src/HOL/Transfer.thy
author kuncar
Sat Mar 16 20:51:23 2013 +0100 (2013-03-16)
changeset 51437 8739f8abbecb
parent 51112 da97167e03f7
child 51955 04d9381bebff
permissions -rw-r--r--
fixing transfer tactic - unfold fully identity relation by using relator_eq
huffman@47325
     1
(*  Title:      HOL/Transfer.thy
huffman@47325
     2
    Author:     Brian Huffman, TU Muenchen
huffman@47325
     3
*)
huffman@47325
     4
huffman@47325
     5
header {* Generic theorem transfer using relations *}
huffman@47325
     6
huffman@47325
     7
theory Transfer
haftmann@51112
     8
imports Hilbert_Choice
huffman@47325
     9
begin
huffman@47325
    10
huffman@47325
    11
subsection {* Relator for function space *}
huffman@47325
    12
huffman@47325
    13
definition
huffman@47325
    14
  fun_rel :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" (infixr "===>" 55)
huffman@47325
    15
where
huffman@47325
    16
  "fun_rel A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))"
huffman@47325
    17
huffman@47325
    18
lemma fun_relI [intro]:
huffman@47325
    19
  assumes "\<And>x y. A x y \<Longrightarrow> B (f x) (g y)"
huffman@47325
    20
  shows "(A ===> B) f g"
huffman@47325
    21
  using assms by (simp add: fun_rel_def)
huffman@47325
    22
huffman@47325
    23
lemma fun_relD:
huffman@47325
    24
  assumes "(A ===> B) f g" and "A x y"
huffman@47325
    25
  shows "B (f x) (g y)"
huffman@47325
    26
  using assms by (simp add: fun_rel_def)
huffman@47325
    27
kuncar@47937
    28
lemma fun_relD2:
kuncar@47937
    29
  assumes "(A ===> B) f g" and "A x x"
kuncar@47937
    30
  shows "B (f x) (g x)"
kuncar@47937
    31
  using assms unfolding fun_rel_def by auto
kuncar@47937
    32
huffman@47325
    33
lemma fun_relE:
huffman@47325
    34
  assumes "(A ===> B) f g" and "A x y"
huffman@47325
    35
  obtains "B (f x) (g y)"
huffman@47325
    36
  using assms by (simp add: fun_rel_def)
huffman@47325
    37
huffman@47325
    38
lemma fun_rel_eq:
huffman@47325
    39
  shows "((op =) ===> (op =)) = (op =)"
huffman@47325
    40
  by (auto simp add: fun_eq_iff elim: fun_relE)
huffman@47325
    41
huffman@47325
    42
lemma fun_rel_eq_rel:
huffman@47325
    43
  shows "((op =) ===> R) = (\<lambda>f g. \<forall>x. R (f x) (g x))"
huffman@47325
    44
  by (simp add: fun_rel_def)
huffman@47325
    45
huffman@47325
    46
huffman@47325
    47
subsection {* Transfer method *}
huffman@47325
    48
huffman@47789
    49
text {* Explicit tag for relation membership allows for
huffman@47789
    50
  backward proof methods. *}
huffman@47325
    51
huffman@47325
    52
definition Rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
huffman@47325
    53
  where "Rel r \<equiv> r"
huffman@47325
    54
huffman@49975
    55
text {* Handling of equality relations *}
huffman@49975
    56
huffman@49975
    57
definition is_equality :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
huffman@49975
    58
  where "is_equality R \<longleftrightarrow> R = (op =)"
huffman@49975
    59
kuncar@51437
    60
lemma is_equality_eq: "is_equality (op =)"
kuncar@51437
    61
  unfolding is_equality_def by simp
kuncar@51437
    62
huffman@47325
    63
text {* Handling of meta-logic connectives *}
huffman@47325
    64
huffman@47325
    65
definition transfer_forall where
huffman@47325
    66
  "transfer_forall \<equiv> All"
huffman@47325
    67
huffman@47325
    68
definition transfer_implies where
huffman@47325
    69
  "transfer_implies \<equiv> op \<longrightarrow>"
huffman@47325
    70
huffman@47355
    71
definition transfer_bforall :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
huffman@47355
    72
  where "transfer_bforall \<equiv> (\<lambda>P Q. \<forall>x. P x \<longrightarrow> Q x)"
huffman@47355
    73
huffman@47325
    74
lemma transfer_forall_eq: "(\<And>x. P x) \<equiv> Trueprop (transfer_forall (\<lambda>x. P x))"
huffman@47325
    75
  unfolding atomize_all transfer_forall_def ..
