paulson@3366
|
1 |
(* Title: HOL/Divides.thy
|
paulson@3366
|
2 |
ID: $Id$
|
paulson@3366
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
paulson@6865
|
4 |
Copyright 1999 University of Cambridge
|
huffman@18154
|
5 |
*)
|
paulson@3366
|
6 |
|
huffman@18154
|
7 |
header {* The division operators div, mod and the divides relation "dvd" *}
|
paulson@3366
|
8 |
|
nipkow@15131
|
9 |
theory Divides
|
haftmann@21408
|
10 |
imports Datatype Power
|
nipkow@15131
|
11 |
begin
|
paulson@3366
|
12 |
|
wenzelm@8902
|
13 |
(*We use the same class for div and mod;
|
paulson@6865
|
14 |
moreover, dvd is defined whenever multiplication is*)
|
haftmann@22473
|
15 |
class div = type +
|
haftmann@21408
|
16 |
fixes div :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
|
haftmann@21408
|
17 |
fixes mod :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
|
haftmann@21408
|
18 |
begin
|
haftmann@21408
|
19 |
|
haftmann@21408
|
20 |
notation
|
haftmann@21408
|
21 |
div (infixl "\<^loc>div" 70)
|
haftmann@21408
|
22 |
|
haftmann@21408
|
23 |
notation
|
haftmann@21408
|
24 |
mod (infixl "\<^loc>mod" 70)
|
haftmann@21408
|
25 |
|
haftmann@21408
|
26 |
end
|
paulson@6865
|
27 |
|
haftmann@21408
|
28 |
notation
|
haftmann@21408
|
29 |
div (infixl "div" 70)
|
haftmann@21408
|
30 |
|
haftmann@21408
|
31 |
notation
|
haftmann@21408
|
32 |
mod (infixl "mod" 70)
|
haftmann@21408
|
33 |
|
haftmann@21408
|
34 |
instance nat :: "Divides.div"
|
berghofe@22261
|
35 |
mod_def: "m mod n == wfrec (pred_nat^+)
|
haftmann@21408
|
36 |
(%f j. if j<n | n=0 then j else f (j-n)) m"
|
haftmann@22916
|
37 |
div_def: "m div n == wfrec (pred_nat^+)
|
haftmann@21408
|
38 |
(%f j. if j<n | n=0 then 0 else Suc (f (j-n))) m" ..
|
haftmann@21408
|
39 |
|
haftmann@21408
|
40 |
definition
|
haftmann@21408
|
41 |
(*The definition of dvd is polymorphic!*)
|
haftmann@21408
|
42 |
dvd :: "'a::times \<Rightarrow> 'a \<Rightarrow> bool" (infixl "dvd" 50) where
|
haftmann@21408
|
43 |
dvd_def: "m dvd n \<longleftrightarrow> (\<exists>k. n = m*k)"
|
paulson@6865
|
44 |
|
wenzelm@22718
|
45 |
definition
|
wenzelm@22718
|
46 |
quorem :: "(nat*nat) * (nat*nat) => bool" where
|
haftmann@21408
|
47 |
(*This definition helps prove the harder properties of div and mod.
|
haftmann@21408
|
48 |
It is copied from IntDiv.thy; should it be overloaded?*)
|
wenzelm@22718
|
49 |
"quorem = (%((a,b), (q,r)).
|
haftmann@21408
|
50 |
a = b*q + r &
|
haftmann@21408
|
51 |
(if 0<b then 0\<le>r & r<b else b<r & r \<le>0))"
|
paulson@14267
|
52 |
|
paulson@14267
|
53 |
|
paulson@14267
|
54 |
|
paulson@14267
|
55 |
subsection{*Initial Lemmas*}
|
paulson@14267
|
56 |
|
wenzelm@22718
|
57 |
lemmas wf_less_trans =
|
paulson@14267
|
58 |
def_wfrec [THEN trans, OF eq_reflection wf_pred_nat [THEN wf_trancl],
|
paulson@14267
|
59 |
standard]
|
paulson@14267
|
60 |
|
wenzelm@22718
|
61 |
lemma mod_eq: "(%m. m mod n) =
|
berghofe@22261
|
62 |
wfrec (pred_nat^+) (%f j. if j<n | n=0 then j else f (j-n))"
|
paulson@14267
|
63 |
by (simp add: mod_def)
|
paulson@14267
|
64 |
|
wenzelm@22718
|
65 |
lemma div_eq: "(%m. m div n) = wfrec (pred_nat^+)
|
paulson@14267
|
66 |
(%f j. if j<n | n=0 then 0 else Suc (f (j-n)))"
|
paulson@14267
|
67 |
by (simp add: div_def)
|
paulson@14267
|
68 |
|
paulson@14267
|
69 |
|
wenzelm@22718
|
70 |
(** Aribtrary definitions for division by zero. Useful to simplify
|
paulson@14267
|
71 |
certain equations **)
|
paulson@14267
|
72 |
|
paulson@14267
|
73 |
lemma DIVISION_BY_ZERO_DIV [simp]: "a div 0 = (0::nat)"
|
wenzelm@22718
|
74 |
by (rule div_eq [THEN wf_less_trans], simp)
|
paulson@14267
|
75 |
|
paulson@14267
|
76 |
lemma DIVISION_BY_ZERO_MOD [simp]: "a mod 0 = (a::nat)"
|
wenzelm@22718
|
77 |
by (rule mod_eq [THEN wf_less_trans], simp)
|
paulson@14267
|
78 |
|
paulson@14267
|
79 |
|
paulson@14267
|
80 |
subsection{*Remainder*}
|
paulson@14267
|
81 |
|
paulson@14267
|
82 |
lemma mod_less [simp]: "m<n ==> m mod n = (m::nat)"
|
wenzelm@22718
|
83 |
by (rule mod_eq [THEN wf_less_trans]) simp
|
paulson@14267
|
84 |
|
paulson@14267
|
85 |
lemma mod_geq: "~ m < (n::nat) ==> m mod n = (m-n) mod n"
|
wenzelm@22718
|
86 |
apply (cases "n=0")
|
wenzelm@22718
|
87 |
apply simp
|
wenzelm@22718
|
88 |
apply (rule mod_eq [THEN wf_less_trans])
|
wenzelm@22718
|
89 |
apply (simp add: cut_apply less_eq)
|
wenzelm@22718
|
90 |
done
|
paulson@14267
|
91 |
|
paulson@14267
|
92 |
(*Avoids the ugly ~m<n above*)
|
paulson@14267
|
93 |
lemma le_mod_geq: "(n::nat) \<le> m ==> m mod n = (m-n) mod n"
|
wenzelm@22718
|
94 |
by (simp add: mod_geq linorder_not_less)
|
paulson@14267
|
95 |
|
paulson@14267
|
96 |
lemma mod_if: "m mod (n::nat) = (if m<n then m else (m-n) mod n)"
|
wenzelm@22718
|
97 |
by (simp add: mod_geq)
|
paulson@14267
|
98 |
|
paulson@14267
|
99 |
lemma mod_1 [simp]: "m mod Suc 0 = 0"
|
wenzelm@22718
|
100 |
by (induct m) (simp_all add: mod_geq)
|
paulson@14267
|
101 |
|
paulson@14267
|
102 |
lemma mod_self [simp]: "n mod n = (0::nat)"
|
wenzelm@22718
|
103 |
by (cases "n = 0") (simp_all add: mod_geq)
|
paulson@14267
|
104 |
|
paulson@14267
|
105 |
lemma mod_add_self2 [simp]: "(m+n) mod n = m mod (n::nat)"
|
wenzelm@22718
|
106 |
apply (subgoal_tac "(n + m) mod n = (n+m-n) mod n")
|
wenzelm@22718
|
107 |
apply (simp add: add_commute)
|
wenzelm@22718
|
108 |
apply (subst mod_geq [symmetric], simp_all)
|
wenzelm@22718
|
109 |
done
|
paulson@14267
|
110 |
|
paulson@14267
|
111 |
lemma mod_add_self1 [simp]: "(n+m) mod n = m mod (n::nat)"
|
wenzelm@22718
|
112 |
by (simp add: add_commute mod_add_self2)
|
paulson@14267
|
113 |
|
paulson@14267
|
114 |
lemma mod_mult_self1 [simp]: "(m + k*n) mod n = m mod (n::nat)"
|
wenzelm@22718
|
115 |
by (induct k) (simp_all add: add_left_commute [of _ n])
|
paulson@14267
|
116 |
|
paulson@14267
|
117 |
lemma mod_mult_self2 [simp]: "(m + n*k) mod n = m mod (n::nat)"
|
wenzelm@22718
|
118 |
by (simp add: mult_commute mod_mult_self1)
|
paulson@14267
|
119 |
|
paulson@14267
|
120 |
lemma mod_mult_distrib: "(m mod n) * (k::nat) = (m*k) mod (n*k)"
|
wenzelm@22718
|
121 |
apply (cases "n = 0", simp)
|
wenzelm@22718
|
122 |
apply (cases "k = 0", simp)
|
wenzelm@22718
|
123 |
apply (induct m rule: nat_less_induct)
|
wenzelm@22718
|
124 |
apply (subst mod_if, simp)
|
wenzelm@22718
|
125 |
apply (simp add: mod_geq diff_mult_distrib)
|
wenzelm@22718
|
126 |
done
|
paulson@14267
|
127 |
|
paulson@14267
|
128 |
lemma mod_mult_distrib2: "(k::nat) * (m mod n) = (k*m) mod (k*n)"
|
wenzelm@22718
|
129 |
by (simp add: mult_commute [of k] mod_mult_distrib)
|
paulson@14267
|
130 |
|
paulson@14267
|
131 |
lemma mod_mult_self_is_0 [simp]: "(m*n) mod n = (0::nat)"
|
wenzelm@22718
|
132 |
apply (cases "n = 0", simp)
|
