src/HOL/UNITY/WFair.thy
author hoelzl
Fri Feb 19 13:40:50 2016 +0100 (2016-02-19)
changeset 62378 85ed00c1fe7c
parent 62343 24106dc44def
child 63146 f1ecba0272f9
permissions -rw-r--r--
generalize more theorems to support enat and ennreal
wenzelm@37936
     1
(*  Title:      HOL/UNITY/WFair.thy
paulson@4776
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@4776
     3
    Copyright   1998  University of Cambridge
paulson@4776
     4
paulson@13812
     5
Conditional Fairness versions of transient, ensures, leadsTo.
paulson@4776
     6
paulson@4776
     7
From Misra, "A Logic for Concurrent Programming", 1994
paulson@4776
     8
*)
paulson@4776
     9
wenzelm@58889
    10
section{*Progress*}
paulson@13798
    11
haftmann@16417
    12
theory WFair imports UNITY begin
paulson@4776
    13
paulson@13812
    14
text{*The original version of this theory was based on weak fairness.  (Thus,
paulson@13812
    15
the entire UNITY development embodied this assumption, until February 2003.)
paulson@13812
    16
Weak fairness states that if a command is enabled continuously, then it is
paulson@13812
    17
eventually executed.  Ernie Cohen suggested that I instead adopt unconditional
paulson@13812
    18
fairness: every command is executed infinitely often.  
paulson@13812
    19
paulson@13812
    20
In fact, Misra's paper on "Progress" seems to be ambiguous about the correct
paulson@13812
    21
interpretation, and says that the two forms of fairness are equivalent.  They
paulson@13812
    22
differ only on their treatment of partial transitions, which under
paulson@13812
    23
unconditional fairness behave magically.  That is because if there are partial
paulson@13812
    24
transitions then there may be no fair executions, making all leads-to
paulson@13812
    25
properties hold vacuously.
paulson@13812
    26
paulson@13812
    27
Unconditional fairness has some great advantages.  By distinguishing partial
paulson@13812
    28
transitions from total ones that are the identity on part of their domain, it
paulson@13812
    29
is more expressive.  Also, by simplifying the definition of the transient
paulson@13812
    30
property, it simplifies many proofs.  A drawback is that some laws only hold
paulson@13812
    31
under the assumption that all transitions are total.  The best-known of these
paulson@13812
    32
is the impossibility law for leads-to.
paulson@13812
    33
*}
paulson@13812
    34
haftmann@35416
    35
definition
paulson@4776
    36
paulson@13812
    37
  --{*This definition specifies conditional fairness.  The rest of the theory
paulson@13812
    38
      is generic to all forms of fairness.  To get weak fairness, conjoin
paulson@13812
    39
      the inclusion below with @{term "A \<subseteq> Domain act"}, which specifies 
paulson@13812
    40
      that the action is enabled over all of @{term A}.*}
haftmann@35416
    41
  transient :: "'a set => 'a program set" where
paulson@13812
    42
    "transient A == {F. \<exists>act\<in>Acts F. act``A \<subseteq> -A}"
paulson@4776
    43
haftmann@35416
    44
definition
haftmann@35416
    45
  ensures :: "['a set, 'a set] => 'a program set"       (infixl "ensures" 60) where
paulson@13805
    46
    "A ensures B == (A-B co A \<union> B) \<inter> transient (A-B)"
paulson@8006
    47
paulson@6536
    48
berghofe@23767
    49
inductive_set
paulson@6801
    50
  leads :: "'a program => ('a set * 'a set) set"
paulson@13812
    51
    --{*LEADS-TO constant for the inductive definition*}
berghofe@23767
    52
  for F :: "'a program"
berghofe@23767
    53
  where
paulson@4776
    54
paulson@13805
    55
    Basis:  "F \<in> A ensures B ==> (A,B) \<in> leads F"
paulson@4776
    56
berghofe@23767
    57
  | Trans:  "[| (A,B) \<in> leads F;  (B,C) \<in> leads F |] ==> (A,C) \<in> leads F"
paulson@4776
    58
berghofe@23767
    59
  | Union:  "\<forall>A \<in> S. (A,B) \<in> leads F ==> (Union S, B) \<in> leads F"
paulson@4776
    60
paulson@5155
    61
haftmann@35416
    62
definition leadsTo :: "['a set, 'a set] => 'a program set" (infixl "leadsTo" 60) where
paulson@13812
    63
     --{*visible version of the LEADS-TO relation*}
paulson@13805
    64
    "A leadsTo B == {F. (A,B) \<in> leads F}"
paulson@5648
    65
  
haftmann@35416
    66
definition wlt :: "['a program, 'a set] => 'a set" where
paulson@13812
    67
     --{*predicate transformer: the largest set that leads to @{term B}*}
wenzelm@61952
    68
    "wlt F B == \<Union>{A. F \<in> A leadsTo B}"
paulson@4776
    69
wenzelm@60773
    70
