src/HOL/Tools/inductive_package.ML
author wenzelm
Sat Jan 26 17:08:36 2008 +0100 (2008-01-26)
changeset 25978 8ba1eba8d058
parent 25822 05756950011c
child 26128 fe2d24c26e0c
permissions -rw-r--r--
added theorem group;
berghofe@5094
     1
(*  Title:      HOL/Tools/inductive_package.ML
berghofe@5094
     2
    ID:         $Id$
berghofe@5094
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
wenzelm@21367
     4
    Author:     Stefan Berghofer and Markus Wenzel, TU Muenchen
berghofe@5094
     5
wenzelm@6424
     6
(Co)Inductive Definition module for HOL.
berghofe@5094
     7
berghofe@5094
     8
Features:
wenzelm@6424
     9
  * least or greatest fixedpoints
wenzelm@6424
    10
  * mutually recursive definitions
wenzelm@6424
    11
  * definitions involving arbitrary monotone operators
wenzelm@6424
    12
  * automatically proves introduction and elimination rules
berghofe@5094
    13
berghofe@5094
    14
  Introduction rules have the form
berghofe@21024
    15
  [| M Pj ti, ..., Q x, ... |] ==> Pk t
berghofe@5094
    16
  where M is some monotone operator (usually the identity)
berghofe@21024
    17
  Q x is any side condition on the free variables
berghofe@5094
    18
  ti, t are any terms
berghofe@21024
    19
  Pj, Pk are two of the predicates being defined in mutual recursion
berghofe@5094
    20
*)
berghofe@5094
    21
berghofe@23762
    22
signature BASIC_INDUCTIVE_PACKAGE =
berghofe@5094
    23
sig
wenzelm@6424
    24
  val quiet_mode: bool ref
berghofe@21024
    25
  type inductive_result
wenzelm@21526
    26
  val morph_result: morphism -> inductive_result -> inductive_result
berghofe@21024
    27
  type inductive_info
wenzelm@21526
    28
  val the_inductive: Proof.context -> string -> inductive_info
wenzelm@21367
    29
  val print_inductives: Proof.context -> unit
wenzelm@18728
    30
  val mono_add: attribute
wenzelm@18728
    31
  val mono_del: attribute
wenzelm@21367
    32
  val get_monos: Proof.context -> thm list
wenzelm@21367
    33
  val mk_cases: Proof.context -> term -> thm
wenzelm@10910
    34
  val inductive_forall_name: string
wenzelm@10910
    35
  val inductive_forall_def: thm
wenzelm@10910
    36
  val rulify: thm -> thm
wenzelm@21367
    37
  val inductive_cases: ((bstring * Attrib.src list) * string list) list ->
wenzelm@21367
    38
    Proof.context -> thm list list * local_theory
wenzelm@21367
    39
  val inductive_cases_i: ((bstring * Attrib.src list) * term list) list ->
wenzelm@21367
    40
    Proof.context -> thm list list * local_theory
wenzelm@24815
    41
  val add_inductive_i:
wenzelm@25978
    42
    {verbose: bool, kind: string, group: string, alt_name: bstring,
wenzelm@25978
    43
      coind: bool, no_elim: bool, no_ind: bool} ->
berghofe@24744
    44
    ((string * typ) * mixfix) list ->
berghofe@24744
    45
    (string * typ) list -> ((bstring * Attrib.src list) * term) list -> thm list ->
wenzelm@21367
    46
      local_theory -> inductive_result * local_theory
berghofe@21024
    47
  val add_inductive: bool -> bool -> (string * string option * mixfix) list ->
berghofe@21024
    48
    (string * string option * mixfix) list ->
berghofe@21024
    49
    ((bstring * Attrib.src list) * string) list -> (thmref * Attrib.src list) list ->
wenzelm@21367
    50
    local_theory -> inductive_result * local_theory
wenzelm@24815
    51
  val add_inductive_global:
wenzelm@25978
    52
    {verbose: bool, kind: string, group: string, alt_name: bstring,
wenzelm@25978
    53
      coind: bool, no_elim: bool, no_ind: bool} ->
berghofe@24744
    54
    ((string * typ) * mixfix) list -> (string * typ) list ->
wenzelm@21526
    55
    ((bstring * Attrib.src list) * term) list -> thm list -> theory -> inductive_result * theory
berghofe@22789
    56
  val arities_of: thm -> (string * int) list
berghofe@22789
    57
  val params_of: thm -> term list
berghofe@22789
    58
  val partition_rules: thm -> thm list -> (string * thm list) list
berghofe@25822
    59
  val partition_rules': thm -> (thm * 'a) list -> (string * (thm * 'a) list) list
berghofe@22789
    60
  val unpartition_rules: thm list -> (string * 'a list) list -> 'a list
berghofe@22789
    61
  val infer_intro_vars: thm -> int -> thm list -> term list list
wenzelm@18708
    62
  val setup: theory -> theory
berghofe@5094
    63
end;
berghofe@5094
    64
berghofe@23762
    65
signature INDUCTIVE_PACKAGE =
berghofe@23762
    66
sig
berghofe@23762
    67
  include BASIC_INDUCTIVE_PACKAGE
berghofe@23762
    68
  type add_ind_def
wenzelm@25978
    69
  val declare_rules: string -> string -> bstring -> bool -> bool -> string list ->
berghofe@23762
    70
    thm list -> bstring list -> Attrib.src list list -> (thm * string list) list ->
berghofe@23762
    71
    thm -> local_theory -> thm list * thm list * thm * local_theory
berghofe@23762
    72
  val add_ind_def: add_ind_def
berghofe@23762
    73
  val gen_add_inductive_i: add_ind_def ->
wenzelm@25978
    74
    {verbose: bool, kind: string, group: string, alt_name: bstring,
wenzelm@25978
    75
      coind: bool, no_elim: bool, no_ind: bool} ->
berghofe@24744
    76
    ((string * typ) * mixfix) list ->
berghofe@24744
    77
    (string * typ) list -> ((bstring * Attrib.src list) * term) list -> thm list ->
berghofe@23762
    78
      local_theory -> inductive_result * local_theory
berghofe@23762
    79
  val gen_add_inductive: add_ind_def ->
berghofe@23762
    80
    bool -> bool -> (string * string option * mixfix) list ->
berghofe@23762
    81
    (string * string option * mixfix) list ->
berghofe@23762
    82
    ((bstring * Attrib.src list) * string) list -> (thmref * Attrib.src list) list ->
berghofe@23762
    83
    local_theory -> inductive_result * local_theory
berghofe@23762
    84
  val gen_ind_decl: add_ind_def ->
berghofe@23762
    85
    bool -> OuterParse.token list ->
berghofe@23762
    86
    (Toplevel.transition -> Toplevel.transition) * OuterParse.token list
berghofe@23762
    87
end;
berghofe@23762
    88
wenzelm@6424
    89
structure InductivePackage: INDUCTIVE_PACKAGE =
berghofe@5094
    90
struct
berghofe@5094
    91
wenzelm@9598
    92
wenzelm@10729
    93
(** theory context references **)
wenzelm@10729
    94
wenzelm@11991
    95
val inductive_forall_name = "HOL.induct_forall";
wenzelm@11991
    96
val inductive_forall_def = thm "induct_forall_def";
wenzelm@11991
    97
val inductive_conj_name = "HOL.induct_conj";
wenzelm@11991
    98
val inductive_conj_def = thm "induct_conj_def";
wenzelm@11991
    99
val inductive_conj = thms "induct_conj";
wenzelm@11991
   100
val inductive_atomize = thms "induct_atomize";
wenzelm@18463
   101
val inductive_rulify = thms "induct_rulify";
wenzelm@18463
   102
val inductive_rulify_fallback = thms "induct_rulify_fallback";
wenzelm@10729
   103
berghofe@21024
   104
val notTrueE = TrueI RSN (2, notE);
berghofe@21024
   105
val notFalseI = Seq.hd (atac 1 notI);
berghofe@21024
   106
val simp_thms' = map (fn s => mk_meta_eq (the (find_first
wenzelm@22675
   107
  (equal (Sign.read_prop HOL.thy s) o prop_of) simp_thms)))
berghofe@21024
   108
  ["(~True) = False", "(~False) = True",
berghofe@21024
   109
   "(True --> ?P) = ?P", "(False --> ?P) = True",
berghofe@21024
   110
