42021
    39
  fix n :: int
bulwahn@42021
    40
  assume "\<And>n\<Colon>code_int. PROP P n"
bulwahn@42021
    41
  then show "PROP P (of_int n)" .
bulwahn@42021
    42
next
bulwahn@42021
    43
  fix n :: code_int
bulwahn@42021
    44
  assume "\<And>n\<Colon>int. PROP P (of_int n)"
bulwahn@42021
    45
  then have "PROP P (of_int (int_of n))" .
bulwahn@42021
    46
  then show "PROP P n" by simp
bulwahn@42021
    47
qed
bulwahn@42021
    48
bulwahn@42021
    49
bulwahn@41908
    50
lemma int_of_inject [simp]:
bulwahn@41908
    51
  "int_of k = int_of l \<longleftrightarrow> k = l"
bulwahn@41908
    52
  by (rule int_of_inject)
bulwahn@41908
    53
bulwahn@42021
    54
lemma of_int_inject [simp]:
bulwahn@42021
    55
  "of_int n = of_int m \<longleftrightarrow> n = m"
bulwahn@42021
    56
  by (rule of_int_inject) (rule UNIV_I)+
bulwahn@42021
    57
bulwahn@42021
    58
instantiation code_int :: equal
bulwahn@42021
    59
begin
bulwahn@42021
    60
bulwahn@42021
    61
definition
bulwahn@42021
    62
  "HOL.equal k l \<longleftrightarrow> HOL.equal (int_of k) (int_of l)"
bulwahn@42021
    63
bulwahn@42021
    64
instance proof
bulwahn@42021
    65
qed (auto simp add: equal_code_int_def equal_int_def eq_int_refl)
bulwahn@42021
    66
bulwahn@42021
    67
end
bulwahn@42021
    68
bulwahn@42021
    69
instantiation code_int :: number
bulwahn@42021
    70
begin
bulwahn@42021
    71
bulwahn@42021
    72
definition
bulwahn@42021
    73
  "number_of = of_int"
bulwahn@42021
    74
bulwahn@42021
    75
instance ..
bulwahn@42021
    76
bulwahn@42021
    77
end
bulwahn@42021
    78
bulwahn@42021
    79
lemma int_of_number [simp]:
bulwahn@42021
    80
  "int_of (number_of k) = number_of k"
bulwahn@42021
    81
  by (simp add: number_of_code_int_def number_of_is_id)
bulwahn@42021
    82
bulwahn@42021
    83
bulwahn@41912
    84
definition nat_of :: "code_int => nat"
bulwahn@41912
    85
where
bulwahn@41912
    86
  "nat_of i = nat (int_of i)"
bulwahn@41908
    87
bulwahn@42980
    88
bulwahn@42980
    89
code_datatype "number_of \<Colon> int \<Rightarrow> code_numeral"
bulwahn@42980
    90
  
bulwahn@42980
    91
  
bulwahn@42021
    92
instantiation code_int :: "{minus, linordered_semidom, semiring_div, linorder}"
bulwahn@41908
    93
begin
bulwahn@41908
    94
bulwahn@41908
    95
definition [simp, code del]:
bulwahn@41908
    96
  "0 = of_int 0"
bulwahn@41908
    97
bulwahn@41908
    98
definition [simp, code del]:
bulwahn@41908
    99
  "1 = of_int 1"
bulwahn@41908
   100
bulwahn@41908
   101
definition [simp, code del]:
bulwahn@42021
   102
  "n + m = of_int (int_of n + int_of m)"
bulwahn@42021
   103
bulwahn@42021
   104
definition [simp, code del]:
bulwahn@41908
   105
  "n - m = of_int (int_of n - int_of m)"
bulwahn@41908
   106
bulwahn@41908
   107
definition [simp, code del]:
bulwahn@42021
   108
  "n * m = of_int (int_of n * int_of m)"
bulwahn@42021
   109
bulwahn@42021
   110
definition [simp, code del]:
bulwahn@42021
   111
  "n div m = of_int (int_of n div int_of m)"
bulwahn@42021
   112
bulwahn@42021