wenzelm@22718
|
133 |
apply (induct m, simp)
|
wenzelm@22718
|
134 |
apply (rename_tac k)
|
wenzelm@22718
|
135 |
apply (cut_tac m = "k * n" and n = n in mod_add_self2)
|
wenzelm@22718
|
136 |
apply (simp add: add_commute)
|
wenzelm@22718
|
137 |
done
|
paulson@14267
|
138 |
|
paulson@14267
|
139 |
lemma mod_mult_self1_is_0 [simp]: "(n*m) mod n = (0::nat)"
|
wenzelm@22718
|
140 |
by (simp add: mult_commute mod_mult_self_is_0)
|
paulson@14267
|
141 |
|
paulson@14267
|
142 |
|
paulson@14267
|
143 |
subsection{*Quotient*}
|
paulson@14267
|
144 |
|
paulson@14267
|
145 |
lemma div_less [simp]: "m<n ==> m div n = (0::nat)"
|
wenzelm@22718
|
146 |
by (rule div_eq [THEN wf_less_trans], simp)
|
paulson@14267
|
147 |
|
paulson@14267
|
148 |
lemma div_geq: "[| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n)"
|
wenzelm@22718
|
149 |
apply (rule div_eq [THEN wf_less_trans])
|
wenzelm@22718
|
150 |
apply (simp add: cut_apply less_eq)
|
wenzelm@22718
|
151 |
done
|
paulson@14267
|
152 |
|
paulson@14267
|
153 |
(*Avoids the ugly ~m<n above*)
|
paulson@14267
|
154 |
lemma le_div_geq: "[| 0<n; n\<le>m |] ==> m div n = Suc((m-n) div n)"
|
wenzelm@22718
|
155 |
by (simp add: div_geq linorder_not_less)
|
paulson@14267
|
156 |
|
paulson@14267
|
157 |
lemma div_if: "0<n ==> m div n = (if m<n then 0 else Suc((m-n) div n))"
|
wenzelm@22718
|
158 |
by (simp add: div_geq)
|
paulson@14267
|
159 |
|
paulson@14267
|
160 |
|
paulson@14267
|
161 |
(*Main Result about quotient and remainder.*)
|
paulson@14267
|
162 |
lemma mod_div_equality: "(m div n)*n + m mod n = (m::nat)"
|
wenzelm@22718
|
163 |
apply (cases "n = 0", simp)
|
wenzelm@22718
|
164 |
apply (induct m rule: nat_less_induct)
|
wenzelm@22718
|
165 |
apply (subst mod_if)
|
wenzelm@22718
|
166 |
apply (simp_all add: add_assoc div_geq add_diff_inverse)
|
wenzelm@22718
|
167 |
done
|
paulson@14267
|
168 |
|
paulson@14267
|
169 |
lemma mod_div_equality2: "n * (m div n) + m mod n = (m::nat)"
|
wenzelm@22718
|
170 |
apply (cut_tac m = m and n = n in mod_div_equality)
|
wenzelm@22718
|
171 |
apply (simp add: mult_commute)
|
wenzelm@22718
|
172 |
done
|
paulson@14267
|
173 |
|
paulson@14267
|
174 |
subsection{*Simproc for Cancelling Div and Mod*}
|
paulson@14267
|
175 |
|
paulson@14267
|
176 |
lemma div_mod_equality: "((m div n)*n + m mod n) + k = (m::nat) + k"
|
wenzelm@22718
|
177 |
by (simp add: mod_div_equality)
|
paulson@14267
|
178 |
|
paulson@14267
|
179 |
lemma div_mod_equality2: "(n*(m div n) + m mod n) + k = (m::nat) + k"
|
wenzelm@22718
|
180 |
by (simp add: mod_div_equality2)
|
paulson@14267
|
181 |
|
paulson@14267
|
182 |
ML
|
paulson@14267
|
183 |
{*
|
paulson@14267
|
184 |
structure CancelDivModData =
|
paulson@14267
|
185 |
struct
|
paulson@14267
|
186 |
|
wenzelm@22718
|
187 |
val div_name = @{const_name Divides.div};
|
wenzelm@22718
|
188 |
val mod_name = @{const_name Divides.mod};
|
paulson@14267
|
189 |
val mk_binop = HOLogic.mk_binop;
|
paulson@14267
|
190 |
val mk_sum = NatArithUtils.mk_sum;
|
paulson@14267
|
191 |
val dest_sum = NatArithUtils.dest_sum;
|
paulson@14267
|
192 |
|
paulson@14267
|
193 |
(*logic*)
|
paulson@14267
|
194 |
|
wenzelm@22718
|
195 |
val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}]
|
paulson@14267
|
196 |
|
paulson@14267
|
197 |
val trans = trans
|
paulson@14267
|
198 |
|
paulson@14267
|
199 |
val prove_eq_sums =
|
wenzelm@22718
|
200 |
let val simps = @{thm add_0} :: @{thm add_0_right} :: @{thms add_ac}
|
wenzelm@17609
|
201 |
in NatArithUtils.prove_conv all_tac (NatArithUtils.simp_all_tac simps) end;
|
paulson@14267
|
202 |
|
paulson@14267
|
203 |
end;
|
paulson@14267
|
204 |
|
paulson@14267
|
205 |
structure CancelDivMod = CancelDivModFun(CancelDivModData);
|
paulson@14267
|
206 |
|
paulson@14267
|
207 |
val cancel_div_mod_proc = NatArithUtils.prep_simproc
|
wenzelm@20044
|
208 |
("cancel_div_mod", ["(m::nat) + n"], K CancelDivMod.proc);
|
paulson@14267
|
209 |
|
paulson@14267
|
210 |
Addsimprocs[cancel_div_mod_proc];
|
paulson@14267
|
211 |
*}
|
paulson@14267
|
212 |
|
paulson@14267
|
213 |
|
paulson@14267
|
214 |
(* a simple rearrangement of mod_div_equality: *)
|
paulson@14267
|
215 |
lemma mult_div_cancel: "(n::nat) * (m div n) = m - (m mod n)"
|
wenzelm@22718
|
216 |
by (cut_tac m = m and n = n in mod_div_equality2, arith)
|
paulson@14267
|
217 |
|
paulson@14267
|
218 |
lemma mod_less_divisor [simp]: "0<n ==> m mod n < (n::nat)"
|
wenzelm@22718
|
219 |
apply (induct m rule: nat_less_induct)
|
wenzelm@22718
|
220 |
apply (rename_tac m)
|
wenzelm@22718
|
221 |
apply (case_tac "m<n", simp)
|
wenzelm@22718
|
222 |
txt{*case @{term "n \<le> m"}*}
|
wenzelm@22718
|
223 |
apply (simp add: mod_geq)
|
wenzelm@22718
|
224 |
done
|
nipkow@15439
|
225 |
|
nipkow@15439
|
226 |
lemma mod_le_divisor[simp]: "0 < n \<Longrightarrow> m mod n \<le> (n::nat)"
|
wenzelm@22718
|
227 |
apply (drule mod_less_divisor [where m = m])
|
wenzelm@22718
|
228 |
apply simp
|
wenzelm@22718
|
229 |
done
|
paulson@14267
|
230 |
|
paulson@14267
|
231 |
lemma div_mult_self_is_m [simp]: "0<n ==> (m*n) div n = (m::nat)"
|
wenzelm@22718
|
232 |
by (cut_tac m = "m*n" and n = n in mod_div_equality, auto)
|
paulson@14267
|
233 |
|
paulson@14267
|
234 |
lemma div_mult_self1_is_m [simp]: "0<n ==> (n*m) div n = (m::nat)"
|
wenzelm@22718
|
235 |
by (simp add: mult_commute div_mult_self_is_m)
|
paulson@14267
|
236 |
|
paulson@14267
|
237 |
(*mod_mult_distrib2 above is the counterpart for remainder*)
|
paulson@14267
|
238 |
|
paulson@14267
|
239 |
|
paulson@14267
|
240 |
subsection{*Proving facts about Quotient and Remainder*}
|
paulson@14267
|
241 |
|
paulson@14267
|
242 |
lemma unique_quotient_lemma:
|
wenzelm@22718
|
243 |
"[| b*q' + r' \<le> b*q + r; x < b; r < b |]
|
paulson@14267
|
244 |
==> q' \<le> (q::nat)"
|
wenzelm@22718
|
245 |
apply (rule leI)
|
wenzelm@22718
|
246 |
apply (subst less_iff_Suc_add)
|
wenzelm@22718
|
247 |
apply (auto simp add: add_mult_distrib2)
|
wenzelm@22718
|
248 |
done
|
paulson@14267
|
249 |
|
paulson@14267
|
250 |
lemma unique_quotient:
|
wenzelm@22718
|
251 |
"[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); 0 < b |]
|
paulson@14267
|
252 |
==> q = q'"
|
wenzelm@22718
|
253 |
apply (simp add: split_ifs quorem_def)
|
wenzelm@22718
|
254 |
apply (blast intro: order_antisym
|
wenzelm@22718
|
255 |
dest: order_eq_refl [THEN unique_quotient_lemma] sym)
|
wenzelm@22718
|
256 |
done
|
paulson@14267
|
257 |
|
paulson@14267
|
258 |
lemma unique_remainder:
|
wenzelm@22718
|
259 |
"[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); 0 < b |]
|
paulson@14267
|
260 |
==> r = r'"
|
wenzelm@22718
|
261 |
apply (subgoal_tac "q = q'")
|
wenzelm@22718
|
262 |
prefer 2 apply (blast intro: unique_quotient)
