src/HOL/Tools/meson.ML
author wenzelm
Wed Dec 31 00:08:13 2008 +0100 (2008-12-31)
changeset 29267 8615b4f54047
parent 28397 389c5e494605
child 29684 40bf9f4e7a4e
permissions -rw-r--r--
use exists_subterm directly;
wenzelm@9869
     1
(*  Title:      HOL/Tools/meson.ML
paulson@9840
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@9840
     3
wenzelm@9869
     4
The MESON resolution proof procedure for HOL.
wenzelm@29267
     5
When making clauses, avoids using the rewriter -- instead uses RS recursively.
paulson@9840
     6
*)
paulson@9840
     7
wenzelm@24300
     8
signature MESON =
paulson@15579
     9
sig
wenzelm@24300
    10
  val term_pair_of: indexname * (typ * 'a) -> term * 'a
wenzelm@24300
    11
  val first_order_resolve: thm -> thm -> thm
wenzelm@24300
    12
  val flexflex_first_order: thm -> thm
wenzelm@24300
    13
  val size_of_subgoals: thm -> int
paulson@26562
    14
  val too_many_clauses: Proof.context option -> term -> bool
paulson@24937
    15
  val make_cnf: thm list -> thm -> Proof.context -> thm list * Proof.context
wenzelm@24300
    16
  val finish_cnf: thm list -> thm list
wenzelm@24300
    17
  val make_nnf: thm -> thm
wenzelm@24300
    18
  val make_nnf1: thm -> thm
wenzelm@24300
    19
  val skolemize: thm -> thm
wenzelm@24300
    20
  val is_fol_term: theory -> term -> bool
wenzelm@24300
    21
  val make_clauses: thm list -> thm list
wenzelm@24300
    22
  val make_horns: thm list -> thm list
wenzelm@24300
    23
  val best_prolog_tac: (thm -> int) -> thm list -> tactic
wenzelm@24300
    24
  val depth_prolog_tac: thm list -> tactic
wenzelm@24300
    25
  val gocls: thm list -> thm list
wenzelm@24300
    26
  val skolemize_prems_tac: thm list -> int -> tactic
wenzelm@24300
    27
  val MESON: (thm list -> thm list) -> (thm list -> tactic) -> int -> tactic
wenzelm@24300
    28
  val best_meson_tac: (thm -> int) -> int -> tactic
wenzelm@24300
    29
  val safe_best_meson_tac: int -> tactic
wenzelm@24300
    30
  val depth_meson_tac: int -> tactic
wenzelm@24300
    31
  val prolog_step_tac': thm list -> int -> tactic
wenzelm@24300
    32
  val iter_deepen_prolog_tac: thm list -> tactic
wenzelm@24300
    33
  val iter_deepen_meson_tac: thm list -> int -> tactic
wenzelm@24300
    34
  val make_meta_clause: thm -> thm
wenzelm@24300
    35
  val make_meta_clauses: thm list -> thm list
wenzelm@24300
    36
  val meson_claset_tac: thm list -> claset -> int -> tactic
wenzelm@24300
    37
  val meson_tac: int -> tactic
wenzelm@24300
    38
  val negate_head: thm -> thm
wenzelm@24300
    39
  val select_literal: int -> thm -> thm
wenzelm@24300
    40
  val skolemize_tac: int -> tactic
paulson@26562
    41
  val setup: Context.theory -> Context.theory
paulson@15579
    42
end
paulson@9840
    43
wenzelm@24300
    44
structure Meson: MESON =
paulson@15579
    45
struct
paulson@9840
    46
paulson@26562
    47
val max_clauses_default = 60;
paulson@26562
    48
val (max_clauses, setup) = Attrib.config_int "max_clauses" max_clauses_default;
paulson@26562
    49
paulson@15579
    50
val not_conjD = thm "meson_not_conjD";
paulson@15579
    51
val not_disjD = thm "meson_not_disjD";
paulson@15579
    52
val not_notD = thm "meson_not_notD";
paulson@15579
    53
val not_allD = thm "meson_not_allD";
paulson@15579
    54
val not_exD = thm "meson_not_exD";
paulson@15579
    55
val imp_to_disjD = thm "meson_imp_to_disjD";
paulson@15579
    56
val not_impD = thm "meson_not_impD";
paulson@15579
    57
val iff_to_disjD = thm "meson_iff_to_disjD";
paulson@15579
    58
val not_iffD = thm "meson_not_iffD";
paulson@15579
    59
val conj_exD1 = thm "meson_conj_exD1";
paulson@15579
    60
val conj_exD2 = thm "meson_conj_exD2";
paulson@15579
    61
val disj_exD = thm "meson_disj_exD";
paulson@15579
    62
val disj_exD1 = thm "meson_disj_exD1";
paulson@15579
    63
val disj_exD2 = thm "meson_disj_exD2";
paulson@15579
    64
val disj_assoc = thm "meson_disj_assoc";
paulson@15579
    65
val disj_comm = thm "meson_disj_comm";
paulson@15579
    66
val disj_FalseD1 = thm "meson_disj_FalseD1";
paulson@15579
    67
val disj_FalseD2 = thm "meson_disj_FalseD2";
paulson@9840
    68
paulson@9840
    69
paulson@15579
    70
(**** Operators for forward proof ****)
paulson@15579
    71
paulson@20417
    72
paulson@20417
    73
(** First-order Resolution **)
paulson@20417
    74
paulson@20417
    75
fun typ_pair_of (ix, (sort,ty)) = (TVar (ix,sort), ty);
paulson@20417
    76
fun term_pair_of (ix, (ty,t)) = (Var (ix,ty), t);
paulson@20417
    77
paulson@20417
    78
val Envir.Envir {asol = tenv0, iTs = tyenv0, ...} = Envir.empty 0
paulson@20417
    79
paulson@20417
    80
(*FIXME: currently does not "rename variables apart"*)
paulson@20417
    81
fun first_order_resolve thA thB =
paulson@20417