   "(?P & True) = ?P", "(True & ?P) = ?P"];
berghofe@21024
   111
wenzelm@10729
   112
wenzelm@10729
   113
wenzelm@22846
   114
(** context data **)
berghofe@7710
   115
berghofe@21024
   116
type inductive_result =
berghofe@23762
   117
  {preds: term list, elims: thm list, raw_induct: thm,
berghofe@23762
   118
   induct: thm, intrs: thm list};
berghofe@7710
   119
berghofe@23762
   120
fun morph_result phi {preds, elims, raw_induct: thm, induct, intrs} =
wenzelm@21526
   121
  let
wenzelm@21526
   122
    val term = Morphism.term phi;
wenzelm@21526
   123
    val thm = Morphism.thm phi;
wenzelm@21526
   124
    val fact = Morphism.fact phi;
wenzelm@21526
   125
  in
berghofe@23762
   126
   {preds = map term preds, elims = fact elims, raw_induct = thm raw_induct,
berghofe@23762
   127
    induct = thm induct, intrs = fact intrs}
wenzelm@21526
   128
  end;
wenzelm@21526
   129
berghofe@21024
   130
type inductive_info =
berghofe@21024
   131
  {names: string list, coind: bool} * inductive_result;
berghofe@21024
   132
berghofe@21024
   133
structure InductiveData = GenericDataFun
wenzelm@22846
   134
(
berghofe@7710
   135
  type T = inductive_info Symtab.table * thm list;
berghofe@7710
   136
  val empty = (Symtab.empty, []);
wenzelm@16432
   137
  val extend = I;
wenzelm@16432
   138
  fun merge _ ((tab1, monos1), (tab2, monos2)) =
wenzelm@24039
   139
    (Symtab.merge (K true) (tab1, tab2), Thm.merge_thms (monos1, monos2));
wenzelm@22846
   140
);
berghofe@7710
   141
wenzelm@21526
   142
val get_inductives = InductiveData.get o Context.Proof;
wenzelm@22846
   143
wenzelm@22846
   144
fun print_inductives ctxt =
wenzelm@22846
   145
  let
wenzelm@22846
   146
    val (tab, monos) = get_inductives ctxt;
wenzelm@22846
   147
    val space = Consts.space_of (ProofContext.consts_of ctxt);
wenzelm@22846
   148
  in
wenzelm@22846
   149
    [Pretty.strs ("(co)inductives:" :: map #1 (NameSpace.extern_table (space, tab))),
wenzelm@22846
   150
     Pretty.big_list "monotonicity rules:" (map (ProofContext.pretty_thm ctxt) monos)]
wenzelm@22846
   151
    |> Pretty.chunks |> Pretty.writeln
wenzelm@22846
   152
  end;
berghofe@7710
   153
berghofe@7710
   154
berghofe@7710
   155
(* get and put data *)
berghofe@7710
   156
wenzelm@21367
   157
fun the_inductive ctxt name =
wenzelm@21526
   158
  (case Symtab.lookup (#1 (get_inductives ctxt)) name of
berghofe@21024
   159
    NONE => error ("Unknown (co)inductive predicate " ^ quote name)
skalberg@15531
   160
  | SOME info => info);
wenzelm@9598
   161
wenzelm@25380
   162
fun put_inductives names info = InductiveData.map
wenzelm@25380
   163
  (apfst (fold (fn name => Symtab.update (name, info)) names));
berghofe@7710
   164
wenzelm@8277
   165
berghofe@7710
   166
berghofe@7710
   167
(** monotonicity rules **)
berghofe@7710
   168
wenzelm@21526
   169
val get_monos = #2 o get_inductives;
wenzelm@21367
   170
val map_monos = InductiveData.map o apsnd;
wenzelm@8277
   171
berghofe@7710
   172
fun mk_mono thm =
berghofe@7710
   173
  let
berghofe@22275
   174
    val concl = concl_of thm;
berghofe@22275
   175
    fun eq2mono thm' = [thm' RS (thm' RS eq_to_mono)] @
berghofe@22275
   176
      (case concl of
berghofe@7710
   177
          (_ $ (_ $ (Const ("Not", _) $ _) $ _)) => []
berghofe@22275
   178
        | _ => [thm' RS (thm' RS eq_to_mono2)]);
berghofe@22275
   179
    fun dest_less_concl thm = dest_less_concl (thm RS le_funD)
wenzelm@22846
   180
      handle THM _ => thm RS le_boolD
berghofe@7710
   181
  in
berghofe@22275
   182
    case concl of
berghofe@22275
   183
      Const ("==", _) $ _ $ _ => eq2mono (thm RS meta_eq_to_obj_eq)
berghofe@22275
   184
    | _ $ (Const ("op =", _) $ _ $ _) => eq2mono thm
haftmann@23881
   185
    | _ $ (Const ("HOL.ord_class.less_eq", _) $ _ $ _) =>
berghofe@22275
   186
      [dest_less_concl (Seq.hd (REPEAT (FIRSTGOAL
berghofe@22275
   187
         (resolve_tac [le_funI, le_boolI'])) thm))]
berghofe@22275
   188
    | _ => [thm]
berghofe@23762
   189
  end handle THM _ => error ("Bad monotonicity theorem:\n" ^ string_of_thm thm);
berghofe@7710
   190
wenzelm@24039
   191
val mono_add = Thm.declaration_attribute (map_monos o fold Thm.add_thm o mk_mono);
wenzelm@24039
   192
val mono_del = Thm.declaration_attribute (map_monos o fold Thm.del_thm o mk_mono);
berghofe@7710
   193
berghofe@7710
   194
wenzelm@7107
   195
wenzelm@10735
   196
(** misc utilities **)
wenzelm@6424
   197
berghofe@5662
   198
val quiet_mode = ref false;
wenzelm@10735
   199
fun message s = if ! quiet_mode then () else writeln s;
wenzelm@10735
   200
fun clean_message s = if ! quick_and_dirty then () else message s;
berghofe@5662
   201
wenzelm@6424
   202
fun coind_prefix true = "co"
wenzelm@6424
   203
  | coind_prefix false = "";
wenzelm@6424
   204
wenzelm@24133
   205
fun log (b:int) m n = if m >= n then 0 else 1 + log b (b * m) n;
wenzelm@6424
   206
berghofe@21024
   207
fun make_bool_args f g [] i = []
berghofe@21024
   208
  | make_bool_args f g (x :: xs) i =
berghofe@21024
   209
      (if i mod 2 = 0 then f x else g x) :: make_bool_args f g xs (i div 2);
berghofe@21024
   210
berghofe@21024
   211
fun make_bool_args' xs =
berghofe@21024
   212
  make_bool_args (K HOLogic.false_const) (K HOLogic.true_const) xs;
berghofe@21024
   213
berghofe@21024
   214
fun find_arg T x [] = sys_error "find_arg"
berghofe@21024
   215
  | find_arg T x ((p as (_, (SOME _, _))) :: ps) =
berghofe@21024
   216
      apsnd (cons p) (find_arg T x ps)
berghofe@21024
   217
  | find_arg T x ((p as (U, (NONE, y))) :: ps) =
wenzelm@23577
   218
      if (T: typ) = U then (y, (U, (SOME x, y)) :: ps)
berghofe@21024
   219
      else apsnd (cons p) (find_arg T x ps);
berghofe@7020
   220
berghofe@21024
   221
fun make_args Ts xs =
berghofe@21024
   222
  map (fn (T, (NONE, ())) => Const ("arbitrary", T) | (_, (SOME t, ())) => t)
berghofe@21024
   223
    (fold (fn (t, T) => snd o find_arg T t) xs (map (rpair (NONE, ())) Ts));
berghofe@7020
   224
berghofe@21024
   225
fun make_args' Ts xs Us =
berghofe@21024
   226
  fst (fold_map (fn T => find_arg T ()) Us (Ts ~~ map (pair NONE) xs));
berghofe@7020
   227
berghofe@21024
   228
fun dest_predicate cs params t =
berghofe@5094
   229
  let
berghofe@21024
   230
    val k = length params;
berghofe@21024
   231
    val (c, ts) = strip_comb t;
berghofe@21024
   232
    val (xs, ys) = chop k ts;
berghofe@21024
   233
    val i = find_index_eq c cs;
berghofe@21024
   234
  in
berghofe@21024
   235
    if xs = params andalso i >= 0 then
berghofe@21024
   236
      SOME (c, i, ys, chop (length ys)
berghofe@21024
   237
        (List.drop (binder_types (fastype_of c), k)))
berghofe@21024
   238
    else NONE
berghofe@5094
   239
  end;
berghofe@5094
   240
berghofe@21024
   241
fun mk_names a 0 = []
berghofe@21024
   242
  | mk_names a 1 = [a]
berghofe@21024
   243
  | mk_names a n = map (fn i => a ^ string_of_int i) (1 upto n);
berghofe@10988
   244
wenzelm@6424
   245
wenzelm@6424
   246
wenzelm@10729
   247
(** process rules **)
wenzelm@10729
   248
wenzelm@10729
   249
local
berghofe@5094
   250
berghofe@23762
   251
fun err_in_rule ctxt name t msg =
wenzelm@16432
   252