|
wenzelm@22718
|
263 |
apply (simp add: quorem_def)
|
wenzelm@22718
|
264 |
done
|
paulson@14267
|
265 |
|
paulson@14267
|
266 |
lemma quorem_div_mod: "0 < b ==> quorem ((a, b), (a div b, a mod b))"
|
wenzelm@22718
|
267 |
unfolding quorem_def by simp
|
paulson@14267
|
268 |
|
paulson@14267
|
269 |
lemma quorem_div: "[| quorem((a,b),(q,r)); 0 < b |] ==> a div b = q"
|
wenzelm@22718
|
270 |
by (simp add: quorem_div_mod [THEN unique_quotient])
|
paulson@14267
|
271 |
|
paulson@14267
|
272 |
lemma quorem_mod: "[| quorem((a,b),(q,r)); 0 < b |] ==> a mod b = r"
|
wenzelm@22718
|
273 |
by (simp add: quorem_div_mod [THEN unique_remainder])
|
paulson@14267
|
274 |
|
paulson@14267
|
275 |
(** A dividend of zero **)
|
paulson@14267
|
276 |
|
paulson@14267
|
277 |
lemma div_0 [simp]: "0 div m = (0::nat)"
|
wenzelm@22718
|
278 |
by (cases "m = 0") simp_all
|
paulson@14267
|
279 |
|
paulson@14267
|
280 |
lemma mod_0 [simp]: "0 mod m = (0::nat)"
|
wenzelm@22718
|
281 |
by (cases "m = 0") simp_all
|
paulson@14267
|
282 |
|
paulson@14267
|
283 |
(** proving (a*b) div c = a * (b div c) + a * (b mod c) **)
|
paulson@14267
|
284 |
|
paulson@14267
|
285 |
lemma quorem_mult1_eq:
|
wenzelm@22718
|
286 |
"[| quorem((b,c),(q,r)); 0 < c |]
|
paulson@14267
|
287 |
==> quorem ((a*b, c), (a*q + a*r div c, a*r mod c))"
|
wenzelm@22718
|
288 |
by (auto simp add: split_ifs mult_ac quorem_def add_mult_distrib2)
|
paulson@14267
|
289 |
|
paulson@14267
|
290 |
lemma div_mult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::nat)"
|
wenzelm@22718
|
291 |
apply (cases "c = 0", simp)
|
wenzelm@22718
|
292 |
apply (blast intro: quorem_div_mod [THEN quorem_mult1_eq, THEN quorem_div])
|
wenzelm@22718
|
293 |
done
|
paulson@14267
|
294 |
|
paulson@14267
|
295 |
lemma mod_mult1_eq: "(a*b) mod c = a*(b mod c) mod (c::nat)"
|
wenzelm@22718
|
296 |
apply (cases "c = 0", simp)
|
wenzelm@22718
|
297 |
apply (blast intro: quorem_div_mod [THEN quorem_mult1_eq, THEN quorem_mod])
|
wenzelm@22718
|
298 |
done
|
paulson@14267
|
299 |
|
paulson@14267
|
300 |
lemma mod_mult1_eq': "(a*b) mod (c::nat) = ((a mod c) * b) mod c"
|
wenzelm@22718
|
301 |
apply (rule trans)
|
wenzelm@22718
|
302 |
apply (rule_tac s = "b*a mod c" in trans)
|
wenzelm@22718
|
303 |
apply (rule_tac [2] mod_mult1_eq)
|
wenzelm@22718
|
304 |
apply (simp_all add: mult_commute)
|
wenzelm@22718
|
305 |
done
|
paulson@14267
|
306 |
|
paulson@14267
|
307 |
lemma mod_mult_distrib_mod: "(a*b) mod (c::nat) = ((a mod c) * (b mod c)) mod c"
|
wenzelm@22718
|
308 |
apply (rule mod_mult1_eq' [THEN trans])
|
wenzelm@22718
|
309 |
apply (rule mod_mult1_eq)
|
wenzelm@22718
|
310 |
done
|
paulson@14267
|
311 |
|
paulson@14267
|
312 |
(** proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) **)
|
paulson@14267
|
313 |
|
paulson@14267
|
314 |
lemma quorem_add1_eq:
|
wenzelm@22718
|
315 |
"[| quorem((a,c),(aq,ar)); quorem((b,c),(bq,br)); 0 < c |]
|
paulson@14267
|
316 |
==> quorem ((a+b, c), (aq + bq + (ar+br) div c, (ar+br) mod c))"
|
wenzelm@22718
|
317 |
by (auto simp add: split_ifs mult_ac quorem_def add_mult_distrib2)
|
paulson@14267
|
318 |
|
paulson@14267
|
319 |
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
|
paulson@14267
|
320 |
lemma div_add1_eq:
|
paulson@14267
|
321 |
"(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)"
|
wenzelm@22718
|
322 |
apply (cases "c = 0", simp)
|
wenzelm@22718
|
323 |
apply (blast intro: quorem_add1_eq [THEN quorem_div] quorem_div_mod quorem_div_mod)
|
wenzelm@22718
|
324 |
done
|
paulson@14267
|
325 |
|
paulson@14267
|
326 |
lemma mod_add1_eq: "(a+b) mod (c::nat) = (a mod c + b mod c) mod c"
|
wenzelm@22718
|
327 |
apply (cases "c = 0", simp)
|
wenzelm@22718
|
328 |
apply (blast intro: quorem_div_mod quorem_div_mod quorem_add1_eq [THEN quorem_mod])
|
wenzelm@22718
|
329 |
done
|
paulson@14267
|
330 |
|
paulson@14267
|
331 |
|
paulson@14267
|
332 |
subsection{*Proving @{term "a div (b*c) = (a div b) div c"}*}
|
paulson@14267
|
333 |
|
paulson@14267
|
334 |
(** first, a lemma to bound the remainder **)
|
paulson@14267
|
335 |
|
paulson@14267
|
336 |
lemma mod_lemma: "[| (0::nat) < c; r < b |] ==> b * (q mod c) + r < b * c"
|
wenzelm@22718
|
337 |
apply (cut_tac m = q and n = c in mod_less_divisor)
|
wenzelm@22718
|
338 |
apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto)
|
wenzelm@22718
|
339 |
apply (erule_tac P = "%x. ?lhs < ?rhs x" in ssubst)
|
wenzelm@22718
|
340 |
apply (simp add: add_mult_distrib2)
|
wenzelm@22718
|
341 |
done
|
paulson@10559
|
342 |
|
wenzelm@22718
|
343 |
lemma quorem_mult2_eq: "[| quorem ((a,b), (q,r)); 0 < b; 0 < c |]
|
paulson@14267
|
344 |
==> quorem ((a, b*c), (q div c, b*(q mod c) + r))"
|
wenzelm@22718
|
345 |
by (auto simp add: mult_ac quorem_def add_mult_distrib2 [symmetric] mod_lemma)
|
paulson@14267
|
346 |
|
paulson@14267
|
347 |
lemma div_mult2_eq: "a div (b*c) = (a div b) div (c::nat)"
|
wenzelm@22718
|
348 |
apply (cases "b = 0", simp)
|
wenzelm@22718
|
349 |
apply (cases "c = 0", simp)
|
wenzelm@22718
|
350 |
apply (force simp add: quorem_div_mod [THEN quorem_mult2_eq, THEN quorem_div])
|
wenzelm@22718
|
351 |
done
|
paulson@14267
|
352 |
|
paulson@14267
|
353 |
lemma mod_mult2_eq: "a mod (b*c) = b*(a div b mod c) + a mod (b::nat)"
|
wenzelm@22718
|
354 |
apply (cases "b = 0", simp)
|
wenzelm@22718
|
355 |
apply (cases "c = 0", simp)
|
wenzelm@22718
|
356 |
apply (auto simp add: mult_commute quorem_div_mod [THEN quorem_mult2_eq, THEN quorem_mod])
|
wenzelm@22718
|
357 |
done
|
paulson@14267
|
358 |
|
paulson@14267
|
359 |
|
paulson@14267
|
360 |
subsection{*Cancellation of Common Factors in Division*}
|
paulson@14267
|
361 |
|
paulson@14267
|
362 |
lemma div_mult_mult_lemma:
|
wenzelm@22718
|
363 |
"[| (0::nat) < b; 0 < c |] ==> (c*a) div (c*b) = a div b"
|
wenzelm@22718
|
364 |
by (auto simp add: div_mult2_eq)
|
paulson@14267
|
365 |
|
paulson@14267
|
366 |
lemma div_mult_mult1 [simp]: "(0::nat) < c ==> (c*a) div (c*b) = a div b"
|
wenzelm@22718
|
367 |
apply (cases "b = 0")
|
wenzelm@22718
|
368 |
apply (auto simp add: linorder_neq_iff [of b] div_mult_mult_lemma)
|
wenzelm@22718
|
369 |
done
|
paulson@14267
|
370 |
|
paulson@14267
|
371 |
lemma div_mult_mult2 [simp]: "(0::nat) < c ==> (a*c) div (b*c) = a div b"
|
wenzelm@22718
|
372 |
apply (drule div_mult_mult1)
|
wenzelm@22718
|
373 |
apply (auto simp add: mult_commute)
|
wenzelm@22718
|
374 |
done
|
paulson@14267
|
375 |
|
paulson@14267
|
376 |
|
paulson@14267
|
377 |
(*Distribution of Factors over Remainders:
|
paulson@14267
|
378 |
|
paulson@14267
|
379 |
Could prove these as in Integ/IntDiv.ML, but we already have
|
paulson@14267
|
380 |
mod_mult_distrib and mod_mult_distrib2 above!