   113
definition [simp, code del]:
bulwahn@42021
   114
  "n mod m = of_int (int_of n mod int_of m)"
bulwahn@42021
   115
bulwahn@42021
   116
definition [simp, code del]:
bulwahn@41908
   117
  "n \<le> m \<longleftrightarrow> int_of n \<le> int_of m"
bulwahn@41908
   118
bulwahn@41908
   119
definition [simp, code del]:
bulwahn@41908
   120
  "n < m \<longleftrightarrow> int_of n < int_of m"
bulwahn@41908
   121
bulwahn@41908
   122
bulwahn@42021
   123
instance proof
bulwahn@42021
   124
qed (auto simp add: code_int left_distrib zmult_zless_mono2)
bulwahn@41908
   125
bulwahn@41908
   126
end
bulwahn@42980
   127
bulwahn@41908
   128
lemma zero_code_int_code [code, code_unfold]:
bulwahn@41908
   129
  "(0\<Colon>code_int) = Numeral0"
bulwahn@42980
   130
  by (simp add: number_of_code_int_def Pls_def)
bulwahn@42980
   131
lemma [code_post]: "Numeral0 = (0\<Colon>code_int)"
bulwahn@42980
   132
  using zero_code_int_code ..
bulwahn@41908
   133
bulwahn@42980
   134
lemma one_code_int_code [code, code_unfold]:
bulwahn@41908
   135
  "(1\<Colon>code_int) = Numeral1"
bulwahn@42980
   136
  by (simp add: number_of_code_int_def Pls_def Bit1_def)
bulwahn@41908
   137
lemma [code_post]: "Numeral1 = (1\<Colon>code_int)"
bulwahn@42980
   138
  using one_code_int_code ..
bulwahn@42980
   139
bulwahn@41908
   140
bulwahn@42021
   141
definition div_mod_code_int :: "code_int \<Rightarrow> code_int \<Rightarrow> code_int \<times> code_int" where
bulwahn@42021
   142
  [code del]: "div_mod_code_int n m = (n div m, n mod m)"
bulwahn@42021
   143
bulwahn@42021
   144
lemma [code]:
bulwahn@42021
   145
  "div_mod_code_int n m = (if m = 0 then (0, n) else (n div m, n mod m))"
bulwahn@42021
   146
  unfolding div_mod_code_int_def by auto
bulwahn@42021
   147
bulwahn@42021
   148
lemma [code]:
bulwahn@42021
   149
  "n div m = fst (div_mod_code_int n m)"
bulwahn@42021
   150
  unfolding div_mod_code_int_def by simp
bulwahn@42021
   151
bulwahn@42021
   152
lemma [code]:
bulwahn@42021
   153
  "n mod m = snd (div_mod_code_int n m)"
bulwahn@42021
   154
  unfolding div_mod_code_int_def by simp
bulwahn@42021
   155
bulwahn@42021
   156
lemma int_of_code [code]:
bulwahn@42021
   157
  "int_of k = (if k = 0 then 0
bulwahn@42021
   158
    else (if k mod 2 = 0 then 2 * int_of (k div 2) else 2 * int_of (k div 2) + 1))"
bulwahn@42021
   159
proof -
bulwahn@42021
   160
  have 1: "(int_of k div 2) * 2 + int_of k mod 2 = int_of k" 
bulwahn@42021
   161
    by (rule mod_div_equality)
bulwahn@42021
   162
  have "int_of k mod 2 = 0 \<or> int_of k mod 2 = 1" by auto
bulwahn@42021
   163
  from this show ?thesis
bulwahn@42021
   164
    apply auto
bulwahn@42021
   165
    apply (insert 1) by (auto simp add: mult_ac)
bulwahn@42021
   166
qed
bulwahn@42021
   167
bulwahn@42021
   168
bulwahn@42021
   169
code_instance code_numeral :: equal
bulwahn@42021
   170
  (Haskell -)
bulwahn@42021
   171
bulwahn@42021
   172
setup {* fold (Numeral.add_code @{const_name number_code_int_inst.number_of_code_int}
bulwahn@42021
   173