  error (cat_lines ["Ill-formed introduction rule " ^ quote name,
wenzelm@24920
   253
    Syntax.string_of_term ctxt t, msg]);
wenzelm@10729
   254
berghofe@23762
   255
fun err_in_prem ctxt name t p msg =
wenzelm@24920
   256
  error (cat_lines ["Ill-formed premise", Syntax.string_of_term ctxt p,
wenzelm@24920
   257
    "in introduction rule " ^ quote name, Syntax.string_of_term ctxt t, msg]);
berghofe@5094
   258
berghofe@21024
   259
val bad_concl = "Conclusion of introduction rule must be an inductive predicate";
wenzelm@10729
   260
berghofe@21024
   261
val bad_ind_occ = "Inductive predicate occurs in argument of inductive predicate";
berghofe@21024
   262
berghofe@21024
   263
val bad_app = "Inductive predicate must be applied to parameter(s) ";
paulson@11358
   264
wenzelm@16432
   265
fun atomize_term thy = MetaSimplifier.rewrite_term thy inductive_atomize [];
wenzelm@10729
   266
wenzelm@10729
   267
in
berghofe@5094
   268
berghofe@23762
   269
fun check_rule ctxt cs params ((name, att), rule) =
wenzelm@10729
   270
  let
berghofe@21024
   271
    val params' = Term.variant_frees rule (Logic.strip_params rule);
berghofe@21024
   272
    val frees = rev (map Free params');
berghofe@21024
   273
    val concl = subst_bounds (frees, Logic.strip_assums_concl rule);
berghofe@21024
   274
    val prems = map (curry subst_bounds frees) (Logic.strip_assums_hyp rule);
berghofe@23762
   275
    val rule' = Logic.list_implies (prems, concl);
berghofe@23762
   276
    val aprems = map (atomize_term (ProofContext.theory_of ctxt)) prems;
berghofe@21024
   277
    val arule = list_all_free (params', Logic.list_implies (aprems, concl));
berghofe@21024
   278
berghofe@21024
   279
    fun check_ind err t = case dest_predicate cs params t of
berghofe@21024
   280
        NONE => err (bad_app ^
wenzelm@24920
   281
          commas (map (Syntax.string_of_term ctxt) params))
berghofe@21024
   282
      | SOME (_, _, ys, _) =>
berghofe@21024
   283
          if exists (fn c => exists (fn t => Logic.occs (c, t)) ys) cs
berghofe@21024
   284
          then err bad_ind_occ else ();
berghofe@21024
   285
berghofe@21024
   286
    fun check_prem' prem t =
berghofe@21024
   287
      if head_of t mem cs then
berghofe@23762
   288
        check_ind (err_in_prem ctxt name rule prem) t
berghofe@21024
   289
      else (case t of
berghofe@21024
   290
          Abs (_, _, t) => check_prem' prem t
berghofe@21024
   291
        | t $ u => (check_prem' prem t; check_prem' prem u)
berghofe@21024
   292
        | _ => ());
berghofe@5094
   293
wenzelm@10729
   294
    fun check_prem (prem, aprem) =
berghofe@21024
   295
      if can HOLogic.dest_Trueprop aprem then check_prem' prem prem
berghofe@23762
   296
      else err_in_prem ctxt name rule prem "Non-atomic premise";
wenzelm@10729
   297
  in
paulson@11358
   298
    (case concl of
wenzelm@21367
   299
       Const ("Trueprop", _) $ t =>
berghofe@21024
   300
         if head_of t mem cs then
berghofe@23762
   301
           (check_ind (err_in_rule ctxt name rule') t;
berghofe@21024
   302
            List.app check_prem (prems ~~ aprems))
berghofe@23762
   303
         else err_in_rule ctxt name rule' bad_concl
berghofe@23762
   304
     | _ => err_in_rule ctxt name rule' bad_concl);
berghofe@21024
   305
    ((name, att), arule)
wenzelm@10729
   306
  end;
berghofe@5094
   307
berghofe@24744
   308
val rulify =
wenzelm@18222
   309
  hol_simplify inductive_conj
wenzelm@18463
   310
  #> hol_simplify inductive_rulify
wenzelm@18463
   311
  #> hol_simplify inductive_rulify_fallback
berghofe@24744
   312
  #> MetaSimplifier.norm_hhf;
wenzelm@10729
   313
wenzelm@10729
   314
end;
wenzelm@10729
   315
berghofe@5094
   316
wenzelm@6424
   317
berghofe@21024
   318
(** proofs for (co)inductive predicates **)
wenzelm@6424
   319
wenzelm@10735
   320
(* prove monotonicity -- NOT subject to quick_and_dirty! *)
berghofe@5094
   321
berghofe@21024
   322
fun prove_mono predT fp_fun monos ctxt =
wenzelm@10735
   323
 (message "  Proving monotonicity ...";
berghofe@21024
   324
  Goal.prove ctxt [] []   (*NO quick_and_dirty here!*)
wenzelm@17985
   325
    (HOLogic.mk_Trueprop
wenzelm@24815
   326
      (Const (@{const_name Orderings.mono}, (predT --> predT) --> HOLogic.boolT) $ fp_fun))
wenzelm@25380
   327
    (fn _ => EVERY [rtac @{thm monoI} 1,
berghofe@21024
   328
      REPEAT (resolve_tac [le_funI, le_boolI'] 1),
berghofe@21024
   329
      REPEAT (FIRST
berghofe@21024
   330
        [atac 1,
wenzelm@21367
   331
         resolve_tac (List.concat (map mk_mono monos) @ get_monos ctxt) 1,
berghofe@21024
   332
         etac le_funE 1, dtac le_boolD 1])]));
berghofe@5094
   333
wenzelm@6424
   334
wenzelm@10735
   335
(* prove introduction rules *)
berghofe@5094
   336
berghofe@22605
   337
fun prove_intrs coind mono fp_def k params intr_ts rec_preds_defs ctxt =
berghofe@5094
   338
  let
wenzelm@10735
   339
    val _ = clean_message "  Proving the introduction rules ...";
berghofe@5094
   340
berghofe@21024
   341
    val unfold = funpow k (fn th => th RS fun_cong)
berghofe@21024
   342
      (mono RS (fp_def RS
berghofe@21024
   343
        (if coind then def_gfp_unfold else def_lfp_unfold)));
berghofe@5094
   344
berghofe@5094
   345
    fun select_disj 1 1 = []
berghofe@5094
   346
      | select_disj _ 1 = [rtac disjI1]
berghofe@5094
   347
      | select_disj n i = (rtac disjI2)::(select_disj (n - 1) (i - 1));
berghofe@5094
   348
berghofe@21024
   349
    val rules = [refl, TrueI, notFalseI, exI, conjI];
berghofe@21024
   350
berghofe@22605
   351
    val intrs = map_index (fn (i, intr) => rulify
berghofe@22605
   352
      (SkipProof.prove ctxt (map (fst o dest_Free) params) [] intr (fn _ => EVERY
berghofe@21024
   353
       [rewrite_goals_tac rec_preds_defs,
berghofe@21024
   354
        rtac (unfold RS iffD2) 1,
berghofe@21024
   355
        EVERY1 (select_disj (length intr_ts) (i + 1)),
wenzelm@17985
   356
        (*Not ares_tac, since refl must be tried before any equality assumptions;
wenzelm@17985
   357
          backtracking may occur if the premises have extra variables!*)
berghofe@21024
   358
        DEPTH_SOLVE_1 (resolve_tac rules 1 APPEND assume_tac 1)]))) intr_ts
berghofe@5094
   359
berghofe@5094
   360
  in (intrs, unfold) end;
berghofe@5094
   361
wenzelm@6424
   362
wenzelm@10735
   363
(* prove elimination rules *)
berghofe@5094
   364
berghofe@21024
   365
fun prove_elims cs params intr_ts intr_names unfold rec_preds_defs ctxt =
berghofe@5094
   366
  let
wenzelm@10735
   367
    val _ = clean_message "  Proving the elimination rules ...";
berghofe@5094
   368
berghofe@22605
   369
    val ([pname], ctxt') = ctxt |>
berghofe@22605
   370
      Variable.add_fixes (map (fst o dest_Free) params) |> snd |>
berghofe@22605
   371
      Variable.variant_fixes ["P"];
berghofe@21024
   372
    val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT));
berghofe@21024
   373
berghofe@21024
   374
    fun dest_intr r =
berghofe@21024
   375
      (the (dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))),
berghofe@21024
   376
       Logic.strip_assums_hyp r, Logic.strip_params r);
berghofe@21024
   377
berghofe@21024
   378