    82
  let val thy = theory_of_thm thA
paulson@20417
    83
      val tmA = concl_of thA
paulson@20417
    84
      val Const("==>",_) $ tmB $ _ = prop_of thB
paulson@23440
    85
      val (tyenv,tenv) = Pattern.first_order_match thy (tmB,tmA) (tyenv0,tenv0)
paulson@20417
    86
      val ct_pairs = map (pairself (cterm_of thy) o term_pair_of) (Vartab.dest tenv)
paulson@20417
    87
  in  thA RS (cterm_instantiate ct_pairs thB)  end
wenzelm@28397
    88
  handle _ => raise THM ("first_order_resolve", 0, [thA,thB]);  (* FIXME avoid handle _ *)
paulson@18175
    89
wenzelm@24300
    90
fun flexflex_first_order th =
paulson@23440
    91
  case (tpairs_of th) of
paulson@23440
    92
      [] => th
paulson@23440
    93
    | pairs =>
wenzelm@24300
    94
        let val thy = theory_of_thm th
wenzelm@24300
    95
            val (tyenv,tenv) =
wenzelm@24300
    96
                  foldl (uncurry (Pattern.first_order_match thy)) (tyenv0,tenv0) pairs
wenzelm@24300
    97
            val t_pairs = map term_pair_of (Vartab.dest tenv)
wenzelm@24300
    98
            val th' = Thm.instantiate ([], map (pairself (cterm_of thy)) t_pairs) th
wenzelm@24300
    99
        in  th'  end
wenzelm@24300
   100
        handle THM _ => th;
paulson@23440
   101
paulson@24937
   102
(*Forward proof while preserving bound variables names*)
paulson@24937
   103
fun rename_bvs_RS th rl =
paulson@24937
   104
  let val th' = th RS rl
paulson@24937
   105
  in  Thm.rename_boundvars (concl_of th') (concl_of th) th' end;
paulson@24937
   106
paulson@24937
   107
(*raises exception if no rules apply*)
wenzelm@24300
   108
fun tryres (th, rls) =
paulson@18141
   109
  let fun tryall [] = raise THM("tryres", 0, th::rls)
paulson@24937
   110
        | tryall (rl::rls) = (rename_bvs_RS th rl handle THM _ => tryall rls)
paulson@18141
   111
  in  tryall rls  end;
wenzelm@24300
   112
paulson@21050
   113
(*Permits forward proof from rules that discharge assumptions. The supplied proof state st,
paulson@21050
   114
  e.g. from conj_forward, should have the form
paulson@21050
   115
    "[| P' ==> ?P; Q' ==> ?Q |] ==> ?P & ?Q"
paulson@21050
   116
  and the effect should be to instantiate ?P and ?Q with normalized versions of P' and Q'.*)
paulson@15579
   117
fun forward_res nf st =
paulson@21050
   118
  let fun forward_tacf [prem] = rtac (nf prem) 1
wenzelm@24300
   119
        | forward_tacf prems =
paulson@21050
   120
            error ("Bad proof state in forward_res, please inform lcp@cl.cam.ac.uk:\n" ^
wenzelm@26928
   121
                   Display.string_of_thm st ^
paulson@21050
   122
                   "\nPremises:\n" ^
paulson@28174
   123
                   ML_Syntax.print_list Display.string_of_thm prems)
paulson@21050
   124
  in
paulson@21050
   125
    case Seq.pull (ALLGOALS (METAHYPS forward_tacf) st)
paulson@21050
   126
    of SOME(th,_) => th
paulson@21050
   127
     | NONE => raise THM("forward_res", 0, [st])
paulson@21050
   128
  end;
paulson@15579
   129
paulson@20134
   130
(*Are any of the logical connectives in "bs" present in the term?*)
paulson@20134
   131
fun has_conns bs =
paulson@20134
   132
  let fun has (Const(a,_)) = false
paulson@20134
   133
        | has (Const("Trueprop",_) $ p) = has p
paulson@20134
   134
        | has (Const("Not",_) $ p) = has p
paulson@20134
   135
        | has (Const("op |",_) $ p $ q) = member (op =) bs "op |" orelse has p orelse has q
paulson@20134
   136
        | has (Const("op &",_) $ p $ q) = member (op =) bs "op &" orelse has p orelse has q
paulson@20134
   137
        | has (Const("All",_) $ Abs(_,_,p)) = member (op =) bs "All" orelse has p
paulson@20134
   138
        | has (Const("Ex",_) $ Abs(_,_,p)) = member (op =) bs "Ex" orelse has p
wenzelm@24300
   139
        | has _ = false
paulson@15579
   140
  in  has  end;
wenzelm@24300
   141
paulson@9840
   142
paulson@15579
   143
(**** Clause handling ****)
paulson@9840
   144
paulson@15579
   145
fun literals (Const("Trueprop",_) $ P) = literals P
paulson@15579
   146
  | literals (Const("op |",_) $ P $ Q) = literals P @ literals Q
paulson@15579
   147
  | literals (Const("Not",_) $ P) = [(false,P)]
paulson@15579
   148
  | literals P = [(true,P)];
paulson@9840
   149
paulson@15579
   150
(*number of literals in a term*)
paulson@15579
   151
val nliterals = length o literals;
paulson@9840
   152
paulson@18389
   153
paulson@18389
   154
(*** Tautology Checking ***)
paulson@18389
   155
wenzelm@24300
   156
fun signed_lits_aux (Const ("op |", _) $ P $ Q) (poslits, neglits) =
paulson@18389
   157
      signed_lits_aux Q (signed_lits_aux P (poslits, neglits))
paulson@18389
   158
  | signed_lits_aux (Const("Not",_) $ P) (poslits, neglits) = (poslits, P::neglits)
paulson@18389
   159