notation leadsTo  (infixl "\<longmapsto>" 60)
paulson@13797
    71
paulson@13797
    72
paulson@13798
    73
subsection{*transient*}
paulson@13797
    74
paulson@13812
    75
lemma stable_transient: 
paulson@13812
    76
    "[| F \<in> stable A; F \<in> transient A |] ==> \<exists>act\<in>Acts F. A \<subseteq> - (Domain act)"
paulson@13812
    77
apply (simp add: stable_def constrains_def transient_def, clarify)
paulson@13812
    78
apply (rule rev_bexI, auto)  
paulson@13812
    79
done
paulson@13812
    80
paulson@13797
    81
lemma stable_transient_empty: 
paulson@13812
    82
    "[| F \<in> stable A; F \<in> transient A; all_total F |] ==> A = {}"
paulson@13812
    83
apply (drule stable_transient, assumption)
paulson@13812
    84
apply (simp add: all_total_def)
paulson@13812
    85
done
paulson@13797
    86
paulson@13797
    87
lemma transient_strengthen: 
paulson@13805
    88
    "[| F \<in> transient A; B \<subseteq> A |] ==> F \<in> transient B"
paulson@13797
    89
apply (unfold transient_def, clarify)
paulson@13797
    90
apply (blast intro!: rev_bexI)
paulson@13797
    91
done
paulson@13797
    92
paulson@13797
    93
lemma transientI: 
paulson@13812
    94
    "[| act: Acts F;  act``A \<subseteq> -A |] ==> F \<in> transient A"
paulson@13797
    95
by (unfold transient_def, blast)
paulson@13797
    96
paulson@13797
    97
lemma transientE: 
paulson@13805
    98
    "[| F \<in> transient A;   
paulson@13812
    99
        !!act. [| act: Acts F;  act``A \<subseteq> -A |] ==> P |]  
paulson@13797
   100
     ==> P"
paulson@13797
   101
by (unfold transient_def, blast)
paulson@13797
   102
paulson@13797
   103
lemma transient_empty [simp]: "transient {} = UNIV"
paulson@13797
   104
by (unfold transient_def, auto)
paulson@13797
   105
paulson@13797
   106
paulson@13812
   107
text{*This equation recovers the notion of weak fairness.  A totalized
paulson@13812
   108
      program satisfies a transient assertion just if the original program
paulson@13812
   109
      contains a suitable action that is also enabled.*}
paulson@13812
   110
lemma totalize_transient_iff:
paulson@13812
   111
   "(totalize F \<in> transient A) = (\<exists>act\<in>Acts F. A \<subseteq> Domain act & act``A \<subseteq> -A)"
paulson@13812
   112
apply (simp add: totalize_def totalize_act_def transient_def 
haftmann@32693
   113
                 Un_Image, safe)
paulson@13812
   114
apply (blast intro!: rev_bexI)+
paulson@13812
   115
done
paulson@13812
   116
paulson@13812
   117
lemma totalize_transientI: 
paulson@13812
   118
    "[| act: Acts F;  A \<subseteq> Domain act;  act``A \<subseteq> -A |] 
paulson@13812
   119
     ==> totalize F \<in> transient A"
paulson@13812
   120
by (simp add: totalize_transient_iff, blast)
paulson@13812
   121
paulson@13798
   122
subsection{*ensures*}
paulson@13797
   123
paulson@13797
   124
lemma ensuresI: 
paulson@13805
   125
    "[| F \<in> (A-B) co (A \<union> B); F \<in> transient (A-B) |] ==> F \<in> A ensures B"
paulson@13797
   126
by (unfold ensures_def, blast)
paulson@13797
   127
paulson@13797
   128
lemma ensuresD: 
paulson@13805
   129
    "F \<in> A ensures B ==> F \<in> (A-B) co (A \<union> B) & F \<in> transient (A-B)"
paulson@13797
   130
by (unfold ensures_def, blast)
paulson@13797
   131
paulson@13797
   132
lemma ensures_weaken_R: 
paulson@13805
   133
    "[| F \<in> A ensures A'; A'<=B' |] ==> F \<in> A ensures B'"
paulson@13797
   134
apply (unfold ensures_def)
paulson@13797
   135
apply (blast intro: constrains_weaken transient_strengthen)
paulson@13797
   136
done
paulson@13797
   137
paulson@13812
   138
text{*The L-version (precondition strengthening) fails, but we have this*}
paulson@13797
   139
lemma stable_ensures_Int: 
paulson@13805
   140
    "[| F \<in> stable C;  F \<in> A ensures B |]    
paulson@13805
   141
    ==> F \<in> (C \<inter> A) ensures (C \<inter> B)"
paulson@13797
   142
apply (unfold ensures_def)
paulson@13797
   143
apply (auto simp add: ensures_def Int_Un_distrib [symmetric] Diff_Int_distrib [symmetric])
paulson@13797
   144
prefer 2 apply (blast intro: transient_strengthen)
paulson@13797
   145
apply (blast intro: stable_constrains_Int constrains_weaken)
paulson@13797
   146
done
paulson@13797
   147
paulson@13797
   148
lemma stable_transient_ensures:
paulson@13805
   149
     "[| F \<in> stable A;  F \<in> transient C;  A \<subseteq> B \<union> C |] ==> F \<in> A ensures B"
paulson@13797
   150
apply (simp add: ensures_def stable_def)
paulson@13797
   151