    val intrs = map dest_intr intr_ts ~~ intr_names;
berghofe@21024
   379
berghofe@21024
   380
    val rules1 = [disjE, exE, FalseE];
berghofe@21024
   381
    val rules2 = [conjE, FalseE, notTrueE];
berghofe@21024
   382
berghofe@21024
   383
    fun prove_elim c =
berghofe@21024
   384
      let
berghofe@21024
   385
        val Ts = List.drop (binder_types (fastype_of c), length params);
berghofe@21024
   386
        val (anames, ctxt'') = Variable.variant_fixes (mk_names "a" (length Ts)) ctxt';
berghofe@21024
   387
        val frees = map Free (anames ~~ Ts);
berghofe@21024
   388
berghofe@21024
   389
        fun mk_elim_prem ((_, _, us, _), ts, params') =
berghofe@21024
   390
          list_all (params',
berghofe@21024
   391
            Logic.list_implies (map (HOLogic.mk_Trueprop o HOLogic.mk_eq)
berghofe@21024
   392
              (frees ~~ us) @ ts, P));
berghofe@21024
   393
        val c_intrs = (List.filter (equal c o #1 o #1 o #1) intrs);
berghofe@21024
   394
        val prems = HOLogic.mk_Trueprop (list_comb (c, params @ frees)) ::
berghofe@21024
   395
           map mk_elim_prem (map #1 c_intrs)
berghofe@21024
   396
      in
berghofe@21048
   397
        (SkipProof.prove ctxt'' [] prems P
berghofe@21024
   398
          (fn {prems, ...} => EVERY
berghofe@21024
   399
            [cut_facts_tac [hd prems] 1,
berghofe@21024
   400
             rewrite_goals_tac rec_preds_defs,
berghofe@21024
   401
             dtac (unfold RS iffD1) 1,
berghofe@21024
   402
             REPEAT (FIRSTGOAL (eresolve_tac rules1)),
berghofe@21024
   403
             REPEAT (FIRSTGOAL (eresolve_tac rules2)),
berghofe@21024
   404
             EVERY (map (fn prem =>
berghofe@21024
   405
               DEPTH_SOLVE_1 (ares_tac [rewrite_rule rec_preds_defs prem, conjI] 1)) (tl prems))])
berghofe@21024
   406
          |> rulify
berghofe@21048
   407
          |> singleton (ProofContext.export ctxt'' ctxt),
berghofe@21048
   408
         map #2 c_intrs)
berghofe@21024
   409
      end
berghofe@21024
   410
berghofe@21024
   411
   in map prove_elim cs end;
berghofe@5094
   412
wenzelm@6424
   413
wenzelm@10735
   414
(* derivation of simplified elimination rules *)
berghofe@5094
   415
wenzelm@11682
   416
local
wenzelm@11682
   417
wenzelm@11682
   418
(*delete needless equality assumptions*)
wenzelm@25365
   419
val refl_thin = Goal.prove_global HOL.thy [] [] @{prop "!!P. a = a ==> P ==> P"}
haftmann@22838
   420
  (fn _ => assume_tac 1);
berghofe@21024
   421
val elim_rls = [asm_rl, FalseE, refl_thin, conjE, exE];
wenzelm@11682
   422
val elim_tac = REPEAT o Tactic.eresolve_tac elim_rls;
wenzelm@11682
   423
berghofe@23762
   424
fun simp_case_tac ss i =
berghofe@23762
   425
  EVERY' [elim_tac, asm_full_simp_tac ss, elim_tac, REPEAT o bound_hyp_subst_tac] i;
wenzelm@21367
   426
wenzelm@11682
   427
in
wenzelm@9598
   428
wenzelm@21367
   429
fun mk_cases ctxt prop =
wenzelm@7107
   430
  let
wenzelm@21367
   431
    val thy = ProofContext.theory_of ctxt;
wenzelm@21367
   432
    val ss = Simplifier.local_simpset_of ctxt;
wenzelm@21367
   433
wenzelm@21526
   434
    fun err msg =
wenzelm@21526
   435
      error (Pretty.string_of (Pretty.block
wenzelm@24920
   436
        [Pretty.str msg, Pretty.fbrk, Syntax.pretty_term ctxt prop]));
wenzelm@21526
   437
wenzelm@24861
   438
    val elims = Induct.find_casesP ctxt prop;
wenzelm@21367
   439
wenzelm@21367
   440
    val cprop = Thm.cterm_of thy prop;
berghofe@23762
   441
    val tac = ALLGOALS (simp_case_tac ss) THEN prune_params_tac;
wenzelm@21367
   442
    fun mk_elim rl =
wenzelm@21367
   443
      Thm.implies_intr cprop (Tactic.rule_by_tactic tac (Thm.assume cprop RS rl))
wenzelm@21367
   444
      |> singleton (Variable.export (Variable.auto_fixes prop ctxt) ctxt);
wenzelm@7107
   445
  in
wenzelm@7107
   446
    (case get_first (try mk_elim) elims of
skalberg@15531
   447
      SOME r => r
wenzelm@21526
   448
    | NONE => err "Proposition not an inductive predicate:")
wenzelm@7107
   449
  end;
wenzelm@7107
   450
wenzelm@11682
   451
end;
wenzelm@11682
   452
wenzelm@7107
   453
wenzelm@21367
   454
(* inductive_cases *)
wenzelm@7107
   455
wenzelm@21367
   456
fun gen_inductive_cases prep_att prep_prop args lthy =
wenzelm@9598
   457
  let
wenzelm@21367
   458
    val thy = ProofContext.theory_of lthy;
wenzelm@12876
   459
    val facts = args |> map (fn ((a, atts), props) =>
wenzelm@21367
   460
      ((a, map (prep_att thy) atts),
wenzelm@21367
   461
        map (Thm.no_attributes o single o mk_cases lthy o prep_prop lthy) props));
wenzelm@24815
   462
  in lthy |> LocalTheory.notes Thm.theoremK facts |>> map snd end;
berghofe@5094
   463
wenzelm@24509
   464
val inductive_cases = gen_inductive_cases Attrib.intern_src Syntax.read_prop;
wenzelm@24509
   465
val inductive_cases_i = gen_inductive_cases (K I) Syntax.check_prop;
wenzelm@7107
   466
wenzelm@6424
   467
berghofe@22275
   468
fun ind_cases src = Method.syntax (Scan.lift (Scan.repeat1 Args.name --
berghofe@22275
   469
    Scan.optional (Args.$$$ "for" |-- Scan.repeat1 Args.name) [])) src
berghofe@22275
   470
  #> (fn ((raw_props, fixes), ctxt) =>
berghofe@22275
   471
    let
berghofe@22275
   472
      val (_, ctxt') = Variable.add_fixes fixes ctxt;
wenzelm@24509
   473
      val props = Syntax.read_props ctxt' raw_props;
berghofe@22275
   474
      val ctxt'' = fold Variable.declare_term props ctxt';
berghofe@22275
   475
      val rules = ProofContext.export ctxt'' ctxt (map (mk_cases ctxt'') props)
berghofe@22275
   476
    in Method.erule 0 rules end);
wenzelm@9598
   477
wenzelm@9598
   478
wenzelm@9598
   479
wenzelm@10735
   480
(* prove induction rule *)
berghofe@5094
   481
berghofe@21024
   482
fun prove_indrule cs argTs bs xs rec_const params intr_ts mono
berghofe@21024
   483
    fp_def rec_preds_defs ctxt =
berghofe@5094
   484
  let
wenzelm@10735
   485
    val _ = clean_message "  Proving the induction rule ...";
wenzelm@20047
   486
    val thy = ProofContext.theory_of ctxt;
berghofe@5094
   487
berghofe@21024
   488
    (* predicates for induction rule *)
berghofe@21024
   489
berghofe@22605
   490
    val (pnames, ctxt') = ctxt |>
berghofe@22605
   491
      Variable.add_fixes (map (fst o dest_Free) params) |> snd |>
berghofe@22605
   492
      Variable.variant_fixes (mk_names "P" (length cs));
berghofe@21024
   493
    val preds = map Free (pnames ~~
berghofe@21024
   494
      map (fn c => List.drop (binder_types (fastype_of c), length params) --->
berghofe@21024
   495
        HOLogic.boolT) cs);
berghofe@21024
   496
berghofe@21024
   497
    (* transform an introduction rule into a premise for induction rule *)
berghofe@21024
   498
berghofe@21024
   499
    fun mk_ind_prem r =
berghofe@21024
   500
      let
berghofe@21024
   501
        fun subst s = (case dest_predicate cs params s of
berghofe@21024
   502
            SOME (_, i, ys, (_, Ts)) =>
berghofe@21024
   503
              let
berghofe@21024
   504
                val k = length Ts;
berghofe@21024
   505
                val bs = map Bound (k - 1 downto 0);
berghofe@23762
   506
                val P = list_comb (List.nth (preds, i),
berghofe@23762
   507
                  map (incr_boundvars k) ys @ bs);
