src/Pure/tactic.ML
author wenzelm
Sat Jan 06 21:27:12 2001 +0100 (2001-01-06)
changeset 10805 89a29437cebc
parent 10444 2dfa19236768
child 10817 083d4a6734b4
permissions -rw-r--r--
added norm_hhf(_tac);
wenzelm@10805
     1
(*  Title:      Pure/tactic.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@10805
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1991  University of Cambridge
clasohm@0
     5
wenzelm@10805
     6
Tactics.
clasohm@0
     7
*)
clasohm@0
     8
clasohm@0
     9
signature TACTIC =
paulson@1501
    10
  sig
wenzelm@10805
    11
  val ares_tac          : thm list -> int -> tactic
clasohm@0
    12
  val asm_rewrite_goal_tac:
nipkow@4713
    13
    bool*bool*bool -> (meta_simpset -> tactic) -> meta_simpset -> int -> tactic
wenzelm@10805
    14
  val assume_tac        : int -> tactic
wenzelm@10805
    15
  val atac      : int ->tactic
lcp@670
    16
  val bimatch_from_nets_tac: 
paulson@1501
    17
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
wenzelm@10805
    18
  val bimatch_tac       : (bool*thm)list -> int -> tactic
paulson@3706
    19
  val biresolution_from_nets_tac: 
wenzelm@10805
    20
        ('a list -> (bool * thm) list) ->
wenzelm@10805
    21
        bool -> 'a Net.net * 'a Net.net -> int -> tactic
lcp@670
    22
  val biresolve_from_nets_tac: 
paulson@1501
    23
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
wenzelm@10805
    24
  val biresolve_tac     : (bool*thm)list -> int -> tactic
wenzelm@10805
    25
  val build_net : thm list -> (int*thm) Net.net
paulson@1501
    26
  val build_netpair:    (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net ->
paulson@1501
    27
      (bool*thm)list -> (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net
wenzelm@10805
    28
  val compose_inst_tac  : (string*string)list -> (bool*thm*int) -> 
paulson@3409
    29
                          int -> tactic
wenzelm@10805
    30
  val compose_tac       : (bool * thm * int) -> int -> tactic 
wenzelm@10805
    31
  val cut_facts_tac     : thm list -> int -> tactic
wenzelm@10805
    32
  val cut_inst_tac      : (string*string)list -> thm -> int -> tactic   
oheimb@7491
    33
  val datac             : thm -> int -> int -> tactic
wenzelm@10805
    34
  val defer_tac         : int -> tactic
wenzelm@10805
    35
  val distinct_subgoals_tac     : tactic
wenzelm@10805
    36
  val dmatch_tac        : thm list -> int -> tactic
wenzelm@10805
    37
  val dresolve_tac      : thm list -> int -> tactic
wenzelm@10805
    38
  val dres_inst_tac     : (string*string)list -> thm -> int -> tactic   
wenzelm@10805
    39
  val dtac              : thm -> int ->tactic
oheimb@7491
    40
  val eatac             : thm -> int -> int -> tactic
wenzelm@10805
    41
  val etac              : thm -> int ->tactic
wenzelm@10805
    42
  val eq_assume_tac     : int -> tactic   
wenzelm@10805
    43
  val ematch_tac        : thm list -> int -> tactic
wenzelm@10805
    44
  val eresolve_tac      : thm list -> int -> tactic
wenzelm@10805
    45
  val eres_inst_tac     : (string*string)list -> thm -> int -> tactic
oheimb@7491
    46
  val fatac             : thm -> int -> int -> tactic
nipkow@5974
    47
  val filter_prems_tac  : (term -> bool) -> int -> tactic  
wenzelm@10805
    48
  val filter_thms       : (term*term->bool) -> int*term*thm list -> thm list
wenzelm@10805
    49
  val filt_resolve_tac  : thm list -> int -> int -> tactic
wenzelm@10805
    50
  val flexflex_tac      : tactic
wenzelm@10805
    51
  val fold_goals_tac    : thm list -> tactic
wenzelm@10805
    52
  val fold_rule         : thm list -> thm -> thm
wenzelm@10805
    53
  val fold_tac          : thm list -> tactic
wenzelm@10805
    54
  val forward_tac       : thm list -> int -> tactic   
wenzelm@10805
    55
  val forw_inst_tac     : (string*string)list -> thm -> int -> tactic
wenzelm@10805
    56
  val ftac              : thm -> int ->tactic
paulson@3409
    57
  val insert_tagged_brl : ('a*(bool*thm)) * 
paulson@3409
    58
                          (('a*(bool*thm))Net.net * ('a*(bool*thm))Net.net) ->
paulson@3409
    59
                          ('a*(bool*thm))Net.net * ('a*(bool*thm))Net.net
wenzelm@10805
    60
  val delete_tagged_brl : (bool*thm) * 
paulson@3409
    61
                         ((int*(bool*thm))Net.net * (int*(bool*thm))Net.net) ->
paulson@1801
    62
                    (int*(bool*thm))Net.net * (int*(bool*thm))Net.net
wenzelm@10805
    63
  val is_fact           : thm -> bool
wenzelm@10805
    64
  val lessb             : (bool * thm) * (bool * thm) -> bool
wenzelm@10805
    65
  val lift_inst_rule    : thm * int * (string*string)list * thm -> thm
wenzelm@10805
    66
  val make_elim         : thm -> thm
wenzelm@10805
    67