apply (blast intro: constrains_weaken transient_strengthen)
paulson@13797
   152
done
paulson@13797
   153
paulson@13805
   154
lemma ensures_eq: "(A ensures B) = (A unless B) \<inter> transient (A-B)"
paulson@13797
   155
by (simp (no_asm) add: ensures_def unless_def)
paulson@13797
   156
paulson@13797
   157
paulson@13798
   158
subsection{*leadsTo*}
paulson@13797
   159
paulson@13805
   160
lemma leadsTo_Basis [intro]: "F \<in> A ensures B ==> F \<in> A leadsTo B"
paulson@13797
   161
apply (unfold leadsTo_def)
paulson@13797
   162
apply (blast intro: leads.Basis)
paulson@13797
   163
done
paulson@13797
   164
paulson@13797
   165
lemma leadsTo_Trans: 
paulson@13805
   166
     "[| F \<in> A leadsTo B;  F \<in> B leadsTo C |] ==> F \<in> A leadsTo C"
paulson@13797
   167
apply (unfold leadsTo_def)
paulson@13797
   168
apply (blast intro: leads.Trans)
paulson@13797
   169
done
paulson@13797
   170
paulson@14112
   171
lemma leadsTo_Basis':
paulson@14112
   172
     "[| F \<in> A co A \<union> B; F \<in> transient A |] ==> F \<in> A leadsTo B"
paulson@14112
   173
apply (drule_tac B = "A-B" in constrains_weaken_L)
paulson@14112
   174
apply (drule_tac [2] B = "A-B" in transient_strengthen)
paulson@14112
   175
apply (rule_tac [3] ensuresI [THEN leadsTo_Basis])
paulson@14112
   176
apply (blast+)
paulson@14112
   177
done
paulson@14112
   178
paulson@13805
   179
lemma transient_imp_leadsTo: "F \<in> transient A ==> F \<in> A leadsTo (-A)"
paulson@13797
   180
by (simp (no_asm_simp) add: leadsTo_Basis ensuresI Compl_partition)
paulson@13797
   181
paulson@13812
   182
text{*Useful with cancellation, disjunction*}
paulson@13805
   183
lemma leadsTo_Un_duplicate: "F \<in> A leadsTo (A' \<union> A') ==> F \<in> A leadsTo A'"
paulson@13797
   184
by (simp add: Un_ac)
paulson@13797
   185
paulson@13797
   186
lemma leadsTo_Un_duplicate2:
paulson@13805
   187
     "F \<in> A leadsTo (A' \<union> C \<union> C) ==> F \<in> A leadsTo (A' \<union> C)"
paulson@13797
   188
by (simp add: Un_ac)
paulson@13797
   189
paulson@13812
   190
text{*The Union introduction rule as we should have liked to state it*}
paulson@13797
   191
lemma leadsTo_Union: 
wenzelm@61952
   192
    "(!!A. A \<in> S ==> F \<in> A leadsTo B) ==> F \<in> (\<Union>S) leadsTo B"
paulson@13797
   193
apply (unfold leadsTo_def)
paulson@13797
   194
apply (blast intro: leads.Union)
paulson@13797
   195
done
paulson@13797
   196
paulson@13797
   197
lemma leadsTo_Union_Int: 
wenzelm@61952
   198
 "(!!A. A \<in> S ==> F \<in> (A \<inter> C) leadsTo B) ==> F \<in> (\<Union>S \<inter> C) leadsTo B"
paulson@13797
   199
apply (unfold leadsTo_def)
paulson@13797
   200
apply (simp only: Int_Union_Union)
paulson@13797
   201
apply (blast intro: leads.Union)
paulson@13797
   202
done
paulson@13797
   203
paulson@13797
   204
lemma leadsTo_UN: 
paulson@13805
   205
    "(!!i. i \<in> I ==> F \<in> (A i) leadsTo B) ==> F \<in> (\<Union>i \<in> I. A i) leadsTo B"
paulson@13797
   206
apply (blast intro: leadsTo_Union)
paulson@13797
   207
done
paulson@13797
   208
paulson@13812
   209
text{*Binary union introduction rule*}
paulson@13797
   210
lemma leadsTo_Un:
paulson@13805
   211
     "[| F \<in> A leadsTo C; F \<in> B leadsTo C |] ==> F \<in> (A \<union> B) leadsTo C"
haftmann@44106
   212
  using leadsTo_Union [of "{A, B}" F C] by auto
paulson@13797
   213
paulson@13797
   214
lemma single_leadsTo_I: 
paulson@13805
   215
     "(!!x. x \<in> A ==> F \<in> {x} leadsTo B) ==> F \<in> A leadsTo B"
paulson@13797
   216
by (subst UN_singleton [symmetric], rule leadsTo_UN, blast)
paulson@13797
   217
paulson@13797
   218
paulson@13812
   219
text{*The INDUCTION rule as we should have liked to state it*}
paulson@13797
   220
lemma leadsTo_induct: 
paulson@13805
   221
  "[| F \<in> za leadsTo zb;   
paulson@13805
   222
      !!A B. F \<in> A ensures B ==> P A B;  
paulson@13805
   223
      !!A B C. [| F \<in> A leadsTo B; P A B; F \<in> B leadsTo C; P B C |]  
paulson@13797
   224
               ==> P A C;  
wenzelm@61952
   225
      !!B S. \<forall>A \<in> S. F \<in> A leadsTo B & P A B ==> P (\<Union>S) B  
paulson@13797
   226
   |] ==> P za zb"
paulson@13797
   227
apply (unfold leadsTo_def)
paulson@13797
   228
apply (drule CollectD, erule leads.induct)
paulson@13797
   229
apply (blast+)
paulson@13797
   230
done
paulson@13797
   231
paulson@13797
   232
paulson@13805
   233
lemma subset_imp_ensures: "A \<subseteq> B ==> F \<in> A ensures B"
paulson@13797
   234
by (unfold ensures_def constrains_def transient_def, blast)