berghofe@21024
   508
                val Q = list_abs (mk_names "x" k ~~ Ts,
berghofe@23762
   509
                  HOLogic.mk_binop inductive_conj_name
berghofe@23762
   510
                    (list_comb (incr_boundvars k s, bs), P))
berghofe@21024
   511
              in (Q, case Ts of [] => SOME (s, P) | _ => NONE) end
berghofe@21024
   512
          | NONE => (case s of
berghofe@21024
   513
              (t $ u) => (fst (subst t) $ fst (subst u), NONE)
berghofe@21024
   514
            | (Abs (a, T, t)) => (Abs (a, T, fst (subst t)), NONE)
berghofe@21024
   515
            | _ => (s, NONE)));
berghofe@7293
   516
berghofe@21024
   517
        fun mk_prem (s, prems) = (case subst s of
berghofe@21024
   518
              (_, SOME (t, u)) => t :: u :: prems
berghofe@21024
   519
            | (t, _) => t :: prems);
berghofe@21024
   520
berghofe@21024
   521
        val SOME (_, i, ys, _) = dest_predicate cs params
berghofe@21024
   522
          (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))
berghofe@21024
   523
berghofe@21024
   524
      in list_all_free (Logic.strip_params r,
berghofe@21024
   525
        Logic.list_implies (map HOLogic.mk_Trueprop (foldr mk_prem
berghofe@21024
   526
          [] (map HOLogic.dest_Trueprop (Logic.strip_assums_hyp r))),
berghofe@21024
   527
            HOLogic.mk_Trueprop (list_comb (List.nth (preds, i), ys))))
berghofe@21024
   528
      end;
berghofe@21024
   529
berghofe@21024
   530
    val ind_prems = map mk_ind_prem intr_ts;
berghofe@21024
   531
wenzelm@21526
   532
berghofe@21024
   533
    (* make conclusions for induction rules *)
berghofe@21024
   534
berghofe@21024
   535
    val Tss = map (binder_types o fastype_of) preds;
berghofe@21024
   536
    val (xnames, ctxt'') =
berghofe@21024
   537
      Variable.variant_fixes (mk_names "x" (length (flat Tss))) ctxt';
berghofe@21024
   538
    val mutual_ind_concl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
berghofe@21024
   539
        (map (fn (((xnames, Ts), c), P) =>
berghofe@21024
   540
           let val frees = map Free (xnames ~~ Ts)
berghofe@21024
   541
           in HOLogic.mk_imp
berghofe@21024
   542
             (list_comb (c, params @ frees), list_comb (P, frees))
berghofe@21024
   543
           end) (unflat Tss xnames ~~ Tss ~~ cs ~~ preds)));
berghofe@5094
   544
paulson@13626
   545
berghofe@5094
   546
    (* make predicate for instantiation of abstract induction rule *)
berghofe@5094
   547
berghofe@21024
   548
    val ind_pred = fold_rev lambda (bs @ xs) (foldr1 HOLogic.mk_conj
berghofe@21024
   549
      (map_index (fn (i, P) => foldr HOLogic.mk_imp
berghofe@21024
   550
         (list_comb (P, make_args' argTs xs (binder_types (fastype_of P))))
berghofe@21024
   551
         (make_bool_args HOLogic.mk_not I bs i)) preds));
berghofe@5094
   552
berghofe@5094
   553
    val ind_concl = HOLogic.mk_Trueprop
haftmann@23881
   554
      (HOLogic.mk_binrel "HOL.ord_class.less_eq" (rec_const, ind_pred));
berghofe@5094
   555
paulson@13626
   556
    val raw_fp_induct = (mono RS (fp_def RS def_lfp_induct));
paulson@13626
   557
berghofe@21024
   558
    val induct = SkipProof.prove ctxt'' [] ind_prems ind_concl
wenzelm@20248
   559
      (fn {prems, ...} => EVERY
wenzelm@17985
   560
        [rewrite_goals_tac [inductive_conj_def],
berghofe@21024
   561
         DETERM (rtac raw_fp_induct 1),
berghofe@21024
   562
         REPEAT (resolve_tac [le_funI, le_boolI] 1),
haftmann@22460
   563
         rewrite_goals_tac (inf_fun_eq :: inf_bool_eq :: simp_thms'),
berghofe@21024
   564
         (*This disjE separates out the introduction rules*)
berghofe@21024
   565
         REPEAT (FIRSTGOAL (eresolve_tac [disjE, exE, FalseE])),
berghofe@5094
   566
         (*Now break down the individual cases.  No disjE here in case
berghofe@5094
   567
           some premise involves disjunction.*)
paulson@13747
   568
         REPEAT (FIRSTGOAL (etac conjE ORELSE' bound_hyp_subst_tac)),
berghofe@21024
   569
         REPEAT (FIRSTGOAL
berghofe@21024
   570
           (resolve_tac [conjI, impI] ORELSE' (etac notE THEN' atac))),
berghofe@21024
   571
         EVERY (map (fn prem => DEPTH_SOLVE_1 (ares_tac [rewrite_rule
berghofe@22980
   572
             (inductive_conj_def :: rec_preds_defs @ simp_thms') prem,
berghofe@22980
   573
           conjI, refl] 1)) prems)]);
berghofe@5094
   574
berghofe@21024
   575
    val lemma = SkipProof.prove ctxt'' [] []
wenzelm@17985
   576
      (Logic.mk_implies (ind_concl, mutual_ind_concl)) (fn _ => EVERY
berghofe@21024
   577
        [rewrite_goals_tac rec_preds_defs,
berghofe@5094
   578
         REPEAT (EVERY
berghofe@5094
   579
           [REPEAT (resolve_tac [conjI, impI] 1),
berghofe@21024
   580
            REPEAT (eresolve_tac [le_funE, le_boolE] 1),
berghofe@21024
   581
            atac 1,
berghofe@21024
   582
            rewrite_goals_tac simp_thms',
berghofe@21024
   583
            atac 1])])
berghofe@5094
   584
berghofe@21024
   585
  in singleton (ProofContext.export ctxt'' ctxt) (induct RS lemma) end;
berghofe@5094
   586
wenzelm@6424
   587
wenzelm@6424
   588
berghofe@21024
   589
(** specification of (co)inductive predicates **)
wenzelm@10729
   590
wenzelm@25978
   591
fun mk_ind_def group alt_name coind cs intr_ts monos
berghofe@21024
   592
      params cnames_syn ctxt =
berghofe@5094
   593
  let
haftmann@24915
   594
    val fp_name = if coind then @{const_name Inductive.gfp} else @{const_name Inductive.lfp};
berghofe@5094
   595
berghofe@21024
   596
    val argTs = fold (fn c => fn Ts => Ts @
berghofe@21024
   597
      (List.drop (binder_types (fastype_of c), length params) \\ Ts)) cs [];
berghofe@21024
   598
    val k = log 2 1 (length cs);
berghofe@21024
   599
    val predT = replicate k HOLogic.boolT ---> argTs ---> HOLogic.boolT;
berghofe@21024
   600
    val p :: xs = map Free (Variable.variant_frees ctxt intr_ts
berghofe@21024
   601
      (("p", predT) :: (mk_names "x" (length argTs) ~~ argTs)));
berghofe@21024
   602
    val bs = map Free (Variable.variant_frees ctxt (p :: xs @ intr_ts)
berghofe@21024
   603
      (map (rpair HOLogic.boolT) (mk_names "b" k)));
berghofe@21024
   604
berghofe@21024
   605
    fun subst t = (case dest_predicate cs params t of
berghofe@21024
   606
        SOME (_, i, ts, (Ts, Us)) =>
berghofe@23762
   607
          let
berghofe@23762
   608
            val l = length Us;
berghofe@23762
   609
            val zs = map Bound (l - 1 downto 0)
berghofe@21024
   610
          in
berghofe@21024
   611
            list_abs (map (pair "z") Us, list_comb (p,
berghofe@23762
   612
              make_bool_args' bs i @ make_args argTs
berghofe@23762
   613
                ((map (incr_boundvars l) ts ~~ Ts) @ (zs ~~ Us))))
berghofe@21024
   614
          end
berghofe@21024
   615
      | NONE => (case t of
berghofe@21024
   616
          t1 $ t2 => subst t1 $ subst t2
berghofe@21024
   617
        | Abs (x, T, u) => Abs (x, T, subst u)
berghofe@21024
   618
        | _ => t));
berghofe@5149
   619
berghofe@5094
   620
    (* transform an introduction rule into a conjunction  *)
berghofe@21024
   621
    (*   [| p_i t; ... |] ==> p_j u                       *)
