src/HOL/Fields.thy
author hoelzl
Fri Feb 19 13:40:50 2016 +0100 (2016-02-19)
changeset 62378 85ed00c1fe7c
parent 62347 2230b7047376
child 62481 b5d8e57826df
permissions -rw-r--r--
generalize more theorems to support enat and ennreal
haftmann@35050
     1
(*  Title:      HOL/Fields.thy
wenzelm@32960
     2
    Author:     Gertrud Bauer
wenzelm@32960
     3
    Author:     Steven Obua
wenzelm@32960
     4
    Author:     Tobias Nipkow
wenzelm@32960
     5
    Author:     Lawrence C Paulson
wenzelm@32960
     6
    Author:     Markus Wenzel
wenzelm@32960
     7
    Author:     Jeremy Avigad
paulson@14265
     8
*)
paulson@14265
     9
wenzelm@60758
    10
section \<open>Fields\<close>
haftmann@25152
    11
haftmann@35050
    12
theory Fields
haftmann@35050
    13
imports Rings
haftmann@25186
    14
begin
paulson@14421
    15
wenzelm@60758
    16
subsection \<open>Division rings\<close>
huffman@44064
    17
wenzelm@60758
    18
text \<open>
huffman@44064
    19
  A division ring is like a field, but without the commutativity requirement.
wenzelm@60758
    20
\<close>
huffman@44064
    21
haftmann@60352
    22
class inverse = divide +
huffman@44064
    23
  fixes inverse :: "'a \<Rightarrow> 'a"
hoelzl@58776
    24
begin
haftmann@60352
    25
  
haftmann@60352
    26
abbreviation inverse_divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "'/" 70)
haftmann@60352
    27
where
haftmann@60352
    28
  "inverse_divide \<equiv> divide"
hoelzl@58776
    29
hoelzl@58776
    30
end
hoelzl@58776
    31
wenzelm@61799
    32
text\<open>Lemmas \<open>divide_simps\<close> move division to the outside and eliminates them on (in)equalities.\<close>
hoelzl@56481
    33
wenzelm@57950
    34
named_theorems divide_simps "rewrite rules to eliminate divisions"
hoelzl@56481
    35
huffman@44064
    36
class division_ring = ring_1 + inverse +
huffman@44064
    37
  assumes left_inverse [simp]:  "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
huffman@44064
    38
  assumes right_inverse [simp]: "a \<noteq> 0 \<Longrightarrow> a * inverse a = 1"
huffman@44064
    39
  assumes divide_inverse: "a / b = a * inverse b"
haftmann@59867
    40
  assumes inverse_zero [simp]: "inverse 0 = 0"
huffman@44064
    41
begin
huffman@44064
    42
huffman@44064
    43
subclass ring_1_no_zero_divisors
huffman@44064
    44
proof
huffman@44064
    45
  fix a b :: 'a
huffman@44064
    46
  assume a: "a \<noteq> 0" and b: "b \<noteq> 0"
huffman@44064
    47
  show "a * b \<noteq> 0"
huffman@44064
    48
  proof
huffman@44064
    49
    assume ab: "a * b = 0"
huffman@44064
    50
    hence "0 = inverse a * (a * b) * inverse b" by simp
huffman@44064
    51
    also have "\<dots> = (inverse a * a) * (b * inverse b)"
haftmann@57512
    52
      by (simp only: mult.assoc)
huffman@44064
    53
    also have "\<dots> = 1" using a b by simp
huffman@44064
    54
    finally show False by simp
huffman@44064
    55
  qed
huffman@44064
    56
qed
huffman@44064
    57
huffman@44064
    58
lemma nonzero_imp_inverse_nonzero:
huffman@44064
    59
  "a \<noteq> 0 \<Longrightarrow> inverse a \<noteq> 0"
huffman@44064
    60
proof
huffman@44064
    61
  assume ianz: "inverse a = 0"
huffman@44064
    62
  assume "a \<noteq> 0"
huffman@44064
    63
  hence "1 = a * inverse a" by simp
huffman@44064
    64
  also have "... = 0" by (simp add: ianz)
huffman@44064
    65
  finally have "1 = 0" .
huffman@44064
    66
  thus False by (simp add: eq_commute)
huffman@44064
    67
qed
huffman@44064
    68
huffman@44064
    69
lemma inverse_zero_imp_zero:
huffman@44064
    70
  "inverse a = 0 \<Longrightarrow> a = 0"
huffman@44064
    71
apply (rule classical)
huffman@44064
    72
apply (drule nonzero_imp_inverse_nonzero)
huffman@44064
    73
apply auto
huffman@44064
    74
done
huffman@44064
    75
lp15@59667
    76
lemma inverse_unique:
huffman@44064
    77
  assumes ab: "a * b = 1"
huffman@44064
    78
  shows "inverse a = b"
huffman@44064
    79
proof -
huffman@44064
    80
  have "a \<noteq> 0" using ab by (cases "a = 0") simp_all
huffman@44064
    81
  moreover have "inverse a * (a * b) = inverse a" by (simp add: ab)
haftmann@57512
    82
  ultimately show ?thesis by (simp add: mult.assoc [symmetric])
huffman@44064
    83
qed
huffman@44064
    84
huffman@44064
    85
lemma nonzero_inverse_minus_eq:
huffman@44064
    86
  "a \<noteq> 0 \<Longrightarrow> inverse (- a) = - inverse a"
huffman@44064
    87
by (rule inverse_unique) simp
huffman@44064
    88
huffman@44064
    89
lemma nonzero_inverse_inverse_eq:
huffman@44064
    90
  "a \<noteq> 0 \<Longrightarrow> inverse (inverse a) = a"
huffman@44064
    91
by (rule inverse_unique) simp
huffman@44064
    92
huffman@44064
    93
lemma nonzero_inverse_eq_imp_eq:
huffman@44064
    94
  assumes "inverse a = inverse b" and "a \<noteq> 0" and "b \<noteq> 0"
huffman@44064
    95
  shows "a = b"
huffman@44064
    96
proof -
wenzelm@60758
    97
  from \<open>inverse a = inverse b\<close>
huffman@44064
    98
  have "inverse (inverse a) = inverse (inverse b)" by (rule arg_cong)
wenzelm@60758
    99
  with \<open>a \<noteq> 0\<close> and \<open>b \<noteq> 0\<close> show "a = b"
huffman@44064
   100
    by (simp add: nonzero_inverse_inverse_eq)
huffman@44064
   101
qed
huffman@44064
   102
huffman@44064
   103
lemma inverse_1 [simp]: "inverse 1 = 1"
huffman@44064
   104
by (rule inverse_unique) simp
huffman@44064
   105
lp15@59667
   106
lemma nonzero_inverse_mult_distrib:
huffman@44064
   107
  assumes "a \<noteq> 0" and "b \<noteq> 0"
huffman@44064
   108
  shows "inverse (a * b) = inverse b * inverse a"
huffman@44064
   109
proof -
huffman@44064
   110
  have "a * (b * inverse b) * inverse a = 1" using assms by simp
haftmann@57512
   111
  hence "a * b * (inverse b * inverse a) = 1" by (simp only: mult.assoc)
huffman@44064
   112
  thus ?thesis by (rule inverse_unique)
huffman@44064
   113
qed
huffman@44064
   114
huffman@44064
   115
lemma division_ring_inverse_add:
huffman@44064
   116
  "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a + inverse b = inverse a * (a + b) * inverse b"
huffman@44064
   117
by (simp add: algebra_simps)
huffman@44064
   118
huffman@44064
   119
lemma division_ring_inverse_diff:
huffman@44064
   120
  "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a - inverse b = inverse a * (b - a) * inverse b"
huffman@44064
   121
by (simp add: algebra_simps)
huffman@44064
   122
huffman@44064
   123
lemma right_inverse_eq: "b \<noteq> 0 \<Longrightarrow> a / b = 1 \<longleftrightarrow> a = b"
huffman@44064
   124
proof
huffman@44064
   125
  assume neq: "b \<noteq> 0"
huffman@44064
   126
  {
haftmann@57512
   127
    hence "a = (a / b) * b" by (simp add: divide_inverse mult.assoc)
huffman@44064
   128
    also assume "a / b = 1"
huffman@44064
   129
    finally show "a = b" by simp
huffman@44064
   130
  next
huffman@44064
   131
    assume "a = b"
huffman@44064
   132
    with neq show "a / b = 1" by (simp add: divide_inverse)
huffman@44064
   133
  }
huffman@44064
   134
qed
huffman@44064
   135
huffman@44064
   136
lemma nonzero_inverse_eq_divide: "a \<noteq> 0 \<Longrightarrow> inverse a = 1 / a"
huffman@44064
   137
by (simp add: divide_inverse)
huffman@44064
   138
huffman@44064
   139
lemma divide_self [simp]: "a \<noteq> 0 \<Longrightarrow> a / a = 1"
huffman@44064
   140
by (simp add: divide_inverse)
huffman@44064
   141
hoelzl@56481
   142
lemma inverse_eq_divide [field_simps, divide_simps]: "inverse a = 1 / a"
huffman@44064
   143
by (simp add: divide_inverse)
huffman@44064
   144
huffman@44064
   145
lemma add_divide_distrib: "(a+b) / c = a/c + b/c"
huffman@44064
   146
by (simp add: divide_inverse algebra_simps)
huffman@44064
   147
huffman@44064
   148
lemma times_divide_eq_right [simp]: "a * (b / c) = (a * b) / c"
haftmann@57512
   149
  by (simp add: divide_inverse mult.assoc)
huffman@44064
   150
huffman@44064
   151
lemma minus_divide_left: "- (a / b) = (-a) / b"
huffman@44064
   152
  by (simp add: divide_inverse)
huffman@44064
   153
huffman@44064
   154
lemma nonzero_minus_divide_right: "b \<noteq> 0 ==> - (a / b) = a / (- b)"
huffman@44064
   155
  by (simp add: divide_inverse nonzero_inverse_minus_eq)
huffman@44064
   156
huffman@44064
   157
lemma nonzero_minus_divide_divide: "b \<noteq> 0 ==> (-a) / (-b) = a / b"
huffman@44064
   158
  by (simp add: divide_inverse nonzero_inverse_minus_eq)
huffman@44064
   159
hoelzl@56479
   160
lemma divide_minus_left [simp]: "(-a) / b = - (a / b)"
huffman@44064
   161
  by (simp add: divide_inverse)
huffman@44064
   162
huffman@44064
   163
lemma diff_divide_distrib: "(a - b) / c = a / c - b / c"
hoelzl@56479
   164
  using add_divide_distrib [of a "- b" c] by simp
huffman@44064
   165
huffman@44064
   166
lemma nonzero_eq_divide_eq [field_simps]: "c \<noteq> 0 \<Longrightarrow> a = b / c \<longleftrightarrow> a * c = b"
huffman@44064
   167
proof -
huffman@44064
   168
  assume [simp]: "c \<noteq> 0"
huffman@44064
   169
  have "a = b / c \<longleftrightarrow> a * c = (b / c) * c" by simp
haftmann@57512
   170
  also have "... \<longleftrightarrow> a * c = b" by (simp add: divide_inverse mult.assoc)
huffman@44064
   171
  finally show ?thesis .