paulson@13797
   235
wenzelm@45605
   236
lemmas subset_imp_leadsTo = subset_imp_ensures [THEN leadsTo_Basis]
paulson@13797
   237
wenzelm@45605
   238
lemmas leadsTo_refl = subset_refl [THEN subset_imp_leadsTo]
paulson@13797
   239
wenzelm@45605
   240
lemmas empty_leadsTo = empty_subsetI [THEN subset_imp_leadsTo, simp]
paulson@13797
   241
wenzelm@45605
   242
lemmas leadsTo_UNIV = subset_UNIV [THEN subset_imp_leadsTo, simp]
paulson@13797
   243
paulson@13797
   244
paulson@13797
   245
paulson@13797
   246
(** Variant induction rule: on the preconditions for B **)
paulson@13797
   247
paulson@13812
   248
text{*Lemma is the weak version: can't see how to do it in one step*}
paulson@13797
   249
lemma leadsTo_induct_pre_lemma: 
paulson@13805
   250
  "[| F \<in> za leadsTo zb;   
paulson@13797
   251
      P zb;  
paulson@13805
   252
      !!A B. [| F \<in> A ensures B;  P B |] ==> P A;  
wenzelm@61952
   253
      !!S. \<forall>A \<in> S. P A ==> P (\<Union>S)  
paulson@13797
   254
   |] ==> P za"
paulson@13812
   255
txt{*by induction on this formula*}
paulson@13797
   256
apply (subgoal_tac "P zb --> P za")
paulson@13812
   257
txt{*now solve first subgoal: this formula is sufficient*}
paulson@13797
   258
apply (blast intro: leadsTo_refl)
paulson@13797
   259
apply (erule leadsTo_induct)
paulson@13797
   260
apply (blast+)
paulson@13797
   261
done
paulson@13797
   262
paulson@13797
   263
lemma leadsTo_induct_pre: 
paulson@13805
   264
  "[| F \<in> za leadsTo zb;   
paulson@13797
   265
      P zb;  
paulson@13805
   266
      !!A B. [| F \<in> A ensures B;  F \<in> B leadsTo zb;  P B |] ==> P A;  
wenzelm@61952
   267
      !!S. \<forall>A \<in> S. F \<in> A leadsTo zb & P A ==> P (\<Union>S)  
paulson@13797
   268
   |] ==> P za"
paulson@13805
   269
apply (subgoal_tac "F \<in> za leadsTo zb & P za")
paulson@13797
   270
apply (erule conjunct2)
paulson@13797
   271
apply (erule leadsTo_induct_pre_lemma)
paulson@13797
   272
prefer 3 apply (blast intro: leadsTo_Union)
paulson@13797
   273
prefer 2 apply (blast intro: leadsTo_Trans)
paulson@13797
   274
apply (blast intro: leadsTo_refl)
paulson@13797
   275
done
paulson@13797
   276
paulson@13797
   277
paulson@13805
   278
lemma leadsTo_weaken_R: "[| F \<in> A leadsTo A'; A'<=B' |] ==> F \<in> A leadsTo B'"
paulson@13797
   279
by (blast intro: subset_imp_leadsTo leadsTo_Trans)
paulson@13797
   280
wenzelm@45477
   281
lemma leadsTo_weaken_L:
paulson@13805
   282
     "[| F \<in> A leadsTo A'; B \<subseteq> A |] ==> F \<in> B leadsTo A'"
paulson@13797
   283
by (blast intro: leadsTo_Trans subset_imp_leadsTo)
paulson@13797
   284
paulson@13812
   285
text{*Distributes over binary unions*}
paulson@13797
   286
lemma leadsTo_Un_distrib:
paulson@13805
   287
     "F \<in> (A \<union> B) leadsTo C  =  (F \<in> A leadsTo C & F \<in> B leadsTo C)"
paulson@13797
   288
by (blast intro: leadsTo_Un leadsTo_weaken_L)
paulson@13797
   289
paulson@13797
   290
lemma leadsTo_UN_distrib:
paulson@13805
   291
     "F \<in> (\<Union>i \<in> I. A i) leadsTo B  =  (\<forall>i \<in> I. F \<in> (A i) leadsTo B)"
paulson@13797
   292
by (blast intro: leadsTo_UN leadsTo_weaken_L)
paulson@13797
   293
paulson@13797
   294
lemma leadsTo_Union_distrib:
wenzelm@61952
   295
     "F \<in> (\<Union>S) leadsTo B  =  (\<forall>A \<in> S. F \<in> A leadsTo B)"
paulson@13797
   296
by (blast intro: leadsTo_Union leadsTo_weaken_L)
paulson@13797
   297
paulson@13797
   298
paulson@13797
   299
lemma leadsTo_weaken:
paulson@13805
   300
     "[| F \<in> A leadsTo A'; B \<subseteq> A; A'<=B' |] ==> F \<in> B leadsTo B'"
paulson@13797
   301
by (blast intro: leadsTo_weaken_R leadsTo_weaken_L leadsTo_Trans)
paulson@13797
   302
paulson@13797
   303
paulson@14150
   304
text{*Set difference: maybe combine with @{text leadsTo_weaken_L}??*}
paulson@13797
   305
lemma leadsTo_Diff:
paulson@13805
   306
     "[| F \<in> (A-B) leadsTo C; F \<in> B leadsTo C |]   ==> F \<in> A leadsTo C"
paulson@13797
   307
by (blast intro: leadsTo_Un leadsTo_weaken)
paulson@13797
   308
paulson@13797
   309
lemma leadsTo_UN_UN:
paulson@13805
   310
   "(!! i. i \<in> I ==> F \<in> (A i) leadsTo (A' i))  
paulson@13805
   311
    ==> F \<in> (\<Union>i \<in> I. A i) leadsTo (\<Union>i \<in> I. A' i)"
paulson@13797
   312
apply (blast intro: leadsTo_Union leadsTo_weaken_R)
paulson@13797
   313
done
paulson@13797
   314
paulson@13812
   315
text{*Binary union version*}
paulson@13797
   316
lemma leadsTo_Un_Un:
