src/HOL/Orderings.thy
author haftmann
Fri Mar 09 08:45:55 2007 +0100 (2007-03-09)
changeset 22424 8a5412121687
parent 22384 33a46e6c7f04
child 22473 753123c89d72
permissions -rw-r--r--
*** empty log message ***
nipkow@15524
     1
(*  Title:      HOL/Orderings.thy
nipkow@15524
     2
    ID:         $Id$
nipkow@15524
     3
    Author:     Tobias Nipkow, Markus Wenzel, and Larry Paulson
nipkow@15524
     4
*)
nipkow@15524
     5
haftmann@21329
     6
header {* Syntactic and abstract orders *}
nipkow@15524
     7
nipkow@15524
     8
theory Orderings
haftmann@21329
     9
imports HOL
nipkow@15524
    10
begin
nipkow@15524
    11
haftmann@21329
    12
subsection {* Order syntax *}
nipkow@15524
    13
haftmann@21194
    14
class ord =
wenzelm@21656
    15
  fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool"  (infix "\<sqsubseteq>" 50)
wenzelm@21656
    16
    and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool"  (infix "\<sqsubset>" 50)
wenzelm@21204
    17
begin
wenzelm@21204
    18
wenzelm@21204
    19
notation
wenzelm@21656
    20
  less_eq  ("op \<^loc><=") and
haftmann@21620
    21
  less_eq  ("(_/ \<^loc><= _)" [51, 51] 50) and
wenzelm@21656
    22
  less  ("op \<^loc><") and
wenzelm@21656
    23
  less  ("(_/ \<^loc>< _)"  [51, 51] 50)
haftmann@21620
    24
  
wenzelm@21204
    25
notation (xsymbols)
wenzelm@21404
    26
  less_eq  ("op \<^loc>\<le>") and
wenzelm@21259
    27
  less_eq  ("(_/ \<^loc>\<le> _)"  [51, 51] 50)
nipkow@15524
    28
wenzelm@21204
    29
notation (HTML output)
wenzelm@21404
    30
  less_eq  ("op \<^loc>\<le>") and
wenzelm@21259
    31
  less_eq  ("(_/ \<^loc>\<le> _)"  [51, 51] 50)
wenzelm@21204
    32
wenzelm@21204
    33
abbreviation (input)
wenzelm@21656
    34
  greater  (infix "\<^loc>>" 50) where
haftmann@21620
    35
  "x \<^loc>> y \<equiv> y \<^loc>< x"
haftmann@21620
    36
wenzelm@21656
    37
abbreviation (input)
wenzelm@21656
    38
  greater_eq  (infix "\<^loc>>=" 50) where
wenzelm@21656
    39
  "x \<^loc>>= y \<equiv> y \<^loc><= x"
wenzelm@21204
    40
wenzelm@21656
    41
notation (input)
wenzelm@21656
    42
  greater_eq  (infix "\<^loc>\<ge>" 50)
wenzelm@21204
    43
wenzelm@21204
    44
end
wenzelm@21204
    45
wenzelm@21204
    46
notation
wenzelm@21656
    47
  less_eq  ("op <=") and
haftmann@21620
    48
  less_eq  ("(_/ <= _)" [51, 51] 50) and
wenzelm@21656
    49
  less  ("op <") and
wenzelm@21656
    50
  less  ("(_/ < _)"  [51, 51] 50)
wenzelm@21204
    51
  
wenzelm@21204
    52
notation (xsymbols)
wenzelm@21404
    53
  less_eq  ("op \<le>") and
wenzelm@21259
    54
  less_eq  ("(_/ \<le> _)"  [51, 51] 50)
nipkow@15524
    55
wenzelm@21204
    56
notation (HTML output)
wenzelm@21404
    57
  less_eq  ("op \<le>") and
wenzelm@21259
    58
  less_eq  ("(_/ \<le> _)"  [51, 51] 50)
haftmann@20714
    59
wenzelm@19536
    60
abbreviation (input)
wenzelm@21656
    61
  greater  (infix ">" 50) where
haftmann@21620
    62
  "x > y \<equiv> y < x"
haftmann@21620
    63
wenzelm@21656
    64
abbreviation (input)
wenzelm@21656
    65
  greater_eq  (infix ">=" 50) where
wenzelm@21656
    66
  "x >= y \<equiv> y <= x"
haftmann@21620
    67
wenzelm@21656
    68
notation (input)
wenzelm@21656
    69
  greater_eq  (infix "\<ge>" 50)
nipkow@15524
    70
nipkow@15524
    71
haftmann@21329
    72
subsection {* Quasiorders (preorders) *}
nipkow@15524
    73
haftmann@22316
    74
class preorder = ord +
haftmann@22316
    75
  assumes less_le: "x \<sqsubset> y \<longleftrightarrow> x \<sqsubseteq> y \<and> x \<noteq> y"
haftmann@22384
    76
  and order_refl [iff]: "x \<sqsubseteq> x"
haftmann@22384
    77
  and order_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z"
haftmann@21248
    78
begin
haftmann@21248
    79
nipkow@15524
    80
text {* Reflexivity. *}
nipkow@15524
    81
haftmann@21248
    82
lemma eq_refl: "x = y \<Longrightarrow> x \<sqsubseteq> y"
nipkow@15524
    83
    -- {* This form is useful with the classical reasoner. *}
haftmann@22384
    84
  by (erule ssubst) (rule order_refl)
nipkow@15524
    85
haftmann@21248
    86
lemma less_irrefl [iff]: "\<not> x \<sqsubset> x"
haftmann@21248
    87
  by (simp add: less_le)
nipkow@15524
    88
haftmann@21248
    89
lemma le_less: "x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubset> y \<or> x = y"
nipkow@15524
    90
    -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
haftmann@21248
    91
  by (simp add: less_le) blast
nipkow@15524
    92
haftmann@21248
    93
lemma le_imp_less_or_eq: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubset> y \<or> x = y"
haftmann@21248
    94
  unfolding less_le by blast
nipkow@15524
    95
haftmann@21248
    96
lemma less_imp_le: "x \<sqsubset> y \<Longrightarrow> x \<sqsubseteq> y"
haftmann@21248
    97
  unfolding less_le by blast
haftmann@21248
    98
haftmann@21329
    99
lemma less_imp_neq: "x \<sqsubset> y \<Longrightarrow> x \<noteq> y"
haftmann@21329
   100
  by (erule contrapos_pn, erule subst, rule less_irrefl)
haftmann@21329
   101
haftmann@21329
   102
haftmann@21329
   103
text {* Useful for simplification, but too risky to include by default. *}
haftmann@21329
   104
haftmann@21329
   105
lemma less_imp_not_eq: "x \<sqsubset> y \<Longrightarrow> (x = y) \<longleftrightarrow> False"
haftmann@21329
   106
  by auto
haftmann@21329
   107
haftmann@21329
   108
lemma less_imp_not_eq2: "x \<sqsubset> y \<Longrightarrow> (y = x) \<longleftrightarrow> False"
haftmann@21329
   109
  by auto
haftmann@21329
   110
haftmann@21329
   111
haftmann@21329
   112
text {* Transitivity rules for calculational reasoning *}
haftmann@21329
   113
haftmann@21329
   114
lemma neq_le_trans: "\<lbrakk> a \<noteq> b; a \<sqsubseteq> b \<rbrakk> \<Longrightarrow> a \<sqsubset> b"
haftmann@21329
   115
  by (simp add: less_le)
haftmann@21329
   116
haftmann@21329
   117
lemma le_neq_trans: "\<lbrakk> a \<sqsubseteq> b; a \<noteq> b \<rbrakk> \<Longrightarrow> a \<sqsubset> b"
haftmann@21329
   118
  by (simp add: less_le)
haftmann@21329
   119
haftmann@21329
   120
end
haftmann@21329
   121
haftmann@21329
   122
