src/Sequents/S43.thy
author wenzelm
Mon Nov 20 23:47:10 2006 +0100 (2006-11-20)
changeset 21426 87ac12bed1ab
parent 17481 75166ebb619b
child 30510 4120fc59dd85
permissions -rw-r--r--
converted legacy ML scripts;
wenzelm@17481
     1
(*  Title:      Modal/S43.thy
paulson@2073
     2
    ID:         $Id$
paulson@2073
     3
    Author:     Martin Coen
paulson@2073
     4
    Copyright   1991  University of Cambridge
paulson@2073
     5
paulson@2073
     6
This implements Rajeev Gore's sequent calculus for S43.
paulson@2073
     7
*)
paulson@2073
     8
wenzelm@17481
     9
theory S43
wenzelm@17481
    10
imports Modal0
wenzelm@17481
    11
begin
paulson@2073
    12
paulson@2073
    13
consts
paulson@2073
    14
  S43pi :: "[seq'=>seq', seq'=>seq', seq'=>seq',
paulson@2073
    15
             seq'=>seq', seq'=>seq', seq'=>seq'] => prop"
wenzelm@14765
    16
syntax
paulson@2073
    17
  "@S43pi" :: "[seq, seq, seq, seq, seq, seq] => prop"
paulson@2073
    18
                         ("S43pi((_);(_);(_);(_);(_);(_))" [] 5)
paulson@2073
    19
wenzelm@17481
    20
ML {*
wenzelm@17481
    21
  val S43pi  = "S43pi";
wenzelm@17481
    22
  val SS43pi = "@S43pi";
wenzelm@17481
    23
wenzelm@17481
    24
  val tr  = seq_tr;
wenzelm@17481
    25
  val tr' = seq_tr';
wenzelm@17481
    26
wenzelm@17481
    27
  fun s43pi_tr[s1,s2,s3,s4,s5,s6]=
wenzelm@17481
    28
        Const(S43pi,dummyT)$tr s1$tr s2$tr s3$tr s4$tr s5$tr s6;
wenzelm@17481
    29
  fun s43pi_tr'[s1,s2,s3,s4,s5,s6] =
wenzelm@17481
    30
        Const(SS43pi,dummyT)$tr' s1$tr' s2$tr' s3$tr' s4$tr' s5$tr' s6;
wenzelm@17481
    31
wenzelm@17481
    32
*}
wenzelm@17481
    33
wenzelm@17481
    34
parse_translation {* [(SS43pi,s43pi_tr)] *}
wenzelm@17481
    35
print_translation {* [(S43pi,s43pi_tr')] *}
wenzelm@17481
    36
wenzelm@17481
    37
axioms
paulson@2073
    38
(* Definition of the star operation using a set of Horn clauses  *)
paulson@2073
    39
(* For system S43: gamma * == {[]P | []P : gamma}                *)
paulson@2073
    40
(*                 delta * == {<>P | <>P : delta}                *)
paulson@2073
    41
wenzelm@17481
    42
  lstar0:         "|L>"
wenzelm@17481
    43
  lstar1:         "$G |L> $H ==> []P, $G |L> []P, $H"
wenzelm@17481
    44
  lstar2:         "$G |L> $H ==>   P, $G |L>      $H"
wenzelm@17481
    45
  rstar0:         "|R>"
wenzelm@17481
    46
  rstar1:         "$G |R> $H ==> <>P, $G |R> <>P, $H"
wenzelm@17481
    47
  rstar2:         "$G |R> $H ==>   P, $G |R>      $H"
paulson@2073
    48
paulson@2073
    49
(* Set of Horn clauses to generate the antecedents for the S43 pi rule       *)
paulson@2073
    50
(* ie                                                                        *)
paulson@2073
    51
(*           S1...Sk,Sk+1...Sk+m                                             *)
paulson@2073
    52
(*     ----------------------------------                                    *)
paulson@2073
    53
(*     <>P1...<>Pk, $G |- $H, []Q1...[]Qm                                    *)
paulson@2073
    54