paulson@13805
   317
     "[| F \<in> A leadsTo A'; F \<in> B leadsTo B' |]  
paulson@13805
   318
      ==> F \<in> (A \<union> B) leadsTo (A' \<union> B')"
paulson@13797
   319
by (blast intro: leadsTo_Un leadsTo_weaken_R)
paulson@13797
   320
paulson@13797
   321
paulson@13797
   322
(** The cancellation law **)
paulson@13797
   323
paulson@13797
   324
lemma leadsTo_cancel2:
paulson@13805
   325
     "[| F \<in> A leadsTo (A' \<union> B); F \<in> B leadsTo B' |]  
paulson@13805
   326
      ==> F \<in> A leadsTo (A' \<union> B')"
paulson@13797
   327
by (blast intro: leadsTo_Un_Un subset_imp_leadsTo leadsTo_Trans)
paulson@13797
   328
paulson@13797
   329
lemma leadsTo_cancel_Diff2:
paulson@13805
   330
     "[| F \<in> A leadsTo (A' \<union> B); F \<in> (B-A') leadsTo B' |]  
paulson@13805
   331
      ==> F \<in> A leadsTo (A' \<union> B')"
paulson@13797
   332
apply (rule leadsTo_cancel2)
paulson@13797
   333
prefer 2 apply assumption
paulson@13797
   334
apply (simp_all (no_asm_simp))
paulson@13797
   335
done
paulson@13797
   336
paulson@13797
   337
lemma leadsTo_cancel1:
paulson@13805
   338
     "[| F \<in> A leadsTo (B \<union> A'); F \<in> B leadsTo B' |]  
paulson@13805
   339
    ==> F \<in> A leadsTo (B' \<union> A')"
paulson@13797
   340
apply (simp add: Un_commute)
paulson@13797
   341
apply (blast intro!: leadsTo_cancel2)
paulson@13797
   342
done
paulson@13797
   343
paulson@13797
   344
lemma leadsTo_cancel_Diff1:
paulson@13805
   345
     "[| F \<in> A leadsTo (B \<union> A'); F \<in> (B-A') leadsTo B' |]  
paulson@13805
   346
    ==> F \<in> A leadsTo (B' \<union> A')"
paulson@13797
   347
apply (rule leadsTo_cancel1)
paulson@13797
   348
prefer 2 apply assumption
paulson@13797
   349
apply (simp_all (no_asm_simp))
paulson@13797
   350
done
paulson@13797
   351
paulson@13797
   352
paulson@13812
   353
text{*The impossibility law*}
paulson@13812
   354
lemma leadsTo_empty: "[|F \<in> A leadsTo {}; all_total F|] ==> A={}"
paulson@13797
   355
apply (erule leadsTo_induct_pre)
paulson@13812
   356
apply (simp_all add: ensures_def constrains_def transient_def all_total_def, clarify)
paulson@13812
   357
apply (drule bspec, assumption)+
paulson@13812
   358
apply blast
paulson@13797
   359
done
paulson@13797
   360
paulson@13812
   361
subsection{*PSP: Progress-Safety-Progress*}
paulson@13797
   362
paulson@13812
   363
text{*Special case of PSP: Misra's "stable conjunction"*}
paulson@13797
   364
lemma psp_stable: 
paulson@13805
   365
   "[| F \<in> A leadsTo A'; F \<in> stable B |]  
paulson@13805
   366
    ==> F \<in> (A \<inter> B) leadsTo (A' \<inter> B)"
paulson@13797
   367
apply (unfold stable_def)
paulson@13797
   368
apply (erule leadsTo_induct)
paulson@13797
   369
prefer 3 apply (blast intro: leadsTo_Union_Int)
paulson@13797
   370
prefer 2 apply (blast intro: leadsTo_Trans)
paulson@13797
   371
apply (rule leadsTo_Basis)
paulson@13797
   372
apply (simp add: ensures_def Diff_Int_distrib2 [symmetric] Int_Un_distrib2 [symmetric])
paulson@13797
   373
apply (blast intro: transient_strengthen constrains_Int)
paulson@13797
   374
done
paulson@13797
   375
paulson@13797
   376
lemma psp_stable2: 
paulson@13805
   377
   "[| F \<in> A leadsTo A'; F \<in> stable B |] ==> F \<in> (B \<inter> A) leadsTo (B \<inter> A')"
paulson@13797
   378
by (simp add: psp_stable Int_ac)
paulson@13797
   379
paulson@13797
   380
lemma psp_ensures: 
paulson@13805
   381
   "[| F \<in> A ensures A'; F \<in> B co B' |]  
paulson@13805
   382
    ==> F \<in> (A \<inter> B') ensures ((A' \<inter> B) \<union> (B' - B))"
paulson@13797
   383
apply (unfold ensures_def constrains_def, clarify) (*speeds up the proof*)
paulson@13797
   384
apply (blast intro: transient_strengthen)
paulson@13797
   385
done
paulson@13797
   386
paulson@13797
   387
lemma psp:
paulson@13805
   388
     "[| F \<in> A leadsTo A'; F \<in> B co B' |]  
paulson@13805
   389
      ==> F \<in> (A \<inter> B') leadsTo ((A' \<inter> B) \<union> (B' - B))"
paulson@13797
   390
apply (erule leadsTo_induct)
paulson@13797
   391
  prefer 3 apply (blast intro: leadsTo_Union_Int)
paulson@13797
   392
 txt{*Basis case*}
paulson@13797
   393
 apply (blast intro: psp_ensures)
paulson@13797
   394
txt{*Transitivity case has a delicate argument involving "cancellation"*}
paulson@13797
   395
apply (rule leadsTo_Un_duplicate2)
paulson@13797
   396
apply (erule leadsTo_cancel_Diff1)
paulson@13797
   397
apply (simp add: Int_Diff Diff_triv)
paulson@13797
   398