huffman@44064
   172
qed
huffman@44064
   173
huffman@44064
   174
lemma nonzero_divide_eq_eq [field_simps]: "c \<noteq> 0 \<Longrightarrow> b / c = a \<longleftrightarrow> b = a * c"
huffman@44064
   175
proof -
huffman@44064
   176
  assume [simp]: "c \<noteq> 0"
huffman@44064
   177
  have "b / c = a \<longleftrightarrow> (b / c) * c = a * c" by simp
lp15@59667
   178
  also have "... \<longleftrightarrow> b = a * c" by (simp add: divide_inverse mult.assoc)
huffman@44064
   179
  finally show ?thesis .
huffman@44064
   180
qed
huffman@44064
   181
hoelzl@56480
   182
lemma nonzero_neg_divide_eq_eq [field_simps]: "b \<noteq> 0 \<Longrightarrow> - (a / b) = c \<longleftrightarrow> - a = c * b"
haftmann@59535
   183
  using nonzero_divide_eq_eq[of b "-a" c] by simp
nipkow@56441
   184
hoelzl@56480
   185
lemma nonzero_neg_divide_eq_eq2 [field_simps]: "b \<noteq> 0 \<Longrightarrow> c = - (a / b) \<longleftrightarrow> c * b = - a"
hoelzl@56480
   186
  using nonzero_neg_divide_eq_eq[of b a c] by auto
nipkow@56441
   187
huffman@44064
   188
lemma divide_eq_imp: "c \<noteq> 0 \<Longrightarrow> b = a * c \<Longrightarrow> b / c = a"
haftmann@57512
   189
  by (simp add: divide_inverse mult.assoc)
huffman@44064
   190
huffman@44064
   191
lemma eq_divide_imp: "c \<noteq> 0 \<Longrightarrow> a * c = b \<Longrightarrow> a = b / c"
haftmann@57512
   192
  by (drule sym) (simp add: divide_inverse mult.assoc)
huffman@44064
   193
nipkow@56445
   194
lemma add_divide_eq_iff [field_simps]:
nipkow@56445
   195
  "z \<noteq> 0 \<Longrightarrow> x + y / z = (x * z + y) / z"
nipkow@56445
   196
  by (simp add: add_divide_distrib nonzero_eq_divide_eq)
nipkow@56445
   197
nipkow@56445
   198
lemma divide_add_eq_iff [field_simps]:
nipkow@56445
   199
  "z \<noteq> 0 \<Longrightarrow> x / z + y = (x + y * z) / z"
nipkow@56445
   200
  by (simp add: add_divide_distrib nonzero_eq_divide_eq)
nipkow@56445
   201
nipkow@56445
   202
lemma diff_divide_eq_iff [field_simps]:
nipkow@56445
   203
  "z \<noteq> 0 \<Longrightarrow> x - y / z = (x * z - y) / z"
nipkow@56445
   204
  by (simp add: diff_divide_distrib nonzero_eq_divide_eq eq_diff_eq)
nipkow@56445
   205
hoelzl@56480
   206
lemma minus_divide_add_eq_iff [field_simps]:
hoelzl@56480
   207
  "z \<noteq> 0 \<Longrightarrow> - (x / z) + y = (- x + y * z) / z"
haftmann@59535
   208
  by (simp add: add_divide_distrib diff_divide_eq_iff)
hoelzl@56480
   209
nipkow@56445
   210
lemma divide_diff_eq_iff [field_simps]:
nipkow@56445
   211
  "z \<noteq> 0 \<Longrightarrow> x / z - y = (x - y * z) / z"
nipkow@56445
   212
  by (simp add: field_simps)
nipkow@56445
   213
hoelzl@56480
   214
lemma minus_divide_diff_eq_iff [field_simps]:
hoelzl@56480
   215
  "z \<noteq> 0 \<Longrightarrow> - (x / z) - y = (- x - y * z) / z"
haftmann@59535
   216
  by (simp add: divide_diff_eq_iff[symmetric])
hoelzl@56480
   217
haftmann@60353
   218
lemma division_ring_divide_zero [simp]:
huffman@44064
   219
  "a / 0 = 0"
huffman@44064
   220
  by (simp add: divide_inverse)
huffman@44064
   221
huffman@44064
   222
lemma divide_self_if [simp]:
huffman@44064
   223
  "a / a = (if a = 0 then 0 else 1)"
huffman@44064
   224
  by simp
huffman@44064
   225
huffman@44064
   226
lemma inverse_nonzero_iff_nonzero [simp]:
huffman@44064
   227
  "inverse a = 0 \<longleftrightarrow> a = 0"
huffman@44064
   228
  by rule (fact inverse_zero_imp_zero, simp)
huffman@44064
   229
huffman@44064
   230
lemma inverse_minus_eq [simp]:
huffman@44064
   231
  "inverse (- a) = - inverse a"
huffman@44064
   232
proof cases
huffman@44064
   233
  assume "a=0" thus ?thesis by simp
huffman@44064
   234
next
lp15@59667
   235
  assume "a\<noteq>0"
huffman@44064
   236
  thus ?thesis by (simp add: nonzero_inverse_minus_eq)
huffman@44064
   237
qed
huffman@44064
   238
huffman@44064
   239
lemma inverse_inverse_eq [simp]:
huffman@44064
   240
  "inverse (inverse a) = a"
huffman@44064
   241
proof cases
huffman@44064
   242
  assume "a=0" thus ?thesis by simp
huffman@44064
   243
next
lp15@59667
   244
  assume "a\<noteq>0"
huffman@44064
   245
  thus ?thesis by (simp add: nonzero_inverse_inverse_eq)
huffman@44064
   246
qed
huffman@44064
   247
huffman@44680
   248
lemma inverse_eq_imp_eq:
huffman@44680
   249
  "inverse a = inverse b \<Longrightarrow> a = b"
huffman@44680
   250
  by (drule arg_cong [where f="inverse"], simp)
huffman@44680
   251
huffman@44680
   252
lemma inverse_eq_iff_eq [simp]:
huffman@44680
   253
  "inverse a = inverse b \<longleftrightarrow> a = b"
huffman@44680
   254
  by (force dest!: inverse_eq_imp_eq)
huffman@44680
   255
hoelzl@56481
   256
lemma add_divide_eq_if_simps [divide_simps]:
hoelzl@56481
   257
    "a + b / z = (if z = 0 then a else (a * z + b) / z)"
hoelzl@56481
   258
    "a / z + b = (if z = 0 then b else (a + b * z) / z)"
hoelzl@56481
   259
    "- (a / z) + b = (if z = 0 then b else (-a + b * z) / z)"
hoelzl@56481
   260
    "a - b / z = (if z = 0 then a else (a * z - b) / z)"
hoelzl@56481
   261
    "a / z - b = (if z = 0 then -b else (a - b * z) / z)"
hoelzl@56481
   262
    "- (a / z) - b = (if z = 0 then -b else (- a - b * z) / z)"
hoelzl@56481
   263
  by (simp_all add: add_divide_eq_iff divide_add_eq_iff diff_divide_eq_iff divide_diff_eq_iff
hoelzl@56481
   264
      minus_divide_diff_eq_iff)
hoelzl@56481
   265
hoelzl@56481
   266
lemma [divide_simps]:
hoelzl@56481
   267
  shows divide_eq_eq: "b / c = a \<longleftrightarrow> (if c \<noteq> 0 then b = a * c else a = 0)"
hoelzl@56481
   268
    and eq_divide_eq: "a = b / c \<longleftrightarrow> (if c \<noteq> 0 then a * c = b else a = 0)"
hoelzl@56481
   269
    and minus_divide_eq_eq: "- (b / c) = a \<longleftrightarrow> (if c \<noteq> 0 then - b = a * c else a = 0)"
hoelzl@56481
   270
    and eq_minus_divide_eq: "a = - (b / c) \<longleftrightarrow> (if c \<noteq> 0 then a * c = - b else a = 0)"
hoelzl@56481
   271
  by (auto simp add:  field_simps)
hoelzl@56481
   272
huffman@44064
   273
end
huffman@44064
   274
wenzelm@60758
   275
subsection \<open>Fields\<close>
huffman@44064
   276
huffman@22987
   277
class field = comm_ring_1 + inverse +
haftmann@35084
   278
  assumes field_inverse: "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
haftmann@35084
   279
  assumes field_divide_inverse: "a / b = a * inverse b"
haftmann@59867
   280
  assumes field_inverse_zero: "inverse 0 = 0"
haftmann@25267
   281
begin
huffman@20496
   282
haftmann@25267
   283
subclass division_ring
haftmann@28823
   284
proof
huffman@22987
   285
  fix a :: 'a
huffman@22987
   286
  assume "a \<noteq> 0"
huffman@22987
   287
  thus "inverse a * a = 1" by (rule field_inverse)
haftmann@57512
   288
  thus "a * inverse a = 1" by (simp only: mult.commute)
haftmann@35084
   289
next
haftmann@35084
   290
  fix a b :: 'a
haftmann@35084
   291
  show "a / b = a * inverse b" by (rule field_divide_inverse)
haftmann@59867
   292
next
haftmann@59867
   293
  show "inverse 0 = 0"
haftmann@59867
   294
    by (fact field_inverse_zero) 
obua@14738
   295
qed
haftmann@25230
   296
haftmann@60353
   297
subclass idom_divide
haftmann@60353
   298
proof
haftmann@60353
   299
  fix b a
haftmann@60353
   300
  assume "b \<noteq> 0"
haftmann@60353
   301
  then show "a * b / b = a"
haftmann@60353
   302
    by (simp add: divide_inverse ac_simps)
haftmann@60353
   303
next
haftmann@60353
   304
  fix a
haftmann@60353
   305
  show "a / 0 = 0"
haftmann@60353
   306
    by (simp add: divide_inverse)
haftmann@60353
   307
qed
haftmann@25230
   308
wenzelm@60758
   309
text\<open>There is no slick version using division by zero.\<close>
huffman@30630
   310
lemma inverse_add:
haftmann@60353
   311
  "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a + inverse b = (a + b) * inverse a * inverse b"
haftmann@60353
   312
  by (simp add: division_ring_inverse_add ac_simps)
huffman@30630
   313
blanchet@54147
   314
lemma nonzero_mult_divide_mult_cancel_left [simp]:
haftmann@60353
   315
  assumes [simp]: "c \<noteq> 0"
haftmann@60353
   316
  shows "(c * a) / (c * b) = a / b"
haftmann@60353
   317
proof (cases "b = 0")
haftmann@60353
   318
  case True then show ?thesis by simp
haftmann@60353
   319
next
haftmann@60353
   320
  case False
haftmann@60353
   321
  then have "(c*a)/(c*b) = c * a * (inverse b * inverse c)"
huffman@30630
   322
    by (simp add: divide_inverse nonzero_inverse_mult_distrib)
huffman@30630
   323
  also have "... =  a * inverse b * (inverse c * c)"
haftmann@57514
   324
    by (simp only: ac_simps)