|
paulson@14267
|
381 |
|
paulson@14267
|
382 |
Goal "(c*a) mod (c*b) = (c::nat) * (a mod b)"
|
paulson@14267
|
383 |
qed "mod_mult_mult1";
|
paulson@14267
|
384 |
|
paulson@14267
|
385 |
Goal "(a*c) mod (b*c) = (a mod b) * (c::nat)";
|
paulson@14267
|
386 |
qed "mod_mult_mult2";
|
paulson@14267
|
387 |
***)
|
paulson@14267
|
388 |
|
paulson@14267
|
389 |
subsection{*Further Facts about Quotient and Remainder*}
|
paulson@14267
|
390 |
|
paulson@14267
|
391 |
lemma div_1 [simp]: "m div Suc 0 = m"
|
wenzelm@22718
|
392 |
by (induct m) (simp_all add: div_geq)
|
paulson@14267
|
393 |
|
paulson@14267
|
394 |
lemma div_self [simp]: "0<n ==> n div n = (1::nat)"
|
wenzelm@22718
|
395 |
by (simp add: div_geq)
|
paulson@14267
|
396 |
|
paulson@14267
|
397 |
lemma div_add_self2: "0<n ==> (m+n) div n = Suc (m div n)"
|
wenzelm@22718
|
398 |
apply (subgoal_tac "(n + m) div n = Suc ((n+m-n) div n) ")
|
wenzelm@22718
|
399 |
apply (simp add: add_commute)
|
wenzelm@22718
|
400 |
apply (subst div_geq [symmetric], simp_all)
|
wenzelm@22718
|
401 |
done
|
paulson@14267
|
402 |
|
paulson@14267
|
403 |
lemma div_add_self1: "0<n ==> (n+m) div n = Suc (m div n)"
|
wenzelm@22718
|
404 |
by (simp add: add_commute div_add_self2)
|
paulson@14267
|
405 |
|
paulson@14267
|
406 |
lemma div_mult_self1 [simp]: "!!n::nat. 0<n ==> (m + k*n) div n = k + m div n"
|
wenzelm@22718
|
407 |
apply (subst div_add1_eq)
|
wenzelm@22718
|
408 |
apply (subst div_mult1_eq, simp)
|
wenzelm@22718
|
409 |
done
|
paulson@14267
|
410 |
|
paulson@14267
|
411 |
lemma div_mult_self2 [simp]: "0<n ==> (m + n*k) div n = k + m div (n::nat)"
|
wenzelm@22718
|
412 |
by (simp add: mult_commute div_mult_self1)
|
paulson@14267
|
413 |
|
paulson@14267
|
414 |
|
paulson@14267
|
415 |
(* Monotonicity of div in first argument *)
|
paulson@14267
|
416 |
lemma div_le_mono [rule_format (no_asm)]:
|
wenzelm@22718
|
417 |
"\<forall>m::nat. m \<le> n --> (m div k) \<le> (n div k)"
|
paulson@14267
|
418 |
apply (case_tac "k=0", simp)
|
paulson@15251
|
419 |
apply (induct "n" rule: nat_less_induct, clarify)
|
paulson@14267
|
420 |
apply (case_tac "n<k")
|
paulson@14267
|
421 |
(* 1 case n<k *)
|
paulson@14267
|
422 |
apply simp
|
paulson@14267
|
423 |
(* 2 case n >= k *)
|
paulson@14267
|
424 |
apply (case_tac "m<k")
|
paulson@14267
|
425 |
(* 2.1 case m<k *)
|
paulson@14267
|
426 |
apply simp
|
paulson@14267
|
427 |
(* 2.2 case m>=k *)
|
nipkow@15439
|
428 |
apply (simp add: div_geq diff_le_mono)
|
paulson@14267
|
429 |
done
|
paulson@14267
|
430 |
|
paulson@14267
|
431 |
(* Antimonotonicity of div in second argument *)
|
paulson@14267
|
432 |
lemma div_le_mono2: "!!m::nat. [| 0<m; m\<le>n |] ==> (k div n) \<le> (k div m)"
|
paulson@14267
|
433 |
apply (subgoal_tac "0<n")
|
wenzelm@22718
|
434 |
prefer 2 apply simp
|
paulson@15251
|
435 |
apply (induct_tac k rule: nat_less_induct)
|
paulson@14267
|
436 |
apply (rename_tac "k")
|
paulson@14267
|
437 |
apply (case_tac "k<n", simp)
|
paulson@14267
|
438 |
apply (subgoal_tac "~ (k<m) ")
|
wenzelm@22718
|
439 |
prefer 2 apply simp
|
paulson@14267
|
440 |
apply (simp add: div_geq)
|
paulson@15251
|
441 |
apply (subgoal_tac "(k-n) div n \<le> (k-m) div n")
|
paulson@14267
|
442 |
prefer 2
|
paulson@14267
|
443 |
apply (blast intro: div_le_mono diff_le_mono2)
|
paulson@14267
|
444 |
apply (rule le_trans, simp)
|
nipkow@15439
|
445 |
apply (simp)
|
paulson@14267
|
446 |
done
|
paulson@14267
|
447 |
|
paulson@14267
|
448 |
lemma div_le_dividend [simp]: "m div n \<le> (m::nat)"
|
paulson@14267
|
449 |
apply (case_tac "n=0", simp)
|
paulson@14267
|
450 |
apply (subgoal_tac "m div n \<le> m div 1", simp)
|
paulson@14267
|
451 |
apply (rule div_le_mono2)
|
paulson@14267
|
452 |
apply (simp_all (no_asm_simp))
|
paulson@14267
|
453 |
done
|
paulson@14267
|
454 |
|
wenzelm@22718
|
455 |
(* Similar for "less than" *)
|
paulson@17085
|
456 |
lemma div_less_dividend [rule_format]:
|
paulson@14267
|
457 |
"!!n::nat. 1<n ==> 0 < m --> m div n < m"
|
paulson@15251
|
458 |
apply (induct_tac m rule: nat_less_induct)
|
paulson@14267
|
459 |
apply (rename_tac "m")
|
paulson@14267
|
460 |
apply (case_tac "m<n", simp)
|
paulson@14267
|
461 |
apply (subgoal_tac "0<n")
|
wenzelm@22718
|
462 |
prefer 2 apply simp
|
paulson@14267
|
463 |
apply (simp add: div_geq)
|
paulson@14267
|
464 |
apply (case_tac "n<m")
|
paulson@15251
|
465 |
apply (subgoal_tac "(m-n) div n < (m-n) ")
|
paulson@14267
|
466 |
apply (rule impI less_trans_Suc)+
|
paulson@14267
|
467 |
apply assumption
|
nipkow@15439
|
468 |
apply (simp_all)
|
paulson@14267
|
469 |
done
|
paulson@14267
|
470 |
|
paulson@17085
|
471 |
declare div_less_dividend [simp]
|
paulson@17085
|
472 |
|
paulson@14267
|
473 |
text{*A fact for the mutilated chess board*}
|
paulson@14267
|
474 |
lemma mod_Suc: "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))"
|
paulson@14267
|
475 |
apply (case_tac "n=0", simp)
|
paulson@15251
|
476 |
apply (induct "m" rule: nat_less_induct)
|
paulson@14267
|
477 |
apply (case_tac "Suc (na) <n")
|
paulson@14267
|
478 |
(* case Suc(na) < n *)
|
paulson@14267
|
479 |
apply (frule lessI [THEN less_trans], simp add: less_not_refl3)
|
paulson@14267
|
480 |
(* case n \<le> Suc(na) *)
|
paulson@16796
|
481 |
apply (simp add: linorder_not_less le_Suc_eq mod_geq)
|
nipkow@15439
|
482 |
apply (auto simp add: Suc_diff_le le_mod_geq)
|
paulson@14267
|
483 |
done
|
paulson@14267
|
484 |
|
paulson@14437
|
485 |
lemma nat_mod_div_trivial [simp]: "m mod n div n = (0 :: nat)"
|
wenzelm@22718
|
486 |
by (cases "n = 0") auto
|
paulson@14437
|
487 |
|
paulson@14437
|
488 |
lemma nat_mod_mod_trivial [simp]: "m mod n mod n = (m mod n :: nat)"
|
wenzelm@22718
|
489 |
by (cases "n = 0") auto
|
paulson@14437
|
490 |
|
paulson@14267
|
491 |
|
paulson@14267
|
492 |
subsection{*The Divides Relation*}
|
paulson@14267
|
493 |
|
paulson@14267
|
494 |
lemma dvdI [intro?]: "n = m * k ==> m dvd n"
|
wenzelm@22718
|
495 |
unfolding dvd_def by blast
|
paulson@14267
|
496 |
|
paulson@14267
|
497 |
lemma dvdE [elim?]: "!!P. [|m dvd n; !!k. n = m*k ==> P|] ==> P"
|
wenzelm@22718
|
498 |
unfolding dvd_def by blast
|
nipkow@13152
|
499 |
|
paulson@14267
|
500 |
lemma dvd_0_right [iff]: "m dvd (0::nat)"
|
wenzelm@22718
|
501 |
unfolding dvd_def by (blast intro: mult_0_right [symmetric])
|
paulson@14267
|
502 |
|
paulson@14267
|
503 |
lemma dvd_0_left: "0 dvd m ==> m = (0::nat)"
|
wenzelm@22718
|
504 |
by (force simp add: dvd_def)
|
paulson@14267
|
505 |
|
paulson@14267
|
506 |
lemma dvd_0_left_iff [iff]: "(0 dvd (m::nat)) = (m = 0)"
|
wenzelm@22718
|
507 |
by (blast intro: dvd_0_left)
|
paulson@14267
|
508 |
|
paulson@14267
|
509 |
lemma dvd_1_left [iff]: "Suc 0 dvd k"
|
wenzelm@22718
|
510 |
unfolding dvd_def by simp
|
paulson@14267
|
511 |
|
paulson@14267
|
512 |