huffman@47325
    76
huffman@47325
    77
lemma transfer_implies_eq: "(A \<Longrightarrow> B) \<equiv> Trueprop (transfer_implies A B)"
huffman@47325
    78
  unfolding atomize_imp transfer_implies_def ..
huffman@47325
    79
huffman@47355
    80
lemma transfer_bforall_unfold:
huffman@47355
    81
  "Trueprop (transfer_bforall P (\<lambda>x. Q x)) \<equiv> (\<And>x. P x \<Longrightarrow> Q x)"
huffman@47355
    82
  unfolding transfer_bforall_def atomize_imp atomize_all ..
huffman@47355
    83
huffman@47658
    84
lemma transfer_start: "\<lbrakk>P; Rel (op =) P Q\<rbrakk> \<Longrightarrow> Q"
huffman@47325
    85
  unfolding Rel_def by simp
huffman@47325
    86
huffman@47658
    87
lemma transfer_start': "\<lbrakk>P; Rel (op \<longrightarrow>) P Q\<rbrakk> \<Longrightarrow> Q"
huffman@47325
    88
  unfolding Rel_def by simp
huffman@47325
    89
huffman@47635
    90
lemma transfer_prover_start: "\<lbrakk>x = x'; Rel R x' y\<rbrakk> \<Longrightarrow> Rel R x y"
huffman@47618
    91
  by simp
huffman@47618
    92
huffman@47325
    93
lemma Rel_eq_refl: "Rel (op =) x x"
huffman@47325
    94
  unfolding Rel_def ..
huffman@47325
    95
huffman@47789
    96
lemma Rel_app:
huffman@47523
    97
  assumes "Rel (A ===> B) f g" and "Rel A x y"
huffman@47789
    98
  shows "Rel B (f x) (g y)"
huffman@47789
    99
  using assms unfolding Rel_def fun_rel_def by fast
huffman@47523
   100
huffman@47789
   101
lemma Rel_abs:
huffman@47523
   102
  assumes "\<And>x y. Rel A x y \<Longrightarrow> Rel B (f x) (g y)"
huffman@47789
   103
  shows "Rel (A ===> B) (\<lambda>x. f x) (\<lambda>y. g y)"
huffman@47789
   104
  using assms unfolding Rel_def fun_rel_def by fast
huffman@47523
   105
wenzelm@48891
   106
ML_file "Tools/transfer.ML"
huffman@47325
   107
setup Transfer.setup
huffman@47325
   108
huffman@49975
   109
declare refl [transfer_rule]
huffman@49975
   110
huffman@47503
   111
declare fun_rel_eq [relator_eq]
huffman@47503
   112
huffman@47789
   113
hide_const (open) Rel
huffman@47325
   114
huffman@47325
   115
huffman@47325
   116
subsection {* Predicates on relations, i.e. ``class constraints'' *}
huffman@47325
   117
huffman@47325
   118
definition right_total :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
huffman@47325
   119
  where "right_total R \<longleftrightarrow> (\<forall>y. \<exists>x. R x y)"
huffman@47325
   120
huffman@47325
   121
definition right_unique :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
huffman@47325
   122
  where "right_unique R \<longleftrightarrow> (\<forall>x y z. R x y \<longrightarrow> R x z \<longrightarrow> y = z)"
huffman@47325
   123
huffman@47325
   124
definition bi_total :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
huffman@47325
   125
  where "bi_total R \<longleftrightarrow> (\<forall>x. \<exists>y. R x y) \<and> (\<forall>y. \<exists>x. R x y)"
huffman@47325
   126
huffman@47325
   127
definition bi_unique :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
huffman@47325
   128
  where "bi_unique R \<longleftrightarrow>
huffman@47325
   129
    (\<forall>x y z. R x y \<longrightarrow> R x z \<longrightarrow> y = z) \<and>
huffman@47325
   130
    (\<forall>x y z. R x z \<longrightarrow> R y z \<longrightarrow> x = y)"
huffman@47325
   131
huffman@47325
   132
lemma right_total_alt_def:
huffman@47325
   133
  "right_total R \<longleftrightarrow> ((R ===> op \<longrightarrow>) ===> op \<longrightarrow>) All All"