huffman@30630
   325
  also have "... =  a * inverse b" by simp
huffman@30630
   326
    finally show ?thesis by (simp add: divide_inverse)
huffman@30630
   327
qed
huffman@30630
   328
blanchet@54147
   329
lemma nonzero_mult_divide_mult_cancel_right [simp]:
haftmann@60353
   330
  "c \<noteq> 0 \<Longrightarrow> (a * c) / (b * c) = a / b"
haftmann@60353
   331
  using nonzero_mult_divide_mult_cancel_left [of c a b] by (simp add: ac_simps)
huffman@30630
   332
haftmann@36304
   333
lemma times_divide_eq_left [simp]: "(b / c) * a = (b * a) / c"
haftmann@57514
   334
  by (simp add: divide_inverse ac_simps)
huffman@30630
   335
lp15@61238
   336
lemma divide_inverse_commute: "a / b = inverse b * a"
lp15@61238
   337
  by (simp add: divide_inverse mult.commute)
lp15@61238
   338
huffman@30630
   339
lemma add_frac_eq:
huffman@30630
   340
  assumes "y \<noteq> 0" and "z \<noteq> 0"
huffman@30630
   341
  shows "x / y + w / z = (x * z + w * y) / (y * z)"
huffman@30630
   342
proof -
huffman@30630
   343
  have "x / y + w / z = (x * z) / (y * z) + (y * w) / (y * z)"
huffman@30630
   344
    using assms by simp
huffman@30630
   345
  also have "\<dots> = (x * z + y * w) / (y * z)"
huffman@30630
   346
    by (simp only: add_divide_distrib)
huffman@30630
   347
  finally show ?thesis
haftmann@57512
   348
    by (simp only: mult.commute)
huffman@30630
   349
qed
huffman@30630
   350
wenzelm@60758
   351
text\<open>Special Cancellation Simprules for Division\<close>
huffman@30630
   352
blanchet@54147
   353
lemma nonzero_divide_mult_cancel_right [simp]:
haftmann@60353
   354
  "b \<noteq> 0 \<Longrightarrow> b / (a * b) = 1 / a"
haftmann@60353
   355
  using nonzero_mult_divide_mult_cancel_right [of b 1 a] by simp
huffman@30630
   356
blanchet@54147
   357
lemma nonzero_divide_mult_cancel_left [simp]:
haftmann@60353
   358
  "a \<noteq> 0 \<Longrightarrow> a / (a * b) = 1 / b"
haftmann@60353
   359
  using nonzero_mult_divide_mult_cancel_left [of a 1 b] by simp
huffman@30630
   360
blanchet@54147
   361
lemma nonzero_mult_divide_mult_cancel_left2 [simp]:
haftmann@60353
   362
  "c \<noteq> 0 \<Longrightarrow> (c * a) / (b * c) = a / b"
haftmann@60353
   363
  using nonzero_mult_divide_mult_cancel_left [of c a b] by (simp add: ac_simps)
huffman@30630
   364
blanchet@54147
   365
lemma nonzero_mult_divide_mult_cancel_right2 [simp]:
haftmann@60353
   366
  "c \<noteq> 0 \<Longrightarrow> (a * c) / (c * b) = a / b"
haftmann@60353
   367
  using nonzero_mult_divide_mult_cancel_right [of b c a] by (simp add: ac_simps)
huffman@30630
   368
huffman@30630
   369
lemma diff_frac_eq:
huffman@30630
   370
  "y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> x / y - w / z = (x * z - w * y) / (y * z)"
haftmann@36348
   371
  by (simp add: field_simps)
huffman@30630
   372
huffman@30630
   373
lemma frac_eq_eq:
huffman@30630
   374
  "y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> (x / y = w / z) = (x * z = w * y)"
haftmann@36348
   375
  by (simp add: field_simps)
haftmann@36348
   376
haftmann@58512
   377
lemma divide_minus1 [simp]: "x / - 1 = - x"
haftmann@58512
   378
  using nonzero_minus_divide_right [of "1" x] by simp
lp15@59667
   379
wenzelm@60758
   380
text\<open>This version builds in division by zero while also re-orienting
wenzelm@60758
   381
      the right-hand side.\<close>
paulson@14270
   382
lemma inverse_mult_distrib [simp]:
haftmann@36409
   383
  "inverse (a * b) = inverse a * inverse b"
haftmann@36409
   384
proof cases
lp15@59667
   385
  assume "a \<noteq> 0 & b \<noteq> 0"
haftmann@57514
   386
  thus ?thesis by (simp add: nonzero_inverse_mult_distrib ac_simps)
haftmann@36409
   387
next
lp15@59667
   388
  assume "~ (a \<noteq> 0 & b \<noteq> 0)"
haftmann@36409
   389
  thus ?thesis by force
haftmann@36409
   390
qed
paulson@14270
   391
paulson@14365
   392
lemma inverse_divide [simp]:
haftmann@36409
   393
  "inverse (a / b) = b / a"
haftmann@57512
   394
  by (simp add: divide_inverse mult.commute)
paulson@14365
   395
wenzelm@23389
   396
wenzelm@60758
   397
text \<open>Calculations with fractions\<close>
avigad@16775
   398
wenzelm@61799
   399
text\<open>There is a whole bunch of simp-rules just for class \<open>field\<close> but none for class \<open>field\<close> and \<open>nonzero_divides\<close>
wenzelm@60758
   400
because the latter are covered by a simproc.\<close>
nipkow@23413
   401
nipkow@23413
   402
lemma mult_divide_mult_cancel_left:
haftmann@36409
   403
  "c \<noteq> 0 \<Longrightarrow> (c * a) / (c * b) = a / b"
haftmann@21328
   404
apply (cases "b = 0")
huffman@35216
   405
apply simp_all
paulson@14277
   406
done
paulson@14277
   407
nipkow@23413
   408
lemma mult_divide_mult_cancel_right:
haftmann@36409
   409
  "c \<noteq> 0 \<Longrightarrow> (a * c) / (b * c) = a / b"
haftmann@21328
   410
apply (cases "b = 0")
huffman@35216
   411
apply simp_all
paulson@14321
   412
done
nipkow@23413
   413
blanchet@54147
   414
lemma divide_divide_eq_right [simp]:
haftmann@36409
   415
  "a / (b / c) = (a * c) / b"
haftmann@57514
   416
  by (simp add: divide_inverse ac_simps)
paulson@14288
   417
blanchet@54147
   418
lemma divide_divide_eq_left [simp]:
haftmann@36409
   419
  "(a / b) / c = a / (b * c)"
haftmann@57512
   420
  by (simp add: divide_inverse mult.assoc)
paulson@14288
   421
lp15@56365
   422
lemma divide_divide_times_eq:
lp15@56365
   423
  "(x / y) / (z / w) = (x * w) / (y * z)"
lp15@56365
   424
  by simp
wenzelm@23389
   425
wenzelm@60758
   426
text \<open>Special Cancellation Simprules for Division\<close>
paulson@15234
   427
blanchet@54147
   428
lemma mult_divide_mult_cancel_left_if [simp]:
haftmann@36409
   429
  shows "(c * a) / (c * b) = (if c = 0 then 0 else a / b)"
haftmann@60353
   430
  by simp
nipkow@23413
   431
paulson@15234
   432
wenzelm@60758
   433
text \<open>Division and Unary Minus\<close>
paulson@14293
   434
haftmann@36409
   435
lemma minus_divide_right:
haftmann@36409
   436
  "- (a / b) = a / - b"
haftmann@36409
   437
  by (simp add: divide_inverse)
paulson@14430
   438
hoelzl@56479
   439
lemma divide_minus_right [simp]:
haftmann@36409
   440
  "a / - b = - (a / b)"
haftmann@36409
   441
  by (simp add: divide_inverse)
huffman@30630
   442
hoelzl@56479
   443
lemma minus_divide_divide:
haftmann@36409
   444
  "(- a) / (- b) = a / b"
lp15@59667
   445
apply (cases "b=0", simp)
lp15@59667
   446
apply (simp add: nonzero_minus_divide_divide)
paulson@14293
   447
done
paulson@14293
   448
haftmann@36301
   449
lemma inverse_eq_1_iff [simp]:
haftmann@36409
   450
  "inverse x = 1 \<longleftrightarrow> x = 1"
lp15@59667
   451
  by (insert inverse_eq_iff_eq [of x 1], simp)
wenzelm@23389
   452
blanchet@54147
   453
lemma divide_eq_0_iff [simp]:
haftmann@36409
   454
  "a / b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"
haftmann@36409
   455
  by (simp add: divide_inverse)
haftmann@36301
   456
blanchet@54147
   457
lemma divide_cancel_right [simp]:
haftmann@36409
   458
  "a / c = b / c \<longleftrightarrow> c = 0 \<or> a = b"
haftmann@36409
   459
  apply (cases "c=0", simp)
haftmann@36409
   460
  apply (simp add: divide_inverse)
haftmann@36409
   461
  done
haftmann@36301
   462
blanchet@54147
   463
lemma divide_cancel_left [simp]:
lp15@59667
   464
  "c / a = c / b \<longleftrightarrow> c = 0 \<or> a = b"
haftmann@36409
   465
  apply (cases "c=0", simp)
haftmann@36409
   466
  apply (simp add: divide_inverse)
haftmann@36409
   467
  done
haftmann@36301
   468
blanchet@54147
   469
lemma divide_eq_1_iff [simp]:
haftmann@36409
   470
  "a / b = 1 \<longleftrightarrow> b \<noteq> 0 \<and> a = b"
haftmann@36409
   471
  apply (cases "b=0", simp)
haftmann@36409
   472
  apply (simp add: right_inverse_eq)
haftmann@36409
   473
  done
haftmann@36301
   474
blanchet@54147
   475
lemma one_eq_divide_iff [simp]:
haftmann@36409
   476
  "1 = a / b \<longleftrightarrow> b \<noteq> 0 \<and> a = b"
haftmann@36409
   477
  by (simp add: eq_commute [of 1])
haftmann@36409
   478
haftmann@36719
   479
lemma times_divide_times_eq:
haftmann@36719
   480
  "(x / y) * (z / w) = (x * z) / (y * w)"
haftmann@36719
   481
  by simp
haftmann@36719
   482
haftmann@36719
   483
lemma add_frac_num:
haftmann@36719
   484
  "y \<noteq> 0 \<Longrightarrow> x / y + z = (x + z * y) / y"
haftmann@36719
   485
  by (simp add: add_divide_distrib)
haftmann@36719
   486
haftmann@36719
   487
lemma add_num_frac:
haftmann@36719
   488
  "y \<noteq> 0 \<Longrightarrow> z + x / y = (x + z * y) / y"
