src/Pure/drule.ML
author paulson
Mon Aug 07 10:29:04 2000 +0200 (2000-08-07)
changeset 9547 8dad21f06b24
parent 9460 53d7ad5bec39
child 9554 1b0f02abbde8
permissions -rw-r--r--
more cterm operations: mk_implies, list_implies
wenzelm@252
     1
(*  Title:      Pure/drule.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@252
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
wenzelm@3766
     6
Derived rules and other operations on theorems.
clasohm@0
     7
*)
clasohm@0
     8
wenzelm@9288
     9
infix 0 RS RSN RL RLN MRS MRL OF COMP;
clasohm@0
    10
wenzelm@5903
    11
signature BASIC_DRULE =
wenzelm@3766
    12
sig
paulson@9547
    13
  val mk_implies        : cterm * cterm -> cterm
paulson@9547
    14
  val list_implies      : cterm list * cterm -> cterm
wenzelm@4285
    15
  val dest_implies      : cterm -> cterm * cterm
wenzelm@8328
    16
  val skip_flexpairs    : cterm -> cterm
wenzelm@8328
    17
  val strip_imp_prems   : cterm -> cterm list
wenzelm@8328
    18
  val cprems_of         : thm -> cterm list
wenzelm@8328
    19
  val read_insts        :
wenzelm@4285
    20
          Sign.sg -> (indexname -> typ option) * (indexname -> sort option)
wenzelm@4285
    21
                  -> (indexname -> typ option) * (indexname -> sort option)
wenzelm@4285
    22
                  -> string list -> (string*string)list
wenzelm@4285
    23
                  -> (indexname*ctyp)list * (cterm*cterm)list
wenzelm@4285
    24
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
wenzelm@7636
    25
  val strip_shyps_warning : thm -> thm
wenzelm@8328
    26
  val forall_intr_list  : cterm list -> thm -> thm
wenzelm@8328
    27
  val forall_intr_frees : thm -> thm
wenzelm@8328
    28
  val forall_intr_vars  : thm -> thm
wenzelm@8328
    29
  val forall_elim_list  : cterm list -> thm -> thm
wenzelm@8328
    30
  val forall_elim_var   : int -> thm -> thm
wenzelm@8328
    31
  val forall_elim_vars  : int -> thm -> thm
wenzelm@8328
    32
  val freeze_thaw       : thm -> thm * (thm -> thm)
wenzelm@8328
    33
  val implies_elim_list : thm -> thm list -> thm
wenzelm@8328
    34
  val implies_intr_list : cterm list -> thm -> thm
paulson@8129
    35
  val instantiate       :
paulson@8129
    36
    (indexname * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@8328
    37
  val zero_var_indexes  : thm -> thm
wenzelm@8328
    38
  val standard          : thm -> thm
paulson@4610
    39
  val rotate_prems      : int -> thm -> thm
wenzelm@8328
    40
  val assume_ax         : theory -> string -> thm
wenzelm@8328
    41
  val RSN               : thm * (int * thm) -> thm
wenzelm@8328
    42
  val RS                : thm * thm -> thm
wenzelm@8328
    43
  val RLN               : thm list * (int * thm list) -> thm list
wenzelm@8328
    44
  val RL                : thm list * thm list -> thm list
wenzelm@8328
    45
  val MRS               : thm list * thm -> thm
wenzelm@8328
    46
  val MRL               : thm list list * thm list -> thm list
wenzelm@9288
    47
  val OF                : thm * thm list -> thm
wenzelm@8328
    48
  val compose           : thm * int * thm -> thm list
wenzelm@8328
    49
  val COMP              : thm * thm -> thm
clasohm@0
    50
  val read_instantiate_sg: Sign.sg -> (string*string)list -> thm -> thm
wenzelm@8328
    51
  val read_instantiate  : (string*string)list -> thm -> thm
wenzelm@8328
    52
  val cterm_instantiate : (cterm*cterm)list -> thm -> thm
wenzelm@8328
    53
  val weak_eq_thm       : thm * thm -> bool
wenzelm@8328
    54
  val eq_thm_sg         : thm * thm -> bool
wenzelm@8328
    55
  val size_of_thm       : thm -> int