  false Code_Printer.literal_numeral) ["Haskell"]  *}
bulwahn@42021
   174
bulwahn@41908
   175
code_const "0 \<Colon> code_int"
bulwahn@41908
   176
  (Haskell "0")
bulwahn@41908
   177
bulwahn@41908
   178
code_const "1 \<Colon> code_int"
bulwahn@41908
   179
  (Haskell "1")
bulwahn@41908
   180
bulwahn@41908
   181
code_const "minus \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> code_int"
bulwahn@41908
   182
  (Haskell "(_/ -/ _)")
bulwahn@41908
   183
bulwahn@42021
   184
code_const div_mod_code_int
bulwahn@42021
   185
  (Haskell "divMod")
bulwahn@42021
   186
bulwahn@42021
   187
code_const "HOL.equal \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool"
bulwahn@42021
   188
  (Haskell infix 4 "==")
bulwahn@42021
   189
bulwahn@41908
   190
code_const "op \<le> \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool"
bulwahn@41908
   191
  (Haskell infix 4 "<=")
bulwahn@41908
   192
bulwahn@41908
   193
code_const "op < \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool"
bulwahn@41908
   194
  (Haskell infix 4 "<")
bulwahn@41908
   195
bulwahn@41908
   196
code_type code_int
bulwahn@41908
   197
  (Haskell "Int")
bulwahn@41908
   198
bulwahn@42021
   199
code_abort of_int
bulwahn@42021
   200
bulwahn@41961
   201
subsubsection {* Narrowing's deep representation of types and terms *}
bulwahn@41905
   202
bulwahn@41905
   203
datatype type = SumOfProd "type list list"
bulwahn@41905
   204
bulwahn@41908
   205
datatype "term" = Var "code_int list" type | Ctr code_int "term list"
bulwahn@41905
   206
bulwahn@41905
   207
datatype 'a cons = C type "(term list => 'a) list"
bulwahn@41905
   208
bulwahn@42980
   209
subsubsection {* From narrowing's deep representation of terms to Code_Evaluation's terms *}
bulwahn@42980
   210
bulwahn@42980
   211
class partial_term_of = typerep +
bulwahn@42980
   212
  fixes partial_term_of :: "'a itself => term => Code_Evaluation.term"
bulwahn@42980
   213
bulwahn@41964
   214
subsubsection {* Auxilary functions for Narrowing *}
bulwahn@41905
   215
bulwahn@41908
   216
consts nth :: "'a list => code_int => 'a"
bulwahn@41905
   217
bulwahn@41908
   218
code_const nth ("Haskell" infixl 9  "!!")
bulwahn@41905
   219
bulwahn@41908
   220
consts error :: "char list => 'a"
bulwahn@41905
   221
bulwahn@41905
   222
code_const error ("Haskell" "error")
bulwahn@41905
   223
bulwahn@41908
   224
consts toEnum :: "code_int => char"
bulwahn@41908
   225
bulwahn@41908
   226
code_const toEnum ("Haskell" "toEnum")
bulwahn@41905
   227
bulwahn@41908
   228
consts map_index :: "(code_int * 'a => 'b) => 'a list => 'b list"  
bulwahn@41905
   229
bulwahn@41908
   230
consts split_At :: "code_int => 'a list => 'a list * 'a list"
bulwahn@41908
   231
 
bulwahn@41961
   232
subsubsection {* Narrowing's basic operations *}
bulwahn@41905
   233
bulwahn@41961
   234
type_synonym 'a narrowing = "code_int => 'a cons"
bulwahn@41905
   235
bulwahn@41961
   236
definition empty :: "'a narrowing"
bulwahn@41905
   237
where
bulwahn@41905
   238
  "empty d = C (SumOfProd []) []"
bulwahn@41905