apply (blast intro: leadsTo_weaken_L dest: constrains_imp_subset)
paulson@13797
   399
done
paulson@13797
   400
paulson@13797
   401
lemma psp2:
paulson@13805
   402
     "[| F \<in> A leadsTo A'; F \<in> B co B' |]  
paulson@13805
   403
    ==> F \<in> (B' \<inter> A) leadsTo ((B \<inter> A') \<union> (B' - B))"
paulson@13797
   404
by (simp (no_asm_simp) add: psp Int_ac)
paulson@13797
   405
paulson@13797
   406
lemma psp_unless: 
paulson@13805
   407
   "[| F \<in> A leadsTo A';  F \<in> B unless B' |]  
paulson@13805
   408
    ==> F \<in> (A \<inter> B) leadsTo ((A' \<inter> B) \<union> B')"
paulson@13797
   409
paulson@13797
   410
apply (unfold unless_def)
paulson@13797
   411
apply (drule psp, assumption)
paulson@13797
   412
apply (blast intro: leadsTo_weaken)
paulson@13797
   413
done
paulson@13797
   414
paulson@13797
   415
paulson@13798
   416
subsection{*Proving the induction rules*}
paulson@13797
   417
paulson@13797
   418
(** The most general rule: r is any wf relation; f is any variant function **)
paulson@13797
   419
paulson@13797
   420
lemma leadsTo_wf_induct_lemma:
paulson@13797
   421
     "[| wf r;      
paulson@13805
   422
         \<forall>m. F \<in> (A \<inter> f-`{m}) leadsTo                      
paulson@13805
   423
                    ((A \<inter> f-`(r^-1 `` {m})) \<union> B) |]  
paulson@13805
   424
      ==> F \<in> (A \<inter> f-`{m}) leadsTo B"
paulson@13797
   425
apply (erule_tac a = m in wf_induct)
paulson@13805
   426
apply (subgoal_tac "F \<in> (A \<inter> (f -` (r^-1 `` {x}))) leadsTo B")
paulson@13797
   427
 apply (blast intro: leadsTo_cancel1 leadsTo_Un_duplicate)
paulson@13797
   428
apply (subst vimage_eq_UN)
paulson@13797
   429
apply (simp only: UN_simps [symmetric])
paulson@13797
   430
apply (blast intro: leadsTo_UN)
paulson@13797
   431
done
paulson@13797
   432
paulson@13797
   433
paulson@13797
   434
(** Meta or object quantifier ? **)
paulson@13797
   435
lemma leadsTo_wf_induct:
paulson@13797
   436
     "[| wf r;      
paulson@13805
   437
         \<forall>m. F \<in> (A \<inter> f-`{m}) leadsTo                      
paulson@13805
   438
                    ((A \<inter> f-`(r^-1 `` {m})) \<union> B) |]  
paulson@13805
   439
      ==> F \<in> A leadsTo B"
paulson@13797
   440
apply (rule_tac t = A in subst)
paulson@13797
   441
 defer 1
paulson@13797
   442
 apply (rule leadsTo_UN)
paulson@13797
   443
 apply (erule leadsTo_wf_induct_lemma)
paulson@13797
   444
 apply assumption
paulson@13797
   445
apply fast (*Blast_tac: Function unknown's argument not a parameter*)
paulson@13797
   446
done
paulson@13797
   447
paulson@13797
   448
paulson@13797
   449
lemma bounded_induct:
paulson@13797
   450
     "[| wf r;      
paulson@13805
   451
         \<forall>m \<in> I. F \<in> (A \<inter> f-`{m}) leadsTo                    
paulson@13805
   452
                      ((A \<inter> f-`(r^-1 `` {m})) \<union> B) |]  
paulson@13805
   453
      ==> F \<in> A leadsTo ((A - (f-`I)) \<union> B)"
paulson@13797
   454
apply (erule leadsTo_wf_induct, safe)
paulson@13805
   455
apply (case_tac "m \<in> I")
paulson@13797
   456
apply (blast intro: leadsTo_weaken)
paulson@13797
   457
apply (blast intro: subset_imp_leadsTo)
paulson@13797
   458
done
paulson@13797
   459
paulson@13797
   460
paulson@13805
   461
(*Alternative proof is via the lemma F \<in> (A \<inter> f-`(lessThan m)) leadsTo B*)
paulson@13797
   462
lemma lessThan_induct: 
nipkow@15045
   463
     "[| !!m::nat. F \<in> (A \<inter> f-`{m}) leadsTo ((A \<inter> f-`{..<m}) \<union> B) |]  
paulson@13805
   464
      ==> F \<in> A leadsTo B"
paulson@13797
   465
apply (rule wf_less_than [THEN leadsTo_wf_induct])
paulson@13797
   466
apply (simp (no_asm_simp))
paulson@13797
   467
apply blast
paulson@13797
   468
done
paulson@13797
   469
paulson@13797
   470
lemma lessThan_bounded_induct:
paulson@13805
   471
     "!!l::nat. [| \<forall>m \<in> greaterThan l.     
paulson@13805
   472
            F \<in> (A \<inter> f-`{m}) leadsTo ((A \<inter> f-`(lessThan m)) \<union> B) |]  
paulson@13805
   473
      ==> F \<in> A leadsTo ((A \<inter> (f-`(atMost l))) \<union> B)"
paulson@13797
   474
apply (simp only: Diff_eq [symmetric] vimage_Compl Compl_greaterThan [symmetric])
paulson@13797
   475
apply (rule wf_less_than [THEN bounded_induct])
paulson@13797
   476
apply (simp (no_asm_simp))
paulson@13797
   477
done
paulson@13797
   478
paulson@13797
   479
lemma greaterThan_bounded_induct:
paulson@13805
   480
     "(!!l::nat. \<forall>m \<in> lessThan l.     