  | signed_lits_aux P (poslits, neglits) = (P::poslits, neglits);
wenzelm@24300
   160
paulson@18389
   161
fun signed_lits th = signed_lits_aux (HOLogic.dest_Trueprop (concl_of th)) ([],[]);
paulson@18389
   162
paulson@18389
   163
(*Literals like X=X are tautologous*)
paulson@18389
   164
fun taut_poslit (Const("op =",_) $ t $ u) = t aconv u
paulson@18389
   165
  | taut_poslit (Const("True",_)) = true
paulson@18389
   166
  | taut_poslit _ = false;
paulson@18389
   167
paulson@18389
   168
fun is_taut th =
paulson@18389
   169
  let val (poslits,neglits) = signed_lits th
paulson@18389
   170
  in  exists taut_poslit poslits
paulson@18389
   171
      orelse
wenzelm@20073
   172
      exists (member (op aconv) neglits) (HOLogic.false_const :: poslits)
paulson@19894
   173
  end
wenzelm@24300
   174
  handle TERM _ => false;       (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   175
paulson@18389
   176
paulson@18389
   177
(*** To remove trivial negated equality literals from clauses ***)
paulson@18389
   178
paulson@18389
   179
(*They are typically functional reflexivity axioms and are the converses of
paulson@18389
   180
  injectivity equivalences*)
wenzelm@24300
   181
paulson@18389
   182
val not_refl_disj_D = thm"meson_not_refl_disj_D";
paulson@18389
   183
paulson@20119
   184
(*Is either term a Var that does not properly occur in the other term?*)
paulson@20119
   185
fun eliminable (t as Var _, u) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   186
  | eliminable (u, t as Var _) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   187
  | eliminable _ = false;
paulson@20119
   188
paulson@18389
   189
fun refl_clause_aux 0 th = th
paulson@18389
   190
  | refl_clause_aux n th =
paulson@18389
   191
       case HOLogic.dest_Trueprop (concl_of th) of
wenzelm@24300
   192
          (Const ("op |", _) $ (Const ("op |", _) $ _ $ _) $ _) =>
paulson@18389
   193
            refl_clause_aux n (th RS disj_assoc)    (*isolate an atom as first disjunct*)
wenzelm@24300
   194
        | (Const ("op |", _) $ (Const("Not",_) $ (Const("op =",_) $ t $ u)) $ _) =>
wenzelm@24300
   195
            if eliminable(t,u)
wenzelm@24300
   196
            then refl_clause_aux (n-1) (th RS not_refl_disj_D)  (*Var inequation: delete*)
wenzelm@24300
   197
            else refl_clause_aux (n-1) (th RS disj_comm)  (*not between Vars: ignore*)
wenzelm@24300
   198
        | (Const ("op |", _) $ _ $ _) => refl_clause_aux n (th RS disj_comm)
wenzelm@24300
   199
        | _ => (*not a disjunction*) th;
paulson@18389
   200
wenzelm@24300
   201
fun notequal_lits_count (Const ("op |", _) $ P $ Q) =
paulson@18389
   202
      notequal_lits_count P + notequal_lits_count Q
paulson@18389
   203
  | notequal_lits_count (Const("Not",_) $ (Const("op =",_) $ _ $ _)) = 1
paulson@18389
   204
  | notequal_lits_count _ = 0;
paulson@18389
   205
paulson@18389
   206
(*Simplify a clause by applying reflexivity to its negated equality literals*)
wenzelm@24300
   207
fun refl_clause th =
paulson@18389
   208
  let val neqs = notequal_lits_count (HOLogic.dest_Trueprop (concl_of th))
paulson@19894
   209
  in  zero_var_indexes (refl_clause_aux neqs th)  end
wenzelm@24300
   210
  handle TERM _ => th;  (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   211
paulson@18389
   212
paulson@24937
   213
(*** Removal of duplicate literals ***)
paulson@24937
   214
paulson@24937
   215
(*Forward proof, passing extra assumptions as theorems to the tactic*)
paulson@24937
   216
fun forward_res2 nf hyps st =
paulson@24937
   217
  case Seq.pull
paulson@24937
   218
        (REPEAT
paulson@24937
   219
         (METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
paulson@24937
   220
         st)
paulson@24937
   221
  of SOME(th,_) => th
paulson@24937
   222
   | NONE => raise THM("forward_res2", 0, [st]);
paulson@24937
   223
paulson@24937
   224
(*Remove duplicates in P|Q by assuming ~P in Q
paulson@24937
   225
  rls (initially []) accumulates assumptions of the form P==>False*)
paulson@24937
   226
fun nodups_aux rls th = nodups_aux rls (th RS disj_assoc)
paulson@24937
   227
    handle THM _ => tryres(th,rls)
paulson@24937
   228
    handle THM _ => tryres(forward_res2 nodups_aux rls (th RS disj_forward2),
paulson@24937
   229
                           [disj_FalseD1, disj_FalseD2, asm_rl])
paulson@24937
   230
    handle THM _ => th;
paulson@24937
   231
paulson@24937
   232
(*Remove duplicate literals, if there are any*)
paulson@24937
   233
fun nodups th =
paulson@24937
   234
  if has_duplicates (op =) (literals (prop_of th))
paulson@24937
   235
    then nodups_aux [] th
paulson@24937
   236
    else th;
paulson@24937
   237
paulson@24937
   238
paulson@18389
   239