haftmann@36719
   489
  by (simp add: add_divide_distrib add.commute)
haftmann@36719
   490
haftmann@36409
   491
end
haftmann@36301
   492
haftmann@36301
   493
wenzelm@60758
   494
subsection \<open>Ordered fields\<close>
haftmann@36301
   495
haftmann@36301
   496
class linordered_field = field + linordered_idom
haftmann@36301
   497
begin
paulson@14268
   498
lp15@59667
   499
lemma positive_imp_inverse_positive:
lp15@59667
   500
  assumes a_gt_0: "0 < a"
haftmann@36301
   501
  shows "0 < inverse a"
nipkow@23482
   502
proof -
lp15@59667
   503
  have "0 < a * inverse a"
haftmann@36301
   504
    by (simp add: a_gt_0 [THEN less_imp_not_eq2])
lp15@59667
   505
  thus "0 < inverse a"
haftmann@36301
   506
    by (simp add: a_gt_0 [THEN less_not_sym] zero_less_mult_iff)
nipkow@23482
   507
qed
paulson@14268
   508
paulson@14277
   509
lemma negative_imp_inverse_negative:
haftmann@36301
   510
  "a < 0 \<Longrightarrow> inverse a < 0"
lp15@59667
   511
  by (insert positive_imp_inverse_positive [of "-a"],
haftmann@36301
   512
    simp add: nonzero_inverse_minus_eq less_imp_not_eq)
paulson@14268
   513
paulson@14268
   514
lemma inverse_le_imp_le:
haftmann@36301
   515
  assumes invle: "inverse a \<le> inverse b" and apos: "0 < a"
haftmann@36301
   516
  shows "b \<le> a"
nipkow@23482
   517
proof (rule classical)
paulson@14268
   518
  assume "~ b \<le> a"
nipkow@23482
   519
  hence "a < b"  by (simp add: linorder_not_le)
haftmann@36301
   520
  hence bpos: "0 < b"  by (blast intro: apos less_trans)
paulson@14268
   521
  hence "a * inverse a \<le> a * inverse b"
haftmann@36301
   522
    by (simp add: apos invle less_imp_le mult_left_mono)
paulson@14268
   523
  hence "(a * inverse a) * b \<le> (a * inverse b) * b"
haftmann@36301
   524
    by (simp add: bpos less_imp_le mult_right_mono)
haftmann@57512
   525
  thus "b \<le> a"  by (simp add: mult.assoc apos bpos less_imp_not_eq2)
nipkow@23482
   526
qed
paulson@14268
   527
paulson@14277
   528
lemma inverse_positive_imp_positive:
haftmann@36301
   529
  assumes inv_gt_0: "0 < inverse a" and nz: "a \<noteq> 0"
haftmann@36301
   530
  shows "0 < a"
wenzelm@23389
   531
proof -
paulson@14277
   532
  have "0 < inverse (inverse a)"
wenzelm@23389
   533
    using inv_gt_0 by (rule positive_imp_inverse_positive)
paulson@14277
   534
  thus "0 < a"
wenzelm@23389
   535
    using nz by (simp add: nonzero_inverse_inverse_eq)
wenzelm@23389
   536
qed
paulson@14277
   537
haftmann@36301
   538
lemma inverse_negative_imp_negative:
haftmann@36301
   539
  assumes inv_less_0: "inverse a < 0" and nz: "a \<noteq> 0"
haftmann@36301
   540
  shows "a < 0"
haftmann@36301
   541
proof -
haftmann@36301
   542
  have "inverse (inverse a) < 0"
haftmann@36301
   543
    using inv_less_0 by (rule negative_imp_inverse_negative)
haftmann@36301
   544
  thus "a < 0" using nz by (simp add: nonzero_inverse_inverse_eq)
haftmann@36301
   545
qed
haftmann@36301
   546
haftmann@36301
   547
lemma linordered_field_no_lb:
haftmann@36301
   548
  "\<forall>x. \<exists>y. y < x"
haftmann@36301
   549
proof
haftmann@36301
   550
  fix x::'a
haftmann@36301
   551
  have m1: "- (1::'a) < 0" by simp
lp15@59667
   552
  from add_strict_right_mono[OF m1, where c=x]
haftmann@36301
   553
  have "(- 1) + x < x" by simp
haftmann@36301
   554
  thus "\<exists>y. y < x" by blast
haftmann@36301
   555
qed
haftmann@36301
   556
haftmann@36301
   557
lemma linordered_field_no_ub:
haftmann@36301
   558
  "\<forall> x. \<exists>y. y > x"
haftmann@36301
   559
proof
haftmann@36301
   560
  fix x::'a
haftmann@36301
   561
  have m1: " (1::'a) > 0" by simp
lp15@59667
   562
  from add_strict_right_mono[OF m1, where c=x]
haftmann@36301
   563
  have "1 + x > x" by simp
haftmann@36301
   564
  thus "\<exists>y. y > x" by blast
haftmann@36301
   565
qed
haftmann@36301
   566
haftmann@36301
   567
lemma less_imp_inverse_less:
haftmann@36301
   568
  assumes less: "a < b" and apos:  "0 < a"
haftmann@36301
   569
  shows "inverse b < inverse a"
haftmann@36301
   570
proof (rule ccontr)
haftmann@36301
   571
  assume "~ inverse b < inverse a"
haftmann@36301
   572
  hence "inverse a \<le> inverse b" by simp
haftmann@36301
   573
  hence "~ (a < b)"
haftmann@36301
   574
    by (simp add: not_less inverse_le_imp_le [OF _ apos])
haftmann@36301
   575
  thus False by (rule notE [OF _ less])
haftmann@36301
   576
qed
haftmann@36301
   577
haftmann@36301
   578
lemma inverse_less_imp_less:
haftmann@36301
   579
  "inverse a < inverse b \<Longrightarrow> 0 < a \<Longrightarrow> b < a"
haftmann@36301
   580
apply (simp add: less_le [of "inverse a"] less_le [of "b"])
lp15@59667
   581
apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq)
haftmann@36301
   582
done
haftmann@36301
   583
wenzelm@60758
   584
text\<open>Both premises are essential. Consider -1 and 1.\<close>
blanchet@54147
   585
lemma inverse_less_iff_less [simp]:
haftmann@36301
   586
  "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> inverse a < inverse b \<longleftrightarrow> b < a"
lp15@59667
   587
  by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less)
haftmann@36301
   588
haftmann@36301
   589
lemma le_imp_inverse_le:
haftmann@36301
   590
  "a \<le> b \<Longrightarrow> 0 < a \<Longrightarrow> inverse b \<le> inverse a"
haftmann@36301
   591
  by (force simp add: le_less less_imp_inverse_less)
haftmann@36301
   592
blanchet@54147
   593
lemma inverse_le_iff_le [simp]:
haftmann@36301
   594
  "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> inverse a \<le> inverse b \<longleftrightarrow> b \<le> a"
lp15@59667
   595
  by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le)
haftmann@36301
   596
haftmann@36301
   597
wenzelm@60758
   598
text\<open>These results refer to both operands being negative.  The opposite-sign
wenzelm@60758
   599
case is trivial, since inverse preserves signs.\<close>
haftmann@36301
   600
lemma inverse_le_imp_le_neg:
haftmann@36301
   601
  "inverse a \<le> inverse b \<Longrightarrow> b < 0 \<Longrightarrow> b \<le> a"
lp15@59667
   602
apply (rule classical)
lp15@59667
   603
apply (subgoal_tac "a < 0")
haftmann@36301
   604
 prefer 2 apply force
haftmann@36301
   605
apply (insert inverse_le_imp_le [of "-b" "-a"])
lp15@59667
   606
apply (simp add: nonzero_inverse_minus_eq)
haftmann@36301
   607
done
haftmann@36301
   608
haftmann@36301
   609
lemma less_imp_inverse_less_neg:
haftmann@36301
   610
   "a < b \<Longrightarrow> b < 0 \<Longrightarrow> inverse b < inverse a"
lp15@59667
   611
apply (subgoal_tac "a < 0")
lp15@59667
   612
 prefer 2 apply (blast intro: less_trans)
haftmann@36301
   613
apply (insert less_imp_inverse_less [of "-b" "-a"])
lp15@59667
   614
apply (simp add: nonzero_inverse_minus_eq)
haftmann@36301
   615
done
haftmann@36301
   616
haftmann@36301
   617
lemma inverse_less_imp_less_neg:
haftmann@36301
   618
   "inverse a < inverse b \<Longrightarrow> b < 0 \<Longrightarrow> b < a"
lp15@59667
   619
apply (rule classical)
lp15@59667
   620
apply (subgoal_tac "a < 0")
haftmann@36301
   621
 prefer 2
haftmann@36301
   622
 apply force
haftmann@36301
   623
apply (insert inverse_less_imp_less [of "-b" "-a"])
lp15@59667
   624
apply (simp add: nonzero_inverse_minus_eq)
haftmann@36301
   625
done
haftmann@36301
   626
blanchet@54147
   627
lemma inverse_less_iff_less_neg [simp]:
haftmann@36301
   628
  "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> inverse a < inverse b \<longleftrightarrow> b < a"
haftmann@36301
   629
apply (insert inverse_less_iff_less [of "-b" "-a"])
lp15@59667
   630
apply (simp del: inverse_less_iff_less
haftmann@36301
   631
            add: nonzero_inverse_minus_eq)
haftmann@36301
   632
done
haftmann@36301
   633
haftmann@36301
   634
lemma le_imp_inverse_le_neg:
haftmann@36301
   635
  "a \<le> b \<Longrightarrow> b < 0 ==> inverse b \<le> inverse a"
haftmann@36301
   636
  by (force simp add: le_less less_imp_inverse_less_neg)
haftmann@36301
   637
blanchet@54147
   638
lemma inverse_le_iff_le_neg [simp]:
haftmann@36301
   639
  "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> inverse a \<le> inverse b \<longleftrightarrow> b \<le> a"
lp15@59667
   640
  by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg)
haftmann@36301
   641
huffman@36774
   642
lemma one_less_inverse:
huffman@36774
   643
  "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> 1 < inverse a"
huffman@36774
   644
  using less_imp_inverse_less [of a 1, unfolded inverse_1] .
