src/HOL/Library/RBT.thy
author bulwahn
Tue Dec 20 17:40:18 2011 +0100 (2011-12-20)
changeset 45928 874845660119
parent 45694 4a8743618257
child 46133 d9fe85d3d2cd
permissions -rw-r--r--
adding quickcheck generators in some HOL-Library theories
haftmann@35617
     1
(* Author: Florian Haftmann, TU Muenchen *)
haftmann@35617
     2
haftmann@36147
     3
header {* Abstract type of Red-Black Trees *}
haftmann@35617
     4
haftmann@36147
     5
(*<*)
haftmann@36147
     6
theory RBT
bulwahn@43124
     7
imports Main RBT_Impl
haftmann@35617
     8
begin
haftmann@35617
     9
haftmann@35617
    10
subsection {* Type definition *}
haftmann@35617
    11
haftmann@36147
    12
typedef (open) ('a, 'b) rbt = "{t :: ('a\<Colon>linorder, 'b) RBT_Impl.rbt. is_rbt t}"
haftmann@36147
    13
  morphisms impl_of RBT
wenzelm@45694
    14
proof
wenzelm@45694
    15
  show "RBT_Impl.Empty \<in> {t. is_rbt t}" by simp
haftmann@35617
    16
qed
haftmann@35617
    17
haftmann@39380
    18
lemma rbt_eq_iff:
haftmann@39380
    19
  "t1 = t2 \<longleftrightarrow> impl_of t1 = impl_of t2"
haftmann@39380
    20
  by (simp add: impl_of_inject)
haftmann@39380
    21
haftmann@39380
    22
lemma rbt_eqI:
haftmann@39380
    23
  "impl_of t1 = impl_of t2 \<Longrightarrow> t1 = t2"
haftmann@39380
    24
  by (simp add: rbt_eq_iff)
haftmann@39380
    25
haftmann@36147
    26
lemma is_rbt_impl_of [simp, intro]:
haftmann@36147
    27
  "is_rbt (impl_of t)"
haftmann@36147
    28
  using impl_of [of t] by simp
haftmann@35617
    29
haftmann@39380
    30
lemma RBT_impl_of [simp, code abstype]:
haftmann@36147
    31
  "RBT (impl_of t) = t"
haftmann@36147
    32
  by (simp add: impl_of_inverse)
haftmann@35617
    33
haftmann@35617
    34
haftmann@35617
    35
subsection {* Primitive operations *}
haftmann@35617
    36
haftmann@36147
    37
definition lookup :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b" where
haftmann@36147
    38
  [code]: "lookup t = RBT_Impl.lookup (impl_of t)"
haftmann@35617
    39
haftmann@36147
    40
definition empty :: "('a\<Colon>linorder, 'b) rbt" where
haftmann@36147
    41
  "empty = RBT RBT_Impl.Empty"
haftmann@35617
    42
haftmann@36147
    43
lemma impl_of_empty [code abstract]:
haftmann@36147
    44
  "impl_of empty = RBT_Impl.Empty"
haftmann@36147
    45
  by (simp add: empty_def RBT_inverse)
haftmann@35617
    46
haftmann@36147
    47
definition insert :: "'a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
haftmann@36147
    48
  "insert k v t = RBT (RBT_Impl.insert k v (impl_of t))"
haftmann@35617
    49
haftmann@36147
    50
lemma impl_of_insert [code abstract]:
haftmann@36147
    51
  "impl_of (insert k v t) = RBT_Impl.insert k v (impl_of t)"
haftmann@36147
    52
  by (simp add: insert_def RBT_inverse)
haftmann@35617
    53
haftmann@36147
    54
definition delete :: "'a\<Colon>linorder \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
haftmann@36147
    55
  "delete k t = RBT (RBT_Impl.delete k (impl_of t))"
haftmann@35617
    56
haftmann@36147
    57
lemma impl_of_delete [code abstract]:
haftmann@36147
    58
  "impl_of (delete k t) = RBT_Impl.delete k (impl_of t)"
haftmann@36147
    59
  by (simp add: delete_def RBT_inverse)
haftmann@35617
    60
haftmann@36147
    61