berghofe@5094
   622
    (* is transformed into                                *)
berghofe@21024
   623
    (*   b_j & x_j = u & p b_j t & ...                    *)
berghofe@5094
   624
berghofe@5094
   625
    fun transform_rule r =
berghofe@5094
   626
      let
berghofe@21024
   627
        val SOME (_, i, ts, (Ts, _)) = dest_predicate cs params
berghofe@21048
   628
          (HOLogic.dest_Trueprop (Logic.strip_assums_concl r));
berghofe@21048
   629
        val ps = make_bool_args HOLogic.mk_not I bs i @
berghofe@21048
   630
          map HOLogic.mk_eq (make_args' argTs xs Ts ~~ ts) @
berghofe@21048
   631
          map (subst o HOLogic.dest_Trueprop)
berghofe@21048
   632
            (Logic.strip_assums_hyp r)
berghofe@21024
   633
      in foldr (fn ((x, T), P) => HOLogic.exists_const T $ (Abs (x, T, P)))
berghofe@21048
   634
        (if null ps then HOLogic.true_const else foldr1 HOLogic.mk_conj ps)
berghofe@21048
   635
        (Logic.strip_params r)
berghofe@5094
   636
      end
berghofe@5094
   637
berghofe@5094
   638
    (* make a disjunction of all introduction rules *)
berghofe@5094
   639
berghofe@21024
   640
    val fp_fun = fold_rev lambda (p :: bs @ xs)
berghofe@21024
   641
      (if null intr_ts then HOLogic.false_const
berghofe@21024
   642
       else foldr1 HOLogic.mk_disj (map transform_rule intr_ts));
berghofe@5094
   643
berghofe@21024
   644
    (* add definiton of recursive predicates to theory *)
berghofe@5094
   645
berghofe@14235
   646
    val rec_name = if alt_name = "" then
berghofe@21024
   647
      space_implode "_" (map fst cnames_syn) else alt_name;
berghofe@5094
   648
berghofe@21024
   649
    val ((rec_const, (_, fp_def)), ctxt') = ctxt |>
wenzelm@25978
   650
      LocalTheory.define_grouped Thm.internalK group
berghofe@21024
   651
        ((rec_name, case cnames_syn of [(_, syn)] => syn | _ => NoSyn),
berghofe@21024
   652
         (("", []), fold_rev lambda params
berghofe@21024
   653
           (Const (fp_name, (predT --> predT) --> predT) $ fp_fun)));
berghofe@21024
   654
    val fp_def' = Simplifier.rewrite (HOL_basic_ss addsimps [fp_def])
berghofe@21024
   655
      (cterm_of (ProofContext.theory_of ctxt') (list_comb (rec_const, params)));
berghofe@21024
   656
    val specs = if length cs < 2 then [] else
berghofe@21024
   657
      map_index (fn (i, (name_mx, c)) =>
berghofe@21024
   658
        let
berghofe@21024
   659
          val Ts = List.drop (binder_types (fastype_of c), length params);
berghofe@21024
   660
          val xs = map Free (Variable.variant_frees ctxt intr_ts
berghofe@21024
   661
            (mk_names "x" (length Ts) ~~ Ts))
berghofe@21024
   662
        in
berghofe@21024
   663
          (name_mx, (("", []), fold_rev lambda (params @ xs)
berghofe@21024
   664
            (list_comb (rec_const, params @ make_bool_args' bs i @
berghofe@21024
   665
              make_args argTs (xs ~~ Ts)))))
berghofe@21024
   666
        end) (cnames_syn ~~ cs);
wenzelm@25978
   667
    val (consts_defs, ctxt'') = fold_map (LocalTheory.define_grouped Thm.internalK group) specs ctxt';
berghofe@21024
   668
    val preds = (case cs of [_] => [rec_const] | _ => map #1 consts_defs);
berghofe@5094
   669
berghofe@21024
   670
    val mono = prove_mono predT fp_fun monos ctxt''
berghofe@5094
   671
berghofe@21024
   672
  in (ctxt'', rec_name, mono, fp_def', map (#2 o #2) consts_defs,
berghofe@21024
   673
    list_comb (rec_const, params), preds, argTs, bs, xs)
berghofe@21024
   674
  end;
berghofe@5094
   675
wenzelm@25978
   676
fun declare_rules kind group rec_name coind no_ind cnames intrs intr_names intr_atts
berghofe@23762
   677
      elims raw_induct ctxt =
berghofe@23762
   678
  let
berghofe@23762
   679
    val ind_case_names = RuleCases.case_names intr_names;
berghofe@23762
   680
    val induct =
berghofe@23762
   681
      if coind then
berghofe@23762
   682
        (raw_induct, [RuleCases.case_names [rec_name],
berghofe@23762
   683
          RuleCases.case_conclusion (rec_name, intr_names),
wenzelm@24861
   684
          RuleCases.consumes 1, Induct.coinduct_pred (hd cnames)])
berghofe@23762
   685
      else if no_ind orelse length cnames > 1 then
berghofe@23762
   686
        (raw_induct, [ind_case_names, RuleCases.consumes 0])
berghofe@23762
   687
      else (raw_induct RSN (2, rev_mp), [ind_case_names, RuleCases.consumes 1]);
berghofe@23762
   688
berghofe@23762
   689
    val (intrs', ctxt1) =
berghofe@23762
   690
      ctxt |>
wenzelm@25978
   691
      LocalTheory.notes_grouped kind group
berghofe@23762
   692
        (map (NameSpace.qualified rec_name) intr_names ~~
berghofe@23762
   693
         intr_atts ~~ map (fn th => [([th],
berghofe@23762
   694
           [Attrib.internal (K (ContextRules.intro_query NONE))])]) intrs) |>>
berghofe@24744
   695
      map (hd o snd);
berghofe@23762
   696
    val (((_, elims'), (_, [induct'])), ctxt2) =
berghofe@23762
   697
      ctxt1 |>
wenzelm@25978
   698
      LocalTheory.note_grouped kind group ((NameSpace.qualified rec_name "intros", []), intrs') ||>>
berghofe@23762
   699
      fold_map (fn (name, (elim, cases)) =>
wenzelm@25978
   700
        LocalTheory.note_grouped kind group ((NameSpace.qualified (Sign.base_name name) "cases",
berghofe@23762
   701
          [Attrib.internal (K (RuleCases.case_names cases)),
berghofe@23762
   702
           Attrib.internal (K (RuleCases.consumes 1)),
wenzelm@24861
   703
           Attrib.internal (K (Induct.cases_pred name)),
berghofe@23762
   704
           Attrib.internal (K (ContextRules.elim_query NONE))]), [elim]) #>
berghofe@23762
   705
        apfst (hd o snd)) (if null elims then [] else cnames ~~ elims) ||>>
wenzelm@25978
   706
      LocalTheory.note_grouped kind group ((NameSpace.qualified rec_name (coind_prefix coind ^ "induct"),
berghofe@23762
   707
        map (Attrib.internal o K) (#2 induct)), [rulify (#1 induct)]);
berghofe@23762
   708
berghofe@23762
   709
    val ctxt3 = if no_ind orelse coind then ctxt2 else
berghofe@23762
   710
      let val inducts = cnames ~~ ProjectRule.projects ctxt2 (1 upto length cnames) induct'
berghofe@23762
   711
      in
berghofe@23762
   712
        ctxt2 |>
wenzelm@25978
   713
        LocalTheory.notes_grouped kind group [((NameSpace.qualified rec_name "inducts", []),
berghofe@23762
   714
          inducts |> map (fn (name, th) => ([th],
berghofe@23762
   715
            [Attrib.internal (K ind_case_names),
berghofe@23762
   716
             Attrib.internal (K (RuleCases.consumes 1)),
wenzelm@24861
   717
             Attrib.internal (K (Induct.induct_pred name))])))] |> snd
berghofe@23762
   718
      end
berghofe@23762
   719
  in (intrs', elims', induct', ctxt3) end;
berghofe@23762
   720
wenzelm@24815
   721
type add_ind_def =
wenzelm@25978
   722
  {verbose: bool, kind: string, group: string, alt_name: bstring,
wenzelm@25978
   723
    coind: bool, no_elim: bool, no_ind: bool} ->
berghofe@23762
   724
  term list -> ((string * Attrib.src list) * term) list -> thm list ->
berghofe@23762
   725
  term list -> (string * mixfix) list ->
berghofe@23762
   726
  local_theory -> inductive_result * local_theory
berghofe@23762
   727