subsection {* Partial orderings *}
haftmann@21329
   123
haftmann@22316
   124
class order = preorder + 
haftmann@21329
   125
  assumes antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y"
haftmann@21329
   126
begin
nipkow@15524
   127
nipkow@15524
   128
text {* Asymmetry. *}
nipkow@15524
   129
haftmann@21248
   130
lemma less_not_sym: "x \<sqsubset> y \<Longrightarrow> \<not> (y \<sqsubset> x)"
haftmann@21248
   131
  by (simp add: less_le antisym)
nipkow@15524
   132
haftmann@21248
   133
lemma less_asym: "x \<sqsubset> y \<Longrightarrow> (\<not> P \<Longrightarrow> y \<sqsubset> x) \<Longrightarrow> P"
haftmann@21248
   134
  by (drule less_not_sym, erule contrapos_np) simp
nipkow@15524
   135
haftmann@21248
   136
lemma eq_iff: "x = y \<longleftrightarrow> x \<sqsubseteq> y \<and> y \<sqsubseteq> x"
haftmann@21248
   137
  by (blast intro: antisym)
nipkow@15524
   138
haftmann@21248
   139
lemma antisym_conv: "y \<sqsubseteq> x \<Longrightarrow> x \<sqsubseteq> y \<longleftrightarrow> x = y"
haftmann@21248
   140
  by (blast intro: antisym)
nipkow@15524
   141
haftmann@21248
   142
lemma less_imp_neq: "x \<sqsubset> y \<Longrightarrow> x \<noteq> y"
haftmann@21248
   143
  by (erule contrapos_pn, erule subst, rule less_irrefl)
haftmann@21248
   144
haftmann@21083
   145
nipkow@15524
   146
text {* Transitivity. *}
nipkow@15524
   147
haftmann@21248
   148
lemma less_trans: "\<lbrakk> x \<sqsubset> y; y \<sqsubset> z \<rbrakk> \<Longrightarrow> x \<sqsubset> z"
haftmann@22384
   149
  by (simp add: less_le) (blast intro: order_trans antisym)
nipkow@15524
   150
haftmann@21248
   151
lemma le_less_trans: "\<lbrakk> x \<sqsubseteq> y; y \<sqsubset> z \<rbrakk> \<Longrightarrow> x \<sqsubset> z"
haftmann@22384
   152
  by (simp add: less_le) (blast intro: order_trans antisym)
nipkow@15524
   153
haftmann@21248
   154
lemma less_le_trans: "\<lbrakk> x \<sqsubset> y; y \<sqsubseteq> z \<rbrakk> \<Longrightarrow> x \<sqsubset> z"
haftmann@22384
   155
  by (simp add: less_le) (blast intro: order_trans antisym)
nipkow@15524
   156
nipkow@15524
   157
nipkow@15524
   158
text {* Useful for simplification, but too risky to include by default. *}
nipkow@15524
   159
haftmann@21248
   160
lemma less_imp_not_less: "x \<sqsubset> y \<Longrightarrow> (\<not> y \<sqsubset> x) \<longleftrightarrow> True"
haftmann@21248
   161
  by (blast elim: less_asym)
nipkow@15524
   162
haftmann@21248
   163
lemma less_imp_triv: "x \<sqsubset> y \<Longrightarrow> (y \<sqsubset> x \<longrightarrow> P) \<longleftrightarrow> True"
haftmann@21248
   164
  by (blast elim: less_asym)
nipkow@15524
   165
haftmann@21248
   166
haftmann@21083
   167
text {* Transitivity rules for calculational reasoning *}
nipkow@15524
   168
haftmann@21248
   169
lemma less_asym': "\<lbrakk> a \<sqsubset> b; b \<sqsubset> a \<rbrakk> \<Longrightarrow> P"
haftmann@21248
   170
  by (rule less_asym)
haftmann@21248
   171
haftmann@21248
   172
end
nipkow@15524
   173
haftmann@21329
   174
haftmann@21329
   175
subsection {* Linear (total) orders *}
haftmann@21329
   176
haftmann@22316
   177
class linorder = order +
haftmann@21216
   178
  assumes linear: "x \<sqsubseteq> y \<or> y \<sqsubseteq> x"
haftmann@21248
   179
begin
haftmann@21248
   180
haftmann@21412
   181
lemma less_linear: "x \<sqsubset> y \<or> x = y \<or> y \<sqsubset> x"
haftmann@21248
   182
  unfolding less_le using less_le linear by blast 
haftmann@21248
   183
haftmann@21248
   184
lemma le_less_linear: "x \<sqsubseteq> y \<or> y \<sqsubset> x"
haftmann@21412
   185
  by (simp add: le_less less_linear)
haftmann@21248
   186
haftmann@21248
   187
lemma le_cases [case_names le ge]:
haftmann@21248
   188
  "\<lbrakk> x \<sqsubseteq> y \<Longrightarrow> P; y \<sqsubseteq> x \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
haftmann@21248
   189
  using linear by blast
haftmann@21248
   190
haftmann@22384
   191
lemma linorder_cases [case_names less equal greater]:
haftmann@21248
   192
    "\<lbrakk> x \<sqsubset> y \<Longrightarrow> P; x = y \<Longrightarrow> P; y \<sqsubset> x \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
haftmann@21412
   193
  using less_linear by blast
haftmann@21248
   194
haftmann@21248
   195
lemma not_less: "\<not> x \<sqsubset> y \<longleftrightarrow> y \<sqsubseteq> x"
haftmann@21248
   196
  apply (simp add: less_le)
haftmann@21248
   197
  using linear apply (blast intro: antisym)
nipkow@15524
   198
  done
nipkow@15524
   199
haftmann@21248
   200
lemma not_le: "\<not> x \<sqsubseteq> y \<longleftrightarrow> y \<sqsubset> x"
haftmann@21248
   201
  apply (simp add: less_le)
haftmann@21248
   202
  using linear apply (blast intro: antisym)
nipkow@15524
   203
  done
nipkow@15524
   204
haftmann@21248
   205
lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x \<sqsubset> y \<or> y \<sqsubset> x"
haftmann@21412
   206
  by (cut_tac x = x and y = y in less_linear, auto)
nipkow@15524
   207
haftmann@21248
   208
lemma neqE: "\<lbrakk> x \<noteq> y; x \<sqsubset> y \<Longrightarrow> R; y \<sqsubset> x \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
haftmann@21248
   209
  by (simp add: neq_iff) blast
nipkow@15524
   210
haftmann@21248
   211
lemma antisym_conv1: "\<not> x \<sqsubset> y \<Longrightarrow> x \<sqsubseteq> y \<longleftrightarrow> x = y"
haftmann@21248
   212
  by (blast intro: antisym dest: not_less [THEN iffD1])
nipkow@15524
   213
haftmann@21248
   214
lemma antisym_conv2: "x \<sqsubseteq> y \<Longrightarrow> \<not> x \<sqsubset> y \<longleftrightarrow> x = y"
haftmann@21248
   215
  by (blast intro: antisym dest: not_less [THEN iffD1])
nipkow@15524
   216
haftmann@21248
   217
lemma antisym_conv3: "\<not> y \<sqsubset> x \<Longrightarrow> \<not> x \<sqsubset> y \<longleftrightarrow> x = y"
haftmann@21248
   218
  by (blast intro: antisym dest: not_less [THEN iffD1])
nipkow@15524
   219
paulson@16796
   220
text{*Replacing the old Nat.leI*}
haftmann@21248
   221
lemma leI: "\<not> x \<sqsubset> y \<Longrightarrow> y \<sqsubseteq> x"
haftmann@21248
   222
  unfolding not_less .