huffman@36774
   645
huffman@36774
   646
lemma one_le_inverse:
huffman@36774
   647
  "0 < a \<Longrightarrow> a \<le> 1 \<Longrightarrow> 1 \<le> inverse a"
huffman@36774
   648
  using le_imp_inverse_le [of a 1, unfolded inverse_1] .
huffman@36774
   649
haftmann@59546
   650
lemma pos_le_divide_eq [field_simps]:
haftmann@59546
   651
  assumes "0 < c"
haftmann@59546
   652
  shows "a \<le> b / c \<longleftrightarrow> a * c \<le> b"
haftmann@36301
   653
proof -
haftmann@59546
   654
  from assms have "a \<le> b / c \<longleftrightarrow> a * c \<le> (b / c) * c"
haftmann@59546
   655
    using mult_le_cancel_right [of a c "b * inverse c"] by (auto simp add: field_simps)
haftmann@59546
   656
  also have "... \<longleftrightarrow> a * c \<le> b"
lp15@59667
   657
    by (simp add: less_imp_not_eq2 [OF assms] divide_inverse mult.assoc)
haftmann@36301
   658
  finally show ?thesis .
haftmann@36301
   659
qed
haftmann@36301
   660
haftmann@59546
   661
lemma pos_less_divide_eq [field_simps]:
haftmann@59546
   662
  assumes "0 < c"
haftmann@59546
   663
  shows "a < b / c \<longleftrightarrow> a * c < b"
haftmann@36301
   664
proof -
haftmann@59546
   665
  from assms have "a < b / c \<longleftrightarrow> a * c < (b / c) * c"
haftmann@59546
   666
    using mult_less_cancel_right [of a c "b / c"] by auto
haftmann@59546
   667
  also have "... = (a*c < b)"
lp15@59667
   668
    by (simp add: less_imp_not_eq2 [OF assms] divide_inverse mult.assoc)
haftmann@36301
   669
  finally show ?thesis .
haftmann@36301
   670
qed
haftmann@36301
   671
haftmann@59546
   672
lemma neg_less_divide_eq [field_simps]:
haftmann@59546
   673
  assumes "c < 0"
haftmann@59546
   674
  shows "a < b / c \<longleftrightarrow> b < a * c"
haftmann@36301
   675
proof -
haftmann@59546
   676
  from assms have "a < b / c \<longleftrightarrow> (b / c) * c < a * c"
haftmann@59546
   677
    using mult_less_cancel_right [of "b / c" c a] by auto
haftmann@59546
   678
  also have "... \<longleftrightarrow> b < a * c"
lp15@59667
   679
    by (simp add: less_imp_not_eq [OF assms] divide_inverse mult.assoc)
haftmann@36301
   680
  finally show ?thesis .
haftmann@36301
   681
qed
haftmann@36301
   682
haftmann@59546
   683
lemma neg_le_divide_eq [field_simps]:
haftmann@59546
   684
  assumes "c < 0"
haftmann@59546
   685
  shows "a \<le> b / c \<longleftrightarrow> b \<le> a * c"
haftmann@36301
   686
proof -
haftmann@59546
   687
  from assms have "a \<le> b / c \<longleftrightarrow> (b / c) * c \<le> a * c"
haftmann@59546
   688
    using mult_le_cancel_right [of "b * inverse c" c a] by (auto simp add: field_simps)
haftmann@59546
   689
  also have "... \<longleftrightarrow> b \<le> a * c"
lp15@59667
   690
    by (simp add: less_imp_not_eq [OF assms] divide_inverse mult.assoc)
haftmann@36301
   691
  finally show ?thesis .
haftmann@36301
   692
qed
haftmann@36301
   693
haftmann@59546
   694
lemma pos_divide_le_eq [field_simps]:
haftmann@59546
   695
  assumes "0 < c"
haftmann@59546
   696
  shows "b / c \<le> a \<longleftrightarrow> b \<le> a * c"
haftmann@36301
   697
proof -
haftmann@59546
   698
  from assms have "b / c \<le> a \<longleftrightarrow> (b / c) * c \<le> a * c"
haftmann@59546
   699
    using mult_le_cancel_right [of "b / c" c a] by auto
haftmann@59546
   700
  also have "... \<longleftrightarrow> b \<le> a * c"
lp15@59667
   701
    by (simp add: less_imp_not_eq2 [OF assms] divide_inverse mult.assoc)
haftmann@36301
   702
  finally show ?thesis .
haftmann@36301
   703
qed
haftmann@36301
   704
haftmann@59546
   705
lemma pos_divide_less_eq [field_simps]:
haftmann@59546
   706
  assumes "0 < c"
haftmann@59546
   707
  shows "b / c < a \<longleftrightarrow> b < a * c"
haftmann@36301
   708
proof -
haftmann@59546
   709
  from assms have "b / c < a \<longleftrightarrow> (b / c) * c < a * c"
haftmann@59546
   710
    using mult_less_cancel_right [of "b / c" c a] by auto
haftmann@59546
   711
  also have "... \<longleftrightarrow> b < a * c"
lp15@59667
   712
    by (simp add: less_imp_not_eq2 [OF assms] divide_inverse mult.assoc)
haftmann@36301
   713
  finally show ?thesis .
haftmann@36301
   714
qed
haftmann@36301
   715
haftmann@59546
   716
lemma neg_divide_le_eq [field_simps]:
haftmann@59546
   717
  assumes "c < 0"
haftmann@59546
   718
  shows "b / c \<le> a \<longleftrightarrow> a * c \<le> b"
haftmann@36301
   719
proof -
haftmann@59546
   720
  from assms have "b / c \<le> a \<longleftrightarrow> a * c \<le> (b / c) * c"
lp15@59667
   721
    using mult_le_cancel_right [of a c "b / c"] by auto
haftmann@59546
   722
  also have "... \<longleftrightarrow> a * c \<le> b"
lp15@59667
   723
    by (simp add: less_imp_not_eq [OF assms] divide_inverse mult.assoc)
haftmann@36301
   724
  finally show ?thesis .
haftmann@36301
   725
qed
haftmann@36301
   726
haftmann@59546
   727
lemma neg_divide_less_eq [field_simps]:
haftmann@59546
   728
  assumes "c < 0"
haftmann@59546
   729
  shows "b / c < a \<longleftrightarrow> a * c < b"
haftmann@36301
   730
proof -
haftmann@59546
   731
  from assms have "b / c < a \<longleftrightarrow> a * c < b / c * c"
haftmann@59546
   732
    using mult_less_cancel_right [of a c "b / c"] by auto
haftmann@59546
   733
  also have "... \<longleftrightarrow> a * c < b"
lp15@59667
   734
    by (simp add: less_imp_not_eq [OF assms] divide_inverse mult.assoc)
haftmann@36301
   735
  finally show ?thesis .
haftmann@36301
   736
qed
haftmann@36301
   737
wenzelm@61799
   738
text\<open>The following \<open>field_simps\<close> rules are necessary, as minus is always moved atop of
wenzelm@60758
   739
division but we want to get rid of division.\<close>
hoelzl@56480
   740
hoelzl@56480
   741
lemma pos_le_minus_divide_eq [field_simps]: "0 < c \<Longrightarrow> a \<le> - (b / c) \<longleftrightarrow> a * c \<le> - b"
hoelzl@56480
   742
  unfolding minus_divide_left by (rule pos_le_divide_eq)
hoelzl@56480
   743
hoelzl@56480
   744
lemma neg_le_minus_divide_eq [field_simps]: "c < 0 \<Longrightarrow> a \<le> - (b / c) \<longleftrightarrow> - b \<le> a * c"
hoelzl@56480
   745
  unfolding minus_divide_left by (rule neg_le_divide_eq)
hoelzl@56480
   746
hoelzl@56480
   747
lemma pos_less_minus_divide_eq [field_simps]: "0 < c \<Longrightarrow> a < - (b / c) \<longleftrightarrow> a * c < - b"
hoelzl@56480
   748
  unfolding minus_divide_left by (rule pos_less_divide_eq)
hoelzl@56480
   749
hoelzl@56480
   750
lemma neg_less_minus_divide_eq [field_simps]: "c < 0 \<Longrightarrow> a < - (b / c) \<longleftrightarrow> - b < a * c"
hoelzl@56480
   751
  unfolding minus_divide_left by (rule neg_less_divide_eq)
hoelzl@56480
   752
hoelzl@56480
   753
lemma pos_minus_divide_less_eq [field_simps]: "0 < c \<Longrightarrow> - (b / c) < a \<longleftrightarrow> - b < a * c"
hoelzl@56480
   754
  unfolding minus_divide_left by (rule pos_divide_less_eq)
hoelzl@56480
   755
hoelzl@56480
   756
lemma neg_minus_divide_less_eq [field_simps]: "c < 0 \<Longrightarrow> - (b / c) < a \<longleftrightarrow> a * c < - b"
hoelzl@56480
   757
  unfolding minus_divide_left by (rule neg_divide_less_eq)
hoelzl@56480
   758
hoelzl@56480
   759
lemma pos_minus_divide_le_eq [field_simps]: "0 < c \<Longrightarrow> - (b / c) \<le> a \<longleftrightarrow> - b \<le> a * c"
hoelzl@56480
   760
  unfolding minus_divide_left by (rule pos_divide_le_eq)
hoelzl@56480
   761
hoelzl@56480
   762
lemma neg_minus_divide_le_eq [field_simps]: "c < 0 \<Longrightarrow> - (b / c) \<le> a \<longleftrightarrow> a * c \<le> - b"
hoelzl@56480
   763
  unfolding minus_divide_left by (rule neg_divide_le_eq)
hoelzl@56480
   764
lp15@56365
   765
lemma frac_less_eq:
lp15@56365
   766