   239
  
bulwahn@41961
   240
definition cons :: "'a => 'a narrowing"
bulwahn@41905
   241
where
bulwahn@41905
   242
  "cons a d = (C (SumOfProd [[]]) [(%_. a)])"
bulwahn@41905
   243
bulwahn@41905
   244
fun conv :: "(term list => 'a) list => term => 'a"
bulwahn@41905
   245
where
bulwahn@41908
   246
  "conv cs (Var p _) = error (Char Nibble0 Nibble0 # map toEnum p)"
bulwahn@41905
   247
| "conv cs (Ctr i xs) = (nth cs i) xs"
bulwahn@41905
   248
bulwahn@41905
   249
fun nonEmpty :: "type => bool"
bulwahn@41905
   250
where
bulwahn@41905
   251
  "nonEmpty (SumOfProd ps) = (\<not> (List.null ps))"
bulwahn@41905
   252
bulwahn@41961
   253
definition "apply" :: "('a => 'b) narrowing => 'a narrowing => 'b narrowing"
bulwahn@41905
   254
where
bulwahn@41905
   255
  "apply f a d =
bulwahn@41905
   256
     (case f d of C (SumOfProd ps) cfs =>
bulwahn@41905
   257
       case a (d - 1) of C ta cas =>
bulwahn@41905
   258
       let
bulwahn@41905
   259
         shallow = (d > 0 \<and> nonEmpty ta);
bulwahn@41905
   260
         cs = [(%xs'. (case xs' of [] => undefined | x # xs => cf xs (conv cas x))). shallow, cf <- cfs]
bulwahn@41905
   261
       in C (SumOfProd [ta # p. shallow, p <- ps]) cs)"
bulwahn@41905
   262
bulwahn@41961
   263
definition sum :: "'a narrowing => 'a narrowing => 'a narrowing"
bulwahn@41905
   264
where
bulwahn@41905
   265
  "sum a b d =
bulwahn@41905
   266
    (case a d of C (SumOfProd ssa) ca => 
bulwahn@41905
   267
      case b d of C (SumOfProd ssb) cb =>
bulwahn@41905
   268
      C (SumOfProd (ssa @ ssb)) (ca @ cb))"
bulwahn@41905
   269
bulwahn@41912
   270
lemma [fundef_cong]:
bulwahn@41912
   271
  assumes "a d = a' d" "b d = b' d" "d = d'"
bulwahn@41912
   272
  shows "sum a b d = sum a' b' d'"
bulwahn@41912
   273
using assms unfolding sum_def by (auto split: cons.split type.split)
bulwahn@41912
   274
bulwahn@41912
   275
lemma [fundef_cong]:
bulwahn@41912
   276
  assumes "f d = f' d" "(\<And>d'. 0 <= d' & d' < d ==> a d' = a' d')"
bulwahn@41912
   277
  assumes "d = d'"
bulwahn@41912
   278
  shows "apply f a d = apply f' a' d'"
bulwahn@41912
   279
proof -
bulwahn@41912
   280
  note assms moreover
bulwahn@41930
   281
  have "int_of (of_int 0) < int_of d' ==> int_of (of_int 0) <= int_of (of_int (int_of d' - int_of (of_int 1)))"
bulwahn@41912
   282
    by (simp add: of_int_inverse)
bulwahn@41912
   283
  moreover
bulwahn@41930
   284
  have "int_of (of_int (int_of d' - int_of (of_int 1))) < int_of d'"
bulwahn@41912
   285
    by (simp add: of_int_inverse)
bulwahn@41912
   286
  ultimately show ?thesis
bulwahn@41912
   287
    unfolding apply_def by (auto split: cons.split type.split simp add: Let_def)
bulwahn@41912
   288
qed
bulwahn@41912
   289
bulwahn@41908
   290
type_synonym pos = "code_int list"
bulwahn@41912
   291
(*
bulwahn@41908
   292
subsubsection {* Term refinement *}
bulwahn@41908
   293
bulwahn@41908
   294
definition new :: "pos => type list list => term list"
bulwahn@41908
   295
where
bulwahn@41908
   296