  val match_from_net_tac        : (int*thm) Net.net -> int -> tactic
wenzelm@10805
    68
  val match_tac : thm list -> int -> tactic
wenzelm@10805
    69
  val metacut_tac       : thm -> int -> tactic
wenzelm@10805
    70
  val net_bimatch_tac   : (bool*thm) list -> int -> tactic
wenzelm@10805
    71
  val net_biresolve_tac : (bool*thm) list -> int -> tactic
wenzelm@10805
    72
  val net_match_tac     : thm list -> int -> tactic
wenzelm@10805
    73
  val net_resolve_tac   : thm list -> int -> tactic
wenzelm@10805
    74
  val norm_hhf          : thm -> thm
wenzelm@10805
    75
  val norm_hhf_tac      : int -> tactic
wenzelm@10805
    76
  val orderlist         : (int * 'a) list -> 'a list
wenzelm@10805
    77
  val PRIMITIVE         : (thm -> thm) -> tactic  
wenzelm@10805
    78
  val PRIMSEQ           : (thm -> thm Seq.seq) -> tactic  
wenzelm@10805
    79
  val prune_params_tac  : tactic
wenzelm@10805
    80
  val rename_params_tac : string list -> int -> tactic
wenzelm@10805
    81
  val rename_tac        : string -> int -> tactic
wenzelm@10805
    82
  val rename_last_tac   : string -> string list -> int -> tactic
wenzelm@10805
    83
  val resolve_from_net_tac      : (int*thm) Net.net -> int -> tactic
wenzelm@10805
    84
  val resolve_tac       : thm list -> int -> tactic
wenzelm@10805
    85
  val res_inst_tac      : (string*string)list -> thm -> int -> tactic   
wenzelm@10444
    86
  val rewrite_goal_tac  : thm list -> int -> tactic
wenzelm@3575
    87
  val rewrite_goals_rule: thm list -> thm -> thm
wenzelm@10805
    88
  val rewrite_rule      : thm list -> thm -> thm
wenzelm@10805
    89
  val rewrite_goals_tac : thm list -> tactic
wenzelm@10805
    90
  val rewrite_tac       : thm list -> tactic
wenzelm@10805
    91
  val rewtac            : thm -> tactic
wenzelm@10805
    92
  val rotate_tac        : int -> int -> tactic
wenzelm@10805
    93
  val rtac              : thm -> int -> tactic
wenzelm@10805
    94
  val rule_by_tactic    : tactic -> thm -> thm
wenzelm@10805
    95
  val solve_tac         : thm list -> int -> tactic
wenzelm@10805
    96
  val subgoal_tac       : string -> int -> tactic
wenzelm@10805
    97
  val subgoals_tac      : string list -> int -> tactic
wenzelm@10805
    98
  val subgoals_of_brl   : bool * thm -> int
wenzelm@10805
    99
  val term_lift_inst_rule       :
nipkow@1975
   100
      thm * int * (indexname*typ)list * ((indexname*typ)*term)list  * thm
nipkow@1975
   101
      -> thm
oheimb@10347
   102
  val instantiate_tac   : (string * string) list -> tactic
wenzelm@10805
   103
  val thin_tac          : string -> int -> tactic
wenzelm@10805
   104
  val trace_goalno_tac  : (int -> tactic) -> int -> tactic
paulson@1501
   105
  end;
clasohm@0
   106
clasohm@0
   107
paulson@1501
   108
structure Tactic : TACTIC = 
clasohm@0
   109
struct
clasohm@0
   110
paulson@1501
   111
(*Discover which goal is chosen:  SOMEGOAL(trace_goalno_tac tac) *)
paulson@1501
   112
fun trace_goalno_tac tac i st =  
wenzelm@4270
   113
    case Seq.pull(tac i st) of
wenzelm@10805
   114
        None    => Seq.empty
wenzelm@5956
   115
      | seqcell => (writeln ("Subgoal " ^ string_of_int i ^ " selected"); 
wenzelm@10805
   116
                         Seq.make(fn()=> seqcell));
clasohm@0
   117
clasohm@0
   118
(*Makes a rule by applying a tactic to an existing rule*)
paulson@1501
   119
fun rule_by_tactic tac rl =
paulson@2688
   120
  let val (st, thaw) = freeze_thaw (zero_var_indexes rl)
wenzelm@4270
   121
  in case Seq.pull (tac st)  of
wenzelm@10805
   122
        None        => raise THM("rule_by_tactic", 0, [rl])
paulson@2688
   123
      | Some(st',_) => Thm.varifyT (thaw st')
paulson@2688
   124
  end;
clasohm@0
   125
 
clasohm@0
   126
(*** Basic tactics ***)
clasohm@0
   127
clasohm@0
   128
(*Makes a tactic whose effect on a state is given by thmfun: thm->thm seq.*)
wenzelm@4270
   129
fun PRIMSEQ thmfun st =  thmfun st handle THM _ => Seq.empty;
clasohm@0
   130
clasohm@0
   131
(*Makes a tactic whose effect on a state is given by thmfun: thm->thm.*)
wenzelm@4270
   132
fun PRIMITIVE thmfun = PRIMSEQ (Seq.single o thmfun);
clasohm@0
   133
clasohm@0
   134
(*** The following fail if the goal number is out of range:
clasohm@0
   135
     thus (REPEAT (resolve_tac rules i)) stops once subgoal i disappears. *)
clasohm@0
   136
clasohm@0
   137
(*Solve subgoal i by assumption*)
clasohm@0
   138
fun assume_tac i = PRIMSEQ (assumption i);
clasohm@0
   139
clasohm@0
   140
(*Solve subgoal i by assumption, using no unification*)
clasohm@0
   141
fun eq_assume_tac i = PRIMITIVE (eq_assumption i);
clasohm@0
   142
clasohm@0
   143
(** Resolution/matching tactics **)
clasohm@0
   144
clasohm@0
   145
(*The composition rule/state: no lifting or var renaming.