huffman@47325
   134
  unfolding right_total_def fun_rel_def
huffman@47325
   135
  apply (rule iffI, fast)
huffman@47325
   136
  apply (rule allI)
huffman@47325
   137
  apply (drule_tac x="\<lambda>x. True" in spec)
huffman@47325
   138
  apply (drule_tac x="\<lambda>y. \<exists>x. R x y" in spec)
huffman@47325
   139
  apply fast
huffman@47325
   140
  done
huffman@47325
   141
huffman@47325
   142
lemma right_unique_alt_def:
huffman@47325
   143
  "right_unique R \<longleftrightarrow> (R ===> R ===> op \<longrightarrow>) (op =) (op =)"
huffman@47325
   144
  unfolding right_unique_def fun_rel_def by auto
huffman@47325
   145
huffman@47325
   146
lemma bi_total_alt_def:
huffman@47325
   147
  "bi_total R \<longleftrightarrow> ((R ===> op =) ===> op =) All All"
huffman@47325
   148
  unfolding bi_total_def fun_rel_def
huffman@47325
   149
  apply (rule iffI, fast)
huffman@47325
   150
  apply safe
huffman@47325
   151
  apply (drule_tac x="\<lambda>x. \<exists>y. R x y" in spec)
huffman@47325
   152
  apply (drule_tac x="\<lambda>y. True" in spec)
huffman@47325
   153
  apply fast
huffman@47325
   154
  apply (drule_tac x="\<lambda>x. True" in spec)
huffman@47325
   155
  apply (drule_tac x="\<lambda>y. \<exists>x. R x y" in spec)
huffman@47325
   156
  apply fast
huffman@47325
   157
  done
huffman@47325
   158
huffman@47325
   159
lemma bi_unique_alt_def:
huffman@47325
   160
  "bi_unique R \<longleftrightarrow> (R ===> R ===> op =) (op =) (op =)"
huffman@47325
   161
  unfolding bi_unique_def fun_rel_def by auto
huffman@47325
   162
huffman@47660
   163
text {* Properties are preserved by relation composition. *}
huffman@47660
   164
huffman@47660
   165
lemma OO_def: "R OO S = (\<lambda>x z. \<exists>y. R x y \<and> S y z)"
huffman@47660
   166
  by auto
huffman@47660
   167
huffman@47660
   168
lemma bi_total_OO: "\<lbrakk>bi_total A; bi_total B\<rbrakk> \<Longrightarrow> bi_total (A OO B)"
huffman@47660
   169
  unfolding bi_total_def OO_def by metis
huffman@47660
   170
huffman@47660
   171
lemma bi_unique_OO: "\<lbrakk>bi_unique A; bi_unique B\<rbrakk> \<Longrightarrow> bi_unique (A OO B)"
huffman@47660
   172
  unfolding bi_unique_def OO_def by metis
huffman@47660
   173
huffman@47660
   174
lemma right_total_OO:
huffman@47660
   175
  "\<lbrakk>right_total A; right_total B\<rbrakk> \<Longrightarrow> right_total (A OO B)"
huffman@47660
   176
  unfolding right_total_def OO_def by metis
huffman@47660
   177
huffman@47660
   178
lemma right_unique_OO:
huffman@47660
   179
  "\<lbrakk>right_unique A; right_unique B\<rbrakk> \<Longrightarrow> right_unique (A OO B)"
huffman@47660
   180
  unfolding right_unique_def OO_def by metis
huffman@47660
   181
huffman@47325
   182
huffman@47325
   183
subsection {* Properties of relators *}
huffman@47325
   184
huffman@47325
   185
lemma right_total_eq [transfer_rule]: "right_total (op =)"
huffman@47325
   186
  unfolding right_total_def by simp
huffman@47325
   187
huffman@47325
   188
lemma right_unique_eq [transfer_rule]: "right_unique (op =)"
huffman@47325
   189
  unfolding right_unique_def by simp
huffman@47325
   190
huffman@47325
   191
lemma bi_total_eq [transfer_rule]: "bi_total (op =)"
huffman@47325
   192
  unfolding bi_total_def by simp
huffman@47325
   193
huffman@47325
   194
lemma bi_unique_eq [transfer_rule]: "bi_unique (op =)"
huffman@47325
   195
  unfolding bi_unique_def by simp