  "new p ps = map_index (%(c, ts). Ctr c (map_index (%(i, t). Var (p @ [i]) t) ts)) ps"
bulwahn@41908
   297
bulwahn@41908
   298
fun refine :: "term => pos => term list" and refineList :: "term list => pos => (term list) list"
bulwahn@41908
   299
where
bulwahn@41908
   300
  "refine (Var p (SumOfProd ss)) [] = new p ss"
bulwahn@41908
   301
| "refine (Ctr c xs) p = map (Ctr c) (refineList xs p)"
bulwahn@41908
   302
| "refineList xs (i # is) = (let (ls, xrs) = split_At i xs in (case xrs of x#rs => [ls @ y # rs. y <- refine x is]))"
bulwahn@41908
   303
bulwahn@41908
   304
text {* Find total instantiations of a partial value *}
bulwahn@41908
   305
bulwahn@41908
   306
function total :: "term => term list"
bulwahn@41908
   307
where
bulwahn@41908
   308
  "total (Ctr c xs) = [Ctr c ys. ys <- map total xs]"
bulwahn@41908
   309
| "total (Var p (SumOfProd ss)) = [y. x <- new p ss, y <- total x]"
bulwahn@41908
   310
by pat_completeness auto
bulwahn@41908
   311
bulwahn@41908
   312
termination sorry
bulwahn@41912
   313
*)
bulwahn@41961
   314
subsubsection {* Narrowing generator type class *}
bulwahn@41905
   315
bulwahn@41961
   316
class narrowing =
bulwahn@41961
   317
  fixes narrowing :: "code_int => 'a cons"
bulwahn@41905
   318
bulwahn@41961
   319
definition cons1 :: "('a::narrowing => 'b) => 'b narrowing"
bulwahn@41905
   320
where
bulwahn@41961
   321
  "cons1 f = apply (cons f) narrowing"
bulwahn@41905
   322
bulwahn@41961
   323
definition cons2 :: "('a :: narrowing => 'b :: narrowing => 'c) => 'c narrowing"
bulwahn@41905
   324
where
bulwahn@41961
   325
  "cons2 f = apply (apply (cons f) narrowing) narrowing"
bulwahn@42021
   326
bulwahn@42021
   327
definition drawn_from :: "'a list => 'a cons"
bulwahn@42021
   328
where "drawn_from xs = C (SumOfProd (map (%_. []) xs)) (map (%x y. x) xs)"
bulwahn@42021
   329
bulwahn@42021
   330
instantiation int :: narrowing
bulwahn@42021
   331
begin
bulwahn@42021
   332
bulwahn@42021
   333
definition
bulwahn@42021
   334
  "narrowing_int d = (let i = Quickcheck_Narrowing.int_of d in drawn_from [-i .. i])"
bulwahn@42021
   335
bulwahn@42021
   336
instance ..
bulwahn@42021
   337
bulwahn@42021
   338
end
bulwahn@42021
   339
bulwahn@41961
   340
instantiation unit :: narrowing
bulwahn@41905
   341
begin
bulwahn@41905
   342
bulwahn@41905
   343
definition
bulwahn@41965
   344
  "narrowing = cons ()"
bulwahn@41905
   345
bulwahn@41905
   346
instance ..
bulwahn@41905
   347
bulwahn@41905
   348
end
bulwahn@41905
   349
bulwahn@41961
   350
instantiation bool :: narrowing
bulwahn@41905
   351
begin
bulwahn@41905
   352
bulwahn@41905
   353
definition
bulwahn@41965
   354
  "narrowing = sum (cons True) (cons False)" 
bulwahn@41905
   355
bulwahn@41905
   356
instance ..
bulwahn@41905
   357
bulwahn@41905
   358
end
bulwahn@41905
   359
bulwahn@41961
   360
instantiation option :: (narrowing) narrowing
bulwahn@41905
   361
begin
bulwahn@41905
   362
bulwahn@41905
   363
definition
bulwahn@41965
   364
  "narrowing = sum (cons None) (cons1 Some)"
bulwahn@41905
   365
bulwahn@41905
   366
instance ..