clasohm@0
   146
  The arg = (bires_flg, orule, m) ;  see bicompose for explanation.*)
clasohm@0
   147
fun compose_tac arg i = PRIMSEQ (bicompose false arg i);
clasohm@0
   148
clasohm@0
   149
(*Converts a "destruct" rule like P&Q==>P to an "elimination" rule
clasohm@0
   150
  like [| P&Q; P==>R |] ==> R *)
clasohm@0
   151
fun make_elim rl = zero_var_indexes (rl RS revcut_rl);
clasohm@0
   152
clasohm@0
   153
(*Attack subgoal i by resolution, using flags to indicate elimination rules*)
clasohm@0
   154
fun biresolve_tac brules i = PRIMSEQ (biresolution false brules i);
clasohm@0
   155
clasohm@0
   156
(*Resolution: the simple case, works for introduction rules*)
clasohm@0
   157
fun resolve_tac rules = biresolve_tac (map (pair false) rules);
clasohm@0
   158
clasohm@0
   159
(*Resolution with elimination rules only*)
clasohm@0
   160
fun eresolve_tac rules = biresolve_tac (map (pair true) rules);
clasohm@0
   161
clasohm@0
   162
(*Forward reasoning using destruction rules.*)
clasohm@0
   163
fun forward_tac rls = resolve_tac (map make_elim rls) THEN' assume_tac;
clasohm@0
   164
clasohm@0
   165
(*Like forward_tac, but deletes the assumption after use.*)
clasohm@0
   166
fun dresolve_tac rls = eresolve_tac (map make_elim rls);
clasohm@0
   167
clasohm@0
   168
(*Shorthand versions: for resolution with a single theorem*)
oheimb@7491
   169
val atac    =   assume_tac;
oheimb@7491
   170
fun rtac rl =  resolve_tac [rl];
oheimb@7491
   171
fun dtac rl = dresolve_tac [rl];
clasohm@1460
   172
fun etac rl = eresolve_tac [rl];
oheimb@7491
   173
fun ftac rl =  forward_tac [rl];
oheimb@7491
   174
fun datac thm j = EVERY' (dtac thm::replicate j atac);
oheimb@7491
   175
fun eatac thm j = EVERY' (etac thm::replicate j atac);
oheimb@7491
   176
fun fatac thm j = EVERY' (ftac thm::replicate j atac);
clasohm@0
   177
clasohm@0
   178
(*Use an assumption or some rules ... A popular combination!*)
clasohm@0
   179
fun ares_tac rules = assume_tac  ORELSE'  resolve_tac rules;
clasohm@0
   180
wenzelm@5263
   181
fun solve_tac rules = resolve_tac rules THEN_ALL_NEW assume_tac;
wenzelm@5263
   182
clasohm@0
   183
(*Matching tactics -- as above, but forbid updating of state*)
clasohm@0
   184
fun bimatch_tac brules i = PRIMSEQ (biresolution true brules i);
clasohm@0
   185
fun match_tac rules  = bimatch_tac (map (pair false) rules);
clasohm@0
   186
fun ematch_tac rules = bimatch_tac (map (pair true) rules);
clasohm@0
   187
fun dmatch_tac rls   = ematch_tac (map make_elim rls);
clasohm@0
   188
clasohm@0
   189
(*Smash all flex-flex disagreement pairs in the proof state.*)
clasohm@0
   190
val flexflex_tac = PRIMSEQ flexflex_rule;
clasohm@0
   191
paulson@3409
   192
paulson@3409
   193
(*Remove duplicate subgoals.  By Mark Staples*)
paulson@3409
   194
local
paulson@3409
   195
fun cterm_aconv (a,b) = #t (rep_cterm a) aconv #t (rep_cterm b);
paulson@3409
   196
in
paulson@3409
   197
fun distinct_subgoals_tac state = 
paulson@3409
   198
    let val (frozth,thawfn) = freeze_thaw state
wenzelm@10805
   199
        val froz_prems = cprems_of frozth
wenzelm@10805
   200
        val assumed = implies_elim_list frozth (map assume froz_prems)
wenzelm@10805
   201
        val implied = implies_intr_list (gen_distinct cterm_aconv froz_prems)
wenzelm@10805
   202
                                        assumed;
wenzelm@4270
   203
    in  Seq.single (thawfn implied)  end
paulson@3409
   204
end; 
paulson@3409
   205
paulson@3409
   206
clasohm@0
   207
(*Lift and instantiate a rule wrt the given state and subgoal number *)
paulson@1501
   208
fun lift_inst_rule (st, i, sinsts, rule) =
paulson@1501
   209
let val {maxidx,sign,...} = rep_thm st
paulson@1501
   210
    val (_, _, Bi, _) = dest_state(st,i)
wenzelm@10805
   211
    val params = Logic.strip_params Bi          (*params of subgoal i*)
clasohm@0
   212
    val params = rev(rename_wrt_term Bi params) (*as they are printed*)
clasohm@0
   213
    val paramTs = map #2 params
clasohm@0
   214
    and inc = maxidx+1
clasohm@0
   215