paulson@16796
   223
haftmann@21248
   224
lemma leD: "y \<sqsubseteq> x \<Longrightarrow> \<not> x \<sqsubset> y"
haftmann@21248
   225
  unfolding not_less .
paulson@16796
   226
paulson@16796
   227
(*FIXME inappropriate name (or delete altogether)*)
haftmann@21248
   228
lemma not_leE: "\<not> y \<sqsubseteq> x \<Longrightarrow> x \<sqsubset> y"
haftmann@21248
   229
  unfolding not_le .
haftmann@21248
   230
haftmann@22424
   231
text {* min/max *}
haftmann@21383
   232
haftmann@21383
   233
definition
wenzelm@21404
   234
  min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
haftmann@21383
   235
  "min a b = (if a \<sqsubseteq> b then a else b)"
wenzelm@21404
   236
wenzelm@21404
   237
definition
wenzelm@21404
   238
  max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
haftmann@21383
   239
  "max a b = (if a \<sqsubseteq> b then b else a)"
haftmann@21383
   240
haftmann@22384
   241
end
haftmann@22384
   242
haftmann@22384
   243
context linorder
haftmann@22384
   244
begin
haftmann@22384
   245
haftmann@21383
   246
lemma min_le_iff_disj:
haftmann@21383
   247
  "min x y \<sqsubseteq> z \<longleftrightarrow> x \<sqsubseteq> z \<or> y \<sqsubseteq> z"
haftmann@22384
   248
  unfolding min_def using linear by (auto intro: order_trans)
haftmann@21383
   249
haftmann@21383
   250
lemma le_max_iff_disj:
haftmann@21383
   251
  "z \<sqsubseteq> max x y \<longleftrightarrow> z \<sqsubseteq> x \<or> z \<sqsubseteq> y"
haftmann@22384
   252
  unfolding max_def using linear by (auto intro: order_trans)
haftmann@21383
   253
haftmann@21383
   254
lemma min_less_iff_disj:
haftmann@21383
   255
  "min x y \<sqsubset> z \<longleftrightarrow> x \<sqsubset> z \<or> y \<sqsubset> z"
haftmann@21412
   256
  unfolding min_def le_less using less_linear by (auto intro: less_trans)
haftmann@21383
   257
haftmann@21383
   258
lemma less_max_iff_disj:
haftmann@21383
   259
  "z \<sqsubset> max x y \<longleftrightarrow> z \<sqsubset> x \<or> z \<sqsubset> y"
haftmann@21412
   260
  unfolding max_def le_less using less_linear by (auto intro: less_trans)
haftmann@21383
   261
haftmann@21383
   262
lemma min_less_iff_conj [simp]:
haftmann@21383
   263
  "z \<sqsubset> min x y \<longleftrightarrow> z \<sqsubset> x \<and> z \<sqsubset> y"
haftmann@21412
   264
  unfolding min_def le_less using less_linear by (auto intro: less_trans)
haftmann@21383
   265
haftmann@21383
   266
lemma max_less_iff_conj [simp]:
haftmann@21383
   267
  "max x y \<sqsubset> z \<longleftrightarrow> x \<sqsubset> z \<and> y \<sqsubset> z"
haftmann@21412
   268
  unfolding max_def le_less using less_linear by (auto intro: less_trans)
haftmann@21383
   269
haftmann@21383
   270
lemma split_min:
haftmann@21383
   271
  "P (min i j) \<longleftrightarrow> (i \<sqsubseteq> j \<longrightarrow> P i) \<and> (\<not> i \<sqsubseteq> j \<longrightarrow> P j)"
haftmann@21383
   272
  by (simp add: min_def)
haftmann@21383
   273
haftmann@21383
   274
lemma split_max:
haftmann@21383
   275
  "P (max i j) \<longleftrightarrow> (i \<sqsubseteq> j \<longrightarrow> P j) \<and> (\<not> i \<sqsubseteq> j \<longrightarrow> P i)"
haftmann@21383
   276
  by (simp add: max_def)
haftmann@21383
   277
haftmann@21248
   278
end
haftmann@21248
   279
haftmann@21248
   280
haftmann@21248
   281
subsection {* Name duplicates *}
haftmann@21248
   282
haftmann@22384
   283
(*lemmas order_refl [iff] = preorder_class.order_refl
haftmann@22384
   284
lemmas order_trans = preorder_class.order_trans*)
haftmann@22384
   285
lemmas order_less_le = less_le
haftmann@22316
   286
lemmas order_eq_refl = preorder_class.eq_refl
haftmann@22316
   287
lemmas order_less_irrefl = preorder_class.less_irrefl
haftmann@22316
   288
lemmas order_le_less = preorder_class.le_less
haftmann@22316
   289
lemmas order_le_imp_less_or_eq = preorder_class.le_imp_less_or_eq
haftmann@22316
   290
lemmas order_less_imp_le = preorder_class.less_imp_le
haftmann@22316
   291
lemmas order_less_imp_not_eq = preorder_class.less_imp_not_eq
haftmann@22316
   292
lemmas order_less_imp_not_eq2 = preorder_class.less_imp_not_eq2
haftmann@22316
   293
lemmas order_neq_le_trans = preorder_class.neq_le_trans
haftmann@22316
   294
lemmas order_le_neq_trans = preorder_class.le_neq_trans
haftmann@22316
   295
haftmann@22384
   296
lemmas order_antisym = antisym
haftmann@22316
   297
lemmas order_less_not_sym = order_class.less_not_sym
haftmann@22316
   298
lemmas order_less_asym = order_class.less_asym
haftmann@22316
   299
lemmas order_eq_iff = order_class.eq_iff
haftmann@22316
   300
lemmas order_antisym_conv = order_class.antisym_conv
haftmann@22316
   301
lemmas less_imp_neq = order_class.less_imp_neq
haftmann@22316
   302
lemmas order_less_trans = order_class.less_trans
haftmann@22316
   303
lemmas order_le_less_trans = order_class.le_less_trans
haftmann@22316
   304
lemmas order_less_le_trans = order_class.less_le_trans
haftmann@22316
   305
lemmas order_less_imp_not_less = order_class.less_imp_not_less
haftmann@22316
   306
lemmas order_less_imp_triv = order_class.less_imp_triv
haftmann@22316
   307
lemmas order_less_asym' = order_class.less_asym'
haftmann@22316
   308
haftmann@22384
   309
lemmas linorder_linear = linear
haftmann@22316
   310
lemmas linorder_less_linear = linorder_class.less_linear
haftmann@22316
   311
lemmas linorder_le_less_linear = linorder_class.le_less_linear
haftmann@22316
   312
lemmas linorder_le_cases = linorder_class.le_cases
haftmann@22384
   313
(*lemmas linorder_cases = linorder_class.linorder_cases*)
haftmann@22316
   314
lemmas linorder_not_less = linorder_class.not_less
haftmann@22316
   315
lemmas linorder_not_le = linorder_class.not_le
haftmann@22316
   316
lemmas linorder_neq_iff = linorder_class.neq_iff
haftmann@22316
   317
lemmas linorder_neqE = linorder_class.neqE
haftmann@22316
   318
lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1
haftmann@22316
   319
lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2
haftmann@22316
   320
lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3
haftmann@22316
   321
lemmas leI = linorder_class.leI
haftmann@22316
   322
lemmas leD = linorder_class.leD
haftmann@22316
   323
lemmas not_leE = linorder_class.not_leE
paulson@16796
   324
haftmann@21083
   325
haftmann@21083
   326
subsection {* Reasoning tools setup *}
haftmann@21083
   327
haftmann@21091
   328
ML {*
haftmann@21091
   329
local
haftmann@21091
   330
haftmann@21091
   331
fun decomp_gen sort thy (Trueprop $ t) =
haftmann@21248
   332
  let
haftmann@21248
   333
    fun of_sort t =
haftmann@21248
   334
      let
haftmann@21248
   335
        val T = type_of t
haftmann@21248
   336
      in
haftmann@21091
   337
        (* exclude numeric types: linear arithmetic subsumes transitivity *)
haftmann@21248
   338
        T <> HOLogic.natT andalso T <> HOLogic.intT
haftmann@21248
   339
          andalso T <> HOLogic.realT andalso Sign.of_sort thy (T, sort)
haftmann@21248
   340
      end;
haftmann@21248