definition entries :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a \<times> 'b) list" where
haftmann@36147
    62
  [code]: "entries t = RBT_Impl.entries (impl_of t)"
haftmann@35617
    63
haftmann@36147
    64
definition keys :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'a list" where
haftmann@36147
    65
  [code]: "keys t = RBT_Impl.keys (impl_of t)"
haftmann@36111
    66
haftmann@36147
    67
definition bulkload :: "('a\<Colon>linorder \<times> 'b) list \<Rightarrow> ('a, 'b) rbt" where
haftmann@36147
    68
  "bulkload xs = RBT (RBT_Impl.bulkload xs)"
haftmann@35617
    69
haftmann@36147
    70
lemma impl_of_bulkload [code abstract]:
haftmann@36147
    71
  "impl_of (bulkload xs) = RBT_Impl.bulkload xs"
haftmann@36147
    72
  by (simp add: bulkload_def RBT_inverse)
haftmann@35617
    73
haftmann@36147
    74
definition map_entry :: "'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
haftmann@36147
    75
  "map_entry k f t = RBT (RBT_Impl.map_entry k f (impl_of t))"
haftmann@35617
    76
haftmann@36147
    77
lemma impl_of_map_entry [code abstract]:
haftmann@36147
    78
  "impl_of (map_entry k f t) = RBT_Impl.map_entry k f (impl_of t)"
haftmann@36147
    79
  by (simp add: map_entry_def RBT_inverse)
haftmann@35617
    80
haftmann@36147
    81
definition map :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
haftmann@36147
    82
  "map f t = RBT (RBT_Impl.map f (impl_of t))"
haftmann@35617
    83
haftmann@36147
    84
lemma impl_of_map [code abstract]:
haftmann@36147
    85
  "impl_of (map f t) = RBT_Impl.map f (impl_of t)"
haftmann@36147
    86
  by (simp add: map_def RBT_inverse)
haftmann@35617
    87
haftmann@36147
    88
definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c" where
haftmann@36147
    89
  [code]: "fold f t = RBT_Impl.fold f (impl_of t)"
haftmann@35617
    90
haftmann@35617
    91
haftmann@35617
    92
subsection {* Derived operations *}
haftmann@35617
    93
haftmann@36147
    94
definition is_empty :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> bool" where
haftmann@36147
    95
  [code]: "is_empty t = (case impl_of t of RBT_Impl.Empty \<Rightarrow> True | _ \<Rightarrow> False)"
haftmann@35617
    96
haftmann@35617
    97
haftmann@35617
    98
subsection {* Abstract lookup properties *}
haftmann@35617
    99
haftmann@36147
   100
lemma lookup_RBT:
haftmann@36147
   101
  "is_rbt t \<Longrightarrow> lookup (RBT t) = RBT_Impl.lookup t"
haftmann@36147
   102
  by (simp add: lookup_def RBT_inverse)
haftmann@35617
   103
haftmann@36147
   104
lemma lookup_impl_of:
haftmann@36147
   105
  "RBT_Impl.lookup (impl_of t) = lookup t"
haftmann@35617
   106
  by (simp add: lookup_def)
haftmann@35617
   107
haftmann@36147
   108
lemma entries_impl_of:
haftmann@36147
   109
  "RBT_Impl.entries (impl_of t) = entries t"
haftmann@35617
   110
  by (simp add: entries_def)
haftmann@35617
   111
haftmann@36147
   112
lemma keys_impl_of:
haftmann@36147
   113
  "RBT_Impl.keys (impl_of t) = keys t"
haftmann@36111
   114
  by (simp add: keys_def)
haftmann@36111
   115
haftmann@35617
   116
lemma lookup_empty [simp]:
haftmann@35617
   117
  "lookup empty = Map.empty"
nipkow@39302
   118
  by (simp add: empty_def lookup_RBT fun_eq_iff)
haftmann@35617
   119