    fun liftvar (Var ((a,j), T)) = Var((a, j+inc), paramTs---> incr_tvar inc T)
clasohm@0
   216
      | liftvar t = raise TERM("Variable expected", [t]);
clasohm@0
   217
    fun liftterm t = list_abs_free (params, 
wenzelm@10805
   218
                                    Logic.incr_indexes(paramTs,inc) t)
clasohm@0
   219
    (*Lifts instantiation pair over params*)
lcp@230
   220
    fun liftpair (cv,ct) = (cterm_fun liftvar cv, cterm_fun liftterm ct)
clasohm@0
   221
    fun lifttvar((a,i),ctyp) =
wenzelm@10805
   222
        let val {T,sign} = rep_ctyp ctyp
wenzelm@10805
   223
        in  ((a,i+inc), ctyp_of sign (incr_tvar inc T)) end
paulson@1501
   224
    val rts = types_sorts rule and (types,sorts) = types_sorts st
clasohm@0
   225
    fun types'(a,~1) = (case assoc(params,a) of None => types(a,~1) | sm => sm)
clasohm@0
   226
      | types'(ixn) = types ixn;
nipkow@949
   227
    val used = add_term_tvarnames
paulson@1501
   228
                  (#prop(rep_thm st) $ #prop(rep_thm rule),[])
nipkow@949
   229
    val (Tinsts,insts) = read_insts sign rts (types',sorts) used sinsts
paulson@8129
   230
in Drule.instantiate (map lifttvar Tinsts, map liftpair insts)
paulson@8129
   231
                     (lift_rule (st,i) rule)
clasohm@0
   232
end;
clasohm@0
   233
nipkow@3984
   234
(*
nipkow@3984
   235
Like lift_inst_rule but takes terms, not strings, where the terms may contain
nipkow@3984
   236
Bounds referring to parameters of the subgoal.
nipkow@3984
   237
nipkow@3984
   238
insts: [...,(vj,tj),...]
nipkow@3984
   239
nipkow@3984
   240
The tj may contain references to parameters of subgoal i of the state st
nipkow@3984
   241
in the form of Bound k, i.e. the tj may be subterms of the subgoal.
nipkow@3984
   242
To saturate the lose bound vars, the tj are enclosed in abstractions
nipkow@3984
   243
corresponding to the parameters of subgoal i, thus turning them into
nipkow@3984
   244
functions. At the same time, the types of the vj are lifted.
nipkow@3984
   245
nipkow@3984
   246
NB: the types in insts must be correctly instantiated already,
nipkow@3984
   247
    i.e. Tinsts is not applied to insts.
nipkow@3984
   248
*)
nipkow@1975
   249
fun term_lift_inst_rule (st, i, Tinsts, insts, rule) =
nipkow@1966
   250
let val {maxidx,sign,...} = rep_thm st
nipkow@1966
   251
    val (_, _, Bi, _) = dest_state(st,i)
nipkow@1966
   252
    val params = Logic.strip_params Bi          (*params of subgoal i*)
nipkow@1966
   253
    val paramTs = map #2 params
nipkow@1966
   254
    and inc = maxidx+1
nipkow@1975
   255
    fun liftvar ((a,j), T) = Var((a, j+inc), paramTs---> incr_tvar inc T)
nipkow@1975
   256
    (*lift only Var, not term, which must be lifted already*)
nipkow@1975
   257
    fun liftpair (v,t) = (cterm_of sign (liftvar v), cterm_of sign t)
nipkow@1975
   258
    fun liftTpair((a,i),T) = ((a,i+inc), ctyp_of sign (incr_tvar inc T))
paulson@8129
   259
in Drule.instantiate (map liftTpair Tinsts, map liftpair insts)
paulson@8129
   260
                     (lift_rule (st,i) rule)
nipkow@1966
   261
end;
clasohm@0
   262
clasohm@0
   263
(*** Resolve after lifting and instantation; may refer to parameters of the
clasohm@0
   264
     subgoal.  Fails if "i" is out of range.  ***)
clasohm@0
   265
clasohm@0
   266
(*compose version: arguments are as for bicompose.*)
paulson@8977
   267
fun compose_inst_tac sinsts (bires_flg, rule, nsubgoal) i st = 
paulson@8977
   268
  if i > nprems_of st then no_tac st
paulson@8977
   269
  else st |>
paulson@8977
   270
    (compose_tac (bires_flg, lift_inst_rule (st, i, sinsts, rule), nsubgoal) i
paulson@8977
   271
     handle TERM (msg,_)   => (writeln msg;  no_tac)
wenzelm@10805
   272
          | THM  (msg,_,_) => (writeln msg;  no_tac));
clasohm@0
   273
lcp@761
   274
(*"Resolve" version.  Note: res_inst_tac cannot behave sensibly if the
lcp@761
   275
  terms that are substituted contain (term or type) unknowns from the
lcp@761
   276
  goal, because it is unable to instantiate goal unknowns at the same time.