(*** The basic CNF transformation ***)
paulson@18389
   240
paulson@26562
   241
fun too_many_clauses ctxto t = 
paulson@26562
   242
 let
paulson@26562
   243
  val max_cl = case ctxto of SOME ctxt => Config.get ctxt max_clauses
paulson@26562
   244
                           | NONE => max_clauses_default
paulson@26562
   245
  
paulson@26562
   246
  fun sum x y = if x < max_cl andalso y < max_cl then x+y else max_cl;
paulson@26562
   247
  fun prod x y = if x < max_cl andalso y < max_cl then x*y else max_cl;
paulson@26562
   248
  
paulson@26562
   249
  (*Estimate the number of clauses in order to detect infeasible theorems*)
paulson@26562
   250
  fun signed_nclauses b (Const("Trueprop",_) $ t) = signed_nclauses b t
paulson@26562
   251
    | signed_nclauses b (Const("Not",_) $ t) = signed_nclauses (not b) t
paulson@26562
   252
    | signed_nclauses b (Const("op &",_) $ t $ u) =
paulson@26562
   253
	if b then sum (signed_nclauses b t) (signed_nclauses b u)
paulson@26562
   254
	     else prod (signed_nclauses b t) (signed_nclauses b u)
paulson@26562
   255
    | signed_nclauses b (Const("op |",_) $ t $ u) =
paulson@26562
   256
	if b then prod (signed_nclauses b t) (signed_nclauses b u)
paulson@26562
   257
	     else sum (signed_nclauses b t) (signed_nclauses b u)
paulson@26562
   258
    | signed_nclauses b (Const("op -->",_) $ t $ u) =
paulson@26562
   259
	if b then prod (signed_nclauses (not b) t) (signed_nclauses b u)
paulson@26562
   260
	     else sum (signed_nclauses (not b) t) (signed_nclauses b u)
paulson@26562
   261
    | signed_nclauses b (Const("op =", Type ("fun", [T, _])) $ t $ u) =
paulson@26562
   262
	if T = HOLogic.boolT then (*Boolean equality is if-and-only-if*)
paulson@26562
   263
	    if b then sum (prod (signed_nclauses (not b) t) (signed_nclauses b u))
paulson@26562
   264
			  (prod (signed_nclauses (not b) u) (signed_nclauses b t))
paulson@26562
   265
		 else sum (prod (signed_nclauses b t) (signed_nclauses b u))
paulson@26562
   266
			  (prod (signed_nclauses (not b) t) (signed_nclauses (not b) u))
paulson@26562
   267
	else 1
paulson@26562
   268
    | signed_nclauses b (Const("Ex", _) $ Abs (_,_,t)) = signed_nclauses b t
paulson@26562
   269
    | signed_nclauses b (Const("All",_) $ Abs (_,_,t)) = signed_nclauses b t
paulson@26562
   270
    | signed_nclauses _ _ = 1; (* literal *)
paulson@26562
   271
 in 
paulson@26562
   272
  signed_nclauses true t >= max_cl
paulson@26562
   273
 end;
paulson@19894
   274
paulson@15579
   275
(*Replaces universally quantified variables by FREE variables -- because
paulson@24937
   276
  assumptions may not contain scheme variables.  Later, generalize using Variable.export. *)
paulson@24937
   277
local  
paulson@24937
   278
  val spec_var = Thm.dest_arg (Thm.dest_arg (#2 (Thm.dest_implies (Thm.cprop_of spec))));
paulson@24937
   279
  val spec_varT = #T (Thm.rep_cterm spec_var);
paulson@24937
   280
  fun name_of (Const ("All", _) $ Abs(x,_,_)) = x | name_of _ = Name.uu;
paulson@24937
   281
in  
paulson@24937
   282
  fun freeze_spec th ctxt =
paulson@24937
   283
    let
paulson@24937
   284
      val cert = Thm.cterm_of (ProofContext.theory_of ctxt);
paulson@24937
   285
      val ([x], ctxt') = Variable.variant_fixes [name_of (HOLogic.dest_Trueprop (concl_of th))] ctxt;
paulson@24937
   286
      val spec' = Thm.instantiate ([], [(spec_var, cert (Free (x, spec_varT)))]) spec;
paulson@24937
   287
    in (th RS spec', ctxt') end
paulson@24937
   288
end;
paulson@9840
   289
paulson@15998
   290
(*Used with METAHYPS below. There is one assumption, which gets bound to prem
paulson@15998
   291
  and then normalized via function nf. The normal form is given to resolve_tac,
paulson@22515
   292
  instantiate a Boolean variable created by resolution with disj_forward. Since
paulson@22515
   293
  (nf prem) returns a LIST of theorems, we can backtrack to get all combinations.*)
paulson@15579
   294
fun resop nf [prem] = resolve_tac (nf prem) 1;
paulson@9840
   295
wenzelm@24300
   296
(*Any need to extend this list with
wenzelm@26424
   297
  "HOL.type_class","HOL.eq_class","Pure.term"?*)
wenzelm@24300
   298
val has_meta_conn =
wenzelm@22871
   299
    exists_Const (member (op =) ["==", "==>", "all", "prop"] o #1);
paulson@20417
   300
wenzelm@24300
   301
fun apply_skolem_ths (th, rls) =
paulson@20417
   302
  let fun tryall [] = raise THM("apply_skolem_ths", 0, th::rls)
paulson@20417
   303
        | tryall (rl::rls) = (first_order_resolve th rl handle THM _ => tryall rls)
paulson@20417
   304
  in  tryall rls  end;
paulson@22515
   305
paulson@15998
   306
(*Conjunctive normal form, adding clauses from th in front of ths (for foldr).
paulson@15998
   307
  Strips universal quantifiers and breaks up conjunctions.