bulwahn@41905
   367
bulwahn@41905
   368
end
bulwahn@41905
   369
bulwahn@41961
   370
instantiation sum :: (narrowing, narrowing) narrowing
bulwahn@41905
   371
begin
bulwahn@41905
   372
bulwahn@41905
   373
definition
bulwahn@41961
   374
  "narrowing = sum (cons1 Inl) (cons1 Inr)"
bulwahn@41905
   375
bulwahn@41905
   376
instance ..
bulwahn@41905
   377
bulwahn@41905
   378
end
bulwahn@41905
   379
bulwahn@41961
   380
instantiation list :: (narrowing) narrowing
bulwahn@41905
   381
begin
bulwahn@41905
   382
bulwahn@41961
   383
function narrowing_list :: "'a list narrowing"
bulwahn@41905
   384
where
bulwahn@41961
   385
  "narrowing_list d = sum (cons []) (apply (apply (cons Cons) narrowing) narrowing_list) d"
bulwahn@41905
   386
by pat_completeness auto
bulwahn@41905
   387
bulwahn@41912
   388
termination proof (relation "measure nat_of")
bulwahn@41912
   389
qed (auto simp add: of_int_inverse nat_of_def)
bulwahn@41912
   390
    
bulwahn@41905
   391
instance ..
bulwahn@41905
   392
bulwahn@41905
   393
end
bulwahn@41905
   394
bulwahn@41961
   395
instantiation nat :: narrowing
bulwahn@41905
   396
begin
bulwahn@41905
   397
bulwahn@41961
   398
function narrowing_nat :: "nat narrowing"
bulwahn@41905
   399
where
bulwahn@41961
   400
  "narrowing_nat d = sum (cons 0) (apply (cons Suc) narrowing_nat) d"
bulwahn@41905
   401
by pat_completeness auto
bulwahn@41905
   402
bulwahn@41912
   403
termination proof (relation "measure nat_of")
bulwahn@41912
   404
qed (auto simp add: of_int_inverse nat_of_def)
bulwahn@41905
   405
bulwahn@41905
   406
instance ..
bulwahn@41905
   407
bulwahn@41905
   408
end
bulwahn@41905
   409
bulwahn@41961
   410
instantiation Enum.finite_1 :: narrowing
bulwahn@41905
   411
begin
bulwahn@41905
   412
bulwahn@41961
   413
definition narrowing_finite_1 :: "Enum.finite_1 narrowing"
bulwahn@41905
   414
where
bulwahn@41961
   415
  "narrowing_finite_1 = cons (Enum.finite_1.a\<^isub>1 :: Enum.finite_1)"
bulwahn@41905
   416
bulwahn@41905
   417
instance ..
bulwahn@41905
   418
bulwahn@41905
   419
end
bulwahn@41905
   420
bulwahn@41961
   421
instantiation Enum.finite_2 :: narrowing
bulwahn@41905
   422
begin
bulwahn@41905
   423
bulwahn@41961
   424
definition narrowing_finite_2 :: "Enum.finite_2 narrowing"
bulwahn@41905
   425
where
bulwahn@41961
   426
  "narrowing_finite_2 = sum (cons (Enum.finite_2.a\<^isub>1 :: Enum.finite_2)) (cons (Enum.finite_2.a\<^isub>2 :: Enum.finite_2))"
bulwahn@41905
   427
bulwahn@41905
   428
instance ..
bulwahn@41905
   429
bulwahn@41905
   430
end
bulwahn@41905
   431
bulwahn@41961
   432
instantiation Enum.finite_3 :: narrowing
bulwahn@41905
   433
begin
bulwahn@41905
   434
bulwahn@41961
   435
definition narrowing_finite_3 :: "Enum.finite_3 narrowing"
bulwahn@41905
   436
where
bulwahn@41961
   437
  "narrowing_finite_3 = sum (cons (Enum.finite_3.a\<^isub>1 :: Enum.finite_3)) (sum (cons (Enum.finite_3.a\<^isub>2 :: Enum.finite_3)) (cons (Enum.finite_3.a\<^isub>3 :: Enum.finite_3)))"
bulwahn@41905
   438
bulwahn@41905
   439
instance ..