huffman@47325
   196
huffman@47325
   197
lemma right_total_fun [transfer_rule]:
huffman@47325
   198
  "\<lbrakk>right_unique A; right_total B\<rbrakk> \<Longrightarrow> right_total (A ===> B)"
huffman@47325
   199
  unfolding right_total_def fun_rel_def
huffman@47325
   200
  apply (rule allI, rename_tac g)
huffman@47325
   201
  apply (rule_tac x="\<lambda>x. SOME z. B z (g (THE y. A x y))" in exI)
huffman@47325
   202
  apply clarify
huffman@47325
   203
  apply (subgoal_tac "(THE y. A x y) = y", simp)
huffman@47325
   204
  apply (rule someI_ex)
huffman@47325
   205
  apply (simp)
huffman@47325
   206
  apply (rule the_equality)
huffman@47325
   207
  apply assumption
huffman@47325
   208
  apply (simp add: right_unique_def)
huffman@47325
   209
  done
huffman@47325
   210
huffman@47325
   211
lemma right_unique_fun [transfer_rule]:
huffman@47325
   212
  "\<lbrakk>right_total A; right_unique B\<rbrakk> \<Longrightarrow> right_unique (A ===> B)"
huffman@47325
   213
  unfolding right_total_def right_unique_def fun_rel_def
huffman@47325
   214
  by (clarify, rule ext, fast)
huffman@47325
   215
huffman@47325
   216
lemma bi_total_fun [transfer_rule]:
huffman@47325
   217
  "\<lbrakk>bi_unique A; bi_total B\<rbrakk> \<Longrightarrow> bi_total (A ===> B)"
huffman@47325
   218
  unfolding bi_total_def fun_rel_def
huffman@47325
   219
  apply safe
huffman@47325
   220
  apply (rename_tac f)
huffman@47325
   221
  apply (rule_tac x="\<lambda>y. SOME z. B (f (THE x. A x y)) z" in exI)
huffman@47325
   222
  apply clarify
huffman@47325
   223
  apply (subgoal_tac "(THE x. A x y) = x", simp)
huffman@47325
   224
  apply (rule someI_ex)
huffman@47325
   225
  apply (simp)
huffman@47325
   226
  apply (rule the_equality)
huffman@47325
   227
  apply assumption
huffman@47325
   228
  apply (simp add: bi_unique_def)
huffman@47325
   229
  apply (rename_tac g)
huffman@47325
   230
  apply (rule_tac x="\<lambda>x. SOME z. B z (g (THE y. A x y))" in exI)
huffman@47325
   231
  apply clarify
huffman@47325
   232
  apply (subgoal_tac "(THE y. A x y) = y", simp)
huffman@47325
   233
  apply (rule someI_ex)
huffman@47325
   234
  apply (simp)
huffman@47325
   235
  apply (rule the_equality)
huffman@47325
   236
  apply assumption
huffman@47325
   237
  apply (simp add: bi_unique_def)
huffman@47325
   238
  done
huffman@47325
   239
huffman@47325
   240
lemma bi_unique_fun [transfer_rule]:
huffman@47325
   241
  "\<lbrakk>bi_total A; bi_unique B\<rbrakk> \<Longrightarrow> bi_unique (A ===> B)"
huffman@47325
   242
  unfolding bi_total_def bi_unique_def fun_rel_def fun_eq_iff
huffman@47325
   243
  by (safe, metis, fast)
huffman@47325
   244
huffman@47325
   245
huffman@47635
   246
subsection {* Transfer rules *}
huffman@47325
   247
huffman@47684
   248
text {* Transfer rules using implication instead of equality on booleans. *}
huffman@47684
   249
huffman@47684
   250
lemma eq_imp_transfer [transfer_rule]:
huffman@47684
   251
  "right_unique A \<Longrightarrow> (A ===> A ===> op \<longrightarrow>) (op =) (op =)"
huffman@47684
   252
  unfolding right_unique_alt_def .
huffman@47684
   253
huffman@47684
   254
lemma forall_imp_transfer [transfer_rule]:
huffman@47684
   255
  "right_total A \<Longrightarrow> ((A ===> op \<longrightarrow>) ===> op \<longrightarrow>) transfer_forall transfer_forall"
huffman@47684
   256
  unfolding right_total_alt_def transfer_forall_def .