paulson@15998
   308
  Eliminates existential quantifiers using skoths: Skolemization theorems.*)
paulson@24937
   309
fun cnf skoths ctxt (th,ths) =
paulson@24937
   310
  let val ctxtr = ref ctxt
paulson@24937
   311
      fun cnf_aux (th,ths) =
wenzelm@24300
   312
        if not (can HOLogic.dest_Trueprop (prop_of th)) then ths (*meta-level: ignore*)
wenzelm@24300
   313
        else if not (has_conns ["All","Ex","op &"] (prop_of th))
paulson@24937
   314
        then nodups th :: ths (*no work to do, terminate*)
wenzelm@24300
   315
        else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
wenzelm@24300
   316
            Const ("op &", _) => (*conjunction*)
wenzelm@24300
   317
                cnf_aux (th RS conjunct1, cnf_aux (th RS conjunct2, ths))
wenzelm@24300
   318
          | Const ("All", _) => (*universal quantifier*)
paulson@24937
   319
                let val (th',ctxt') = freeze_spec th (!ctxtr)
paulson@24937
   320
                in  ctxtr := ctxt'; cnf_aux (th', ths) end
wenzelm@24300
   321
          | Const ("Ex", _) =>
wenzelm@24300
   322
              (*existential quantifier: Insert Skolem functions*)
wenzelm@24300
   323
              cnf_aux (apply_skolem_ths (th,skoths), ths)
wenzelm@24300
   324
          | Const ("op |", _) =>
wenzelm@24300
   325
              (*Disjunction of P, Q: Create new goal of proving ?P | ?Q and solve it using
wenzelm@24300
   326
                all combinations of converting P, Q to CNF.*)
wenzelm@24300
   327
              let val tac =
wenzelm@24300
   328
                  (METAHYPS (resop cnf_nil) 1) THEN
wenzelm@24300
   329
                   (fn st' => st' |> METAHYPS (resop cnf_nil) 1)
wenzelm@24300
   330
              in  Seq.list_of (tac (th RS disj_forward)) @ ths  end
paulson@24937
   331
          | _ => nodups th :: ths  (*no work to do*)
paulson@19154
   332
      and cnf_nil th = cnf_aux (th,[])
paulson@24937
   333
      val cls = 
paulson@26562
   334
	    if too_many_clauses (SOME ctxt) (concl_of th)
wenzelm@26928
   335
	    then (warning ("cnf is ignoring: " ^ Display.string_of_thm th); ths)
paulson@24937
   336
	    else cnf_aux (th,ths)
paulson@24937
   337
  in  (cls, !ctxtr)  end;
paulson@22515
   338
paulson@24937
   339
fun make_cnf skoths th ctxt = cnf skoths ctxt (th, []);
paulson@20417
   340
paulson@20417
   341
(*Generalization, removal of redundant equalities, removal of tautologies.*)
paulson@24937
   342
fun finish_cnf ths = filter (not o is_taut) (map refl_clause ths);
paulson@9840
   343
paulson@9840
   344
paulson@15579
   345
(**** Generation of contrapositives ****)
paulson@9840
   346
wenzelm@24300
   347
fun is_left (Const ("Trueprop", _) $
paulson@21102
   348
               (Const ("op |", _) $ (Const ("op |", _) $ _ $ _) $ _)) = true
paulson@21102
   349
  | is_left _ = false;
wenzelm@24300
   350
paulson@15579
   351
(*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
wenzelm@24300
   352
fun assoc_right th =
paulson@21102
   353
  if is_left (prop_of th) then assoc_right (th RS disj_assoc)
paulson@21102
   354
  else th;
paulson@9840
   355
paulson@15579
   356
(*Must check for negative literal first!*)
paulson@15579
   357
val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
paulson@9840
   358
paulson@15579
   359
(*For ordinary resolution. *)
paulson@15579
   360
val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
paulson@9840
   361
paulson@15579
   362
(*Create a goal or support clause, conclusing False*)
paulson@15579
   363
fun make_goal th =   (*Must check for negative literal first!*)
paulson@15579
   364
    make_goal (tryres(th, clause_rules))
paulson@15579
   365
  handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
paulson@9840
   366
paulson@15579
   367
(*Sort clauses by number of literals*)
paulson@15579
   368
fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
paulson@9840
   369
paulson@18389
   370
fun sort_clauses ths = sort (make_ord fewerlits) ths;
paulson@9840
   371
paulson@15581
   372
(*True if the given type contains bool anywhere*)
paulson@15581
   373
fun has_bool (Type("bool",_)) = true
paulson@15581
   374
  | has_bool (Type(_, Ts)) = exists has_bool Ts
paulson@15581
   375
  | has_bool _ = false;
wenzelm@24300
   376
wenzelm@24300
   377
(*Is the string the name of a connective? Really only | and Not can remain,
wenzelm@24300
   378
  since this code expects to be called on a clause form.*)
wenzelm@19875
   379
val is_conn = member (op =)
wenzelm@24300
   380
    ["Trueprop", "op &", "op |", "op -->", "Not",
paulson@15613
   381
     "All", "Ex", "Ball", "Bex"];
paulson@15613
   382
wenzelm@24300
   383
(*True if the term contains a function--not a logical connective--where the type
paulson@20524
   384
  of any argument contains bool.*)
wenzelm@24300
   385
val has_bool_arg_const =
paulson@15613
   386
    exists_Const
paulson@15613
   387
      (fn (c,T) => not(is_conn c) andalso exists (has_bool) (binder_types T));
paulson@22381
   388
wenzelm@24300
   389
(*A higher-order instance of a first-order constant? Example is the definition of
paulson@22381
   390
  HOL.one, 1, at a function type in theory SetsAndFunctions.*)
wenzelm@24300
   391
fun higher_inst_const thy (c,T) =
paulson@22381
   392
  case binder_types T of
paulson@22381
   393
      [] => false (*not a function type, OK*)
paulson@22381
   394
    | Ts => length (binder_types (Sign.the_const_type thy c)) <> length Ts;
paulson@22381
   395
paulson@24742
   396
(*Returns false if any Vars in the theorem mention type bool.