(*                                                                           *)
paulson@2073
    55
(*  where Si == <>P1...<>Pi-1,<>Pi+1,..<>Pk,Pi, $G * |- $H *, []Q1...[]Qm    *)
paulson@2073
    56
(*    and Sj == <>P1...<>Pk, $G * |- $H *, []Q1...[]Qj-1,[]Qj+1...[]Qm,Qj    *)
paulson@2073
    57
(*    and 1<=i<=k and k<j<=k+m                                               *)
paulson@2073
    58
wenzelm@17481
    59
  S43pi0:         "S43pi $L;; $R;; $Lbox; $Rdia"
wenzelm@17481
    60
  S43pi1:
wenzelm@17481
    61
   "[| (S43pi <>P,$L';     $L;; $R; $Lbox;$Rdia);   $L',P,$L,$Lbox |- $R,$Rdia |] ==>
paulson@2073
    62
       S43pi     $L'; <>P,$L;; $R; $Lbox;$Rdia"
wenzelm@17481
    63
  S43pi2:
wenzelm@17481
    64
   "[| (S43pi $L';; []P,$R';     $R; $Lbox;$Rdia);  $L',$Lbox |- $R',P,$R,$Rdia |] ==>
paulson@2073
    65
       S43pi $L';;     $R'; []P,$R; $Lbox;$Rdia"
paulson@2073
    66
paulson@2073
    67
(* Rules for [] and <> for S43 *)
paulson@2073
    68
wenzelm@17481
    69
  boxL:           "$E, P, $F, []P |- $G ==> $E, []P, $F |- $G"
wenzelm@17481
    70
  diaR:           "$E |- $F, P, $G, <>P ==> $E |- $F, <>P, $G"
wenzelm@17481
    71
  pi1:
wenzelm@17481
    72
   "[| $L1,<>P,$L2 |L> $Lbox;  $L1,<>P,$L2 |R> $Ldia;  $R |L> $Rbox;  $R |R> $Rdia;
wenzelm@17481
    73
      S43pi ; $Ldia;; $Rbox; $Lbox; $Rdia |] ==>
paulson@2073
    74
   $L1, <>P, $L2 |- $R"
wenzelm@17481
    75
  pi2:
wenzelm@17481
    76
   "[| $L |L> $Lbox;  $L |R> $Ldia;  $R1,[]P,$R2 |L> $Rbox;  $R1,[]P,$R2 |R> $Rdia;
wenzelm@17481
    77
      S43pi ; $Ldia;; $Rbox; $Lbox; $Rdia |] ==>
paulson@2073
    78
   $L |- $R1, []P, $R2"
paulson@2073
    79
wenzelm@21426
    80
wenzelm@21426
    81
ML {*
wenzelm@21426
    82
structure S43_Prover = Modal_ProverFun
wenzelm@21426
    83
(
wenzelm@21426
    84
  val rewrite_rls = thms "rewrite_rls"
wenzelm@21426
    85
  val safe_rls = thms "safe_rls"
wenzelm@21426
    86
  val unsafe_rls = thms "unsafe_rls" @ [thm "pi1", thm "pi2"]
wenzelm@21426
    87
  val bound_rls = thms "bound_rls" @ [thm "boxL", thm "diaR"]
wenzelm@21426
    88
  val aside_rls = [thm "lstar0", thm "lstar1", thm "lstar2", thm "rstar0",
wenzelm@21426
    89
    thm "rstar1", thm "rstar2", thm "S43pi0", thm "S43pi1", thm "S43pi2"]
wenzelm@21426
    90
)
wenzelm@21426
    91
*}
wenzelm@21426
    92
wenzelm@21426
    93
wenzelm@21426
    94
method_setup S43_solve = {*
wenzelm@21426
    95
  Method.no_args (Method.SIMPLE_METHOD
wenzelm@21426
    96
    (S43_Prover.solve_tac 2 ORELSE S43_Prover.solve_tac 3))
wenzelm@21426
    97
*} "S4 solver"
wenzelm@21426
    98
wenzelm@21426
    99
wenzelm@21426
   100
(* Theorems of system T from Hughes and Cresswell and Hailpern, LNCS 129 *)
wenzelm@21426
   101
wenzelm@21426
   102
lemma "|- []P --> P" by S43_solve
wenzelm@21426
   103
lemma "|- [](P-->Q) --> ([]P-->[]Q)" by S43_solve   (* normality*)
wenzelm@21426
   104
lemma "|- (P--<Q) --> []P --> []Q" by S43_solve
wenzelm@21426
   105
lemma "|- P --> <>P" by S43_solve
wenzelm@21426
   106
wenzelm@21426
   107