lcp@761
   277
paulson@2029
   278
  The type checker is instructed not to freeze flexible type vars that
nipkow@952
   279
  were introduced during type inference and still remain in the term at the
nipkow@952
   280
  end.  This increases flexibility but can introduce schematic type vars in
nipkow@952
   281
  goals.
lcp@761
   282
*)
clasohm@0
   283
fun res_inst_tac sinsts rule i =
clasohm@0
   284
    compose_inst_tac sinsts (false, rule, nprems_of rule) i;
clasohm@0
   285
paulson@1501
   286
(*eresolve elimination version*)
clasohm@0
   287
fun eres_inst_tac sinsts rule i =
clasohm@0
   288
    compose_inst_tac sinsts (true, rule, nprems_of rule) i;
clasohm@0
   289
lcp@270
   290
(*For forw_inst_tac and dres_inst_tac.  Preserve Var indexes of rl;
lcp@270
   291
  increment revcut_rl instead.*)
clasohm@0
   292
fun make_elim_preserve rl = 
lcp@270
   293
  let val {maxidx,...} = rep_thm rl
wenzelm@6390
   294
      fun cvar ixn = cterm_of (Theory.sign_of ProtoPure.thy) (Var(ixn,propT));
lcp@270
   295
      val revcut_rl' = 
wenzelm@10805
   296
          instantiate ([],  [(cvar("V",0), cvar("V",maxidx+1)),
wenzelm@10805
   297
                             (cvar("W",0), cvar("W",maxidx+1))]) revcut_rl
clasohm@0
   298
      val arg = (false, rl, nprems_of rl)
wenzelm@4270
   299
      val [th] = Seq.list_of (bicompose false arg 1 revcut_rl')
clasohm@0
   300
  in  th  end
clasohm@0
   301
  handle Bind => raise THM("make_elim_preserve", 1, [rl]);
clasohm@0
   302
lcp@270
   303
(*instantiate and cut -- for a FACT, anyway...*)
lcp@270
   304
fun cut_inst_tac sinsts rule = res_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   305
lcp@270
   306
(*forward tactic applies a RULE to an assumption without deleting it*)
lcp@270
   307
fun forw_inst_tac sinsts rule = cut_inst_tac sinsts rule THEN' assume_tac;
lcp@270
   308
lcp@270
   309
(*dresolve tactic applies a RULE to replace an assumption*)
clasohm@0
   310
fun dres_inst_tac sinsts rule = eres_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   311
oheimb@10347
   312
(*instantiate variables in the whole state*)
oheimb@10347
   313
val instantiate_tac = PRIMITIVE o read_instantiate;
oheimb@10347
   314
paulson@1951
   315
(*Deletion of an assumption*)
paulson@1951
   316
fun thin_tac s = eres_inst_tac [("V",s)] thin_rl;
paulson@1951
   317
lcp@270
   318
(*** Applications of cut_rl ***)
clasohm@0
   319
clasohm@0
   320
(*Used by metacut_tac*)
clasohm@0
   321
fun bires_cut_tac arg i =
clasohm@1460
   322
    resolve_tac [cut_rl] i  THEN  biresolve_tac arg (i+1) ;
clasohm@0
   323
clasohm@0
   324
(*The conclusion of the rule gets assumed in subgoal i,
clasohm@0
   325
  while subgoal i+1,... are the premises of the rule.*)
clasohm@0
   326
fun metacut_tac rule = bires_cut_tac [(false,rule)];
clasohm@0
   327
clasohm@0
   328
(*Recognizes theorems that are not rules, but simple propositions*)
clasohm@0
   329
fun is_fact rl =
clasohm@0
   330
    case prems_of rl of
wenzelm@10805
   331
        [] => true  |  _::_ => false;
clasohm@0
   332
clasohm@0
   333
(*"Cut" all facts from theorem list into the goal as assumptions. *)
clasohm@0
   334
fun cut_facts_tac ths i =
clasohm@0
   335
    EVERY (map (fn th => metacut_tac th i) (filter is_fact ths));
clasohm@0
   336
clasohm@0
   337
(*Introduce the given proposition as a lemma and subgoal*)
paulson@4178
   338
fun subgoal_tac sprop i st = 
wenzelm@4270
   339
  let val st'    = Seq.hd (res_inst_tac [("psi", sprop)] cut_rl i st)
paulson@4178
   340
      val concl' = Logic.strip_assums_concl (List.nth(prems_of st', i))
paulson@4178
   341
  in  
paulson@4178
   342
      if null (term_tvars concl') then ()
paulson@4178
   343
      else warning"Type variables in new subgoal: add a type constraint?";
wenzelm@4270
   344
      Seq.single st'
paulson@4178
   345
  end;
clasohm@0
   346
lcp@439
   347
(*Introduce a list of lemmas and subgoals*)
lcp@439
   348
fun subgoals_tac sprops = EVERY' (map subgoal_tac sprops);
lcp@439
   349
clasohm@0
   350
clasohm@0
   351
(**** Indexing and filtering of theorems ****)
clasohm@0
   352
clasohm@0
   353
(*Returns the list of potentially resolvable theorems for the goal "prem",
wenzelm@10805
   354
        using the predicate  could(subgoal,concl).