  "y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> x / y < w / z \<longleftrightarrow> (x * z - w * y) / (y * z) < 0"
lp15@56365
   767
  by (subst less_iff_diff_less_0) (simp add: diff_frac_eq )
lp15@56365
   768
lp15@56365
   769
lemma frac_le_eq:
lp15@56365
   770
  "y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> x / y \<le> w / z \<longleftrightarrow> (x * z - w * y) / (y * z) \<le> 0"
lp15@56365
   771
  by (subst le_iff_diff_le_0) (simp add: diff_frac_eq )
lp15@56365
   772
wenzelm@61799
   773
text\<open>Lemmas \<open>sign_simps\<close> is a first attempt to automate proofs
wenzelm@61799
   774
of positivity/negativity needed for \<open>field_simps\<close>. Have not added \<open>sign_simps\<close> to \<open>field_simps\<close> because the former can lead to case
wenzelm@60758
   775
explosions.\<close>
haftmann@36301
   776
blanchet@54147
   777
lemmas sign_simps = algebra_simps zero_less_mult_iff mult_less_0_iff
haftmann@36348
   778
blanchet@54147
   779
lemmas (in -) sign_simps = algebra_simps zero_less_mult_iff mult_less_0_iff
haftmann@36301
   780
haftmann@36301
   781
(* Only works once linear arithmetic is installed:
haftmann@36301
   782
text{*An example:*}
haftmann@36301
   783
lemma fixes a b c d e f :: "'a::linordered_field"
haftmann@36301
   784
shows "\<lbrakk>a>b; c<d; e<f; 0 < u \<rbrakk> \<Longrightarrow>
haftmann@36301
   785
 ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) <
haftmann@36301
   786
 ((e-f)*(a-b)*(c-d))/((e-f)*(a-b)*(c-d)) + u"
haftmann@36301
   787
apply(subgoal_tac "(c-d)*(e-f)*(a-b) > 0")
haftmann@36301
   788
 prefer 2 apply(simp add:sign_simps)
haftmann@36301
   789
apply(subgoal_tac "(c-d)*(e-f)*(a-b)*u > 0")
haftmann@36301
   790
 prefer 2 apply(simp add:sign_simps)
haftmann@36301
   791
apply(simp add:field_simps)
haftmann@36301
   792
done
haftmann@36301
   793
*)
haftmann@36301
   794
nipkow@56541
   795
lemma divide_pos_pos[simp]:
haftmann@36301
   796
  "0 < x ==> 0 < y ==> 0 < x / y"
haftmann@36301
   797
by(simp add:field_simps)
haftmann@36301
   798
haftmann@36301
   799
lemma divide_nonneg_pos:
haftmann@36301
   800
  "0 <= x ==> 0 < y ==> 0 <= x / y"
haftmann@36301
   801
by(simp add:field_simps)
haftmann@36301
   802
haftmann@36301
   803
lemma divide_neg_pos:
haftmann@36301
   804
  "x < 0 ==> 0 < y ==> x / y < 0"
haftmann@36301
   805
by(simp add:field_simps)
haftmann@36301
   806
haftmann@36301
   807
lemma divide_nonpos_pos:
haftmann@36301
   808
  "x <= 0 ==> 0 < y ==> x / y <= 0"
haftmann@36301
   809
by(simp add:field_simps)
haftmann@36301
   810
haftmann@36301
   811
lemma divide_pos_neg:
haftmann@36301
   812
  "0 < x ==> y < 0 ==> x / y < 0"
haftmann@36301
   813
by(simp add:field_simps)
haftmann@36301
   814
haftmann@36301
   815
lemma divide_nonneg_neg:
lp15@59667
   816
  "0 <= x ==> y < 0 ==> x / y <= 0"
haftmann@36301
   817
by(simp add:field_simps)
haftmann@36301
   818
haftmann@36301
   819
lemma divide_neg_neg:
haftmann@36301
   820
  "x < 0 ==> y < 0 ==> 0 < x / y"
haftmann@36301
   821
by(simp add:field_simps)
haftmann@36301
   822
haftmann@36301
   823
lemma divide_nonpos_neg:
haftmann@36301
   824
  "x <= 0 ==> y < 0 ==> 0 <= x / y"
haftmann@36301
   825
by(simp add:field_simps)
haftmann@36301
   826
haftmann@36301
   827
lemma divide_strict_right_mono:
haftmann@36301
   828
     "[|a < b; 0 < c|] ==> a / c < b / c"
lp15@59667
   829
by (simp add: less_imp_not_eq2 divide_inverse mult_strict_right_mono
haftmann@36301
   830
              positive_imp_inverse_positive)
haftmann@36301
   831
haftmann@36301
   832
haftmann@36301
   833
lemma divide_strict_right_mono_neg:
haftmann@36301
   834
     "[|b < a; c < 0|] ==> a / c < b / c"
haftmann@36301
   835
apply (drule divide_strict_right_mono [of _ _ "-c"], simp)
haftmann@36301
   836
apply (simp add: less_imp_not_eq nonzero_minus_divide_right [symmetric])
haftmann@36301
   837
done
haftmann@36301
   838
wenzelm@60758
   839
text\<open>The last premise ensures that @{term a} and @{term b}
wenzelm@60758
   840
      have the same sign\<close>
haftmann@36301
   841
lemma divide_strict_left_mono:
haftmann@36301
   842
  "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / b"
huffman@44921
   843
  by (auto simp: field_simps zero_less_mult_iff mult_strict_right_mono)
haftmann@36301
   844
haftmann@36301
   845
lemma divide_left_mono:
haftmann@36301
   846
  "[|b \<le> a; 0 \<le> c; 0 < a*b|] ==> c / a \<le> c / b"
huffman@44921
   847
  by (auto simp: field_simps zero_less_mult_iff mult_right_mono)
haftmann@36301
   848
haftmann@36301
   849
lemma divide_strict_left_mono_neg:
haftmann@36301
   850
  "[|a < b; c < 0; 0 < a*b|] ==> c / a < c / b"
huffman@44921
   851
  by (auto simp: field_simps zero_less_mult_iff mult_strict_right_mono_neg)
haftmann@36301
   852
haftmann@36301
   853
lemma mult_imp_div_pos_le: "0 < y ==> x <= z * y ==>
haftmann@36301
   854
    x / y <= z"
haftmann@36301
   855
by (subst pos_divide_le_eq, assumption+)
haftmann@36301
   856
haftmann@36301
   857
lemma mult_imp_le_div_pos: "0 < y ==> z * y <= x ==>
haftmann@36301
   858
    z <= x / y"
haftmann@36301
   859
by(simp add:field_simps)
haftmann@36301
   860
haftmann@36301
   861
lemma mult_imp_div_pos_less: "0 < y ==> x < z * y ==>
haftmann@36301
   862
    x / y < z"
haftmann@36301
   863
by(simp add:field_simps)
haftmann@36301
   864
haftmann@36301
   865
lemma mult_imp_less_div_pos: "0 < y ==> z * y < x ==>
haftmann@36301
   866
    z < x / y"
haftmann@36301
   867
by(simp add:field_simps)
haftmann@36301
   868
lp15@59667
   869
lemma frac_le: "0 <= x ==>
haftmann@36301
   870
    x <= y ==> 0 < w ==> w <= z  ==> x / z <= y / w"
haftmann@36301
   871
  apply (rule mult_imp_div_pos_le)
haftmann@36301
   872
  apply simp
haftmann@36301
   873
  apply (subst times_divide_eq_left)
haftmann@36301
   874
  apply (rule mult_imp_le_div_pos, assumption)
haftmann@36301
   875
  apply (rule mult_mono)
haftmann@36301
   876
  apply simp_all
haftmann@36301
   877
done
haftmann@36301
   878
lp15@59667
   879
lemma frac_less: "0 <= x ==>
haftmann@36301
   880
    x < y ==> 0 < w ==> w <= z  ==> x / z < y / w"
haftmann@36301
   881
  apply (rule mult_imp_div_pos_less)
haftmann@36301
   882
  apply simp
haftmann@36301
   883
  apply (subst times_divide_eq_left)
haftmann@36301
   884
  apply (rule mult_imp_less_div_pos, assumption)
haftmann@36301
   885
  apply (erule mult_less_le_imp_less)
haftmann@36301
   886
  apply simp_all
haftmann@36301
   887
done
haftmann@36301
   888
lp15@59667
   889
lemma frac_less2: "0 < x ==>
haftmann@36301
   890
    x <= y ==> 0 < w ==> w < z  ==> x / z < y / w"
haftmann@36301
   891
  apply (rule mult_imp_div_pos_less)
haftmann@36301
   892
  apply simp_all
haftmann@36301
   893
  apply (rule mult_imp_less_div_pos, assumption)
haftmann@36301
   894
  apply (erule mult_le_less_imp_less)
haftmann@36301
   895
  apply simp_all
haftmann@36301
   896
done
haftmann@36301
   897
haftmann@36301
   898
lemma less_half_sum: "a < b ==> a < (a+b) / (1+1)"
haftmann@36301
   899
by (simp add: field_simps zero_less_two)
haftmann@36301
   900
haftmann@36301
   901
lemma gt_half_sum: "a < b ==> (a+b)/(1+1) < b"
haftmann@36301
   902
by (simp add: field_simps zero_less_two)
haftmann@36301
   903
hoelzl@53215
   904
subclass unbounded_dense_linorder
haftmann@36301
   905
proof
haftmann@36301
   906
  fix x y :: 'a
lp15@59667
   907
  from less_add_one show "\<exists>y. x < y" ..
haftmann@36301
   908
  from less_add_one have "x + (- 1) < (x + 1) + (- 1)" by (rule add_strict_right_mono)
haftmann@54230
   909
  then have "x - 1 < x + 1 - 1" by simp
haftmann@36301
   910
  then have "x - 1 < x" by (simp add: algebra_simps)
haftmann@36301
   911
  then show "\<exists>y. y < x" ..