   341
    fun dec (Const ("Not", _) $ t) = (case dec t
haftmann@21248
   342
          of NONE => NONE
haftmann@21248
   343
           | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2))
haftmann@21248
   344
      | dec (Const ("op =",  _) $ t1 $ t2) =
haftmann@21248
   345
          if of_sort t1
haftmann@21248
   346
          then SOME (t1, "=", t2)
haftmann@21248
   347
          else NONE
haftmann@21248
   348
      | dec (Const ("Orderings.less_eq",  _) $ t1 $ t2) =
haftmann@21248
   349
          if of_sort t1
haftmann@21248
   350
          then SOME (t1, "<=", t2)
haftmann@21248
   351
          else NONE
haftmann@21248
   352
      | dec (Const ("Orderings.less",  _) $ t1 $ t2) =
haftmann@21248
   353
          if of_sort t1
haftmann@21248
   354
          then SOME (t1, "<", t2)
haftmann@21248
   355
          else NONE
haftmann@21248
   356
      | dec _ = NONE;
haftmann@21091
   357
  in dec t end;
haftmann@21091
   358
haftmann@21091
   359
in
haftmann@21091
   360
haftmann@21091
   361
(* The setting up of Quasi_Tac serves as a demo.  Since there is no
haftmann@21091
   362
   class for quasi orders, the tactics Quasi_Tac.trans_tac and
haftmann@21091
   363
   Quasi_Tac.quasi_tac are not of much use. *)
haftmann@21091
   364
haftmann@21248
   365
structure Quasi_Tac = Quasi_Tac_Fun (
haftmann@21248
   366
struct
haftmann@21248
   367
  val le_trans = thm "order_trans";
haftmann@21248
   368
  val le_refl = thm "order_refl";
haftmann@21248
   369
  val eqD1 = thm "order_eq_refl";
haftmann@21248
   370
  val eqD2 = thm "sym" RS thm "order_eq_refl";
haftmann@21248
   371
  val less_reflE = thm "order_less_irrefl" RS thm "notE";
haftmann@21248
   372
  val less_imp_le = thm "order_less_imp_le";
haftmann@21248
   373
  val le_neq_trans = thm "order_le_neq_trans";
haftmann@21248
   374
  val neq_le_trans = thm "order_neq_le_trans";
haftmann@21248
   375
  val less_imp_neq = thm "less_imp_neq";
haftmann@21248
   376
  val decomp_trans = decomp_gen ["Orderings.order"];
haftmann@21248
   377
  val decomp_quasi = decomp_gen ["Orderings.order"];
haftmann@21248
   378
end);
haftmann@21091
   379
haftmann@21091
   380
structure Order_Tac = Order_Tac_Fun (
haftmann@21248
   381
struct
haftmann@21248
   382
  val less_reflE = thm "order_less_irrefl" RS thm "notE";
haftmann@21248
   383
  val le_refl = thm "order_refl";
haftmann@21248
   384
  val less_imp_le = thm "order_less_imp_le";
haftmann@21248
   385
  val not_lessI = thm "linorder_not_less" RS thm "iffD2";
haftmann@21248
   386
  val not_leI = thm "linorder_not_le" RS thm "iffD2";
haftmann@21248
   387
  val not_lessD = thm "linorder_not_less" RS thm "iffD1";
haftmann@21248
   388
  val not_leD = thm "linorder_not_le" RS thm "iffD1";
haftmann@21248
   389
  val eqI = thm "order_antisym";
haftmann@21248
   390
  val eqD1 = thm "order_eq_refl";
haftmann@21248
   391
  val eqD2 = thm "sym" RS thm "order_eq_refl";
haftmann@21248
   392
  val less_trans = thm "order_less_trans";
haftmann@21248
   393
  val less_le_trans = thm "order_less_le_trans";
haftmann@21248
   394
  val le_less_trans = thm "order_le_less_trans";
haftmann@21248
   395
  val le_trans = thm "order_trans";
haftmann@21248
   396
  val le_neq_trans = thm "order_le_neq_trans";
haftmann@21248
   397
  val neq_le_trans = thm "order_neq_le_trans";
haftmann@21248
   398
  val less_imp_neq = thm "less_imp_neq";
haftmann@21248
   399
  val eq_neq_eq_imp_neq = thm "eq_neq_eq_imp_neq";
haftmann@21248
   400
  val not_sym = thm "not_sym";
haftmann@21248
   401
  val decomp_part = decomp_gen ["Orderings.order"];
haftmann@21248
   402
  val decomp_lin = decomp_gen ["Orderings.linorder"];
haftmann@21248
   403
end);
haftmann@21091
   404
haftmann@21091
   405
end;
haftmann@21091
   406
*}
haftmann@21091
   407
haftmann@21083
   408
setup {*
haftmann@21083
   409
let
haftmann@21083
   410
haftmann@21083
   411
val order_antisym_conv = thm "order_antisym_conv"
haftmann@21083
   412
val linorder_antisym_conv1 = thm "linorder_antisym_conv1"
haftmann@21083
   413
val linorder_antisym_conv2 = thm "linorder_antisym_conv2"
haftmann@21083
   414
val linorder_antisym_conv3 = thm "linorder_antisym_conv3"
haftmann@21083
   415
haftmann@21083
   416
fun prp t thm = (#prop (rep_thm thm) = t);
nipkow@15524
   417
haftmann@21083
   418
fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) =
haftmann@21083
   419
  let val prems = prems_of_ss ss;
haftmann@21083
   420
      val less = Const("Orderings.less",T);
haftmann@21083
   421
      val t = HOLogic.mk_Trueprop(le $ s $ r);
haftmann@21083
   422
  in case find_first (prp t) prems of
haftmann@21083
   423
       NONE =>
haftmann@21083
   424
         let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s))
haftmann@21083
   425
         in case find_first (prp t) prems of
haftmann@21083
   426
              NONE => NONE
haftmann@21083
   427
            | SOME thm => SOME(mk_meta_eq(thm RS linorder_antisym_conv1))
haftmann@21083
   428
         end
haftmann@21083
   429
     | SOME thm => SOME(mk_meta_eq(thm RS order_antisym_conv))
haftmann@21083
   430
  end
haftmann@21083
   431
  handle THM _ => NONE;
nipkow@15524
   432
haftmann@21083
   433
fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) =
haftmann@21083
   434
  let val prems = prems_of_ss ss;
haftmann@21083
   435
      val le = Const("Orderings.less_eq",T);
haftmann@21083
   436
      val t = HOLogic.mk_Trueprop(le $ r $ s);
haftmann@21083
   437
  in case find_first (prp t) prems of
haftmann@21083
   438
       NONE =>
haftmann@21083
   439
         let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r))
haftmann@21083
   440
         in case find_first (prp t) prems of
haftmann@21083
   441
              NONE => NONE
haftmann@21083
   442
            | SOME thm => SOME(mk_meta_eq(thm RS linorder_antisym_conv3))
haftmann@21083
   443
         end
haftmann@21083
   444
     | SOME thm => SOME(mk_meta_eq(thm RS linorder_antisym_conv2))
haftmann@21083
   445
  end
haftmann@21083
   446
  handle THM _ => NONE;
nipkow@15524
   447
haftmann@21248
   448
fun add_simprocs procs thy =
haftmann@21248
   449
  (Simplifier.change_simpset_of thy (fn ss => ss
haftmann@21248
   450
    addsimprocs (map (fn (name, raw_ts, proc) =>
haftmann@21248
   451
      Simplifier.simproc thy name raw_ts proc)) procs); thy);
haftmann@21248
   452
fun add_solver name tac thy =
haftmann@21248
   453
  (Simplifier.change_simpset_of thy (fn ss => ss addSolver
haftmann@21248
   454
    (mk_solver name (K tac))); thy);
haftmann@21083
   455
haftmann@21083
   456
in
haftmann@21248
   457
  add_simprocs [
haftmann@21248
   458
       ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le),
haftmann@21248
   459
       ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less)
haftmann@21248
   460
     ]
haftmann@21248
   461
  #> add_solver "Trans_linear" Order_Tac.linear_tac
haftmann@21248
   462
  #> add_solver "Trans_partial" Order_Tac.partial_tac