lemma dvd_1_iff_1 [simp]: "(m dvd Suc 0) = (m = Suc 0)"
|
wenzelm@22718
|
513 |
by (simp add: dvd_def)
|
paulson@14267
|
514 |
|
paulson@14267
|
515 |
lemma dvd_refl [simp]: "m dvd (m::nat)"
|
wenzelm@22718
|
516 |
unfolding dvd_def by (blast intro: mult_1_right [symmetric])
|
paulson@14267
|
517 |
|
paulson@14267
|
518 |
lemma dvd_trans [trans]: "[| m dvd n; n dvd p |] ==> m dvd (p::nat)"
|
wenzelm@22718
|
519 |
unfolding dvd_def by (blast intro: mult_assoc)
|
paulson@14267
|
520 |
|
paulson@14267
|
521 |
lemma dvd_anti_sym: "[| m dvd n; n dvd m |] ==> m = (n::nat)"
|
wenzelm@22718
|
522 |
unfolding dvd_def
|
wenzelm@22718
|
523 |
by (force dest: mult_eq_self_implies_10 simp add: mult_assoc mult_eq_1_iff)
|
paulson@14267
|
524 |
|
paulson@14267
|
525 |
lemma dvd_add: "[| k dvd m; k dvd n |] ==> k dvd (m+n :: nat)"
|
wenzelm@22718
|
526 |
unfolding dvd_def
|
wenzelm@22718
|
527 |
by (blast intro: add_mult_distrib2 [symmetric])
|
paulson@14267
|
528 |
|
paulson@14267
|
529 |
lemma dvd_diff: "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)"
|
wenzelm@22718
|
530 |
unfolding dvd_def
|
wenzelm@22718
|
531 |
by (blast intro: diff_mult_distrib2 [symmetric])
|
paulson@14267
|
532 |
|
paulson@14267
|
533 |
lemma dvd_diffD: "[| k dvd m-n; k dvd n; n\<le>m |] ==> k dvd (m::nat)"
|
wenzelm@22718
|
534 |
apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst])
|
wenzelm@22718
|
535 |
apply (blast intro: dvd_add)
|
wenzelm@22718
|
536 |
done
|
paulson@14267
|
537 |
|
paulson@14267
|
538 |
lemma dvd_diffD1: "[| k dvd m-n; k dvd m; n\<le>m |] ==> k dvd (n::nat)"
|
wenzelm@22718
|
539 |
by (drule_tac m = m in dvd_diff, auto)
|
paulson@14267
|
540 |
|
paulson@14267
|
541 |
lemma dvd_mult: "k dvd n ==> k dvd (m*n :: nat)"
|
wenzelm@22718
|
542 |
unfolding dvd_def by (blast intro: mult_left_commute)
|
paulson@14267
|
543 |
|
paulson@14267
|
544 |
lemma dvd_mult2: "k dvd m ==> k dvd (m*n :: nat)"
|
wenzelm@22718
|
545 |
apply (subst mult_commute)
|
wenzelm@22718
|
546 |
apply (erule dvd_mult)
|
wenzelm@22718
|
547 |
done
|
paulson@14267
|
548 |
|
paulson@17084
|
549 |
lemma dvd_triv_right [iff]: "k dvd (m*k :: nat)"
|
wenzelm@22718
|
550 |
by (rule dvd_refl [THEN dvd_mult])
|
paulson@17084
|
551 |
|
paulson@17084
|
552 |
lemma dvd_triv_left [iff]: "k dvd (k*m :: nat)"
|
wenzelm@22718
|
553 |
by (rule dvd_refl [THEN dvd_mult2])
|
paulson@14267
|
554 |
|
paulson@14267
|
555 |
lemma dvd_reduce: "(k dvd n + k) = (k dvd (n::nat))"
|
wenzelm@22718
|
556 |
apply (rule iffI)
|
wenzelm@22718
|
557 |
apply (erule_tac [2] dvd_add)
|
wenzelm@22718
|
558 |
apply (rule_tac [2] dvd_refl)
|
wenzelm@22718
|
559 |
apply (subgoal_tac "n = (n+k) -k")
|
wenzelm@22718
|
560 |
prefer 2 apply simp
|
wenzelm@22718
|
561 |
apply (erule ssubst)
|
wenzelm@22718
|
562 |
apply (erule dvd_diff)
|
wenzelm@22718
|
563 |
apply (rule dvd_refl)
|
wenzelm@22718
|
564 |
done
|
paulson@14267
|
565 |
|
paulson@14267
|
566 |
lemma dvd_mod: "!!n::nat. [| f dvd m; f dvd n |] ==> f dvd m mod n"
|
wenzelm@22718
|
567 |
unfolding dvd_def
|
wenzelm@22718
|
568 |
apply (case_tac "n = 0", auto)
|
wenzelm@22718
|
569 |
apply (blast intro: mod_mult_distrib2 [symmetric])
|
wenzelm@22718
|
570 |
done
|
paulson@14267
|
571 |
|
paulson@14267
|
572 |
lemma dvd_mod_imp_dvd: "[| (k::nat) dvd m mod n; k dvd n |] ==> k dvd m"
|
wenzelm@22718
|
573 |
apply (subgoal_tac "k dvd (m div n) *n + m mod n")
|
wenzelm@22718
|
574 |
apply (simp add: mod_div_equality)
|
wenzelm@22718
|
575 |
apply (simp only: dvd_add dvd_mult)
|
wenzelm@22718
|
576 |
done
|
paulson@14267
|
577 |
|
paulson@14267
|
578 |
lemma dvd_mod_iff: "k dvd n ==> ((k::nat) dvd m mod n) = (k dvd m)"
|
wenzelm@22718
|
579 |
by (blast intro: dvd_mod_imp_dvd dvd_mod)
|
paulson@14267
|
580 |
|
paulson@14267
|
581 |
lemma dvd_mult_cancel: "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n"
|
wenzelm@22718
|
582 |
unfolding dvd_def
|
wenzelm@22718
|
583 |
apply (erule exE)
|
wenzelm@22718
|
584 |
apply (simp add: mult_ac)
|
wenzelm@22718
|
585 |
done
|
paulson@14267
|
586 |
|
paulson@14267
|
587 |
lemma dvd_mult_cancel1: "0<m ==> (m*n dvd m) = (n = (1::nat))"
|
wenzelm@22718
|
588 |
apply auto
|
wenzelm@22718
|
589 |
apply (subgoal_tac "m*n dvd m*1")
|
wenzelm@22718
|
590 |
apply (drule dvd_mult_cancel, auto)
|
wenzelm@22718
|
591 |
done
|
paulson@14267
|
592 |
|
paulson@14267
|
593 |
lemma dvd_mult_cancel2: "0<m ==> (n*m dvd m) = (n = (1::nat))"
|
wenzelm@22718
|
594 |
apply (subst mult_commute)
|
wenzelm@22718
|
595 |
apply (erule dvd_mult_cancel1)
|
wenzelm@22718
|
596 |
done
|
paulson@14267
|
597 |
|
paulson@14267
|
598 |
lemma mult_dvd_mono: "[| i dvd m; j dvd n|] ==> i*j dvd (m*n :: nat)"
|
wenzelm@22718
|
599 |
apply (unfold dvd_def, clarify)
|
wenzelm@22718
|
600 |
apply (rule_tac x = "k*ka" in exI)
|
wenzelm@22718
|
601 |
apply (simp add: mult_ac)
|
wenzelm@22718
|
602 |
done
|
paulson@14267
|
603 |
|
paulson@14267
|
604 |
lemma dvd_mult_left: "(i*j :: nat) dvd k ==> i dvd k"
|
wenzelm@22718
|
605 |
by (simp add: dvd_def mult_assoc, blast)
|
paulson@14267
|
606 |
|
paulson@14267
|
607 |
lemma dvd_mult_right: "(i*j :: nat) dvd k ==> j dvd k"
|
wenzelm@22718
|
608 |
apply (unfold dvd_def, clarify)
|
wenzelm@22718
|
609 |
apply (rule_tac x = "i*k" in exI)
|
wenzelm@22718
|
610 |
apply (simp add: mult_ac)
|
wenzelm@22718
|
611 |
done
|
paulson@14267
|
612 |
|
paulson@14267
|
613 |
lemma dvd_imp_le: "[| k dvd n; 0 < n |] ==> k \<le> (n::nat)"
|
wenzelm@22718
|
614 |
apply (unfold dvd_def, clarify)
|
wenzelm@22718
|
615 |
apply (simp_all (no_asm_use) add: zero_less_mult_iff)
|
wenzelm@22718
|
616 |
apply (erule conjE)
|
wenzelm@22718
|
617 |
apply (rule le_trans)
|
wenzelm@22718
|
618 |
apply (rule_tac [2] le_refl [THEN mult_le_mono])
|
wenzelm@22718
|
619 |
apply (erule_tac [2] Suc_leI, simp)
|
wenzelm@22718
|
620 |
done
|
paulson@14267
|
621 |
|
paulson@14267
|
622 |
lemma dvd_eq_mod_eq_0: "!!k::nat. (k dvd n) = (n mod k = 0)"
|
wenzelm@22718
|
623 |
apply (unfold dvd_def)
|
wenzelm@22718
|
624 |
apply (case_tac "k=0", simp, safe)
|
wenzelm@22718
|
625 |
apply (simp add: mult_commute)
|
wenzelm@22718
|
626 |
apply (rule_tac t = n and n1 = k in mod_div_equality [THEN subst])
|
wenzelm@22718
|
627 |
apply (subst mult_commute, simp)
|
wenzelm@22718
|
628 |
done
|
paulson@14267
|
629 |
|
paulson@14267
|
630 |
lemma dvd_mult_div_cancel: "n dvd m ==> n * (m div n) = (m::nat)"
|
wenzelm@22718
|
631 |
apply (subgoal_tac "m mod n = 0")
|
wenzelm@22718
|
632 |
apply (simp add: mult_div_cancel)
|
wenzelm@22718
|
633 |
apply (simp only: dvd_eq_mod_eq_0)
|
wenzelm@22718
|
634 |
done
|
paulson@14267
|
635 |
|
haftmann@21408
|
636 |
lemma le_imp_power_dvd: "!!i::nat. m \<le> n ==> i^m dvd i^n"
|
wenzelm@22718
|
637 |
apply (unfold dvd_def)
|
wenzelm@22718
|
638 |
apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst])