paulson@21102
   397
  Also rejects functions whose arguments are Booleans or other functions.*)
paulson@22381
   398
fun is_fol_term thy t =
paulson@22381
   399
    Term.is_first_order ["all","All","Ex"] t andalso
wenzelm@29267
   400
    not (exists_subterm (fn Var (_, T) => has_bool T | _ => false) t  orelse
wenzelm@24300
   401
         has_bool_arg_const t  orelse
wenzelm@24300
   402
         exists_Const (higher_inst_const thy) t orelse
wenzelm@24300
   403
         has_meta_conn t);
paulson@19204
   404
paulson@21102
   405
fun rigid t = not (is_Var (head_of t));
paulson@21102
   406
paulson@21102
   407
fun ok4horn (Const ("Trueprop",_) $ (Const ("op |", _) $ t $ _)) = rigid t
paulson@21102
   408
  | ok4horn (Const ("Trueprop",_) $ t) = rigid t
paulson@21102
   409
  | ok4horn _ = false;
paulson@21102
   410
paulson@15579
   411
(*Create a meta-level Horn clause*)
wenzelm@24300
   412
fun make_horn crules th =
wenzelm@24300
   413
  if ok4horn (concl_of th)
paulson@21102
   414
  then make_horn crules (tryres(th,crules)) handle THM _ => th
paulson@21102
   415
  else th;
paulson@9840
   416
paulson@16563
   417
(*Generate Horn clauses for all contrapositives of a clause. The input, th,
paulson@16563
   418
  is a HOL disjunction.*)
paulson@15579
   419
fun add_contras crules (th,hcs) =
paulson@15579
   420
  let fun rots (0,th) = hcs
wenzelm@24300
   421
        | rots (k,th) = zero_var_indexes (make_horn crules th) ::
wenzelm@24300
   422
                        rots(k-1, assoc_right (th RS disj_comm))
paulson@15862
   423
  in case nliterals(prop_of th) of
wenzelm@24300
   424
        1 => th::hcs
paulson@15579
   425
      | n => rots(n, assoc_right th)
paulson@15579
   426
  end;
paulson@9840
   427
paulson@15579
   428
(*Use "theorem naming" to label the clauses*)
paulson@15579
   429
fun name_thms label =
paulson@15579
   430
    let fun name1 (th, (k,ths)) =
wenzelm@27865
   431
          (k-1, Thm.put_name_hint (label ^ string_of_int k) th :: ths)
paulson@15579
   432
    in  fn ths => #2 (foldr name1 (length ths, []) ths)  end;
paulson@9840
   433
paulson@16563
   434
(*Is the given disjunction an all-negative support clause?*)
paulson@15579
   435
fun is_negative th = forall (not o #1) (literals (prop_of th));
paulson@9840
   436
paulson@15579
   437
val neg_clauses = List.filter is_negative;
paulson@9840
   438
paulson@9840
   439
paulson@15579
   440
(***** MESON PROOF PROCEDURE *****)
paulson@9840
   441
paulson@15579
   442
fun rhyps (Const("==>",_) $ (Const("Trueprop",_) $ A) $ phi,
wenzelm@24300
   443
           As) = rhyps(phi, A::As)
paulson@15579
   444
  | rhyps (_, As) = As;
paulson@9840
   445
paulson@15579
   446
(** Detecting repeated assumptions in a subgoal **)
paulson@9840
   447
paulson@15579
   448
(*The stringtree detects repeated assumptions.*)
wenzelm@16801
   449
fun ins_term (net,t) = Net.insert_term (op aconv) (t,t) net;
paulson@9840
   450
paulson@15579
   451
(*detects repetitions in a list of terms*)
paulson@15579
   452
fun has_reps [] = false
paulson@15579
   453
  | has_reps [_] = false
paulson@15579
   454
  | has_reps [t,u] = (t aconv u)
paulson@15579
   455
  | has_reps ts = (Library.foldl ins_term (Net.empty, ts);  false)
wenzelm@24300
   456
                  handle Net.INSERT => true;
paulson@9840
   457
paulson@15579
   458
(*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
paulson@18508
   459
fun TRYING_eq_assume_tac 0 st = Seq.single st
paulson@18508
   460
  | TRYING_eq_assume_tac i st =
paulson@18508
   461
       TRYING_eq_assume_tac (i-1) (eq_assumption i st)
paulson@18508
   462
       handle THM _ => TRYING_eq_assume_tac (i-1) st;
paulson@18508
   463
paulson@18508
   464
fun TRYALL_eq_assume_tac st = TRYING_eq_assume_tac (nprems_of st) st;
paulson@9840
   465
paulson@15579
   466
(*Loop checking: FAIL if trying to prove the same thing twice
paulson@15579
   467
  -- if *ANY* subgoal has repeated literals*)
paulson@15579
   468
fun check_tac st =
paulson@15579
   469
  if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
paulson@15579
   470
  then  Seq.empty  else  Seq.single st;
paulson@9840
   471
paulson@9840
   472
paulson@15579
   473
(* net_resolve_tac actually made it slower... *)
paulson@15579
   474
fun prolog_step_tac horns i =
paulson@15579
   475
    (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
paulson@18508
   476
    TRYALL_eq_assume_tac;
paulson@9840
   477
paulson@9840
   478
(*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
paulson@15579
   479
fun addconcl(prem,sz) = size_of_term(Logic.strip_assums_concl prem) + sz
paulson@15579
   480
paulson@15579
   481
fun size_of_subgoals st = foldr addconcl 0 (prems_of st);
paulson@15579
   482
paulson@9840
   483
paulson@9840
   484
(*Negation Normal Form*)
paulson@9840
   485
val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
wenzelm@9869
   486
               not_impD, not_iffD, not_allD, not_exD, not_notD];
paulson@15581
   487
paulson@21102
   488
fun ok4nnf (Const ("Trueprop",_) $ (Const ("Not", _) $ t)) = rigid t
paulson@21102
   489
  | ok4nnf (Const ("Trueprop",_) $ t) = rigid t
paulson@21102
   490
  | ok4nnf _ = false;
paulson@21102
   491
wenzelm@24300
   492
fun make_nnf1 th =
wenzelm@24300
   493
  if ok4nnf (concl_of th)
paulson@21102
   494
  then make_nnf1 (tryres(th, nnf_rls))
paulson@28174
   495
    handle THM ("tryres", _, _) =>
paulson@15581
   496
        forward_res make_nnf1
wenzelm@9869
   497
           (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
paulson@28174
   498
    handle THM ("tryres", _, _) => th
paulson@21102
   499
  else th;
paulson@9840
   500
wenzelm@24300
   501
(*The simplification removes defined quantifiers and occurrences of True and False.