clasohm@0
   355
  Resulting list is no longer than "limit"*)
clasohm@0
   356
fun filter_thms could (limit, prem, ths) =
clasohm@0
   357
  let val pb = Logic.strip_assums_concl prem;   (*delete assumptions*)
clasohm@0
   358
      fun filtr (limit, []) = []
wenzelm@10805
   359
        | filtr (limit, th::ths) =
wenzelm@10805
   360
            if limit=0 then  []
wenzelm@10805
   361
            else if could(pb, concl_of th)  then th :: filtr(limit-1, ths)
wenzelm@10805
   362
            else filtr(limit,ths)
clasohm@0
   363
  in  filtr(limit,ths)  end;
clasohm@0
   364
clasohm@0
   365
clasohm@0
   366
(*** biresolution and resolution using nets ***)
clasohm@0
   367
clasohm@0
   368
(** To preserve the order of the rules, tag them with increasing integers **)
clasohm@0
   369
clasohm@0
   370
(*insert tags*)
clasohm@0
   371
fun taglist k [] = []
clasohm@0
   372
  | taglist k (x::xs) = (k,x) :: taglist (k+1) xs;
clasohm@0
   373
clasohm@0
   374
(*remove tags and suppress duplicates -- list is assumed sorted!*)
clasohm@0
   375
fun untaglist [] = []
clasohm@0
   376
  | untaglist [(k:int,x)] = [x]
clasohm@0
   377
  | untaglist ((k,x) :: (rest as (k',x')::_)) =
clasohm@0
   378
      if k=k' then untaglist rest
clasohm@0
   379
      else    x :: untaglist rest;
clasohm@0
   380
clasohm@0
   381
(*return list elements in original order*)
wenzelm@4438
   382
fun orderlist kbrls = untaglist (sort (int_ord o pairself fst) kbrls); 
clasohm@0
   383
clasohm@0
   384
(*insert one tagged brl into the pair of nets*)
lcp@1077
   385
fun insert_tagged_brl (kbrl as (k,(eres,th)), (inet,enet)) =
clasohm@0
   386
    if eres then 
wenzelm@10805
   387
        case prems_of th of
wenzelm@10805
   388
            prem::_ => (inet, Net.insert_term ((prem,kbrl), enet, K false))
wenzelm@10805
   389
          | [] => error"insert_tagged_brl: elimination rule with no premises"
clasohm@0
   390
    else (Net.insert_term ((concl_of th, kbrl), inet, K false), enet);
clasohm@0
   391
clasohm@0
   392
(*build a pair of nets for biresolution*)
lcp@670
   393
fun build_netpair netpair brls = 
lcp@1077
   394
    foldr insert_tagged_brl (taglist 1 brls, netpair);
clasohm@0
   395
paulson@1801
   396
(*delete one kbrl from the pair of nets;
paulson@1801
   397
  we don't know the value of k, so we use 0 and ignore it in the comparison*)
paulson@1801
   398
local
paulson@1801
   399
  fun eq_kbrl ((k,(eres,th)), (k',(eres',th'))) = eq_thm (th,th')
paulson@1801
   400
in
paulson@1801
   401
fun delete_tagged_brl (brl as (eres,th), (inet,enet)) =
paulson@1801
   402
    if eres then 
wenzelm@10805
   403
        case prems_of th of
wenzelm@10805
   404
            prem::_ => (inet, Net.delete_term ((prem, (0,brl)), enet, eq_kbrl))
wenzelm@10805
   405
          | []      => (inet,enet)     (*no major premise: ignore*)
paulson@1801
   406
    else (Net.delete_term ((concl_of th, (0,brl)), inet, eq_kbrl), enet);
paulson@1801
   407
end;
paulson@1801
   408
paulson@1801
   409
paulson@3706
   410
(*biresolution using a pair of nets rather than rules.  
paulson@3706
   411
    function "order" must sort and possibly filter the list of brls.