|
wenzelm@22718
|
639 |
apply (simp add: power_add)
|
wenzelm@22718
|
640 |
done
|
haftmann@21408
|
641 |
|
haftmann@21408
|
642 |
lemma nat_zero_less_power_iff [simp]: "(0 < x^n) = (x \<noteq> (0::nat) | n=0)"
|
wenzelm@22718
|
643 |
by (induct n) auto
|
haftmann@21408
|
644 |
|
haftmann@21408
|
645 |
lemma power_le_dvd [rule_format]: "k^j dvd n --> i\<le>j --> k^i dvd (n::nat)"
|
wenzelm@22718
|
646 |
apply (induct j)
|
wenzelm@22718
|
647 |
apply (simp_all add: le_Suc_eq)
|
wenzelm@22718
|
648 |
apply (blast dest!: dvd_mult_right)
|
wenzelm@22718
|
649 |
done
|
haftmann@21408
|
650 |
|
haftmann@21408
|
651 |
lemma power_dvd_imp_le: "[|i^m dvd i^n; (1::nat) < i|] ==> m \<le> n"
|
wenzelm@22718
|
652 |
apply (rule power_le_imp_le_exp, assumption)
|
wenzelm@22718
|
653 |
apply (erule dvd_imp_le, simp)
|
wenzelm@22718
|
654 |
done
|
haftmann@21408
|
655 |
|
paulson@14267
|
656 |
lemma mod_eq_0_iff: "(m mod d = 0) = (\<exists>q::nat. m = d*q)"
|
wenzelm@22718
|
657 |
by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
|
paulson@17084
|
658 |
|
wenzelm@22718
|
659 |
lemmas mod_eq_0D [dest!] = mod_eq_0_iff [THEN iffD1]
|
paulson@14267
|
660 |
|
paulson@14267
|
661 |
(*Loses information, namely we also have r<d provided d is nonzero*)
|
paulson@14267
|
662 |
lemma mod_eqD: "(m mod d = r) ==> \<exists>q::nat. m = r + q*d"
|
wenzelm@22718
|
663 |
apply (cut_tac m = m in mod_div_equality)
|
wenzelm@22718
|
664 |
apply (simp only: add_ac)
|
wenzelm@22718
|
665 |
apply (blast intro: sym)
|
wenzelm@22718
|
666 |
done
|
paulson@14267
|
667 |
|
paulson@14131
|
668 |
|
nipkow@13152
|
669 |
lemma split_div:
|
nipkow@13189
|
670 |
"P(n div k :: nat) =
|
nipkow@13189
|
671 |
((k = 0 \<longrightarrow> P 0) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P i)))"
|
nipkow@13189
|
672 |
(is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
|
nipkow@13189
|
673 |
proof
|
nipkow@13189
|
674 |
assume P: ?P
|
nipkow@13189
|
675 |
show ?Q
|
nipkow@13189
|
676 |
proof (cases)
|
nipkow@13189
|
677 |
assume "k = 0"
|
nipkow@13189
|
678 |
with P show ?Q by(simp add:DIVISION_BY_ZERO_DIV)
|
nipkow@13189
|
679 |
next
|
nipkow@13189
|
680 |
assume not0: "k \<noteq> 0"
|
nipkow@13189
|
681 |
thus ?Q
|
nipkow@13189
|
682 |
proof (simp, intro allI impI)
|
nipkow@13189
|
683 |
fix i j
|
nipkow@13189
|
684 |
assume n: "n = k*i + j" and j: "j < k"
|
nipkow@13189
|
685 |
show "P i"
|
nipkow@13189
|
686 |
proof (cases)
|
wenzelm@22718
|
687 |
assume "i = 0"
|
wenzelm@22718
|
688 |
with n j P show "P i" by simp
|
nipkow@13189
|
689 |
next
|
wenzelm@22718
|
690 |
assume "i \<noteq> 0"
|
wenzelm@22718
|
691 |
with not0 n j P show "P i" by(simp add:add_ac)
|
nipkow@13189
|
692 |
qed
|
nipkow@13189
|
693 |
qed
|
nipkow@13189
|
694 |
qed
|
nipkow@13189
|
695 |
next
|
nipkow@13189
|
696 |
assume Q: ?Q
|
nipkow@13189
|
697 |
show ?P
|
nipkow@13189
|
698 |
proof (cases)
|
nipkow@13189
|
699 |
assume "k = 0"
|
nipkow@13189
|
700 |
with Q show ?P by(simp add:DIVISION_BY_ZERO_DIV)
|
nipkow@13189
|
701 |
next
|
nipkow@13189
|
702 |
assume not0: "k \<noteq> 0"
|
nipkow@13189
|
703 |
with Q have R: ?R by simp
|
nipkow@13189
|
704 |
from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
|
nipkow@13517
|
705 |
show ?P by simp
|
nipkow@13189
|
706 |
qed
|
nipkow@13189
|
707 |
qed
|
nipkow@13189
|
708 |
|
berghofe@13882
|
709 |
lemma split_div_lemma:
|
paulson@14267
|
710 |
"0 < n \<Longrightarrow> (n * q \<le> m \<and> m < n * (Suc q)) = (q = ((m::nat) div n))"
|
berghofe@13882
|
711 |
apply (rule iffI)
|
berghofe@13882
|
712 |
apply (rule_tac a=m and r = "m - n * q" and r' = "m mod n" in unique_quotient)
|
nipkow@16733
|
713 |
prefer 3; apply assumption
|
webertj@20432
|
714 |
apply (simp_all add: quorem_def) apply arith
|
berghofe@13882
|
715 |
apply (rule conjI)
|
berghofe@13882
|
716 |
apply (rule_tac P="%x. n * (m div n) \<le> x" in
|
berghofe@13882
|
717 |
subst [OF mod_div_equality [of _ n]])
|
berghofe@13882
|
718 |
apply (simp only: add: mult_ac)
|
berghofe@13882
|
719 |
apply (rule_tac P="%x. x < n + n * (m div n)" in
|
berghofe@13882
|
720 |
subst [OF mod_div_equality [of _ n]])
|
berghofe@13882
|
721 |
apply (simp only: add: mult_ac add_ac)
|
paulson@14208
|
722 |
apply (rule add_less_mono1, simp)
|
berghofe@13882
|
723 |
done
|
berghofe@13882
|
724 |
|
berghofe@13882
|
725 |
theorem split_div':
|
berghofe@13882
|
726 |
"P ((m::nat) div n) = ((n = 0 \<and> P 0) \<or>
|
paulson@14267
|
727 |
(\<exists>q. (n * q \<le> m \<and> m < n * (Suc q)) \<and> P q))"
|
berghofe@13882
|
728 |
apply (case_tac "0 < n")
|
berghofe@13882
|
729 |
apply (simp only: add: split_div_lemma)
|
berghofe@13882
|
730 |
apply (simp_all add: DIVISION_BY_ZERO_DIV)
|
berghofe@13882
|
731 |
done
|
berghofe@13882
|
732 |
|
nipkow@13189
|
733 |
lemma split_mod:
|
nipkow@13189
|
734 |
"P(n mod k :: nat) =
|
nipkow@13189
|
735 |
((k = 0 \<longrightarrow> P n) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P j)))"
|
nipkow@13189
|
736 |
(is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
|
nipkow@13189
|
737 |
proof
|
nipkow@13189
|
738 |
assume P: ?P
|
nipkow@13189
|
739 |
show ?Q
|
nipkow@13189
|
740 |
proof (cases)
|
nipkow@13189
|
741 |
assume "k = 0"
|
nipkow@13189
|
742 |
with P show ?Q by(simp add:DIVISION_BY_ZERO_MOD)
|
nipkow@13189
|
743 |
next
|
nipkow@13189
|
744 |
assume not0: "k \<noteq> 0"
|
nipkow@13189
|
745 |
thus ?Q
|
nipkow@13189
|
746 |
proof (simp, intro allI impI)
|
nipkow@13189
|
747 |
fix i j
|
nipkow@13189
|
748 |
assume "n = k*i + j" "j < k"
|
nipkow@13189
|
749 |
thus "P j" using not0 P by(simp add:add_ac mult_ac)
|
nipkow@13189
|
750 |
qed
|
nipkow@13189
|
751 |
qed
|
nipkow@13189
|
752 |
next
|
nipkow@13189
|
753 |
assume Q: ?Q
|
nipkow@13189
|
754 |
show ?P
|
nipkow@13189
|
755 |
proof (cases)
|
nipkow@13189
|
756 |
assume "k = 0"
|
nipkow@13189
|
757 |
with Q show ?P by(simp add:DIVISION_BY_ZERO_MOD)
|
nipkow@13189
|
758 |
next
|
nipkow@13189
|
759 |
assume not0: "k \<noteq> 0"
|
nipkow@13189
|
760 |
with Q have R: ?R by simp
|
nipkow@13189
|
761 |
from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
|
nipkow@13517
|
762 |
show ?P by simp
|
nipkow@13189
|
763 |
qed
|
nipkow@13189
|
764 |
qed
|
nipkow@13189
|
765 |
|
berghofe@13882
|
766 |
theorem mod_div_equality': "(m::nat) mod n = m - (m div n) * n"
|
berghofe@13882
|
767 |
apply (rule_tac P="%x. m mod n = x - (m div n) * n" in
|
berghofe@13882
|
768 |
subst [OF mod_div_equality [of _ n]])
|
berghofe@13882
|
769 |
apply arith
|
berghofe@13882
|
770 |
done
|
berghofe@13882
|
771 |
|
haftmann@22800
|
772 |
lemma div_mod_equality':
|
haftmann@22800
|
773 |
fixes m n :: nat
|
haftmann@22800
|
774 |
shows "m div n * n = m - m mod n"
|
haftmann@22800
|
775 |
proof -
|
haftmann@22800
|
776 |
have "m mod n \<le> m mod n" ..