wenzelm@8328
    56
  val reflexive_thm     : thm
wenzelm@8328
    57
  val symmetric_thm     : thm
wenzelm@8328
    58
  val transitive_thm    : thm
paulson@2004
    59
  val refl_implies      : thm
nipkow@4679
    60
  val symmetric_fun     : thm -> thm
wenzelm@8328
    61
  val rewrite_rule_aux  : (meta_simpset -> thm -> thm option) -> thm list -> thm -> thm
wenzelm@8328
    62
  val rewrite_thm       : bool * bool * bool
nipkow@4713
    63
                          -> (meta_simpset -> thm -> thm option)
nipkow@4713
    64
                          -> meta_simpset -> thm -> thm
wenzelm@8328
    65
  val rewrite_cterm     : bool * bool * bool
wenzelm@5079
    66
                          -> (meta_simpset -> thm -> thm option)
wenzelm@5079
    67
                          -> meta_simpset -> cterm -> thm
wenzelm@4285
    68
  val rewrite_goals_rule_aux: (meta_simpset -> thm -> thm option) -> thm list -> thm -> thm
wenzelm@8328
    69
  val rewrite_goal_rule : bool* bool * bool
nipkow@4713
    70
                          -> (meta_simpset -> thm -> thm option)
nipkow@4713
    71
                          -> meta_simpset -> int -> thm -> thm
wenzelm@8328
    72
  val equal_abs_elim    : cterm  -> thm -> thm
wenzelm@4285
    73
  val equal_abs_elim_list: cterm list -> thm -> thm
wenzelm@4285
    74
  val flexpair_abs_elim_list: cterm list -> thm -> thm
wenzelm@8328
    75
  val asm_rl            : thm
wenzelm@8328
    76
  val cut_rl            : thm
wenzelm@8328
    77
  val revcut_rl         : thm
wenzelm@8328
    78
  val thin_rl           : thm
wenzelm@4285
    79
  val triv_forall_equality: thm
nipkow@1756
    80
  val swap_prems_rl     : thm
wenzelm@4285
    81
  val equal_intr_rule   : thm
paulson@8550
    82
  val inst              : string -> string -> thm -> thm
wenzelm@8328
    83
  val instantiate'      : ctyp option list -> cterm option list -> thm -> thm
wenzelm@8328
    84
  val incr_indexes      : int -> thm -> thm
wenzelm@8328
    85
  val incr_indexes_wrt  : int list -> ctyp list -> cterm list -> thm list -> thm -> thm
wenzelm@5903
    86
end;
wenzelm@5903
    87
wenzelm@5903
    88
signature DRULE =
wenzelm@5903
    89
sig
wenzelm@5903
    90
  include BASIC_DRULE
wenzelm@9455
    91
  val rule_attribute    : ('a -> thm -> thm) -> 'a attribute
wenzelm@9455
    92
  val tag_rule          : tag -> thm -> thm
wenzelm@9455
    93
  val untag_rule        : string -> thm -> thm
wenzelm@9455
    94
  val tag               : tag -> 'a attribute
wenzelm@9455
    95
  val untag             : string -> 'a attribute
wenzelm@9455
    96
  val tag_lemma         : 'a attribute
wenzelm@9455
    97
  val tag_assumption    : 'a attribute
wenzelm@9455
    98
  val tag_internal      : 'a attribute
wenzelm@9455
    99
  val has_internal	: tag list -> bool
wenzelm@8328
   100
  val compose_single    : thm * int * thm -> thm
wenzelm@9418
   101
  val merge_rules	: thm list * thm list -> thm list
wenzelm@8328
   102
  val triv_goal         : thm
wenzelm@8328
   103
  val rev_triv_goal     : thm
wenzelm@8328
   104
  val freeze_all        : thm -> thm
paulson@5311
   105
  val mk_triv_goal      : cterm -> thm
wenzelm@8328
   106
  val mk_cgoal          : cterm -> cterm
wenzelm@8328
   107
  val assume_goal       : cterm -> thm
wenzelm@8328
   108
  val tvars_of_terms    : term list -> (indexname * sort) list
wenzelm@8328
   109
  val vars_of_terms     : term list -> (indexname * typ) list
wenzelm@8328
   110
  val tvars_of          : thm -> (indexname * sort) list
wenzelm@8328
   111
  val vars_of           : thm -> (indexname * typ) list