paulson@3706
   412
    boolean "match" indicates matching or unification.*)
paulson@3706
   413
fun biresolution_from_nets_tac order match (inet,enet) =
clasohm@0
   414
  SUBGOAL
clasohm@0
   415
    (fn (prem,i) =>
clasohm@0
   416
      let val hyps = Logic.strip_assums_hyp prem
clasohm@0
   417
          and concl = Logic.strip_assums_concl prem 
clasohm@0
   418
          val kbrls = Net.unify_term inet concl @
paulson@2672
   419
                      List.concat (map (Net.unify_term enet) hyps)
paulson@3706
   420
      in PRIMSEQ (biresolution match (order kbrls) i) end);
clasohm@0
   421
paulson@3706
   422
(*versions taking pre-built nets.  No filtering of brls*)
paulson@3706
   423
val biresolve_from_nets_tac = biresolution_from_nets_tac orderlist false;
paulson@3706
   424
val bimatch_from_nets_tac   = biresolution_from_nets_tac orderlist true;
clasohm@0
   425
clasohm@0
   426
(*fast versions using nets internally*)
lcp@670
   427
val net_biresolve_tac =
lcp@670
   428
    biresolve_from_nets_tac o build_netpair(Net.empty,Net.empty);
lcp@670
   429
lcp@670
   430
val net_bimatch_tac =
lcp@670
   431
    bimatch_from_nets_tac o build_netpair(Net.empty,Net.empty);
clasohm@0
   432
clasohm@0
   433
(*** Simpler version for resolve_tac -- only one net, and no hyps ***)
clasohm@0
   434
clasohm@0
   435
(*insert one tagged rl into the net*)
clasohm@0
   436
fun insert_krl (krl as (k,th), net) =
clasohm@0
   437
    Net.insert_term ((concl_of th, krl), net, K false);
clasohm@0
   438
clasohm@0
   439
(*build a net of rules for resolution*)
clasohm@0
   440
fun build_net rls = 
clasohm@0
   441
    foldr insert_krl (taglist 1 rls, Net.empty);
clasohm@0
   442
clasohm@0
   443
(*resolution using a net rather than rules; pred supports filt_resolve_tac*)
clasohm@0
   444
fun filt_resolution_from_net_tac match pred net =
clasohm@0
   445
  SUBGOAL
clasohm@0
   446
    (fn (prem,i) =>
clasohm@0
   447
      let val krls = Net.unify_term net (Logic.strip_assums_concl prem)
clasohm@0
   448
      in 
wenzelm@10805
   449
         if pred krls  
clasohm@0
   450
         then PRIMSEQ
wenzelm@10805
   451
                (biresolution match (map (pair false) (orderlist krls)) i)
clasohm@0
   452
         else no_tac
clasohm@0
   453
      end);
clasohm@0
   454
clasohm@0
   455
(*Resolve the subgoal using the rules (making a net) unless too flexible,
clasohm@0
   456
   which means more than maxr rules are unifiable.      *)
clasohm@0
   457
fun filt_resolve_tac rules maxr = 
clasohm@0
   458
    let fun pred krls = length krls <= maxr
clasohm@0
   459
    in  filt_resolution_from_net_tac false pred (build_net rules)  end;
clasohm@0
   460
clasohm@0
   461
(*versions taking pre-built nets*)
clasohm@0
   462
val resolve_from_net_tac = filt_resolution_from_net_tac false (K true);
clasohm@0
   463
val match_from_net_tac = filt_resolution_from_net_tac true (K true);
clasohm@0
   464
clasohm@0
   465
(*fast versions using nets internally*)
clasohm@0
   466
val net_resolve_tac = resolve_from_net_tac o build_net;
clasohm@0
   467
val net_match_tac = match_from_net_tac o build_net;
clasohm@0
   468
clasohm@0
   469
clasohm@0
   470
(*** For Natural Deduction using (bires_flg, rule) pairs ***)
clasohm@0
   471
clasohm@0
   472
(*The number of new subgoals produced by the brule*)
lcp@1077
   473
fun subgoals_of_brl (true,rule)  = nprems_of rule - 1
lcp@1077
   474
  | subgoals_of_brl (false,rule) = nprems_of rule;
clasohm@0
   475
clasohm@0
   476
(*Less-than test: for sorting to minimize number of new subgoals*)
clasohm@0
   477
fun lessb (brl1,brl2) = subgoals_of_brl brl1 < subgoals_of_brl brl2;
clasohm@0
   478
clasohm@0
   479
clasohm@0
   480
(*** Meta-Rewriting Tactics ***)
clasohm@0
   481
clasohm@0
   482
fun result1 tacf mss thm =
wenzelm@4270
   483
  apsome fst (Seq.pull (tacf mss thm));
clasohm@0
   484
wenzelm@3575
   485
val simple_prover =
wenzelm@3575
   486
  result1 (fn mss => ALLGOALS (resolve_tac (prems_of_mss mss)));
wenzelm@3575
   487
berghofe@10415
   488
val rewrite_rule = MetaSimplifier.rewrite_rule_aux simple_prover;
berghofe@10415
   489
val rewrite_goals_rule = MetaSimplifier.rewrite_goals_rule_aux simple_prover;
wenzelm@3575
   490
wenzelm@3575
   491
paulson@2145
   492
(*Rewrite subgoal i only.  SELECT_GOAL avoids inefficiencies in goals_conv.*)
paulson@2145
   493
fun asm_rewrite_goal_tac mode prover_tac mss =
paulson@2145
   494
      SELECT_GOAL 
paulson@2145
   495
        (PRIMITIVE
wenzelm@10805
   496
           (rewrite_goal_rule mode (result1 prover_tac) mss 1));
clasohm@0
   497
wenzelm@10444
   498
fun rewrite_goal_tac rews =
wenzelm@10444
   499
  asm_rewrite_goal_tac (true, false, false) (K no_tac) (MetaSimplifier.mss_of rews);
wenzelm@10444
   500
lcp@69
   501
(*Rewrite throughout proof state. *)
lcp@69
   502
fun rewrite_tac defs = PRIMITIVE(rewrite_rule defs);
clasohm@0
   503