|
haftmann@22800
|
777 |
from div_mod_equality have
|
haftmann@22800
|
778 |
"m div n * n + m mod n - m mod n = m - m mod n" by simp
|
haftmann@22800
|
779 |
with diff_add_assoc [OF `m mod n \<le> m mod n`, of "m div n * n"] have
|
haftmann@22800
|
780 |
"m div n * n + (m mod n - m mod n) = m - m mod n"
|
haftmann@22800
|
781 |
by simp
|
haftmann@22800
|
782 |
then show ?thesis by simp
|
haftmann@22800
|
783 |
qed
|
haftmann@22800
|
784 |
|
haftmann@22800
|
785 |
|
paulson@14640
|
786 |
subsection {*An ``induction'' law for modulus arithmetic.*}
|
paulson@14640
|
787 |
|
paulson@14640
|
788 |
lemma mod_induct_0:
|
paulson@14640
|
789 |
assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
|
paulson@14640
|
790 |
and base: "P i" and i: "i<p"
|
paulson@14640
|
791 |
shows "P 0"
|
paulson@14640
|
792 |
proof (rule ccontr)
|
paulson@14640
|
793 |
assume contra: "\<not>(P 0)"
|
paulson@14640
|
794 |
from i have p: "0<p" by simp
|
paulson@14640
|
795 |
have "\<forall>k. 0<k \<longrightarrow> \<not> P (p-k)" (is "\<forall>k. ?A k")
|
paulson@14640
|
796 |
proof
|
paulson@14640
|
797 |
fix k
|
paulson@14640
|
798 |
show "?A k"
|
paulson@14640
|
799 |
proof (induct k)
|
paulson@14640
|
800 |
show "?A 0" by simp -- "by contradiction"
|
paulson@14640
|
801 |
next
|
paulson@14640
|
802 |
fix n
|
paulson@14640
|
803 |
assume ih: "?A n"
|
paulson@14640
|
804 |
show "?A (Suc n)"
|
paulson@14640
|
805 |
proof (clarsimp)
|
wenzelm@22718
|
806 |
assume y: "P (p - Suc n)"
|
wenzelm@22718
|
807 |
have n: "Suc n < p"
|
wenzelm@22718
|
808 |
proof (rule ccontr)
|
wenzelm@22718
|
809 |
assume "\<not>(Suc n < p)"
|
wenzelm@22718
|
810 |
hence "p - Suc n = 0"
|
wenzelm@22718
|
811 |
by simp
|
wenzelm@22718
|
812 |
with y contra show "False"
|
wenzelm@22718
|
813 |
by simp
|
wenzelm@22718
|
814 |
qed
|
wenzelm@22718
|
815 |
hence n2: "Suc (p - Suc n) = p-n" by arith
|
wenzelm@22718
|
816 |
from p have "p - Suc n < p" by arith
|
wenzelm@22718
|
817 |
with y step have z: "P ((Suc (p - Suc n)) mod p)"
|
wenzelm@22718
|
818 |
by blast
|
wenzelm@22718
|
819 |
show "False"
|
wenzelm@22718
|
820 |
proof (cases "n=0")
|
wenzelm@22718
|
821 |
case True
|
wenzelm@22718
|
822 |
with z n2 contra show ?thesis by simp
|
wenzelm@22718
|
823 |
next
|
wenzelm@22718
|
824 |
case False
|
wenzelm@22718
|
825 |
with p have "p-n < p" by arith
|
wenzelm@22718
|
826 |
with z n2 False ih show ?thesis by simp
|
wenzelm@22718
|
827 |
qed
|
paulson@14640
|
828 |
qed
|
paulson@14640
|
829 |
qed
|
paulson@14640
|
830 |
qed
|
paulson@14640
|
831 |
moreover
|
paulson@14640
|
832 |
from i obtain k where "0<k \<and> i+k=p"
|
paulson@14640
|
833 |
by (blast dest: less_imp_add_positive)
|
paulson@14640
|
834 |
hence "0<k \<and> i=p-k" by auto
|
paulson@14640
|
835 |
moreover
|
paulson@14640
|
836 |
note base
|
paulson@14640
|
837 |
ultimately
|
paulson@14640
|
838 |
show "False" by blast
|
paulson@14640
|
839 |
qed
|
paulson@14640
|
840 |
|
paulson@14640
|
841 |
lemma mod_induct:
|
paulson@14640
|
842 |
assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
|
paulson@14640
|
843 |
and base: "P i" and i: "i<p" and j: "j<p"
|
paulson@14640
|
844 |
shows "P j"
|
paulson@14640
|
845 |
proof -
|
paulson@14640
|
846 |
have "\<forall>j<p. P j"
|
paulson@14640
|
847 |
proof
|
paulson@14640
|
848 |
fix j
|
paulson@14640
|
849 |
show "j<p \<longrightarrow> P j" (is "?A j")
|
paulson@14640
|
850 |
proof (induct j)
|
paulson@14640
|
851 |
from step base i show "?A 0"
|
wenzelm@22718
|
852 |
by (auto elim: mod_induct_0)
|
paulson@14640
|
853 |
next
|
paulson@14640
|
854 |
fix k
|
paulson@14640
|
855 |
assume ih: "?A k"
|
paulson@14640
|
856 |
show "?A (Suc k)"
|
paulson@14640
|
857 |
proof
|
wenzelm@22718
|
858 |
assume suc: "Suc k < p"
|
wenzelm@22718
|
859 |
hence k: "k<p" by simp
|
wenzelm@22718
|
860 |
with ih have "P k" ..
|
wenzelm@22718
|
861 |
with step k have "P (Suc k mod p)"
|
wenzelm@22718
|
862 |
by blast
|
wenzelm@22718
|
863 |
moreover
|
wenzelm@22718
|
864 |
from suc have "Suc k mod p = Suc k"
|
wenzelm@22718
|
865 |
by simp
|
wenzelm@22718
|
866 |
ultimately
|
wenzelm@22718
|
867 |
show "P (Suc k)" by simp
|
paulson@14640
|
868 |
qed
|
paulson@14640
|
869 |
qed
|
paulson@14640
|
870 |
qed
|
paulson@14640
|
871 |
with j show ?thesis by blast
|
paulson@14640
|
872 |
qed
|
paulson@14640
|
873 |
|
paulson@14640
|
874 |
|
chaieb@18202
|
875 |
lemma mod_add_left_eq: "((a::nat) + b) mod c = (a mod c + b) mod c"
|
chaieb@18202
|
876 |
apply (rule trans [symmetric])
|
wenzelm@22718
|
877 |
apply (rule mod_add1_eq, simp)
|
chaieb@18202
|
878 |
apply (rule mod_add1_eq [symmetric])
|
chaieb@18202
|
879 |
done
|
chaieb@18202
|
880 |
|
chaieb@18202
|
881 |
lemma mod_add_right_eq: "(a+b) mod (c::nat) = (a + (b mod c)) mod c"
|
wenzelm@22718
|
882 |
apply (rule trans [symmetric])
|
wenzelm@22718
|
883 |
apply (rule mod_add1_eq, simp)
|
wenzelm@22718
|
884 |
apply (rule mod_add1_eq [symmetric])
|
wenzelm@22718
|
885 |
done
|
chaieb@18202
|
886 |
|
haftmann@22800
|
887 |
lemma mod_div_decomp:
|
haftmann@22800
|
888 |
fixes n k :: nat
|
haftmann@22800
|
889 |
obtains m q where "m = n div k" and "q = n mod k"
|
haftmann@22800
|
890 |
and "n = m * k + q"
|
haftmann@22800
|
891 |
proof -
|
haftmann@22800
|
892 |
from mod_div_equality have "n = n div k * k + n mod k" by auto
|
haftmann@22800
|
893 |
moreover have "n div k = n div k" ..
|
haftmann@22800
|
894 |
moreover have "n mod k = n mod k" ..
|
haftmann@22800
|
895 |
note that ultimately show thesis by blast
|
haftmann@22800
|
896 |
qed
|
haftmann@22800
|
897 |
|
haftmann@20589
|
898 |
|
haftmann@22744
|
899 |
subsection {* Code generation for div, mod and dvd on nat *}
|
haftmann@20589
|
900 |
|
haftmann@22845
|
901 |
definition [code func del]:
|
haftmann@20589
|
902 |
"divmod (m\<Colon>nat) n = (m div n, m mod n)"
|
haftmann@20589
|
903 |
|
wenzelm@22718
|
904 |
lemma divmod_zero [code]: "divmod m 0 = (0, m)"
|
haftmann@20589
|
905 |
unfolding divmod_def by simp
|
haftmann@20589
|
906 |
|
haftmann@20589
|
907 |
lemma divmod_succ [code]:
|
haftmann@20589
|
908 |
"divmod m (Suc k) = (if m < Suc k then (0, m) else
|
haftmann@20589
|
909 |
let
|
haftmann@20589
|
910 |
(p, q) = divmod (m - Suc k) (Suc k)
|
wenzelm@22718
|
911 |
in (Suc p, q))"
|
haftmann@20589
|
912 |
unfolding divmod_def Let_def split_def
|
haftmann@20589
|
913 |
by (auto intro: div_geq mod_geq)
|
haftmann@20589
|
914 |
|
wenzelm@22718
|
915 |
lemma div_divmod [code]: "m div n = fst (divmod m n)"
|
haftmann@20589
|
916 |
unfolding divmod_def by simp
|
haftmann@20589
|
917 |
|
wenzelm@22718
|
918 |
lemma mod_divmod [code]: "m mod n = snd (divmod m n)"
|
haftmann@20589
|
919 |
unfolding divmod_def by simp
|
haftmann@20589
|
920 |
|
haftmann@22744
|
921 |
definition
|
haftmann@22744
|
922 |
dvd_nat :: "nat \<Rightarrow> nat \<Rightarrow> bool"
|
haftmann@22744
|
923 |
where
|
haftmann@22744
|
924 |
"dvd_nat m n \<longleftrightarrow> n mod m = (0 \<Colon> nat)"
|
haftmann@22744
|
925 |
|
haftmann@22744
|
926 |
lemma [code inline]:
|
haftmann@22744
|
927 |
"op dvd = dvd_nat"
|
haftmann@22744
|
928 |
by (auto simp add: dvd_nat_def dvd_eq_mod_eq_0 expand_fun_eq)
|
haftmann@22744
|
929 |
|
haftmann@21191
|
930 |
code_modulename SML
|
haftmann@21191
|
931 |
Divides Integer
|
haftmann@20640
|
932 |
|
haftmann@21911
|
933 |
code_modulename OCaml
|
haftmann@21911
|
934 |
Divides Integer
|
haftmann@21911
|
935 |
|
haftmann@22744
|
936 |
hide (open) const divmod dvd_nat
|
haftmann@20589
|
937 |
|
haftmann@20589
|
938 |
subsection {* Legacy bindings *}
|
haftmann@20589
|
939 |
|
paulson@14267
|
940 |
ML
|
paulson@14267
|
941 |
{*
|
paulson@14267
|
942 |
val div_def = thm "div_def"
|
paulson@14267
|
943 |
val mod_def = thm "mod_def"
|
paulson@14267
|
944 |
val dvd_def = thm "dvd_def"
|
paulson@14267
|
945 |
val quorem_def = thm "quorem_def"
|
paulson@14267
|
946 |
|