haftmann@21248
   463
  (* Adding the transitivity reasoners also as safe solvers showed a slight
haftmann@21248
   464
     speed up, but the reasoning strength appears to be not higher (at least
haftmann@21248
   465
     no breaking of additional proofs in the entire HOL distribution, as
haftmann@21248
   466
     of 5 March 2004, was observed). *)
haftmann@21083
   467
end
haftmann@21083
   468
*}
nipkow@15524
   469
nipkow@15524
   470
haftmann@21083
   471
subsection {* Bounded quantifiers *}
haftmann@21083
   472
haftmann@21083
   473
syntax
wenzelm@21180
   474
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3ALL _<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   475
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3EX _<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   476
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _<=_./ _)" [0, 0, 10] 10)
wenzelm@21180
   477
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _<=_./ _)" [0, 0, 10] 10)
haftmann@21083
   478
wenzelm@21180
   479
  "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3ALL _>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   480
  "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3EX _>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   481
  "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _>=_./ _)" [0, 0, 10] 10)
wenzelm@21180
   482
  "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _>=_./ _)" [0, 0, 10] 10)
haftmann@21083
   483
haftmann@21083
   484
syntax (xsymbols)
wenzelm@21180
   485
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   486
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   487
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
wenzelm@21180
   488
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
haftmann@21083
   489
wenzelm@21180
   490
  "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   491
  "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   492
  "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
wenzelm@21180
   493
  "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
haftmann@21083
   494
haftmann@21083
   495
syntax (HOL)
wenzelm@21180
   496
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3! _<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   497
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3? _<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   498
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3! _<=_./ _)" [0, 0, 10] 10)
wenzelm@21180
   499
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3? _<=_./ _)" [0, 0, 10] 10)
haftmann@21083
   500
haftmann@21083
   501
syntax (HTML output)
wenzelm@21180
   502
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   503
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   504
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
wenzelm@21180
   505
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
haftmann@21083
   506
wenzelm@21180
   507
  "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   508
  "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
wenzelm@21180
   509
  "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
wenzelm@21180
   510
  "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
haftmann@21083
   511
haftmann@21083
   512
translations
haftmann@21083
   513
  "ALL x<y. P"   =>  "ALL x. x < y \<longrightarrow> P"
haftmann@21083
   514
  "EX x<y. P"    =>  "EX x. x < y \<and> P"
haftmann@21083
   515
  "ALL x<=y. P"  =>  "ALL x. x <= y \<longrightarrow> P"
haftmann@21083
   516
  "EX x<=y. P"   =>  "EX x. x <= y \<and> P"
haftmann@21083
   517
  "ALL x>y. P"   =>  "ALL x. x > y \<longrightarrow> P"
haftmann@21083
   518
  "EX x>y. P"    =>  "EX x. x > y \<and> P"
haftmann@21083
   519
  "ALL x>=y. P"  =>  "ALL x. x >= y \<longrightarrow> P"
haftmann@21083
   520
  "EX x>=y. P"   =>  "EX x. x >= y \<and> P"
haftmann@21083
   521
haftmann@21083
   522
print_translation {*
haftmann@21083
   523
let
wenzelm@22377
   524
  val All_binder = Syntax.binder_name @{const_syntax "All"};
wenzelm@22377
   525
  val Ex_binder = Syntax.binder_name @{const_syntax "Ex"};
wenzelm@22377
   526
  val impl = @{const_syntax "op -->"};
wenzelm@22377
   527
  val conj = @{const_syntax "op &"};
wenzelm@22377
   528
  val less = @{const_syntax "less"};
wenzelm@22377
   529
  val less_eq = @{const_syntax "less_eq"};
wenzelm@21180
   530
wenzelm@21180
   531
  val trans =
wenzelm@21524
   532
   [((All_binder, impl, less), ("_All_less", "_All_greater")),
wenzelm@21524
   533
    ((All_binder, impl, less_eq), ("_All_less_eq", "_All_greater_eq")),
wenzelm@21524
   534
    ((Ex_binder, conj, less), ("_Ex_less", "_Ex_greater")),
wenzelm@21524
   535
    ((Ex_binder, conj, less_eq), ("_Ex_less_eq", "_Ex_greater_eq"))];
wenzelm@21180
   536
krauss@22344
   537
  fun matches_bound v t = 
krauss@22344
   538
     case t of (Const ("_bound", _) $ Free (v', _)) => (v = v')
krauss@22344
   539
              | _ => false
krauss@22344
   540
  fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false)
krauss@22344
   541
  fun mk v c n P = Syntax.const c $ Syntax.mark_bound v $ n $ P
wenzelm@21180
   542
wenzelm@21180
   543
  fun tr' q = (q,
wenzelm@21180
   544
    fn [Const ("_bound", _) $ Free (v, _), Const (c, _) $ (Const (d, _) $ t $ u) $ P] =>
wenzelm@21180
   545
      (case AList.lookup (op =) trans (q, c, d) of
wenzelm@21180
   546
        NONE => raise Match
wenzelm@21180
   547
      | SOME (l, g) =>
krauss@22344
   548
          if matches_bound v t andalso not (contains_var v u) then mk v l u P
krauss@22344
   549
          else if matches_bound v u andalso not (contains_var v t) then mk v g t P
krauss@22344
   550
          else raise Match)
wenzelm@21180
   551
     | _ => raise Match);
wenzelm@21524
   552
in [tr' All_binder, tr' Ex_binder] end
haftmann@21083
   553
*}
haftmann@21083
   554
haftmann@21083
   555
haftmann@21383
   556
subsection {* Transitivity reasoning *}
haftmann@21383
   557
haftmann@21383
   558
lemma ord_le_eq_trans: "a <= b ==> b = c ==> a <= c"
haftmann@21383
   559
  by (rule subst)
haftmann@21383
   560
haftmann@21383
   561
lemma ord_eq_le_trans: "a = b ==> b <= c ==> a <= c"
haftmann@21383
   562
  by (rule ssubst)
haftmann@21383
   563
haftmann@21383
   564
lemma ord_less_eq_trans: "a < b ==> b = c ==> a < c"
haftmann@21383
   565
  by (rule subst)
haftmann@21383
   566
haftmann@21383
   567
lemma ord_eq_less_trans: "a = b ==> b < c ==> a < c"
haftmann@21383
   568
  by (rule ssubst)
haftmann@21383
   569
haftmann@21383
   570
lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==>
haftmann@21383
   571
  (!!x y. x < y ==> f x < f y) ==> f a < c"
haftmann@21383
   572
proof -
haftmann@21383
   573
  assume r: "!!x y. x < y ==> f x < f y"
haftmann@21383
   574
  assume "a < b" hence "f a < f b" by (rule r)
haftmann@21383
   575
  also assume "f b < c"
haftmann@21383
   576
  finally (order_less_trans) show ?thesis .