lemma "|-  [](P & Q) <-> []P & []Q" by S43_solve
wenzelm@21426
   108
lemma "|-  <>(P | Q) <-> <>P | <>Q" by S43_solve
wenzelm@21426
   109
lemma "|-  [](P<->Q) <-> (P>-<Q)" by S43_solve
wenzelm@21426
   110
lemma "|-  <>(P-->Q) <-> ([]P--><>Q)" by S43_solve
wenzelm@21426
   111
lemma "|-        []P <-> ~<>(~P)" by S43_solve
wenzelm@21426
   112
lemma "|-     [](~P) <-> ~<>P" by S43_solve
wenzelm@21426
   113
lemma "|-       ~[]P <-> <>(~P)" by S43_solve
wenzelm@21426
   114
lemma "|-      [][]P <-> ~<><>(~P)" by S43_solve
wenzelm@21426
   115
lemma "|- ~<>(P | Q) <-> ~<>P & ~<>Q" by S43_solve
wenzelm@21426
   116
wenzelm@21426
   117
lemma "|- []P | []Q --> [](P | Q)" by S43_solve
wenzelm@21426
   118
lemma "|- <>(P & Q) --> <>P & <>Q" by S43_solve
wenzelm@21426
   119
lemma "|- [](P | Q) --> []P | <>Q" by S43_solve
wenzelm@21426
   120
lemma "|- <>P & []Q --> <>(P & Q)" by S43_solve
wenzelm@21426
   121
lemma "|- [](P | Q) --> <>P | []Q" by S43_solve
wenzelm@21426
   122
lemma "|- <>(P-->(Q & R)) --> ([]P --> <>Q) & ([]P--><>R)" by S43_solve
wenzelm@21426
   123
lemma "|- (P--<Q) & (Q--<R) --> (P--<R)" by S43_solve
wenzelm@21426
   124
lemma "|- []P --> <>Q --> <>(P & Q)" by S43_solve
wenzelm@21426
   125
wenzelm@21426
   126
wenzelm@21426
   127
(* Theorems of system S4 from Hughes and Cresswell, p.46 *)
wenzelm@21426
   128
wenzelm@21426
   129
lemma "|- []A --> A" by S43_solve             (* refexivity *)
wenzelm@21426
   130
lemma "|- []A --> [][]A" by S43_solve         (* transitivity *)
wenzelm@21426
   131
lemma "|- []A --> <>A" by S43_solve           (* seriality *)
wenzelm@21426
   132
lemma "|- <>[](<>A --> []<>A)" by S43_solve
wenzelm@21426
   133
lemma "|- <>[](<>[]A --> []A)" by S43_solve
wenzelm@21426
   134
lemma "|- []P <-> [][]P" by S43_solve
wenzelm@21426
   135
lemma "|- <>P <-> <><>P" by S43_solve
wenzelm@21426
   136
lemma "|- <>[]<>P --> <>P" by S43_solve
wenzelm@21426
   137
lemma "|- []<>P <-> []<>[]<>P" by S43_solve
wenzelm@21426
   138
lemma "|- <>[]P <-> <>[]<>[]P" by S43_solve
wenzelm@21426
   139
wenzelm@21426
   140
(* Theorems for system S4 from Hughes and Cresswell, p.60 *)
wenzelm@21426
   141
wenzelm@21426
   142
lemma "|- []P | []Q <-> []([]P | []Q)" by S43_solve
wenzelm@21426
   143
lemma "|- ((P>-<Q) --< R) --> ((P>-<Q) --< []R)" by S43_solve
wenzelm@21426
   144
wenzelm@21426
   145
(* These are from Hailpern, LNCS 129 *)
wenzelm@21426
   146
wenzelm@21426
   147
lemma "|- [](P & Q) <-> []P & []Q" by S43_solve
wenzelm@21426
   148
lemma "|- <>(P | Q) <-> <>P | <>Q" by S43_solve
wenzelm@21426
   149
lemma "|- <>(P --> Q) <-> ([]P --> <>Q)" by S43_solve
wenzelm@21426
   150
wenzelm@21426
   151
lemma "|- [](P --> Q) --> (<>P --> <>Q)" by S43_solve
wenzelm@21426
   152
lemma "|- []P --> []<>P" by S43_solve
wenzelm@21426
   153
lemma "|- <>[]P --> <>P" by S43_solve
wenzelm@21426
   154
wenzelm@21426
   155
lemma "|- []P | []Q --> [](P | Q)" by S43_solve
wenzelm@21426
   156
lemma "|- <>(P & Q) --> <>P & <>Q" by S43_solve
wenzelm@21426
   157
lemma "|- [](P | Q) --> []P | <>Q" by S43_solve