paulson@20018
   502
  nnf_ss also includes the one-point simprocs,
paulson@18405
   503
  which are needed to avoid the various one-point theorems from generating junk clauses.*)
paulson@19894
   504
val nnf_simps =
wenzelm@24300
   505
     [simp_implies_def, Ex1_def, Ball_def, Bex_def, if_True,
paulson@19894
   506
      if_False, if_cancel, if_eq_cancel, cases_simp];
paulson@19894
   507
val nnf_extra_simps =
paulson@19894
   508
      thms"split_ifs" @ ex_simps @ all_simps @ simp_thms;
paulson@18405
   509
paulson@18405
   510
val nnf_ss =
wenzelm@24300
   511
  HOL_basic_ss addsimps nnf_extra_simps
wenzelm@24040
   512
    addsimprocs [defALL_regroup,defEX_regroup, @{simproc neq}, @{simproc let_simp}];
paulson@15872
   513
paulson@21050
   514
fun make_nnf th = case prems_of th of
paulson@21050
   515
    [] => th |> rewrite_rule (map safe_mk_meta_eq nnf_simps)
wenzelm@24300
   516
             |> simplify nnf_ss
wenzelm@24300
   517
             |> make_nnf1
paulson@21050
   518
  | _ => raise THM ("make_nnf: premises in argument", 0, [th]);
paulson@15581
   519
paulson@15965
   520
(*Pull existential quantifiers to front. This accomplishes Skolemization for
paulson@15965
   521
  clauses that arise from a subgoal.*)
wenzelm@9869
   522
fun skolemize th =
paulson@20134
   523
  if not (has_conns ["Ex"] (prop_of th)) then th
quigley@15773
   524
  else (skolemize (tryres(th, [choice, conj_exD1, conj_exD2,
quigley@15679
   525
                              disj_exD, disj_exD1, disj_exD2])))
paulson@28174
   526
    handle THM ("tryres", _, _) =>
wenzelm@9869
   527
        skolemize (forward_res skolemize
wenzelm@9869
   528
                   (tryres (th, [conj_forward, disj_forward, all_forward])))
paulson@28174
   529
    handle THM ("tryres", _, _) => 
paulson@28174
   530
        forward_res skolemize (rename_bvs_RS th ex_forward);
paulson@9840
   531
paulson@25694
   532
fun skolemize_nnf_list [] = []
paulson@25694
   533
  | skolemize_nnf_list (th::ths) = 
paulson@25694
   534
      skolemize (make_nnf th) :: skolemize_nnf_list ths
paulson@25710
   535
      handle THM _ => (*RS can fail if Unify.search_bound is too small*)
wenzelm@26928
   536
       (warning ("Failed to Skolemize " ^ Display.string_of_thm th);
paulson@25694
   537
        skolemize_nnf_list ths);
paulson@25694
   538
paulson@24937
   539
fun add_clauses (th,cls) =
paulson@24937
   540
  let val ctxt0 = Variable.thm_context th
paulson@24937
   541
      val (cnfs,ctxt) = make_cnf [] th ctxt0
paulson@24937
   542
  in Variable.export ctxt ctxt0 cnfs @ cls end;
paulson@9840
   543
paulson@9840
   544
(*Make clauses from a list of theorems, previously Skolemized and put into nnf.
paulson@9840
   545
  The resulting clauses are HOL disjunctions.*)
paulson@24937
   546
fun make_clauses ths = sort_clauses (foldr add_clauses [] ths);
quigley@15773
   547
paulson@16563
   548
(*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
wenzelm@9869
   549
fun make_horns ths =
paulson@9840
   550
    name_thms "Horn#"
wenzelm@22360
   551
      (distinct Thm.eq_thm_prop (foldr (add_contras clause_rules) [] ths));
paulson@9840
   552
paulson@9840
   553
(*Could simply use nprems_of, which would count remaining subgoals -- no
paulson@9840
   554
  discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
paulson@9840
   555
wenzelm@9869
   556
fun best_prolog_tac sizef horns =
paulson@9840
   557
    BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
paulson@9840
   558
wenzelm@9869
   559
fun depth_prolog_tac horns =
paulson@9840
   560
    DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
paulson@9840
   561
paulson@9840
   562
(*Return all negative clauses, as possible goal clauses*)
paulson@9840
   563
fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
paulson@9840
   564
paulson@15008
   565
fun skolemize_prems_tac prems =
paulson@25694
   566
    cut_facts_tac (skolemize_nnf_list prems) THEN'
paulson@9840
   567
    REPEAT o (etac exE);
paulson@9840
   568
paulson@22546
   569
(*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions.
paulson@22546
   570
  Function mkcl converts theorems to clauses.*)
wenzelm@24300
   571
fun MESON mkcl cltac i st =
paulson@16588
   572
  SELECT_GOAL
wenzelm@23590
   573
    (EVERY [ObjectLogic.atomize_prems_tac 1,
paulson@23552
   574
            rtac ccontr 1,
wenzelm@24300
   575
            METAHYPS (fn negs =>
wenzelm@24300
   576
                      EVERY1 [skolemize_prems_tac negs,
wenzelm@24300
   577
                              METAHYPS (cltac o mkcl)]) 1]) i st
wenzelm@24300
   578
  handle THM _ => no_tac st;    (*probably from make_meta_clause, not first-order*)
paulson@9840
   579
paulson@9840
   580
(** Best-first search versions **)
paulson@9840
   581
paulson@16563
   582
(*ths is a list of additional clauses (HOL disjunctions) to use.*)
wenzelm@9869
   583
fun best_meson_tac sizef =
wenzelm@24300
   584
  MESON make_clauses
paulson@22546
   585
    (fn cls =>
paulson@9840
   586
         THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
paulson@9840
   587
                         (has_fewer_prems 1, sizef)
paulson@9840
   588
                         (prolog_step_tac (make_horns cls) 1));
paulson@9840
   589
paulson@9840
   590
(*First, breaks the goal into independent units*)
paulson@9840
   591
val safe_best_meson_tac =
wenzelm@23894
   592
     SELECT_GOAL (TRY (CLASET safe_tac) THEN
paulson@9840
   593
                  TRYALL (best_meson_tac size_of_subgoals));
paulson@9840
   594
paulson@9840
   595
(** Depth-first search version **)
paulson@9840
   596
paulson@9840
   597
val depth_meson_tac =
paulson@22546
   598
  MESON make_clauses
paulson@22546
   599
    (fn cls => EVERY [resolve_tac (gocls cls) 1, depth_prolog_tac (make_horns cls)]);