haftmann@21383
   577
qed
haftmann@21383
   578
haftmann@21383
   579
lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==>
haftmann@21383
   580
  (!!x y. x < y ==> f x < f y) ==> a < f c"
haftmann@21383
   581
proof -
haftmann@21383
   582
  assume r: "!!x y. x < y ==> f x < f y"
haftmann@21383
   583
  assume "a < f b"
haftmann@21383
   584
  also assume "b < c" hence "f b < f c" by (rule r)
haftmann@21383
   585
  finally (order_less_trans) show ?thesis .
haftmann@21383
   586
qed
haftmann@21383
   587
haftmann@21383
   588
lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==>
haftmann@21383
   589
  (!!x y. x <= y ==> f x <= f y) ==> f a < c"
haftmann@21383
   590
proof -
haftmann@21383
   591
  assume r: "!!x y. x <= y ==> f x <= f y"
haftmann@21383
   592
  assume "a <= b" hence "f a <= f b" by (rule r)
haftmann@21383
   593
  also assume "f b < c"
haftmann@21383
   594
  finally (order_le_less_trans) show ?thesis .
haftmann@21383
   595
qed
haftmann@21383
   596
haftmann@21383
   597
lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==>
haftmann@21383
   598
  (!!x y. x < y ==> f x < f y) ==> a < f c"
haftmann@21383
   599
proof -
haftmann@21383
   600
  assume r: "!!x y. x < y ==> f x < f y"
haftmann@21383
   601
  assume "a <= f b"
haftmann@21383
   602
  also assume "b < c" hence "f b < f c" by (rule r)
haftmann@21383
   603
  finally (order_le_less_trans) show ?thesis .
haftmann@21383
   604
qed
haftmann@21383
   605
haftmann@21383
   606
lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==>
haftmann@21383
   607
  (!!x y. x < y ==> f x < f y) ==> f a < c"
haftmann@21383
   608
proof -
haftmann@21383
   609
  assume r: "!!x y. x < y ==> f x < f y"
haftmann@21383
   610
  assume "a < b" hence "f a < f b" by (rule r)
haftmann@21383
   611
  also assume "f b <= c"
haftmann@21383
   612
  finally (order_less_le_trans) show ?thesis .
haftmann@21383
   613
qed
haftmann@21383
   614
haftmann@21383
   615
lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==>
haftmann@21383
   616
  (!!x y. x <= y ==> f x <= f y) ==> a < f c"
haftmann@21383
   617
proof -
haftmann@21383
   618
  assume r: "!!x y. x <= y ==> f x <= f y"
haftmann@21383
   619
  assume "a < f b"
haftmann@21383
   620
  also assume "b <= c" hence "f b <= f c" by (rule r)
haftmann@21383
   621
  finally (order_less_le_trans) show ?thesis .
haftmann@21383
   622
qed
haftmann@21383
   623
haftmann@21383
   624
lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==>
haftmann@21383
   625
  (!!x y. x <= y ==> f x <= f y) ==> a <= f c"
haftmann@21383
   626
proof -
haftmann@21383
   627
  assume r: "!!x y. x <= y ==> f x <= f y"
haftmann@21383
   628
  assume "a <= f b"
haftmann@21383
   629
  also assume "b <= c" hence "f b <= f c" by (rule r)
haftmann@21383
   630
  finally (order_trans) show ?thesis .
haftmann@21383
   631
qed
haftmann@21383
   632
haftmann@21383
   633
lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==>
haftmann@21383
   634
  (!!x y. x <= y ==> f x <= f y) ==> f a <= c"
haftmann@21383
   635
proof -
haftmann@21383
   636
  assume r: "!!x y. x <= y ==> f x <= f y"
haftmann@21383
   637
  assume "a <= b" hence "f a <= f b" by (rule r)
haftmann@21383
   638
  also assume "f b <= c"
haftmann@21383
   639
  finally (order_trans) show ?thesis .
haftmann@21383
   640
qed
haftmann@21383
   641
haftmann@21383
   642
lemma ord_le_eq_subst: "a <= b ==> f b = c ==>
haftmann@21383
   643
  (!!x y. x <= y ==> f x <= f y) ==> f a <= c"
haftmann@21383
   644
proof -
haftmann@21383
   645
  assume r: "!!x y. x <= y ==> f x <= f y"
haftmann@21383
   646
  assume "a <= b" hence "f a <= f b" by (rule r)
haftmann@21383
   647
  also assume "f b = c"
haftmann@21383
   648
  finally (ord_le_eq_trans) show ?thesis .
haftmann@21383
   649
qed
haftmann@21383
   650
haftmann@21383
   651
lemma ord_eq_le_subst: "a = f b ==> b <= c ==>
haftmann@21383
   652
  (!!x y. x <= y ==> f x <= f y) ==> a <= f c"
haftmann@21383
   653
proof -
haftmann@21383
   654
  assume r: "!!x y. x <= y ==> f x <= f y"
haftmann@21383
   655
  assume "a = f b"
haftmann@21383
   656
  also assume "b <= c" hence "f b <= f c" by (rule r)
haftmann@21383
   657
  finally (ord_eq_le_trans) show ?thesis .
haftmann@21383
   658
qed
haftmann@21383
   659
haftmann@21383
   660
lemma ord_less_eq_subst: "a < b ==> f b = c ==>
haftmann@21383
   661
  (!!x y. x < y ==> f x < f y) ==> f a < c"
haftmann@21383
   662
proof -
haftmann@21383
   663
  assume r: "!!x y. x < y ==> f x < f y"
haftmann@21383
   664
  assume "a < b" hence "f a < f b" by (rule r)
haftmann@21383
   665
  also assume "f b = c"
haftmann@21383
   666
  finally (ord_less_eq_trans) show ?thesis .
haftmann@21383
   667
qed
haftmann@21383
   668
haftmann@21383
   669
lemma ord_eq_less_subst: "a = f b ==> b < c ==>
haftmann@21383
   670
  (!!x y. x < y ==> f x < f y) ==> a < f c"
haftmann@21383
   671
proof -
haftmann@21383
   672
  assume r: "!!x y. x < y ==> f x < f y"
haftmann@21383
   673
  assume "a = f b"
haftmann@21383
   674
  also assume "b < c" hence "f b < f c" by (rule r)
haftmann@21383
   675
  finally (ord_eq_less_trans) show ?thesis .
haftmann@21383
   676
qed
haftmann@21383
   677
haftmann@21383
   678
text {*
haftmann@21383
   679
  Note that this list of rules is in reverse order of priorities.