wenzelm@21426
   158
lemma "|- <>P & []Q --> <>(P & Q)" by S43_solve
wenzelm@21426
   159
lemma "|- [](P | Q) --> <>P | []Q" by S43_solve
wenzelm@21426
   160
wenzelm@21426
   161
wenzelm@21426
   162
(* Theorems of system S43 *)
wenzelm@21426
   163
wenzelm@21426
   164
lemma "|- <>[]P --> []<>P" by S43_solve
wenzelm@21426
   165
lemma "|- <>[]P --> [][]<>P" by S43_solve
wenzelm@21426
   166
lemma "|- [](<>P | <>Q) --> []<>P | []<>Q" by S43_solve
wenzelm@21426
   167
lemma "|- <>[]P & <>[]Q --> <>([]P & []Q)" by S43_solve
wenzelm@21426
   168
lemma "|- []([]P --> []Q) | []([]Q --> []P)" by S43_solve
wenzelm@21426
   169
lemma "|- [](<>P --> <>Q) | [](<>Q --> <>P)" by S43_solve
wenzelm@21426
   170
lemma "|- []([]P --> Q) | []([]Q --> P)" by S43_solve
wenzelm@21426
   171
lemma "|- [](P --> <>Q) | [](Q --> <>P)" by S43_solve
wenzelm@21426
   172
lemma "|- [](P --> []Q-->R) | [](P | ([]R --> Q))" by S43_solve
wenzelm@21426
   173
lemma "|- [](P | (Q --> <>C)) | [](P --> C --> <>Q)" by S43_solve
wenzelm@21426
   174
lemma "|- []([]P | Q) & [](P | []Q) --> []P | []Q" by S43_solve
wenzelm@21426
   175
lemma "|- <>P & <>Q --> <>(<>P & Q) | <>(P & <>Q)" by S43_solve
wenzelm@21426
   176
lemma "|- [](P | Q) & []([]P | Q) & [](P | []Q) --> []P | []Q" by S43_solve
wenzelm@21426
   177
lemma "|- <>P & <>Q --> <>(P & Q) | <>(<>P & Q) | <>(P & <>Q)" by S43_solve
wenzelm@21426
   178
lemma "|- <>[]<>P <-> []<>P" by S43_solve
wenzelm@21426
   179
lemma "|- []<>[]P <-> <>[]P" by S43_solve
wenzelm@21426
   180
wenzelm@21426
   181
(* These are from Hailpern, LNCS 129 *)
wenzelm@21426
   182
wenzelm@21426
   183
lemma "|- [](P & Q) <-> []P & []Q" by S43_solve
wenzelm@21426
   184
lemma "|- <>(P | Q) <-> <>P | <>Q" by S43_solve
wenzelm@21426
   185
lemma "|- <>(P --> Q) <-> []P --> <>Q" by S43_solve
wenzelm@21426
   186
wenzelm@21426
   187
lemma "|- [](P --> Q) --> <>P --> <>Q" by S43_solve
wenzelm@21426
   188
lemma "|- []P --> []<>P" by S43_solve
wenzelm@21426
   189
lemma "|- <>[]P --> <>P" by S43_solve
wenzelm@21426
   190
lemma "|- []<>[]P --> []<>P" by S43_solve
wenzelm@21426
   191
lemma "|- <>[]P --> <>[]<>P" by S43_solve
wenzelm@21426
   192
lemma "|- <>[]P --> []<>P" by S43_solve
wenzelm@21426
   193
lemma "|- []<>[]P <-> <>[]P" by S43_solve
wenzelm@21426
   194
lemma "|- <>[]<>P <-> []<>P" by S43_solve
wenzelm@21426
   195
wenzelm@21426
   196
lemma "|- []P | []Q --> [](P | Q)" by S43_solve
wenzelm@21426
   197
lemma "|- <>(P & Q) --> <>P & <>Q" by S43_solve
wenzelm@21426
   198
lemma "|- [](P | Q) --> []P | <>Q" by S43_solve
wenzelm@21426
   199
lemma "|- <>P & []Q --> <>(P & Q)" by S43_solve
wenzelm@21426
   200
lemma "|- [](P | Q) --> <>P | []Q" by S43_solve
wenzelm@21426
   201
lemma "|- [](P | Q) --> []<>P | []<>Q" by S43_solve
wenzelm@21426
   202
lemma "|- <>[]P & <>[]Q --> <>(P & Q)" by S43_solve
wenzelm@21426
   203
lemma "|- <>[](P & Q) <-> <>[]P & <>[]Q" by S43_solve
wenzelm@21426
   204
lemma "|- []<>(P | Q) <-> []<>P | []<>Q" by S43_solve
paulson@2073
   205
paulson@2073
   206
end