paulson@9840
   600
paulson@9840
   601
paulson@9840
   602
(** Iterative deepening version **)
paulson@9840
   603
paulson@9840
   604
(*This version does only one inference per call;
paulson@9840
   605
  having only one eq_assume_tac speeds it up!*)
wenzelm@9869
   606
fun prolog_step_tac' horns =
paulson@9840
   607
    let val (horn0s, hornps) = (*0 subgoals vs 1 or more*)
paulson@9840
   608
            take_prefix Thm.no_prems horns
paulson@9840
   609
        val nrtac = net_resolve_tac horns
paulson@9840
   610
    in  fn i => eq_assume_tac i ORELSE
paulson@9840
   611
                match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
paulson@9840
   612
                ((assume_tac i APPEND nrtac i) THEN check_tac)
paulson@9840
   613
    end;
paulson@9840
   614
wenzelm@9869
   615
fun iter_deepen_prolog_tac horns =
paulson@9840
   616
    ITER_DEEPEN (has_fewer_prems 1) (prolog_step_tac' horns);
paulson@9840
   617
wenzelm@24300
   618
fun iter_deepen_meson_tac ths = MESON make_clauses
paulson@21095
   619
 (fn cls =>
paulson@21095
   620
      case (gocls (cls@ths)) of
wenzelm@24300
   621
           [] => no_tac  (*no goal clauses*)
wenzelm@24300
   622
         | goes =>
wenzelm@24300
   623
             let val horns = make_horns (cls@ths)
wenzelm@24300
   624
                 val _ =
wenzelm@24300
   625
                     Output.debug (fn () => ("meson method called:\n" ^
paulson@28174
   626
                                  ML_Syntax.print_list Display.string_of_thm (cls@ths) ^
wenzelm@24300
   627
                                  "\nclauses:\n" ^
paulson@28174
   628
                                  ML_Syntax.print_list Display.string_of_thm horns))
wenzelm@24300
   629
             in THEN_ITER_DEEPEN (resolve_tac goes 1) (has_fewer_prems 1) (prolog_step_tac' horns)
wenzelm@24300
   630
             end
paulson@21095
   631
 );
paulson@9840
   632
paulson@16563
   633
fun meson_claset_tac ths cs =
paulson@16563
   634
  SELECT_GOAL (TRY (safe_tac cs) THEN TRYALL (iter_deepen_meson_tac ths));
wenzelm@9869
   635
paulson@16563
   636
val meson_tac = CLASET' (meson_claset_tac []);
wenzelm@9869
   637
wenzelm@9869
   638
paulson@14813
   639
(**** Code to support ordinary resolution, rather than Model Elimination ****)
paulson@14744
   640
wenzelm@24300
   641
(*Convert a list of clauses (disjunctions) to meta-level clauses (==>),
paulson@15008
   642
  with no contrapositives, for ordinary resolution.*)
paulson@14744
   643
paulson@14744
   644
(*Rules to convert the head literal into a negated assumption. If the head
paulson@14744
   645
  literal is already negated, then using notEfalse instead of notEfalse'
paulson@14744
   646
  prevents a double negation.*)
wenzelm@27239
   647
val notEfalse = read_instantiate @{context} [(("R", 0), "False")] notE;
paulson@14744
   648
val notEfalse' = rotate_prems 1 notEfalse;
paulson@14744
   649
wenzelm@24300
   650
fun negated_asm_of_head th =
paulson@14744
   651
    th RS notEfalse handle THM _ => th RS notEfalse';
paulson@14744
   652
paulson@26066
   653
(*Converting one theorem from a disjunction to a meta-level clause*)
paulson@26066
   654
fun make_meta_clause th =
paulson@26066
   655
  let val (fth,thaw) = Drule.freeze_thaw_robust th
paulson@26066
   656
  in  
paulson@26066
   657
      (zero_var_indexes o Thm.varifyT o thaw 0 o 
paulson@26066
   658
       negated_asm_of_head o make_horn resolution_clause_rules) fth
paulson@26066
   659
  end;
wenzelm@24300
   660
paulson@14744
   661
fun make_meta_clauses ths =
paulson@14744
   662
    name_thms "MClause#"
wenzelm@22360
   663
      (distinct Thm.eq_thm_prop (map make_meta_clause ths));
paulson@14744
   664
paulson@14744
   665
(*Permute a rule's premises to move the i-th premise to the last position.*)
paulson@14744
   666
fun make_last i th =
wenzelm@24300
   667
  let val n = nprems_of th
wenzelm@24300
   668
  in  if 1 <= i andalso i <= n
paulson@14744
   669
      then Thm.permute_prems (i-1) 1 th
paulson@15118
   670
      else raise THM("select_literal", i, [th])
paulson@14744
   671
  end;
paulson@14744
   672
paulson@14744
   673
(*Maps a rule that ends "... ==> P ==> False" to "... ==> ~P" while suppressing
paulson@14744
   674
  double-negations.*)
paulson@14744
   675
val negate_head = rewrite_rule [atomize_not, not_not RS eq_reflection];
paulson@14744
   676
paulson@14744
   677
(*Maps the clause  [P1,...Pn]==>False to [P1,...,P(i-1),P(i+1),...Pn] ==> ~P*)
paulson@14744
   678
fun select_literal i cl = negate_head (make_last i cl);
paulson@14744
   679
paulson@18508
   680
paulson@14813
   681
(*Top-level Skolemization. Allows part of the conversion to clauses to be
wenzelm@24300
   682
  expressed as a tactic (or Isar method).  Each assumption of the selected
paulson@14813
   683
  goal is converted to NNF and then its existential quantifiers are pulled
wenzelm@24300
   684
  to the front. Finally, all existential quantifiers are eliminated,
paulson@14813
   685
  leaving !!-quantified variables. Perhaps Safe_tac should follow, but it
paulson@14813
   686
  might generate many subgoals.*)
mengj@18194
   687
wenzelm@24300
   688
fun skolemize_tac i st =
paulson@19204
   689
  let val ts = Logic.strip_assums_hyp (List.nth (prems_of st, i-1))
wenzelm@24300
   690
  in
paulson@19204
   691
     EVERY' [METAHYPS
paulson@25694
   692
            (fn hyps => (cut_facts_tac (skolemize_nnf_list hyps) 1
paulson@14813
   693
                         THEN REPEAT (etac exE 1))),
paulson@19204
   694
            REPEAT_DETERM_N (length ts) o (etac thin_rl)] i st
paulson@19204
   695
  end
paulson@19204
   696
  handle Subscript => Seq.empty;
mengj@18194
   697
paulson@9840
   698
end;