wenzelm@25978
   728
fun add_ind_def {verbose, kind, group, alt_name, coind, no_elim, no_ind}
wenzelm@24815
   729
    cs intros monos params cnames_syn ctxt =
berghofe@9072
   730
  let
wenzelm@25288
   731
    val _ = null cnames_syn andalso error "No inductive predicates given";
wenzelm@10735
   732
    val _ =
berghofe@21024
   733
      if verbose then message ("Proofs for " ^ coind_prefix coind ^ "inductive predicate(s) " ^
berghofe@21024
   734
        commas_quote (map fst cnames_syn)) else ();
berghofe@9072
   735
wenzelm@21526
   736
    val cnames = map (Sign.full_name (ProofContext.theory_of ctxt) o #1) cnames_syn;  (* FIXME *)
berghofe@23762
   737
    val ((intr_names, intr_atts), intr_ts) =
berghofe@23762
   738
      apfst split_list (split_list (map (check_rule ctxt cs params) intros));
berghofe@21024
   739
berghofe@21024
   740
    val (ctxt1, rec_name, mono, fp_def, rec_preds_defs, rec_const, preds,
wenzelm@25978
   741
      argTs, bs, xs) = mk_ind_def group alt_name coind cs intr_ts
berghofe@21024
   742
        monos params cnames_syn ctxt;
berghofe@9072
   743
berghofe@21024
   744
    val (intrs, unfold) = prove_intrs coind mono fp_def (length bs + length xs)
berghofe@22605
   745
      params intr_ts rec_preds_defs ctxt1;
berghofe@21048
   746
    val elims = if no_elim then [] else
berghofe@23762
   747
      prove_elims cs params intr_ts intr_names unfold rec_preds_defs ctxt1;
berghofe@22605
   748
    val raw_induct = zero_var_indexes
berghofe@21024
   749
      (if no_ind then Drule.asm_rl else
berghofe@23762
   750
       if coind then
berghofe@23762
   751
         singleton (ProofContext.export
berghofe@23762
   752
           (snd (Variable.add_fixes (map (fst o dest_Free) params) ctxt1)) ctxt1)
berghofe@23762
   753
           (rotate_prems ~1 (ObjectLogic.rulify (rule_by_tactic
haftmann@25510
   754
             (rewrite_tac [le_fun_def, le_bool_def, sup_fun_eq, sup_bool_eq] THEN
berghofe@23762
   755
               fold_tac rec_preds_defs) (mono RS (fp_def RS def_coinduct)))))
berghofe@21024
   756
       else
berghofe@21024
   757
         prove_indrule cs argTs bs xs rec_const params intr_ts mono fp_def
berghofe@22605
   758
           rec_preds_defs ctxt1);
berghofe@5094
   759
wenzelm@25978
   760
    val (intrs', elims', induct, ctxt2) = declare_rules kind group rec_name coind no_ind
berghofe@23762
   761
      cnames intrs intr_names intr_atts elims raw_induct ctxt1;
berghofe@21048
   762
wenzelm@21526
   763
    val names = map #1 cnames_syn;
berghofe@21048
   764
    val result =
berghofe@21048
   765
      {preds = preds,
berghofe@21048
   766
       intrs = intrs',
berghofe@21048
   767
       elims = elims',
berghofe@21048
   768
       raw_induct = rulify raw_induct,
berghofe@23762
   769
       induct = induct};
wenzelm@21367
   770
berghofe@23762
   771
    val ctxt3 = ctxt2
wenzelm@21526
   772
      |> LocalTheory.declaration (fn phi =>
wenzelm@25380
   773
        let val result' = morph_result phi result;
wenzelm@25380
   774
        in put_inductives cnames (*global names!?*) ({names = cnames, coind = coind}, result') end);
berghofe@23762
   775
  in (result, ctxt3) end;
berghofe@5094
   776
wenzelm@6424
   777
wenzelm@10735
   778
(* external interfaces *)
berghofe@5094
   779
wenzelm@25978
   780
fun gen_add_inductive_i mk_def (flags as {verbose, kind, group, alt_name, coind, no_elim, no_ind})
wenzelm@25029
   781
    cnames_syn pnames spec monos lthy =
berghofe@5094
   782
  let
wenzelm@25029
   783
    val thy = ProofContext.theory_of lthy;
wenzelm@6424
   784
    val _ = Theory.requires thy "Inductive" (coind_prefix coind ^ "inductive definitions");
berghofe@5094
   785
berghofe@21766
   786
wenzelm@25029
   787
    (* abbrevs *)
wenzelm@25029
   788
wenzelm@25029
   789
    val (_, ctxt1) = Variable.add_fixes (map (fst o fst) cnames_syn) lthy;
berghofe@21766
   790
wenzelm@25029
   791
    fun get_abbrev ((name, atts), t) =
wenzelm@25029
   792
      if can (Logic.strip_assums_concl #> Logic.dest_equals) t then
wenzelm@25029
   793
        let
wenzelm@25029
   794
          val _ = name = "" andalso null atts orelse
wenzelm@25029
   795
            error "Abbreviations may not have names or attributes";
wenzelm@25029
   796
          val ((x, T), rhs) = LocalDefs.abs_def (snd (LocalDefs.cert_def ctxt1 t));
wenzelm@25029
   797
          val mx =
wenzelm@25029
   798
            (case find_first (fn ((c, _), _) => c = x) cnames_syn of
wenzelm@25029
   799
              NONE => error ("Undeclared head of abbreviation " ^ quote x)
wenzelm@25029
   800
            | SOME ((_, T'), mx) =>
wenzelm@25029
   801
                if T <> T' then error ("Bad type specification for abbreviation " ^ quote x)
wenzelm@25029
   802
                else mx);
wenzelm@25029
   803
        in SOME ((x, mx), rhs) end
wenzelm@25029
   804
      else NONE;
berghofe@21766
   805
wenzelm@25029
   806
    val abbrevs = map_filter get_abbrev spec;
wenzelm@25029
   807
    val bs = map (fst o fst) abbrevs;
wenzelm@25029
   808
berghofe@21766
   809
wenzelm@25029
   810
    (* predicates *)
berghofe@21766
   811
wenzelm@25029
   812
    val pre_intros = filter_out (is_some o get_abbrev) spec;
wenzelm@25029
   813
    val cnames_syn' = filter_out (member (op =) bs o fst o fst) cnames_syn;
berghofe@24744
   814
    val cs = map (Free o fst) cnames_syn';
wenzelm@25029
   815
    val ps = map Free pnames;
berghofe@5094
   816
wenzelm@25143
   817
    val (_, ctxt2) = lthy |> Variable.add_fixes (map (fst o fst) cnames_syn');
wenzelm@25143
   818
    val _ = map (fn abbr => LocalDefs.fixed_abbrev abbr ctxt2) abbrevs;
wenzelm@25143
   819
    val ctxt3 = ctxt2 |> fold (snd oo LocalDefs.fixed_abbrev) abbrevs;
wenzelm@25143
   820
    val expand = Assumption.export_term ctxt3 lthy #> ProofContext.cert_term lthy;
wenzelm@25029
   821
wenzelm@25029
   822
    fun close_rule r = list_all_free (rev (fold_aterms
berghofe@21024
   823
      (fn t as Free (v as (s, _)) =>
wenzelm@25029
   824
          if Variable.is_fixed ctxt1 s orelse
wenzelm@25029
   825
            member (op =) ps t then I else insert (op =) v
wenzelm@25029
   826
        | _ => I) r []), r);
berghofe@5094
   827
wenzelm@25029
   828
    val intros = map (apsnd (close_rule #> expand)) pre_intros;
wenzelm@25029
   829
    val preds = map (fn ((c, _), mx) => (c, mx)) cnames_syn';
berghofe@21048
   830
  in
wenzelm@25029
   831
    lthy
wenzelm@25029
   832
    |> mk_def flags cs intros monos ps preds
wenzelm@25029
   833
    ||> fold (snd oo LocalTheory.abbrev Syntax.mode_default) abbrevs
berghofe@21048
   834
  end;
berghofe@5094
   835
wenzelm@24721
   836
fun gen_add_inductive mk_def verbose coind cnames_syn pnames_syn intro_srcs raw_monos lthy =
berghofe@5094
   837
  let
wenzelm@25114
   838
    val ((vars, specs), _) = lthy |> ProofContext.set_mode ProofContext.mode_abbrev
wenzelm@25114
   839
      |> Specification.read_specification
wenzelm@25114
   840
          (cnames_syn @ pnames_syn) (map (fn (a, s) => [(a, [s])]) intro_srcs);
wenzelm@24721
   841
    val (cs, ps) = chop (length cnames_syn) vars;
wenzelm@24721
   842
    val intrs = map (apsnd the_single) specs;
wenzelm@24721
   843