paulson@13805
   481
                 F \<in> (A \<inter> f-`{m}) leadsTo ((A \<inter> f-`(greaterThan m)) \<union> B))
paulson@13805
   482
      ==> F \<in> A leadsTo ((A \<inter> (f-`(atLeast l))) \<union> B)"
paulson@13797
   483
apply (rule_tac f = f and f1 = "%k. l - k" 
paulson@13797
   484
       in wf_less_than [THEN wf_inv_image, THEN leadsTo_wf_induct])
krauss@19769
   485
apply (simp (no_asm) add:Image_singleton)
paulson@13797
   486
apply clarify
paulson@13797
   487
apply (case_tac "m<l")
paulson@13805
   488
 apply (blast intro: leadsTo_weaken_R diff_less_mono2)
lp15@61824
   489
apply (blast intro: not_le_imp_less subset_imp_leadsTo)
paulson@13797
   490
done
paulson@13797
   491
paulson@13797
   492
paulson@13798
   493
subsection{*wlt*}
paulson@13797
   494
paulson@13812
   495
text{*Misra's property W3*}
paulson@13805
   496
lemma wlt_leadsTo: "F \<in> (wlt F B) leadsTo B"
paulson@13797
   497
apply (unfold wlt_def)
paulson@13797
   498
apply (blast intro!: leadsTo_Union)
paulson@13797
   499
done
paulson@13797
   500
paulson@13805
   501
lemma leadsTo_subset: "F \<in> A leadsTo B ==> A \<subseteq> wlt F B"
paulson@13797
   502
apply (unfold wlt_def)
paulson@13797
   503
apply (blast intro!: leadsTo_Union)
paulson@13797
   504
done
paulson@13797
   505
paulson@13812
   506
text{*Misra's property W2*}
paulson@13805
   507
lemma leadsTo_eq_subset_wlt: "F \<in> A leadsTo B = (A \<subseteq> wlt F B)"
paulson@13797
   508
by (blast intro!: leadsTo_subset wlt_leadsTo [THEN leadsTo_weaken_L])
paulson@13797
   509
paulson@13812
   510
text{*Misra's property W4*}
paulson@13805
   511
lemma wlt_increasing: "B \<subseteq> wlt F B"
paulson@13797
   512
apply (simp (no_asm_simp) add: leadsTo_eq_subset_wlt [symmetric] subset_imp_leadsTo)
paulson@13797
   513
done
paulson@13797
   514
paulson@13797
   515
paulson@13812
   516
text{*Used in the Trans case below*}
paulson@13797
   517
lemma lemma1: 
paulson@13805
   518
   "[| B \<subseteq> A2;   
paulson@13805
   519
       F \<in> (A1 - B) co (A1 \<union> B);  
paulson@13805
   520
       F \<in> (A2 - C) co (A2 \<union> C) |]  
paulson@13805
   521
    ==> F \<in> (A1 \<union> A2 - C) co (A1 \<union> A2 \<union> C)"
paulson@13797
   522
by (unfold constrains_def, clarify,  blast)
paulson@13797
   523
paulson@13812
   524
text{*Lemma (1,2,3) of Misra's draft book, Chapter 4, "Progress"*}
paulson@13797
   525
lemma leadsTo_123:
paulson@13805
   526
     "F \<in> A leadsTo A'  
paulson@13805
   527
      ==> \<exists>B. A \<subseteq> B & F \<in> B leadsTo A' & F \<in> (B-A') co (B \<union> A')"
paulson@13797
   528
apply (erule leadsTo_induct)
paulson@13812
   529
  txt{*Basis*}
paulson@13812
   530
  apply (blast dest: ensuresD)
paulson@13812
   531
 txt{*Trans*}
paulson@13812
   532
 apply clarify
paulson@13812
   533
 apply (rule_tac x = "Ba \<union> Bb" in exI)
paulson@13812
   534
 apply (blast intro: lemma1 leadsTo_Un_Un leadsTo_cancel1 leadsTo_Un_duplicate)
paulson@13812
   535
txt{*Union*}
paulson@13797
   536
apply (clarify dest!: ball_conj_distrib [THEN iffD1] bchoice)
paulson@13805
   537
apply (rule_tac x = "\<Union>A \<in> S. f A" in exI)
paulson@13797
   538
apply (auto intro: leadsTo_UN)
paulson@13797
   539
(*Blast_tac says PROOF FAILED*)
paulson@13805
   540
apply (rule_tac I1=S and A1="%i. f i - B" and A'1="%i. f i \<union> B" 
paulson@13798
   541
       in constrains_UN [THEN constrains_weaken], auto) 
paulson@13797
   542
done
paulson@13797
   543
paulson@13797
   544
paulson@13812
   545
text{*Misra's property W5*}
paulson@13805
   546
lemma wlt_constrains_wlt: "F \<in> (wlt F B - B) co (wlt F B)"
paulson@13798
   547
proof -
paulson@13798
   548
  from wlt_leadsTo [of F B, THEN leadsTo_123]
paulson@13798
   549
  show ?thesis
paulson@13798
   550
  proof (elim exE conjE)
paulson@13798
   551
(* assumes have to be in exactly the form as in the goal displayed at
paulson@13798
   552
   this point.  Isar doesn't give you any automation. *)
paulson@13798
   553
    fix C
paulson@13798
   554
    assume wlt: "wlt F B \<subseteq> C"
paulson@13798
   555
       and lt:  "F \<in> C leadsTo B"
paulson@13798
   556
       and co:  "F \<in> C - B co C \<union> B"
paulson@13798
   557
    have eq: "C = wlt F B"
paulson@13798
   558
    proof -
paulson@13798
   559
      from lt and wlt show ?thesis 
paulson@13798
   560
           by (blast dest: leadsTo_eq_subset_wlt [THEN iffD1])
paulson@13798
   561
    qed
paulson@13798
   562
    from co show ?thesis by (simp add: eq wlt_increasing Un_absorb2)