huffman@47684
   257
huffman@47636
   258
lemma eq_transfer [transfer_rule]:
huffman@47325
   259
  assumes "bi_unique A"
huffman@47325
   260
  shows "(A ===> A ===> op =) (op =) (op =)"
huffman@47325
   261
  using assms unfolding bi_unique_def fun_rel_def by auto
huffman@47325
   262
huffman@47636
   263
lemma All_transfer [transfer_rule]:
huffman@47325
   264
  assumes "bi_total A"
huffman@47325
   265
  shows "((A ===> op =) ===> op =) All All"
huffman@47325
   266
  using assms unfolding bi_total_def fun_rel_def by fast
huffman@47325
   267
huffman@47636
   268
lemma Ex_transfer [transfer_rule]:
huffman@47325
   269
  assumes "bi_total A"
huffman@47325
   270
  shows "((A ===> op =) ===> op =) Ex Ex"
huffman@47325
   271
  using assms unfolding bi_total_def fun_rel_def by fast
huffman@47325
   272
huffman@47636
   273
lemma If_transfer [transfer_rule]: "(op = ===> A ===> A ===> A) If If"
huffman@47325
   274
  unfolding fun_rel_def by simp
huffman@47325
   275
huffman@47636
   276
lemma Let_transfer [transfer_rule]: "(A ===> (A ===> B) ===> B) Let Let"
huffman@47612
   277
  unfolding fun_rel_def by simp
huffman@47612
   278
huffman@47636
   279
lemma id_transfer [transfer_rule]: "(A ===> A) id id"
huffman@47625
   280
  unfolding fun_rel_def by simp
huffman@47625
   281
huffman@47636
   282
lemma comp_transfer [transfer_rule]:
huffman@47325
   283
  "((B ===> C) ===> (A ===> B) ===> (A ===> C)) (op \<circ>) (op \<circ>)"
huffman@47325
   284
  unfolding fun_rel_def by simp
huffman@47325
   285
huffman@47636
   286
lemma fun_upd_transfer [transfer_rule]:
huffman@47325
   287
  assumes [transfer_rule]: "bi_unique A"
huffman@47325
   288
  shows "((A ===> B) ===> A ===> B ===> A ===> B) fun_upd fun_upd"
huffman@47635
   289
  unfolding fun_upd_def [abs_def] by transfer_prover
huffman@47325
   290
huffman@47637
   291
lemma nat_case_transfer [transfer_rule]:
huffman@47637
   292
  "(A ===> (op = ===> A) ===> op = ===> A) nat_case nat_case"
huffman@47637
   293
  unfolding fun_rel_def by (simp split: nat.split)
huffman@47627
   294
huffman@47924
   295
lemma nat_rec_transfer [transfer_rule]:
huffman@47924
   296
  "(A ===> (op = ===> A ===> A) ===> op = ===> A) nat_rec nat_rec"
huffman@47924
   297
  unfolding fun_rel_def by (clarsimp, rename_tac n, induct_tac n, simp_all)
huffman@47924
   298
huffman@47924
   299
lemma funpow_transfer [transfer_rule]:
huffman@47924
   300
  "(op = ===> (A ===> A) ===> (A ===> A)) compow compow"
huffman@47924
   301
  unfolding funpow_def by transfer_prover
huffman@47924
   302
huffman@47627
   303
text {* Fallback rule for transferring universal quantifiers over
huffman@47627
   304
  correspondence relations that are not bi-total, and do not have
huffman@47627
   305
  custom transfer rules (e.g. relations between function types). *}
huffman@47627
   306
huffman@47637
   307
lemma Domainp_iff: "Domainp T x \<longleftrightarrow> (\<exists>y. T x y)"
huffman@47637
   308
  by auto
huffman@47637
   309
huffman@47627
   310
lemma Domainp_forall_transfer [transfer_rule]:
huffman@47627
   311
  assumes "right_total A"
huffman@47627
   312
  shows "((A ===> op =) ===> op =)
huffman@47627
   313
    (transfer_bforall (Domainp A)) transfer_forall"
huffman@47627
   314
  using assms unfolding right_total_def
huffman@47627
   315
  unfolding transfer_forall_def transfer_bforall_def fun_rel_def Domainp_iff
huffman@47627
   316
  by metis
huffman@47627
   317
huffman@47627
   318
text {* Preferred rule for transferring universal quantifiers over
huffman@47627
   319
  bi-total correspondence relations (later rules are tried first). *}
huffman@47627
   320
huffman@47636
   321
lemma forall_transfer [transfer_rule]:
huffman@47627
   322
  "bi_total A \<Longrightarrow> ((A ===> op =) ===> op =) transfer_forall transfer_forall"
huffman@47636
   323
  unfolding transfer_forall_def by (rule All_transfer)
huffman@47325
   324
huffman@47325
   325
end