haftmann@21383
   680
*}
haftmann@21383
   681
haftmann@21383
   682
lemmas order_trans_rules [trans] =
haftmann@21383
   683
  order_less_subst2
haftmann@21383
   684
  order_less_subst1
haftmann@21383
   685
  order_le_less_subst2
haftmann@21383
   686
  order_le_less_subst1
haftmann@21383
   687
  order_less_le_subst2
haftmann@21383
   688
  order_less_le_subst1
haftmann@21383
   689
  order_subst2
haftmann@21383
   690
  order_subst1
haftmann@21383
   691
  ord_le_eq_subst
haftmann@21383
   692
  ord_eq_le_subst
haftmann@21383
   693
  ord_less_eq_subst
haftmann@21383
   694
  ord_eq_less_subst
haftmann@21383
   695
  forw_subst
haftmann@21383
   696
  back_subst
haftmann@21383
   697
  rev_mp
haftmann@21383
   698
  mp
haftmann@21383
   699
  order_neq_le_trans
haftmann@21383
   700
  order_le_neq_trans
haftmann@21383
   701
  order_less_trans
haftmann@21383
   702
  order_less_asym'
haftmann@21383
   703
  order_le_less_trans
haftmann@21383
   704
  order_less_le_trans
haftmann@21383
   705
  order_trans
haftmann@21383
   706
  order_antisym
haftmann@21383
   707
  ord_le_eq_trans
haftmann@21383
   708
  ord_eq_le_trans
haftmann@21383
   709
  ord_less_eq_trans
haftmann@21383
   710
  ord_eq_less_trans
haftmann@21383
   711
  trans
haftmann@21383
   712
haftmann@21083
   713
wenzelm@21180
   714
(* FIXME cleanup *)
wenzelm@21180
   715
haftmann@21083
   716
text {* These support proving chains of decreasing inequalities
haftmann@21083
   717
    a >= b >= c ... in Isar proofs. *}
haftmann@21083
   718
haftmann@21083
   719
lemma xt1:
haftmann@21083
   720
  "a = b ==> b > c ==> a > c"
haftmann@21083
   721
  "a > b ==> b = c ==> a > c"
haftmann@21083
   722
  "a = b ==> b >= c ==> a >= c"
haftmann@21083
   723
  "a >= b ==> b = c ==> a >= c"
haftmann@21083
   724
  "(x::'a::order) >= y ==> y >= x ==> x = y"
haftmann@21083
   725
  "(x::'a::order) >= y ==> y >= z ==> x >= z"
haftmann@21083
   726
  "(x::'a::order) > y ==> y >= z ==> x > z"
haftmann@21083
   727
  "(x::'a::order) >= y ==> y > z ==> x > z"
haftmann@21083
   728
  "(a::'a::order) > b ==> b > a ==> ?P"
haftmann@21083
   729
  "(x::'a::order) > y ==> y > z ==> x > z"
haftmann@21083
   730
  "(a::'a::order) >= b ==> a ~= b ==> a > b"
haftmann@21083
   731
  "(a::'a::order) ~= b ==> a >= b ==> a > b"
haftmann@21083
   732
  "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" 
haftmann@21083
   733
  "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c"
haftmann@21083
   734
  "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"
haftmann@21083
   735
  "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c"
haftmann@21083
   736
by auto
haftmann@21083
   737
haftmann@21083
   738
lemma xt2:
haftmann@21083
   739
  "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"
haftmann@21083
   740
by (subgoal_tac "f b >= f c", force, force)
haftmann@21083
   741
haftmann@21083
   742
lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> 
haftmann@21083
   743
    (!!x y. x >= y ==> f x >= f y) ==> f a >= c"
haftmann@21083
   744
by (subgoal_tac "f a >= f b", force, force)
haftmann@21083
   745
haftmann@21083
   746
lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==>
haftmann@21083
   747
  (!!x y. x >= y ==> f x >= f y) ==> a > f c"
haftmann@21083
   748
by (subgoal_tac "f b >= f c", force, force)
haftmann@21083
   749
haftmann@21083
   750
lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==>
haftmann@21083
   751
    (!!x y. x > y ==> f x > f y) ==> f a > c"
haftmann@21083
   752
by (subgoal_tac "f a > f b", force, force)
haftmann@21083
   753
haftmann@21083
   754
lemma xt6: "(a::'a::order) >= f b ==> b > c ==>
haftmann@21083
   755
    (!!x y. x > y ==> f x > f y) ==> a > f c"
haftmann@21083
   756
by (subgoal_tac "f b > f c", force, force)
haftmann@21083
   757
haftmann@21083
   758
lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==>
haftmann@21083
   759
    (!!x y. x >= y ==> f x >= f y) ==> f a > c"
haftmann@21083
   760
by (subgoal_tac "f a >= f b", force, force)
haftmann@21083
   761
haftmann@21083
   762
lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==>
haftmann@21083
   763
    (!!x y. x > y ==> f x > f y) ==> a > f c"
haftmann@21083
   764
by (subgoal_tac "f b > f c", force, force)
haftmann@21083
   765
haftmann@21083
   766
lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==>
haftmann@21083
   767
    (!!x y. x > y ==> f x > f y) ==> f a > c"
haftmann@21083
   768
by (subgoal_tac "f a > f b", force, force)
haftmann@21083
   769
haftmann@21083
   770
lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9
haftmann@21083
   771
haftmann@21083
   772
(* 
haftmann@21083
   773
  Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands
haftmann@21083
   774
  for the wrong thing in an Isar proof.
haftmann@21083
   775
haftmann@21083
   776
  The extra transitivity rules can be used as follows: 
haftmann@21083
   777
haftmann@21083
   778
lemma "(a::'a::order) > z"
haftmann@21083
   779
proof -
haftmann@21083
   780
  have "a >= b" (is "_ >= ?rhs")
haftmann@21083
   781
    sorry
haftmann@21083
   782
  also have "?rhs >= c" (is "_ >= ?rhs")
haftmann@21083
   783
    sorry
haftmann@21083
   784
  also (xtrans) have "?rhs = d" (is "_ = ?rhs")
haftmann@21083
   785
    sorry
haftmann@21083
   786
  also (xtrans) have "?rhs >= e" (is "_ >= ?rhs")
haftmann@21083
   787
    sorry
haftmann@21083
   788
  also (xtrans) have "?rhs > f" (is "_ > ?rhs")
haftmann@21083
   789
    sorry
haftmann@21083
   790
  also (xtrans) have "?rhs > z"
haftmann@21083
   791
    sorry
haftmann@21083
   792
  finally (xtrans) show ?thesis .
haftmann@21083
   793
qed
haftmann@21083
   794
haftmann@21083
   795
  Alternatively, one can use "declare xtrans [trans]" and then
haftmann@21083
   796
  leave out the "(xtrans)" above.