bulwahn@41905
   440
bulwahn@41905
   441
end
bulwahn@41905
   442
bulwahn@41961
   443
instantiation Enum.finite_4 :: narrowing
bulwahn@41910
   444
begin
bulwahn@41910
   445
bulwahn@41961
   446
definition narrowing_finite_4 :: "Enum.finite_4 narrowing"
bulwahn@41910
   447
where
bulwahn@41961
   448
  "narrowing_finite_4 = sum (cons Enum.finite_4.a\<^isub>1) (sum (cons Enum.finite_4.a\<^isub>2) (sum (cons Enum.finite_4.a\<^isub>3) (cons Enum.finite_4.a\<^isub>4)))"
bulwahn@41910
   449
bulwahn@41910
   450
instance ..
bulwahn@41910
   451
bulwahn@41910
   452
end
bulwahn@41910
   453
wenzelm@41943
   454
subsubsection {* class @{text is_testable} *}
bulwahn@41905
   455
wenzelm@41943
   456
text {* The class @{text is_testable} ensures that all necessary type instances are generated. *}
bulwahn@41905
   457
bulwahn@41905
   458
class is_testable
bulwahn@41905
   459
bulwahn@41905
   460
instance bool :: is_testable ..
bulwahn@41905
   461
bulwahn@41961
   462
instance "fun" :: ("{term_of, narrowing}", is_testable) is_testable ..
bulwahn@41905
   463
bulwahn@41905
   464
definition ensure_testable :: "'a :: is_testable => 'a :: is_testable"
bulwahn@41905
   465
where
bulwahn@41905
   466
  "ensure_testable f = f"
bulwahn@41905
   467
bulwahn@41910
   468
declare simp_thms(17,19)[code del]
bulwahn@41910
   469
bulwahn@42022
   470
subsubsection {* Defining a simple datatype to represent functions in an incomplete and redundant way *}
bulwahn@42022
   471
bulwahn@42022
   472
datatype ('a, 'b) ffun = Constant 'b | Update 'a 'b "('a, 'b) ffun"
bulwahn@42022
   473
bulwahn@42022
   474
primrec eval_ffun :: "('a, 'b) ffun => 'a => 'b"
bulwahn@42022
   475
where
bulwahn@42022
   476
  "eval_ffun (Constant c) x = c"
bulwahn@42022
   477
| "eval_ffun (Update x' y f) x = (if x = x' then y else eval_ffun f x)"
bulwahn@42022
   478
bulwahn@42022
   479
hide_type (open) ffun
bulwahn@42022
   480
hide_const (open) Constant Update eval_ffun
bulwahn@42022
   481
bulwahn@42024
   482
datatype 'b cfun = Constant 'b
bulwahn@42024
   483
bulwahn@42024
   484
primrec eval_cfun :: "'b cfun => 'a => 'b"
bulwahn@42024
   485
where
bulwahn@42024
   486
  "eval_cfun (Constant c) y = c"
bulwahn@42024
   487
bulwahn@42024
   488
hide_type (open) cfun
bulwahn@42024
   489
hide_const (open) Constant eval_cfun
bulwahn@42024
   490
bulwahn@42024
   491
subsubsection {* Setting up the counterexample generator *}
bulwahn@42024
   492
  
bulwahn@42024
   493
use "~~/src/HOL/Tools/Quickcheck/narrowing_generators.ML"
bulwahn@42024
   494
bulwahn@42024
   495
setup {* Narrowing_Generators.setup *}
bulwahn@42024
   496
bulwahn@42024
   497
hide_type (open) code_int type "term" cons
bulwahn@42024
   498
hide_const (open) int_of of_int nth error toEnum map_index split_At empty
bulwahn@42024
   499
  cons conv nonEmpty "apply" sum cons1 cons2 ensure_testable
bulwahn@42022
   500
bulwahn@41905
   501
end