haftmann@36147
   120
lemma lookup_insert [simp]:
haftmann@36147
   121
  "lookup (insert k v t) = (lookup t)(k \<mapsto> v)"
haftmann@36147
   122
  by (simp add: insert_def lookup_RBT lookup_insert lookup_impl_of)
haftmann@35617
   123
haftmann@35617
   124
lemma lookup_delete [simp]:
haftmann@35617
   125
  "lookup (delete k t) = (lookup t)(k := None)"
haftmann@36147
   126
  by (simp add: delete_def lookup_RBT RBT_Impl.lookup_delete lookup_impl_of restrict_complement_singleton_eq)
haftmann@35617
   127
haftmann@35617
   128
lemma map_of_entries [simp]:
haftmann@35617
   129
  "map_of (entries t) = lookup t"
haftmann@36147
   130
  by (simp add: entries_def map_of_entries lookup_impl_of)
haftmann@35617
   131
haftmann@36111
   132
lemma entries_lookup:
haftmann@36111
   133
  "entries t1 = entries t2 \<longleftrightarrow> lookup t1 = lookup t2"
haftmann@36111
   134
  by (simp add: entries_def lookup_def entries_lookup)
haftmann@36111
   135
haftmann@35617
   136
lemma lookup_bulkload [simp]:
haftmann@35617
   137
  "lookup (bulkload xs) = map_of xs"
haftmann@36147
   138
  by (simp add: bulkload_def lookup_RBT RBT_Impl.lookup_bulkload)
haftmann@35617
   139
haftmann@35617
   140
lemma lookup_map_entry [simp]:
haftmann@35617
   141
  "lookup (map_entry k f t) = (lookup t)(k := Option.map f (lookup t k))"
haftmann@37027
   142
  by (simp add: map_entry_def lookup_RBT RBT_Impl.lookup_map_entry lookup_impl_of)
haftmann@35617
   143
haftmann@35617
   144
lemma lookup_map [simp]:
haftmann@35617
   145
  "lookup (map f t) k = Option.map (f k) (lookup t k)"
haftmann@40612
   146
  by (simp add: map_def lookup_RBT RBT_Impl.lookup_map lookup_impl_of)
haftmann@35617
   147
haftmann@35617
   148
lemma fold_fold:
haftmann@37462
   149
  "fold f t = More_List.fold (prod_case f) (entries t)"
nipkow@39302
   150
  by (simp add: fold_def fun_eq_iff RBT_Impl.fold_def entries_impl_of)
haftmann@35617
   151
haftmann@36111
   152
lemma is_empty_empty [simp]:
haftmann@36111
   153
  "is_empty t \<longleftrightarrow> t = empty"
haftmann@39380
   154
  by (simp add: rbt_eq_iff is_empty_def impl_of_empty split: rbt.split)
haftmann@36111
   155
haftmann@36111
   156
lemma RBT_lookup_empty [simp]: (*FIXME*)
haftmann@36147
   157
  "RBT_Impl.lookup t = Map.empty \<longleftrightarrow> t = RBT_Impl.Empty"
nipkow@39302
   158
  by (cases t) (auto simp add: fun_eq_iff)
haftmann@36111
   159
haftmann@36111
   160
lemma lookup_empty_empty [simp]:
haftmann@36111
   161
  "lookup t = Map.empty \<longleftrightarrow> t = empty"
haftmann@36147
   162
  by (cases t) (simp add: empty_def lookup_def RBT_inject RBT_inverse)
haftmann@36111
   163
haftmann@36111
   164
lemma sorted_keys [iff]:
haftmann@36111
   165
  "sorted (keys t)"
haftmann@36147
   166
  by (simp add: keys_def RBT_Impl.keys_def sorted_entries)
haftmann@36111
   167
haftmann@36111
   168
lemma distinct_keys [iff]:
haftmann@36111
   169
  "distinct (keys t)"
haftmann@36147
   170
  by (simp add: keys_def RBT_Impl.keys_def distinct_entries)
haftmann@36111
   171
bulwahn@45928
   172
subsection {* Quickcheck generators *}
bulwahn@45928
   173
bulwahn@45928
   174
quickcheck_generator rbt constructors: empty, insert
haftmann@36111
   175
haftmann@35617
   176
end