haftmann@21083
   797
*)
haftmann@21083
   798
haftmann@21546
   799
subsection {* Order on bool *}
haftmann@21546
   800
haftmann@21546
   801
instance bool :: linorder 
haftmann@21546
   802
  le_bool_def: "P \<le> Q \<equiv> P \<longrightarrow> Q"
haftmann@21546
   803
  less_bool_def: "P < Q \<equiv> P \<le> Q \<and> P \<noteq> Q"
haftmann@21546
   804
  by default (auto simp add: le_bool_def less_bool_def)
haftmann@21546
   805
haftmann@21546
   806
lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q"
haftmann@21546
   807
  by (simp add: le_bool_def)
haftmann@21546
   808
haftmann@21546
   809
lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q"
haftmann@21546
   810
  by (simp add: le_bool_def)
haftmann@21546
   811
haftmann@21546
   812
lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@21546
   813
  by (simp add: le_bool_def)
haftmann@21546
   814
haftmann@21546
   815
lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q"
haftmann@21546
   816
  by (simp add: le_bool_def)
haftmann@21546
   817
haftmann@22348
   818
lemma [code func]:
haftmann@22348
   819
  "False \<le> b \<longleftrightarrow> True"
haftmann@22348
   820
  "True \<le> b \<longleftrightarrow> b"
haftmann@22348
   821
  "False < b \<longleftrightarrow> b"
haftmann@22348
   822
  "True < b \<longleftrightarrow> False"
haftmann@22348
   823
  unfolding le_bool_def less_bool_def by simp_all
haftmann@22348
   824
haftmann@22424
   825
haftmann@21383
   826
subsection {* Monotonicity, syntactic least value operator and min/max *}
haftmann@21083
   827
haftmann@21216
   828
locale mono =
haftmann@21216
   829
  fixes f
haftmann@21216
   830
  assumes mono: "A \<le> B \<Longrightarrow> f A \<le> f B"
haftmann@21216
   831
haftmann@21216
   832
lemmas monoI [intro?] = mono.intro
haftmann@21216
   833
  and monoD [dest?] = mono.mono
haftmann@21083
   834
haftmann@21083
   835
constdefs
haftmann@21083
   836
  Least :: "('a::ord => bool) => 'a"               (binder "LEAST " 10)
haftmann@21083
   837
  "Least P == THE x. P x & (ALL y. P y --> x <= y)"
haftmann@21083
   838
    -- {* We can no longer use LeastM because the latter requires Hilbert-AC. *}
haftmann@21083
   839
haftmann@21383
   840
lemma LeastI2_order:
haftmann@21383
   841
  "[| P (x::'a::order);
haftmann@21383
   842
      !!y. P y ==> x <= y;
haftmann@21383
   843
      !!x. [| P x; ALL y. P y --> x \<le> y |] ==> Q x |]
haftmann@21383
   844
   ==> Q (Least P)"
haftmann@21383
   845
  apply (unfold Least_def)
haftmann@21383
   846
  apply (rule theI2)
haftmann@21383
   847
    apply (blast intro: order_antisym)+
haftmann@21383
   848
  done
haftmann@21383
   849
haftmann@21383
   850
lemma Least_equality:
haftmann@21383
   851
    "[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k"
haftmann@21383
   852
  apply (simp add: Least_def)
haftmann@21383
   853
  apply (rule the_equality)
haftmann@21383
   854
  apply (auto intro!: order_antisym)
haftmann@21383
   855
  done
haftmann@21383
   856
haftmann@21083
   857
constdefs
haftmann@21083
   858
  min :: "['a::ord, 'a] => 'a"
haftmann@21083
   859
  "min a b == (if a <= b then a else b)"
haftmann@21083
   860
  max :: "['a::ord, 'a] => 'a"
haftmann@21083
   861
  "max a b == (if a <= b then b else a)"
haftmann@21083
   862
haftmann@21383
   863
lemma min_linorder:
haftmann@21383
   864
  "linorder.min (op \<le> \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> bool) = min"
haftmann@22316
   865
  by rule+ (simp add: min_def linorder_class.min_def)
haftmann@21383
   866
haftmann@21383
   867
lemma max_linorder:
haftmann@21383
   868
  "linorder.max (op \<le> \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> bool) = max"
haftmann@22316
   869
  by rule+ (simp add: max_def linorder_class.max_def)
haftmann@21383
   870
haftmann@22316
   871
lemmas min_le_iff_disj = linorder_class.min_le_iff_disj [unfolded min_linorder]
haftmann@22316
   872
lemmas le_max_iff_disj = linorder_class.le_max_iff_disj [unfolded max_linorder]
haftmann@22316
   873
lemmas min_less_iff_disj = linorder_class.min_less_iff_disj [unfolded min_linorder]
haftmann@22316
   874
lemmas less_max_iff_disj = linorder_class.less_max_iff_disj [unfolded max_linorder]
haftmann@22316
   875
lemmas min_less_iff_conj [simp] = linorder_class.min_less_iff_conj [unfolded min_linorder]
haftmann@22316
   876
lemmas max_less_iff_conj [simp] = linorder_class.max_less_iff_conj [unfolded max_linorder]
haftmann@22316
   877
lemmas split_min = linorder_class.split_min [unfolded min_linorder]
haftmann@22316
   878
lemmas split_max = linorder_class.split_max [unfolded max_linorder]
haftmann@21383
   879
haftmann@21383
   880
lemma min_leastL: "(!!x. least <= x) ==> min least x = least"
haftmann@21383
   881
  by (simp add: min_def)
haftmann@21383
   882
haftmann@21383
   883
lemma max_leastL: "(!!x. least <= x) ==> max least x = x"
haftmann@21383
   884
  by (simp add: max_def)
haftmann@21383
   885
haftmann@21383
   886
lemma min_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> min x least = least"
haftmann@21383
   887
  apply (simp add: min_def)
haftmann@21383
   888
  apply (blast intro: order_antisym)
haftmann@21383
   889
  done
haftmann@21383
   890
haftmann@21383
   891
lemma max_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> max x least = x"
haftmann@21383
   892
  apply (simp add: max_def)
haftmann@21383
   893
  apply (blast intro: order_antisym)
haftmann@21383
   894
  done
haftmann@21383
   895
haftmann@21383
   896
lemma min_of_mono:
haftmann@21383
   897
    "(!!x y. (f x <= f y) = (x <= y)) ==> min (f m) (f n) = f (min m n)"
haftmann@21383
   898
  by (simp add: min_def)
haftmann@21383
   899
haftmann@21383
   900
lemma max_of_mono:
haftmann@21383
   901
    "(!!x y. (f x <= f y) = (x <= y)) ==> max (f m) (f n) = f (max m n)"
haftmann@21383
   902
  by (simp add: max_def)
haftmann@21383
   903
wenzelm@21673
   904
subsection {* Basic ML bindings *}
wenzelm@21673
   905
wenzelm@21673
   906
ML {*
wenzelm@21673
   907
val leD = thm "leD";
wenzelm@21673
   908
val leI = thm "leI";
wenzelm@21673
   909
val linorder_neqE = thm "linorder_neqE";
wenzelm@21673
   910
val linorder_neq_iff = thm "linorder_neq_iff";
wenzelm@21673
   911
val linorder_not_le = thm "linorder_not_le";
wenzelm@21673
   912
val linorder_not_less = thm "linorder_not_less";
wenzelm@21673
   913
val monoD = thm "monoD";
wenzelm@21673
   914
val monoI = thm "monoI";
wenzelm@21673
   915
val order_antisym = thm "order_antisym";
wenzelm@21673
   916
val order_less_irrefl = thm "order_less_irrefl";
wenzelm@21673
   917
val order_refl = thm "order_refl";
wenzelm@21673
   918
val order_trans = thm "order_trans";
wenzelm@21673
   919
val split_max = thm "split_max";
wenzelm@21673
   920
val split_min = thm "split_min";
wenzelm@21673
   921
*}
wenzelm@21673
   922
wenzelm@21673
   923
ML {*
wenzelm@21673
   924
structure HOL =
wenzelm@21673
   925
struct
wenzelm@21673
   926
  val thy = theory "HOL";
wenzelm@21673
   927
end;
wenzelm@21673
   928
*}  -- "belongs to theory HOL"
wenzelm@21673
   929
nipkow@15524
   930
end