haftmann@36301
   912
  show "x < y \<Longrightarrow> \<exists>z>x. z < y" by (blast intro!: less_half_sum gt_half_sum)
haftmann@36301
   913
qed
haftmann@36301
   914
haftmann@36301
   915
lemma nonzero_abs_inverse:
haftmann@36301
   916
     "a \<noteq> 0 ==> \<bar>inverse a\<bar> = inverse \<bar>a\<bar>"
lp15@59667
   917
apply (auto simp add: neq_iff abs_if nonzero_inverse_minus_eq
haftmann@36301
   918
                      negative_imp_inverse_negative)
lp15@59667
   919
apply (blast intro: positive_imp_inverse_positive elim: less_asym)
haftmann@36301
   920
done
haftmann@36301
   921
haftmann@36301
   922
lemma nonzero_abs_divide:
haftmann@36301
   923
     "b \<noteq> 0 ==> \<bar>a / b\<bar> = \<bar>a\<bar> / \<bar>b\<bar>"
lp15@59667
   924
  by (simp add: divide_inverse abs_mult nonzero_abs_inverse)
haftmann@36301
   925
haftmann@36301
   926
lemma field_le_epsilon:
haftmann@36301
   927
  assumes e: "\<And>e. 0 < e \<Longrightarrow> x \<le> y + e"
haftmann@36301
   928
  shows "x \<le> y"
haftmann@36301
   929
proof (rule dense_le)
haftmann@36301
   930
  fix t assume "t < x"
haftmann@36301
   931
  hence "0 < x - t" by (simp add: less_diff_eq)
haftmann@36301
   932
  from e [OF this] have "x + 0 \<le> x + (y - t)" by (simp add: algebra_simps)
haftmann@36301
   933
  then have "0 \<le> y - t" by (simp only: add_le_cancel_left)
haftmann@36301
   934
  then show "t \<le> y" by (simp add: algebra_simps)
haftmann@36301
   935
qed
haftmann@36301
   936
paulson@14277
   937
lemma inverse_positive_iff_positive [simp]:
haftmann@36409
   938
  "(0 < inverse a) = (0 < a)"
haftmann@21328
   939
apply (cases "a = 0", simp)
paulson@14277
   940
apply (blast intro: inverse_positive_imp_positive positive_imp_inverse_positive)
paulson@14277
   941
done
paulson@14277
   942
paulson@14277
   943
lemma inverse_negative_iff_negative [simp]:
haftmann@36409
   944
  "(inverse a < 0) = (a < 0)"
haftmann@21328
   945
apply (cases "a = 0", simp)
paulson@14277
   946
apply (blast intro: inverse_negative_imp_negative negative_imp_inverse_negative)
paulson@14277
   947
done
paulson@14277
   948
paulson@14277
   949
lemma inverse_nonnegative_iff_nonnegative [simp]:
haftmann@36409
   950
  "0 \<le> inverse a \<longleftrightarrow> 0 \<le> a"
haftmann@36409
   951
  by (simp add: not_less [symmetric])
paulson@14277
   952
paulson@14277
   953
lemma inverse_nonpositive_iff_nonpositive [simp]:
haftmann@36409
   954
  "inverse a \<le> 0 \<longleftrightarrow> a \<le> 0"
haftmann@36409
   955
  by (simp add: not_less [symmetric])
paulson@14277
   956
hoelzl@56480
   957
lemma one_less_inverse_iff: "1 < inverse x \<longleftrightarrow> 0 < x \<and> x < 1"
hoelzl@56480
   958
  using less_trans[of 1 x 0 for x]
hoelzl@56480
   959
  by (cases x 0 rule: linorder_cases) (auto simp add: field_simps)
paulson@14365
   960
hoelzl@56480
   961
lemma one_le_inverse_iff: "1 \<le> inverse x \<longleftrightarrow> 0 < x \<and> x \<le> 1"
haftmann@36409
   962
proof (cases "x = 1")
haftmann@36409
   963
  case True then show ?thesis by simp
haftmann@36409
   964
next
haftmann@36409
   965
  case False then have "inverse x \<noteq> 1" by simp
haftmann@36409
   966
  then have "1 \<noteq> inverse x" by blast
haftmann@36409
   967
  then have "1 \<le> inverse x \<longleftrightarrow> 1 < inverse x" by (simp add: le_less)
haftmann@36409
   968
  with False show ?thesis by (auto simp add: one_less_inverse_iff)
haftmann@36409
   969
qed
paulson@14365
   970
hoelzl@56480
   971
lemma inverse_less_1_iff: "inverse x < 1 \<longleftrightarrow> x \<le> 0 \<or> 1 < x"
lp15@59667
   972
  by (simp add: not_le [symmetric] one_le_inverse_iff)
paulson@14365
   973
hoelzl@56480
   974
lemma inverse_le_1_iff: "inverse x \<le> 1 \<longleftrightarrow> x \<le> 0 \<or> 1 \<le> x"
lp15@59667
   975
  by (simp add: not_less [symmetric] one_less_inverse_iff)
paulson@14365
   976
hoelzl@56481
   977
lemma [divide_simps]:
hoelzl@56480
   978
  shows le_divide_eq: "a \<le> b / c \<longleftrightarrow> (if 0 < c then a * c \<le> b else if c < 0 then b \<le> a * c else a \<le> 0)"
hoelzl@56480
   979
    and divide_le_eq: "b / c \<le> a \<longleftrightarrow> (if 0 < c then b \<le> a * c else if c < 0 then a * c \<le> b else 0 \<le> a)"
hoelzl@56480
   980
    and less_divide_eq: "a < b / c \<longleftrightarrow> (if 0 < c then a * c < b else if c < 0 then b < a * c else a < 0)"
hoelzl@56480
   981
    and divide_less_eq: "b / c < a \<longleftrightarrow> (if 0 < c then b < a * c else if c < 0 then a * c < b else 0 < a)"
hoelzl@56481
   982
    and le_minus_divide_eq: "a \<le> - (b / c) \<longleftrightarrow> (if 0 < c then a * c \<le> - b else if c < 0 then - b \<le> a * c else a \<le> 0)"
hoelzl@56481
   983
    and minus_divide_le_eq: "- (b / c) \<le> a \<longleftrightarrow> (if 0 < c then - b \<le> a * c else if c < 0 then a * c \<le> - b else 0 \<le> a)"
hoelzl@56481
   984
    and less_minus_divide_eq: "a < - (b / c) \<longleftrightarrow> (if 0 < c then a * c < - b else if c < 0 then - b < a * c else  a < 0)"
hoelzl@56481
   985
    and minus_divide_less_eq: "- (b / c) < a \<longleftrightarrow> (if 0 < c then - b < a * c else if c < 0 then a * c < - b else 0 < a)"
hoelzl@56480
   986
  by (auto simp: field_simps not_less dest: antisym)
paulson@14288
   987
wenzelm@60758
   988
text \<open>Division and Signs\<close>
avigad@16775
   989
hoelzl@56480
   990
lemma
hoelzl@56480
   991
  shows zero_less_divide_iff: "0 < a / b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0"
hoelzl@56480
   992
    and divide_less_0_iff: "a / b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b"
hoelzl@56480
   993
    and zero_le_divide_iff: "0 \<le> a / b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0"
hoelzl@56480
   994
    and divide_le_0_iff: "a / b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b"
hoelzl@56481
   995
  by (auto simp add: divide_simps)
avigad@16775
   996
wenzelm@60758
   997
text \<open>Division and the Number One\<close>
paulson@14353
   998
wenzelm@60758
   999
text\<open>Simplify expressions equated with 1\<close>
paulson@14353
  1000
hoelzl@56480
  1001
lemma zero_eq_1_divide_iff [simp]: "0 = 1 / a \<longleftrightarrow> a = 0"
hoelzl@56480
  1002
  by (cases "a = 0") (auto simp: field_simps)
paulson@14353
  1003
hoelzl@56480
  1004
lemma one_divide_eq_0_iff [simp]: "1 / a = 0 \<longleftrightarrow> a = 0"
hoelzl@56480
  1005
  using zero_eq_1_divide_iff[of a] by simp
paulson@14353
  1006
wenzelm@61799
  1007
text\<open>Simplify expressions such as \<open>0 < 1/x\<close> to \<open>0 < x\<close>\<close>
haftmann@36423
  1008
blanchet@54147
  1009
lemma zero_le_divide_1_iff [simp]:
haftmann@36423
  1010
  "0 \<le> 1 / a \<longleftrightarrow> 0 \<le> a"
haftmann@36423
  1011
  by (simp add: zero_le_divide_iff)
paulson@17085
  1012
blanchet@54147
  1013
lemma zero_less_divide_1_iff [simp]:
haftmann@36423
  1014
  "0 < 1 / a \<longleftrightarrow> 0 < a"
haftmann@36423
  1015
  by (simp add: zero_less_divide_iff)
haftmann@36423
  1016
blanchet@54147
  1017
lemma divide_le_0_1_iff [simp]:
haftmann@36423
  1018
  "1 / a \<le> 0 \<longleftrightarrow> a \<le> 0"
haftmann@36423
  1019
  by (simp add: divide_le_0_iff)
haftmann@36423
  1020
blanchet@54147
  1021
lemma divide_less_0_1_iff [simp]:
haftmann@36423
  1022
  "1 / a < 0 \<longleftrightarrow> a < 0"
haftmann@36423
  1023
  by (simp add: divide_less_0_iff)
paulson@14353
  1024
paulson@14293
  1025
lemma divide_right_mono:
haftmann@36409
  1026
     "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/c"
haftmann@36409
  1027
by (force simp add: divide_strict_right_mono le_less)
paulson@14293
  1028
lp15@59667
  1029
lemma divide_right_mono_neg: "a <= b
avigad@16775
  1030
    ==> c <= 0 ==> b / c <= a / c"
nipkow@23482
  1031
apply (drule divide_right_mono [of _ _ "- c"])
hoelzl@56479
  1032
apply auto
avigad@16775
  1033
done
avigad@16775
  1034
lp15@59667
  1035
lemma divide_left_mono_neg: "a <= b
avigad@16775
  1036
    ==> c <= 0 ==> 0 < a * b ==> c / a <= c / b"
avigad@16775
  1037
  apply (drule divide_left_mono [of _ _ "- c"])
haftmann@57512
  1038
  apply (auto simp add: mult.commute)
avigad@16775
  1039
done
avigad@16775
  1040
hoelzl@56480
  1041
lemma inverse_le_iff: "inverse a \<le> inverse b \<longleftrightarrow> (0 < a * b \<longrightarrow> b \<le> a) \<and> (a * b \<le> 0 \<longrightarrow> a \<le> b)"
hoelzl@56480
  1042
  by (cases a 0 b 0 rule: linorder_cases[case_product linorder_cases])
hoelzl@56480
  1043
     (auto simp add: field_simps zero_less_mult_iff mult_le_0_iff)
hoelzl@42904
  1044
hoelzl@56480
  1045
lemma inverse_less_iff: "inverse a < inverse b \<longleftrightarrow> (0 < a * b \<longrightarrow> b < a) \<and> (a * b \<le> 0 \<longrightarrow> a < b)"
hoelzl@42904
  1046
  by (subst less_le) (auto simp: inverse_le_iff)
hoelzl@42904
  1047
hoelzl@56480