paulson@14267
|
947 |
val wf_less_trans = thm "wf_less_trans";
|
paulson@14267
|
948 |
val mod_eq = thm "mod_eq";
|
paulson@14267
|
949 |
val div_eq = thm "div_eq";
|
paulson@14267
|
950 |
val DIVISION_BY_ZERO_DIV = thm "DIVISION_BY_ZERO_DIV";
|
paulson@14267
|
951 |
val DIVISION_BY_ZERO_MOD = thm "DIVISION_BY_ZERO_MOD";
|
paulson@14267
|
952 |
val mod_less = thm "mod_less";
|
paulson@14267
|
953 |
val mod_geq = thm "mod_geq";
|
paulson@14267
|
954 |
val le_mod_geq = thm "le_mod_geq";
|
paulson@14267
|
955 |
val mod_if = thm "mod_if";
|
paulson@14267
|
956 |
val mod_1 = thm "mod_1";
|
paulson@14267
|
957 |
val mod_self = thm "mod_self";
|
paulson@14267
|
958 |
val mod_add_self2 = thm "mod_add_self2";
|
paulson@14267
|
959 |
val mod_add_self1 = thm "mod_add_self1";
|
paulson@14267
|
960 |
val mod_mult_self1 = thm "mod_mult_self1";
|
paulson@14267
|
961 |
val mod_mult_self2 = thm "mod_mult_self2";
|
paulson@14267
|
962 |
val mod_mult_distrib = thm "mod_mult_distrib";
|
paulson@14267
|
963 |
val mod_mult_distrib2 = thm "mod_mult_distrib2";
|
paulson@14267
|
964 |
val mod_mult_self_is_0 = thm "mod_mult_self_is_0";
|
paulson@14267
|
965 |
val mod_mult_self1_is_0 = thm "mod_mult_self1_is_0";
|
paulson@14267
|
966 |
val div_less = thm "div_less";
|
paulson@14267
|
967 |
val div_geq = thm "div_geq";
|
paulson@14267
|
968 |
val le_div_geq = thm "le_div_geq";
|
paulson@14267
|
969 |
val div_if = thm "div_if";
|
paulson@14267
|
970 |
val mod_div_equality = thm "mod_div_equality";
|
paulson@14267
|
971 |
val mod_div_equality2 = thm "mod_div_equality2";
|
paulson@14267
|
972 |
val div_mod_equality = thm "div_mod_equality";
|
paulson@14267
|
973 |
val div_mod_equality2 = thm "div_mod_equality2";
|
paulson@14267
|
974 |
val mult_div_cancel = thm "mult_div_cancel";
|
paulson@14267
|
975 |
val mod_less_divisor = thm "mod_less_divisor";
|
paulson@14267
|
976 |
val div_mult_self_is_m = thm "div_mult_self_is_m";
|
paulson@14267
|
977 |
val div_mult_self1_is_m = thm "div_mult_self1_is_m";
|
paulson@14267
|
978 |
val unique_quotient_lemma = thm "unique_quotient_lemma";
|
paulson@14267
|
979 |
val unique_quotient = thm "unique_quotient";
|
paulson@14267
|
980 |
val unique_remainder = thm "unique_remainder";
|
paulson@14267
|
981 |
val div_0 = thm "div_0";
|
paulson@14267
|
982 |
val mod_0 = thm "mod_0";
|
paulson@14267
|
983 |
val div_mult1_eq = thm "div_mult1_eq";
|
paulson@14267
|
984 |
val mod_mult1_eq = thm "mod_mult1_eq";
|
paulson@14267
|
985 |
val mod_mult1_eq' = thm "mod_mult1_eq'";
|
paulson@14267
|
986 |
val mod_mult_distrib_mod = thm "mod_mult_distrib_mod";
|
paulson@14267
|
987 |
val div_add1_eq = thm "div_add1_eq";
|
paulson@14267
|
988 |
val mod_add1_eq = thm "mod_add1_eq";
|
chaieb@18202
|
989 |
val mod_add_left_eq = thm "mod_add_left_eq";
|
chaieb@18202
|
990 |
val mod_add_right_eq = thm "mod_add_right_eq";
|
paulson@14267
|
991 |
val mod_lemma = thm "mod_lemma";
|
paulson@14267
|
992 |
val div_mult2_eq = thm "div_mult2_eq";
|
paulson@14267
|
993 |
val mod_mult2_eq = thm "mod_mult2_eq";
|
paulson@14267
|
994 |
val div_mult_mult_lemma = thm "div_mult_mult_lemma";
|
paulson@14267
|
995 |
val div_mult_mult1 = thm "div_mult_mult1";
|
paulson@14267
|
996 |
val div_mult_mult2 = thm "div_mult_mult2";
|
paulson@14267
|
997 |
val div_1 = thm "div_1";
|
paulson@14267
|
998 |
val div_self = thm "div_self";
|
paulson@14267
|
999 |
val div_add_self2 = thm "div_add_self2";
|
paulson@14267
|
1000 |
val div_add_self1 = thm "div_add_self1";
|
paulson@14267
|
1001 |
val div_mult_self1 = thm "div_mult_self1";
|
paulson@14267
|
1002 |
val div_mult_self2 = thm "div_mult_self2";
|
paulson@14267
|
1003 |
val div_le_mono = thm "div_le_mono";
|
paulson@14267
|
1004 |
val div_le_mono2 = thm "div_le_mono2";
|
paulson@14267
|
1005 |
val div_le_dividend = thm "div_le_dividend";
|
paulson@14267
|
1006 |
val div_less_dividend = thm "div_less_dividend";
|
paulson@14267
|
1007 |
val mod_Suc = thm "mod_Suc";
|
paulson@14267
|
1008 |
val dvdI = thm "dvdI";
|
paulson@14267
|
1009 |
val dvdE = thm "dvdE";
|
paulson@14267
|
1010 |
val dvd_0_right = thm "dvd_0_right";
|
paulson@14267
|
1011 |
val dvd_0_left = thm "dvd_0_left";
|
paulson@14267
|
1012 |
val dvd_0_left_iff = thm "dvd_0_left_iff";
|
paulson@14267
|
1013 |
val dvd_1_left = thm "dvd_1_left";
|
paulson@14267
|
1014 |
val dvd_1_iff_1 = thm "dvd_1_iff_1";
|
paulson@14267
|
1015 |
val dvd_refl = thm "dvd_refl";
|
paulson@14267
|
1016 |
val dvd_trans = thm "dvd_trans";
|
paulson@14267
|
1017 |
val dvd_anti_sym = thm "dvd_anti_sym";
|
paulson@14267
|
1018 |
val dvd_add = thm "dvd_add";
|
paulson@14267
|
1019 |
val dvd_diff = thm "dvd_diff";
|
paulson@14267
|
1020 |
val dvd_diffD = thm "dvd_diffD";
|
paulson@14267
|
1021 |
val dvd_diffD1 = thm "dvd_diffD1";
|
paulson@14267
|
1022 |
val dvd_mult = thm "dvd_mult";
|
paulson@14267
|
1023 |
val dvd_mult2 = thm "dvd_mult2";
|
paulson@14267
|
1024 |
val dvd_reduce = thm "dvd_reduce";
|
paulson@14267
|
1025 |
val dvd_mod = thm "dvd_mod";
|
paulson@14267
|
1026 |
val dvd_mod_imp_dvd = thm "dvd_mod_imp_dvd";
|
paulson@14267
|
1027 |
val dvd_mod_iff = thm "dvd_mod_iff";
|
paulson@14267
|
1028 |
val dvd_mult_cancel = thm "dvd_mult_cancel";
|
paulson@14267
|
1029 |
val dvd_mult_cancel1 = thm "dvd_mult_cancel1";
|
paulson@14267
|
1030 |
val dvd_mult_cancel2 = thm "dvd_mult_cancel2";
|
paulson@14267
|
1031 |
val mult_dvd_mono = thm "mult_dvd_mono";
|
paulson@14267
|
1032 |
val dvd_mult_left = thm "dvd_mult_left";
|
paulson@14267
|
1033 |
val dvd_mult_right = thm "dvd_mult_right";
|
paulson@14267
|
1034 |
val dvd_imp_le = thm "dvd_imp_le";
|
paulson@14267
|
1035 |
val dvd_eq_mod_eq_0 = thm "dvd_eq_mod_eq_0";
|
paulson@14267
|
1036 |
val dvd_mult_div_cancel = thm "dvd_mult_div_cancel";
|
paulson@14267
|
1037 |
val mod_eq_0_iff = thm "mod_eq_0_iff";
|
paulson@14267
|
1038 |
val mod_eqD = thm "mod_eqD";
|
paulson@14267
|
1039 |
*}
|
paulson@14267
|
1040 |
|
nipkow@13189
|
1041 |
(*
|
nipkow@13189
|
1042 |
lemma split_div:
|
nipkow@13152
|
1043 |
assumes m: "m \<noteq> 0"
|
nipkow@13152
|
1044 |
shows "P(n div m :: nat) = (!i. !j<m. n = m*i + j \<longrightarrow> P i)"
|
nipkow@13152
|
1045 |
(is "?P = ?Q")
|
nipkow@13152
|
1046 |
proof
|
nipkow@13152
|
1047 |
assume P: ?P
|
nipkow@13152
|
1048 |
show ?Q
|
nipkow@13152
|
1049 |
proof (intro allI impI)
|
nipkow@13152
|
1050 |
fix i j
|
nipkow@13152
|
1051 |
assume n: "n = m*i + j" and j: "j < m"
|
nipkow@13152
|
1052 |
show "P i"
|
nipkow@13152
|
1053 |
proof (cases)
|
nipkow@13152
|
1054 |
assume "i = 0"
|
nipkow@13152
|
1055 |
with n j P show "P i" by simp
|
nipkow@13152
|
1056 |
next
|
nipkow@13152
|
1057 |
assume "i \<noteq> 0"
|
nipkow@13152
|
1058 |
with n j P show "P i" by (simp add:add_ac div_mult_self1)
|
nipkow@13152
|
1059 |
qed
|
nipkow@13152
|
1060 |
qed
|
nipkow@13152
|
1061 |
next
|
nipkow@13152
|
1062 |
assume Q: ?Q
|
nipkow@13152
|
1063 |
from m Q[THEN spec,of "n div m",THEN spec, of "n mod m"]
|
nipkow@13517
|
1064 |
show ?P by simp
|
nipkow@13152
|
1065 |
qed
|
nipkow@13152
|
1066 |
|
nipkow@13152
|
1067 |
lemma split_mod:
|
nipkow@13152
|
1068 |
assumes m: "m \<noteq> 0"
|
nipkow@13152
|
1069 |
shows "P(n mod m :: nat) = (!i. !j<m. n = m*i + j \<longrightarrow> P j)"
|
nipkow@13152
|
1070 |
(is "?P = ?Q")
|
nipkow@13152
|
1071 |
proof
|
nipkow@13152
|
1072 |
assume P: ?P
|
nipkow@13152
|
1073 |
show ?Q
|
nipkow@13152
|
1074 |
proof (intro allI impI)
|
nipkow@13152
|
1075 |
fix i j
|
nipkow@13152
|
1076 |
assume "n = m*i + j" "j < m"
|
nipkow@13152
|
1077 |
thus "P j" using m P by(simp add:add_ac mult_ac)
|
nipkow@13152
|
1078 |
qed
|
nipkow@13152
|
1079 |
next
|
nipkow@13152
|
1080 |
assume Q: ?Q
|
nipkow@13152
|
1081 |
from m Q[THEN spec,of "n div m",THEN spec, of "n mod m"]
|
nipkow@13517
|
1082 |
show ?P by simp
|
nipkow@13152
|
1083 |
qed
|
nipkow@13189
|
1084 |
*)
|
paulson@3366
|
1085 |
end
|