paulson@13798
   563
  qed
paulson@13798
   564
qed
paulson@13797
   565
paulson@13797
   566
paulson@13798
   567
subsection{*Completion: Binary and General Finite versions*}
paulson@13797
   568
paulson@13797
   569
lemma completion_lemma :
paulson@13805
   570
     "[| W = wlt F (B' \<union> C);      
paulson@13805
   571
       F \<in> A leadsTo (A' \<union> C);  F \<in> A' co (A' \<union> C);    
paulson@13805
   572
       F \<in> B leadsTo (B' \<union> C);  F \<in> B' co (B' \<union> C) |]  
paulson@13805
   573
    ==> F \<in> (A \<inter> B) leadsTo ((A' \<inter> B') \<union> C)"
paulson@13805
   574
apply (subgoal_tac "F \<in> (W-C) co (W \<union> B' \<union> C) ")
paulson@13797
   575
 prefer 2
paulson@13797
   576
 apply (blast intro: wlt_constrains_wlt [THEN [2] constrains_Un, 
paulson@13797
   577
                                         THEN constrains_weaken])
paulson@13805
   578
apply (subgoal_tac "F \<in> (W-C) co W")
paulson@13797
   579
 prefer 2
paulson@13797
   580
 apply (simp add: wlt_increasing Un_assoc Un_absorb2)
paulson@13805
   581
apply (subgoal_tac "F \<in> (A \<inter> W - C) leadsTo (A' \<inter> W \<union> C) ")
paulson@13797
   582
 prefer 2 apply (blast intro: wlt_leadsTo psp [THEN leadsTo_weaken])
paulson@13797
   583
(** LEVEL 6 **)
paulson@13805
   584
apply (subgoal_tac "F \<in> (A' \<inter> W \<union> C) leadsTo (A' \<inter> B' \<union> C) ")
paulson@13797
   585
 prefer 2
paulson@13797
   586
 apply (rule leadsTo_Un_duplicate2)
paulson@13797
   587
 apply (blast intro: leadsTo_Un_Un wlt_leadsTo
paulson@13797
   588
                         [THEN psp2, THEN leadsTo_weaken] leadsTo_refl)
paulson@13797
   589
apply (drule leadsTo_Diff)
paulson@13797
   590
apply (blast intro: subset_imp_leadsTo)
paulson@13805
   591
apply (subgoal_tac "A \<inter> B \<subseteq> A \<inter> W")
paulson@13797
   592
 prefer 2
paulson@13797
   593
 apply (blast dest!: leadsTo_subset intro!: subset_refl [THEN Int_mono])
paulson@13797
   594
apply (blast intro: leadsTo_Trans subset_imp_leadsTo)
paulson@13797
   595
done
paulson@13797
   596
paulson@13797
   597
lemmas completion = completion_lemma [OF refl]
paulson@13797
   598
paulson@13797
   599
lemma finite_completion_lemma:
paulson@13805
   600
     "finite I ==> (\<forall>i \<in> I. F \<in> (A i) leadsTo (A' i \<union> C)) -->   
paulson@13805
   601
                   (\<forall>i \<in> I. F \<in> (A' i) co (A' i \<union> C)) -->  
paulson@13805
   602
                   F \<in> (\<Inter>i \<in> I. A i) leadsTo ((\<Inter>i \<in> I. A' i) \<union> C)"
paulson@13797
   603
apply (erule finite_induct, auto)
paulson@13797
   604
apply (rule completion)
paulson@13797
   605
   prefer 4
paulson@13797
   606
   apply (simp only: INT_simps [symmetric])
paulson@13797
   607
   apply (rule constrains_INT, auto)
paulson@13797
   608
done
paulson@13797
   609
paulson@13797
   610
lemma finite_completion: 
paulson@13797
   611
     "[| finite I;   
paulson@13805
   612
         !!i. i \<in> I ==> F \<in> (A i) leadsTo (A' i \<union> C);  
paulson@13805
   613
         !!i. i \<in> I ==> F \<in> (A' i) co (A' i \<union> C) |]    
paulson@13805
   614
      ==> F \<in> (\<Inter>i \<in> I. A i) leadsTo ((\<Inter>i \<in> I. A' i) \<union> C)"
paulson@13797
   615
by (blast intro: finite_completion_lemma [THEN mp, THEN mp])
paulson@13797
   616
paulson@13797
   617
lemma stable_completion: 
paulson@13805
   618
     "[| F \<in> A leadsTo A';  F \<in> stable A';    
paulson@13805
   619
         F \<in> B leadsTo B';  F \<in> stable B' |]  
paulson@13805
   620
    ==> F \<in> (A \<inter> B) leadsTo (A' \<inter> B')"
paulson@13797
   621
apply (unfold stable_def)
paulson@13797
   622
apply (rule_tac C1 = "{}" in completion [THEN leadsTo_weaken_R])
paulson@13797
   623
apply (force+)
paulson@13797
   624
done
paulson@13797
   625
paulson@13797
   626
lemma finite_stable_completion: 
paulson@13797
   627
     "[| finite I;   
paulson@13805
   628
         !!i. i \<in> I ==> F \<in> (A i) leadsTo (A' i);  
paulson@13805
   629
         !!i. i \<in> I ==> F \<in> stable (A' i) |]    
paulson@13805
   630
      ==> F \<in> (\<Inter>i \<in> I. A i) leadsTo (\<Inter>i \<in> I. A' i)"
paulson@13797
   631
apply (unfold stable_def)
paulson@13797
   632
apply (rule_tac C1 = "{}" in finite_completion [THEN leadsTo_weaken_R])
paulson@13797
   633
apply (simp_all (no_asm_simp))
paulson@13797
   634
apply blast+
paulson@13797
   635
done
paulson@9685
   636
wenzelm@35422
   637
end