  1048
lemma divide_le_cancel: "a / c \<le> b / c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"
hoelzl@42904
  1049
  by (simp add: divide_inverse mult_le_cancel_right)
hoelzl@42904
  1050
hoelzl@56480
  1051
lemma divide_less_cancel: "a / c < b / c \<longleftrightarrow> (0 < c \<longrightarrow> a < b) \<and> (c < 0 \<longrightarrow> b < a) \<and> c \<noteq> 0"
hoelzl@42904
  1052
  by (auto simp add: divide_inverse mult_less_cancel_right)
hoelzl@42904
  1053
wenzelm@60758
  1054
text\<open>Simplify quotients that are compared with the value 1.\<close>
avigad@16775
  1055
blanchet@54147
  1056
lemma le_divide_eq_1:
haftmann@36409
  1057
  "(1 \<le> b / a) = ((0 < a & a \<le> b) | (a < 0 & b \<le> a))"
avigad@16775
  1058
by (auto simp add: le_divide_eq)
avigad@16775
  1059
blanchet@54147
  1060
lemma divide_le_eq_1:
haftmann@36409
  1061
  "(b / a \<le> 1) = ((0 < a & b \<le> a) | (a < 0 & a \<le> b) | a=0)"
avigad@16775
  1062
by (auto simp add: divide_le_eq)
avigad@16775
  1063
blanchet@54147
  1064
lemma less_divide_eq_1:
haftmann@36409
  1065
  "(1 < b / a) = ((0 < a & a < b) | (a < 0 & b < a))"
avigad@16775
  1066
by (auto simp add: less_divide_eq)
avigad@16775
  1067
blanchet@54147
  1068
lemma divide_less_eq_1:
haftmann@36409
  1069
  "(b / a < 1) = ((0 < a & b < a) | (a < 0 & a < b) | a=0)"
avigad@16775
  1070
by (auto simp add: divide_less_eq)
avigad@16775
  1071
hoelzl@56571
  1072
lemma divide_nonneg_nonneg [simp]:
hoelzl@56571
  1073
  "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> x / y"
hoelzl@56571
  1074
  by (auto simp add: divide_simps)
hoelzl@56571
  1075
hoelzl@56571
  1076
lemma divide_nonpos_nonpos:
hoelzl@56571
  1077
  "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> 0 \<le> x / y"
hoelzl@56571
  1078
  by (auto simp add: divide_simps)
hoelzl@56571
  1079
hoelzl@56571
  1080
lemma divide_nonneg_nonpos:
hoelzl@56571
  1081
  "0 \<le> x \<Longrightarrow> y \<le> 0 \<Longrightarrow> x / y \<le> 0"
hoelzl@56571
  1082
  by (auto simp add: divide_simps)
hoelzl@56571
  1083
hoelzl@56571
  1084
lemma divide_nonpos_nonneg:
hoelzl@56571
  1085
  "x \<le> 0 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x / y \<le> 0"
hoelzl@56571
  1086
  by (auto simp add: divide_simps)
wenzelm@23389
  1087
wenzelm@60758
  1088
text \<open>Conditional Simplification Rules: No Case Splits\<close>
avigad@16775
  1089
blanchet@54147
  1090
lemma le_divide_eq_1_pos [simp]:
haftmann@36409
  1091
  "0 < a \<Longrightarrow> (1 \<le> b/a) = (a \<le> b)"
avigad@16775
  1092
by (auto simp add: le_divide_eq)
avigad@16775
  1093
blanchet@54147
  1094
lemma le_divide_eq_1_neg [simp]:
haftmann@36409
  1095
  "a < 0 \<Longrightarrow> (1 \<le> b/a) = (b \<le> a)"
avigad@16775
  1096
by (auto simp add: le_divide_eq)
avigad@16775
  1097
blanchet@54147
  1098
lemma divide_le_eq_1_pos [simp]:
haftmann@36409
  1099
  "0 < a \<Longrightarrow> (b/a \<le> 1) = (b \<le> a)"
avigad@16775
  1100
by (auto simp add: divide_le_eq)
avigad@16775
  1101
blanchet@54147
  1102
lemma divide_le_eq_1_neg [simp]:
haftmann@36409
  1103
  "a < 0 \<Longrightarrow> (b/a \<le> 1) = (a \<le> b)"
avigad@16775
  1104
by (auto simp add: divide_le_eq)
avigad@16775
  1105
blanchet@54147
  1106
lemma less_divide_eq_1_pos [simp]:
haftmann@36409
  1107
  "0 < a \<Longrightarrow> (1 < b/a) = (a < b)"
avigad@16775
  1108
by (auto simp add: less_divide_eq)
avigad@16775
  1109
blanchet@54147
  1110
lemma less_divide_eq_1_neg [simp]:
haftmann@36409
  1111
  "a < 0 \<Longrightarrow> (1 < b/a) = (b < a)"
avigad@16775
  1112
by (auto simp add: less_divide_eq)
avigad@16775
  1113
blanchet@54147
  1114
lemma divide_less_eq_1_pos [simp]:
haftmann@36409
  1115
  "0 < a \<Longrightarrow> (b/a < 1) = (b < a)"
paulson@18649
  1116
by (auto simp add: divide_less_eq)
paulson@18649
  1117
blanchet@54147
  1118
lemma divide_less_eq_1_neg [simp]:
wenzelm@61941
  1119
  "a < 0 \<Longrightarrow> b/a < 1 \<longleftrightarrow> a < b"
avigad@16775
  1120
by (auto simp add: divide_less_eq)
avigad@16775
  1121
blanchet@54147
  1122
lemma eq_divide_eq_1 [simp]:
haftmann@36409
  1123
  "(1 = b/a) = ((a \<noteq> 0 & a = b))"
avigad@16775
  1124
by (auto simp add: eq_divide_eq)
avigad@16775
  1125
blanchet@54147
  1126
lemma divide_eq_eq_1 [simp]:
haftmann@36409
  1127
  "(b/a = 1) = ((a \<noteq> 0 & a = b))"
avigad@16775
  1128
by (auto simp add: divide_eq_eq)
avigad@16775
  1129
paulson@14294
  1130
lemma abs_inverse [simp]:
lp15@59667
  1131
     "\<bar>inverse a\<bar> =
haftmann@36301
  1132
      inverse \<bar>a\<bar>"
lp15@59667
  1133
apply (cases "a=0", simp)
lp15@59667
  1134
apply (simp add: nonzero_abs_inverse)
paulson@14294
  1135
done
paulson@14294
  1136
paulson@15234
  1137
lemma abs_divide [simp]:
haftmann@36409
  1138
     "\<bar>a / b\<bar> = \<bar>a\<bar> / \<bar>b\<bar>"
lp15@59667
  1139
apply (cases "b=0", simp)
lp15@59667
  1140
apply (simp add: nonzero_abs_divide)
paulson@14294
  1141
done
paulson@14294
  1142
lp15@59667
  1143
lemma abs_div_pos: "0 < y ==>
haftmann@36301
  1144
    \<bar>x\<bar> / y = \<bar>x / y\<bar>"
haftmann@25304
  1145
  apply (subst abs_divide)
haftmann@25304
  1146
  apply (simp add: order_less_imp_le)
haftmann@25304
  1147
done
avigad@16775
  1148
wenzelm@61944
  1149
lemma zero_le_divide_abs_iff [simp]: "(0 \<le> a / \<bar>b\<bar>) = (0 \<le> a | b = 0)"
lp15@55718
  1150
by (auto simp: zero_le_divide_iff)
lp15@55718
  1151
wenzelm@61944
  1152
lemma divide_le_0_abs_iff [simp]: "(a / \<bar>b\<bar> \<le> 0) = (a \<le> 0 | b = 0)"
lp15@55718
  1153
by (auto simp: divide_le_0_iff)
lp15@55718
  1154
haftmann@62347
  1155
lemma inverse_sgn:
haftmann@62347
  1156
  "sgn (inverse a) = inverse (sgn a)"
haftmann@62347
  1157
  by (simp add: sgn_if)
haftmann@62347
  1158
hoelzl@35579
  1159
lemma field_le_mult_one_interval:
hoelzl@35579
  1160
  assumes *: "\<And>z. \<lbrakk> 0 < z ; z < 1 \<rbrakk> \<Longrightarrow> z * x \<le> y"
hoelzl@35579
  1161
  shows "x \<le> y"
hoelzl@35579
  1162
proof (cases "0 < x")
hoelzl@35579
  1163
  assume "0 < x"
hoelzl@35579
  1164
  thus ?thesis
hoelzl@35579
  1165
    using dense_le_bounded[of 0 1 "y/x"] *
wenzelm@60758
  1166
    unfolding le_divide_eq if_P[OF \<open>0 < x\<close>] by simp
hoelzl@35579
  1167
next
hoelzl@35579
  1168
  assume "\<not>0 < x" hence "x \<le> 0" by simp
wenzelm@61076
  1169
  obtain s::'a where s: "0 < s" "s < 1" using dense[of 0 "1::'a"] by auto
wenzelm@60758
  1170
  hence "x \<le> s * x" using mult_le_cancel_right[of 1 x s] \<open>x \<le> 0\<close> by auto
hoelzl@35579
  1171
  also note *[OF s]
hoelzl@35579
  1172
  finally show ?thesis .
hoelzl@35579
  1173
qed
haftmann@35090
  1174
haftmann@36409
  1175
end
haftmann@36409
  1176
lp15@61238
  1177
text \<open>Min/max Simplification Rules\<close>
lp15@61238
  1178
lp15@61238
  1179
lemma min_mult_distrib_left:
lp15@61238
  1180
  fixes x::"'a::linordered_idom" 
lp15@61238
  1181
  shows "p * min x y = (if 0 \<le> p then min (p*x) (p*y) else max (p*x) (p*y))"
lp15@61238
  1182
by (auto simp add: min_def max_def mult_le_cancel_left)
lp15@61238
  1183
lp15@61238
  1184
lemma min_mult_distrib_right:
lp15@61238
  1185
  fixes x::"'a::linordered_idom" 
lp15@61238
  1186
  shows "min x y * p = (if 0 \<le> p then min (x*p) (y*p) else max (x*p) (y*p))"
lp15@61238
  1187
by (auto simp add: min_def max_def mult_le_cancel_right)
lp15@61238
  1188
lp15@61238
  1189
lemma min_divide_distrib_right:
lp15@61238
  1190
  fixes x::"'a::linordered_field" 
lp15@61238
  1191
  shows "min x y / p = (if 0 \<le> p then min (x/p) (y/p) else max (x/p) (y/p))"
lp15@61238
  1192
by (simp add: min_mult_distrib_right divide_inverse)
lp15@61238
  1193
lp15@61238
  1194
lemma max_mult_distrib_left:
lp15@61238
  1195
  fixes x::"'a::linordered_idom" 
lp15@61238
  1196
  shows "p * max x y = (if 0 \<le> p then max (p*x) (p*y) else min (p*x) (p*y))"
lp15@61238
  1197
by (auto simp add: min_def max_def mult_le_cancel_left)
lp15@61238
  1198
lp15@61238
  1199
lemma max_mult_distrib_right:
lp15@61238
  1200
  fixes x::"'a::linordered_idom" 
lp15@61238
  1201
  shows "max x y * p = (if 0 \<le> p then max (x*p) (y*p) else min (x*p) (y*p))"
lp15@61238
  1202
by (auto simp add: min_def max_def mult_le_cancel_right)
lp15@61238
  1203
lp15@61238
  1204
lemma max_divide_distrib_right:
lp15@61238
  1205
  fixes x::"'a::linordered_field" 
lp15@61238
  1206
  shows "max x y / p = (if 0 \<le> p then max (x/p) (y/p) else min (x/p) (y/p))"
lp15@61238
  1207
by (simp add: max_mult_distrib_right divide_inverse)
lp15@61238
  1208
haftmann@59557
  1209
hide_fact (open) field_inverse field_divide_inverse field_inverse_zero
haftmann@59557
  1210
haftmann@52435
  1211
code_identifier
haftmann@52435
  1212
  code_module Fields \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
lp15@59667
  1213
paulson@14265
  1214
end