clasohm@0
   504
(*Rewrite subgoals only, not main goal. *)
lcp@69
   505
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
clasohm@1460
   506
fun rewtac def = rewrite_goals_tac [def];
clasohm@0
   507
wenzelm@10805
   508
val norm_hhf = Drule.forall_elim_vars_safe o rewrite_rule [Drule.norm_hhf_eq];
wenzelm@10805
   509
val norm_hhf_tac = rewrite_goal_tac [Drule.norm_hhf_eq];
wenzelm@10805
   510
clasohm@0
   511
paulson@1501
   512
(*** for folding definitions, handling critical pairs ***)
lcp@69
   513
lcp@69
   514
(*The depth of nesting in a term*)
lcp@69
   515
fun term_depth (Abs(a,T,t)) = 1 + term_depth t
paulson@2145
   516
  | term_depth (f$t) = 1 + Int.max(term_depth f, term_depth t)
lcp@69
   517
  | term_depth _ = 0;
lcp@69
   518
lcp@69
   519
val lhs_of_thm = #1 o Logic.dest_equals o #prop o rep_thm;
lcp@69
   520
lcp@69
   521
(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
lcp@69
   522
  Returns longest lhs first to avoid folding its subexpressions.*)
lcp@69
   523
fun sort_lhs_depths defs =
lcp@69
   524
  let val keylist = make_keylist (term_depth o lhs_of_thm) defs
wenzelm@4438
   525
      val keys = distinct (sort (rev_order o int_ord) (map #2 keylist))
lcp@69
   526
  in  map (keyfilter keylist) keys  end;
lcp@69
   527
wenzelm@7596
   528
val rev_defs = sort_lhs_depths o map symmetric;
lcp@69
   529
wenzelm@7596
   530
fun fold_rule defs thm = foldl (fn (th, ds) => rewrite_rule ds th) (thm, rev_defs defs);
wenzelm@7596
   531
fun fold_tac defs = EVERY (map rewrite_tac (rev_defs defs));
wenzelm@7596
   532
fun fold_goals_tac defs = EVERY (map rewrite_goals_tac (rev_defs defs));
lcp@69
   533
lcp@69
   534
lcp@69
   535
(*** Renaming of parameters in a subgoal
lcp@69
   536
     Names may contain letters, digits or primes and must be
lcp@69
   537
     separated by blanks ***)
clasohm@0
   538
clasohm@0
   539
(*Calling this will generate the warning "Same as previous level" since
clasohm@0
   540
  it affects nothing but the names of bound variables!*)
wenzelm@9535
   541
fun rename_params_tac xs i =
wenzelm@9535
   542
  (if !Logic.auto_rename
wenzelm@9535
   543
    then (warning "Resetting Logic.auto_rename"; 
wenzelm@10805
   544
        Logic.auto_rename := false)
wenzelm@9535
   545
   else (); PRIMITIVE (rename_params_rule (xs, i)));
wenzelm@9535
   546
clasohm@0
   547
fun rename_tac str i = 
wenzelm@9535
   548
  let val cs = Symbol.explode str in  
wenzelm@4693
   549
  case #2 (take_prefix (Symbol.is_letdig orf Symbol.is_blank) cs) of
wenzelm@9535
   550
      [] => rename_params_tac (scanwords Symbol.is_letdig cs) i
clasohm@0
   551
    | c::_ => error ("Illegal character: " ^ c)
clasohm@0
   552
  end;
clasohm@0
   553
paulson@1501
   554
(*Rename recent parameters using names generated from a and the suffixes,
paulson@1501
   555
  provided the string a, which represents a term, is an identifier. *)
clasohm@0
   556
fun rename_last_tac a sufs i = 
clasohm@0
   557
  let val names = map (curry op^ a) sufs
clasohm@0
   558
  in  if Syntax.is_identifier a
clasohm@0
   559
      then PRIMITIVE (rename_params_rule (names,i))
clasohm@0
   560
      else all_tac
clasohm@0
   561
  end;
clasohm@0
   562
paulson@2043
   563
(*Prunes all redundant parameters from the proof state by rewriting.
paulson@2043
   564
  DOES NOT rewrite main goal, where quantification over an unused bound
paulson@2043
   565
    variable is sometimes done to avoid the need for cut_facts_tac.*)
paulson@2043
   566
val prune_params_tac = rewrite_goals_tac [triv_forall_equality];
clasohm@0
   567
paulson@1501
   568
(*rotate_tac n i: rotate the assumptions of subgoal i by n positions, from
paulson@1501
   569
  right to left if n is positive, and from left to right if n is negative.*)
paulson@2672
   570
fun rotate_tac 0 i = all_tac
paulson@2672
   571
  | rotate_tac k i = PRIMITIVE (rotate_rule k i);
nipkow@1209
   572
paulson@7248
   573
(*Rotates the given subgoal to be the last.*)
paulson@7248
   574
fun defer_tac i = PRIMITIVE (permute_prems (i-1) 1);
paulson@7248
   575
nipkow@5974
   576
(* remove premises that do not satisfy p; fails if all prems satisfy p *)
nipkow@5974
   577
fun filter_prems_tac p =
nipkow@5974
   578
  let fun Then None tac = Some tac
nipkow@5974
   579
        | Then (Some tac) tac' = Some(tac THEN' tac');
nipkow@5974
   580
      fun thins ((tac,n),H) =
nipkow@5974
   581
        if p H then (tac,n+1)
nipkow@5974
   582
        else (Then tac (rotate_tac n THEN' etac thin_rl),0);
nipkow@5974
   583
  in SUBGOAL(fn (subg,n) =>
nipkow@5974
   584
       let val Hs = Logic.strip_assums_hyp subg
nipkow@5974
   585
       in case fst(foldl thins ((None,0),Hs)) of
nipkow@5974
   586
            None => no_tac | Some tac => tac n
nipkow@5974
   587
       end)
nipkow@5974
   588
  end;
nipkow@5974
   589
clasohm@0
   590
end;
paulson@1501
   591
paulson@1501
   592
open Tactic;