    val monos = Attrib.eval_thms lthy raw_monos;
wenzelm@25978
   844
    val flags = {verbose = verbose, kind = Thm.theoremK, group = serial_string (), alt_name = "",
wenzelm@24815
   845
      coind = coind, no_elim = false, no_ind = false};
wenzelm@24815
   846
  in gen_add_inductive_i mk_def flags cs (map fst ps) intrs monos lthy end;
berghofe@5094
   847
berghofe@23762
   848
val add_inductive_i = gen_add_inductive_i add_ind_def;
berghofe@23762
   849
val add_inductive = gen_add_inductive add_ind_def;
berghofe@23762
   850
wenzelm@25380
   851
fun add_inductive_global flags cnames_syn pnames pre_intros monos thy =
wenzelm@25380
   852
  let
wenzelm@25380
   853
    val name = Sign.full_name thy (fst (fst (hd cnames_syn)));
wenzelm@25380
   854
    val ctxt' = thy
wenzelm@25380
   855
      |> TheoryTarget.init NONE
wenzelm@25380
   856
      |> add_inductive_i flags cnames_syn pnames pre_intros monos |> snd
wenzelm@25380
   857
      |> LocalTheory.exit;
wenzelm@25380
   858
    val info = #2 (the_inductive ctxt' name);
wenzelm@25380
   859
  in (info, ProofContext.theory_of ctxt') end;
wenzelm@6424
   860
wenzelm@6424
   861
berghofe@22789
   862
(* read off arities of inductive predicates from raw induction rule *)
berghofe@22789
   863
fun arities_of induct =
berghofe@22789
   864
  map (fn (_ $ t $ u) =>
berghofe@22789
   865
      (fst (dest_Const (head_of t)), length (snd (strip_comb u))))
berghofe@22789
   866
    (HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct)));
berghofe@22789
   867
berghofe@22789
   868
(* read off parameters of inductive predicate from raw induction rule *)
berghofe@22789
   869
fun params_of induct =
berghofe@22789
   870
  let
berghofe@22789
   871
    val (_ $ t $ u :: _) =
berghofe@22789
   872
      HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct));
berghofe@22789
   873
    val (_, ts) = strip_comb t;
berghofe@22789
   874
    val (_, us) = strip_comb u
berghofe@22789
   875
  in
berghofe@22789
   876
    List.take (ts, length ts - length us)
berghofe@22789
   877
  end;
berghofe@22789
   878
berghofe@22789
   879
val pname_of_intr =
berghofe@22789
   880
  concl_of #> HOLogic.dest_Trueprop #> head_of #> dest_Const #> fst;
berghofe@22789
   881
berghofe@22789
   882
(* partition introduction rules according to predicate name *)
berghofe@25822
   883
fun gen_partition_rules f induct intros =
berghofe@25822
   884
  fold_rev (fn r => AList.map_entry op = (pname_of_intr (f r)) (cons r)) intros
berghofe@22789
   885
    (map (rpair [] o fst) (arities_of induct));
berghofe@22789
   886
berghofe@25822
   887
val partition_rules = gen_partition_rules I;
berghofe@25822
   888
fun partition_rules' induct = gen_partition_rules fst induct;
berghofe@25822
   889
berghofe@22789
   890
fun unpartition_rules intros xs =
berghofe@22789
   891
  fold_map (fn r => AList.map_entry_yield op = (pname_of_intr r)
berghofe@22789
   892
    (fn x :: xs => (x, xs)) #>> the) intros xs |> fst;
berghofe@22789
   893
berghofe@22789
   894
(* infer order of variables in intro rules from order of quantifiers in elim rule *)
berghofe@22789
   895
fun infer_intro_vars elim arity intros =
berghofe@22789
   896
  let
berghofe@22789
   897
    val thy = theory_of_thm elim;
berghofe@22789
   898
    val _ :: cases = prems_of elim;
berghofe@22789
   899
    val used = map (fst o fst) (Term.add_vars (prop_of elim) []);
berghofe@22789
   900
    fun mtch (t, u) =
berghofe@22789
   901
      let
berghofe@22789
   902
        val params = Logic.strip_params t;
berghofe@22789
   903
        val vars = map (Var o apfst (rpair 0))
berghofe@22789
   904
          (Name.variant_list used (map fst params) ~~ map snd params);
berghofe@22789
   905
        val ts = map (curry subst_bounds (rev vars))
berghofe@22789
   906
          (List.drop (Logic.strip_assums_hyp t, arity));
berghofe@22789
   907
        val us = Logic.strip_imp_prems u;
berghofe@22789
   908
        val tab = fold (Pattern.first_order_match thy) (ts ~~ us)
berghofe@22789
   909
          (Vartab.empty, Vartab.empty);
berghofe@22789
   910
      in
berghofe@22789
   911
        map (Envir.subst_vars tab) vars
berghofe@22789
   912
      end
berghofe@22789
   913
  in
berghofe@22789
   914
    map (mtch o apsnd prop_of) (cases ~~ intros)
berghofe@22789
   915
  end;
berghofe@22789
   916
berghofe@22789
   917
wenzelm@25978
   918
wenzelm@6437
   919
(** package setup **)
wenzelm@6437
   920
wenzelm@6437
   921
(* setup theory *)
wenzelm@6437
   922
wenzelm@8634
   923
val setup =
berghofe@23762
   924
  Method.add_methods [("ind_cases", ind_cases,
berghofe@21024
   925
    "dynamic case analysis on predicates")] #>
berghofe@23762
   926
  Attrib.add_attributes [("mono", Attrib.add_del_args mono_add mono_del,
wenzelm@18728
   927
    "declaration of monotonicity rule")];
wenzelm@6437
   928
wenzelm@6437
   929
wenzelm@6437
   930
(* outer syntax *)
wenzelm@6424
   931
wenzelm@17057
   932
local structure P = OuterParse and K = OuterKeyword in
wenzelm@6424
   933
wenzelm@24867
   934
val _ = OuterSyntax.keywords ["monos"];
wenzelm@24867
   935
wenzelm@21367
   936
fun flatten_specification specs = specs |> maps
wenzelm@21367
   937
  (fn (a, (concl, [])) => concl |> map
wenzelm@21367
   938
        (fn ((b, atts), [B]) =>
wenzelm@21367
   939
              if a = "" then ((b, atts), B)
wenzelm@21367
   940
              else if b = "" then ((a, atts), B)
wenzelm@21367
   941
              else error ("Illegal nested case names " ^ quote (NameSpace.append a b))
wenzelm@21367
   942
          | ((b, _), _) => error ("Illegal simultaneous specification " ^ quote b))
wenzelm@21367
   943
    | (a, _) => error ("Illegal local specification parameters for " ^ quote a));
wenzelm@6424
   944
berghofe@23762
   945
fun gen_ind_decl mk_def coind =
wenzelm@22102
   946
  P.opt_target --
wenzelm@21367
   947
  P.fixes -- P.for_fixes --
wenzelm@22102
   948
  Scan.optional (P.$$$ "where" |-- P.!!! SpecParse.specification) [] --
wenzelm@22102
   949
  Scan.optional (P.$$$ "monos" |-- P.!!! SpecParse.xthms1) []
wenzelm@21367
   950
  >> (fn ((((loc, preds), params), specs), monos) =>
wenzelm@21367
   951
    Toplevel.local_theory loc
berghofe@23762
   952
      (fn lthy => lthy |> gen_add_inductive mk_def true coind preds params
berghofe@23762
   953
         (flatten_specification specs) monos |> snd));
berghofe@23762
   954
berghofe@23762
   955
val ind_decl = gen_ind_decl add_ind_def;
wenzelm@6424
   956
wenzelm@24867
   957
val _ = OuterSyntax.command "inductive" "define inductive predicates" K.thy_decl (ind_decl false);
wenzelm@24867
   958
val _ = OuterSyntax.command "coinductive" "define coinductive predicates" K.thy_decl (ind_decl true);
wenzelm@6723
   959
wenzelm@24867
   960
val _ =
berghofe@23762
   961
  OuterSyntax.command "inductive_cases"
wenzelm@21367
   962
    "create simplified instances of elimination rules (improper)" K.thy_script
wenzelm@22102
   963
    (P.opt_target -- P.and_list1 SpecParse.spec
wenzelm@21367
   964
      >> (fn (loc, specs) => Toplevel.local_theory loc (snd o inductive_cases specs)));
wenzelm@7107
   965
berghofe@5094
   966
end;
wenzelm@6424
   967
wenzelm@6424
   968
end;