wenzelm@8328
   112
  val unvarifyT         : thm -> thm
wenzelm@8328
   113
  val unvarify          : thm -> thm
wenzelm@8605
   114
  val tvars_intr_list	: string list -> thm -> thm
wenzelm@3766
   115
end;
clasohm@0
   116
wenzelm@5903
   117
structure Drule: DRULE =
clasohm@0
   118
struct
clasohm@0
   119
wenzelm@3991
   120
lcp@708
   121
(** some cterm->cterm operations: much faster than calling cterm_of! **)
lcp@708
   122
paulson@2004
   123
(** SAME NAMES as in structure Logic: use compound identifiers! **)
paulson@2004
   124
clasohm@1703
   125
(*dest_implies for cterms. Note T=prop below*)
paulson@2004
   126
fun dest_implies ct =
wenzelm@8328
   127
    case term_of ct of
wenzelm@8328
   128
        (Const("==>", _) $ _ $ _) =>
wenzelm@8328
   129
            let val (ct1,ct2) = dest_comb ct
wenzelm@8328
   130
            in  (#2 (dest_comb ct1), ct2)  end
paulson@2004
   131
      | _ => raise TERM ("dest_implies", [term_of ct]) ;
clasohm@1703
   132
clasohm@1703
   133
lcp@708
   134
(*Discard flexflex pairs; return a cterm*)
paulson@2004
   135
fun skip_flexpairs ct =
lcp@708
   136
    case term_of ct of
wenzelm@8328
   137
        (Const("==>", _) $ (Const("=?=",_)$_$_) $ _) =>
wenzelm@8328
   138
            skip_flexpairs (#2 (dest_implies ct))
lcp@708
   139
      | _ => ct;
lcp@708
   140
lcp@708
   141
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   142
fun strip_imp_prems ct =
paulson@2004
   143
    let val (cA,cB) = dest_implies ct
paulson@2004
   144
    in  cA :: strip_imp_prems cB  end
lcp@708
   145
    handle TERM _ => [];
lcp@708
   146
paulson@2004
   147
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   148
fun strip_imp_concl ct =
wenzelm@8328
   149
    case term_of ct of (Const("==>", _) $ _ $ _) =>
wenzelm@8328
   150
        strip_imp_concl (#2 (dest_comb ct))
paulson@2004
   151
  | _ => ct;
paulson@2004
   152
lcp@708
   153
(*The premises of a theorem, as a cterm list*)
paulson@2004
   154
val cprems_of = strip_imp_prems o skip_flexpairs o cprop_of;
lcp@708
   155
paulson@9547
   156
val proto_sign = Theory.sign_of ProtoPure.thy;
paulson@9547
   157
paulson@9547
   158
val implies = cterm_of proto_sign Term.implies;
paulson@9547
   159
paulson@9547
   160
(*cterm version of mk_implies*)
paulson@9547
   161
fun mk_implies(A,B) = capply (capply implies A) B;
paulson@9547
   162
paulson@9547
   163
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   164
fun list_implies([], B) = B
paulson@9547
   165
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   166
lcp@708
   167
lcp@229
   168
(** reading of instantiations **)
lcp@229
   169
lcp@229
   170
fun absent ixn =
lcp@229
   171
  error("No such variable in term: " ^ Syntax.string_of_vname ixn);
lcp@229
   172
lcp@229
   173
fun inst_failure ixn =
lcp@229
   174
  error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
lcp@229
   175
nipkow@4281
   176
fun read_insts sign (rtypes,rsorts) (types,sorts) used insts =
nipkow@4281
   177
let val {tsig,...} = Sign.rep_sg sign
nipkow@4281
   178
    fun split([],tvs,vs) = (tvs,vs)
wenzelm@4691
   179
      | split((sv,st)::l,tvs,vs) = (case Symbol.explode sv of
wenzelm@4691
   180
                  "'"::cs => split(l,(Syntax.indexname cs,st)::tvs,vs)
wenzelm@4691
   181
                | cs => split(l,tvs,(Syntax.indexname cs,st)::vs));
nipkow@4281
   182
    val (tvs,vs) = split(insts,[],[]);
nipkow@4281
   183
    fun readT((a,i),st) =
nipkow@4281
   184
        let val ixn = ("'" ^ a,i);
nipkow@4281
   185
            val S = case rsorts ixn of Some S => S | None => absent ixn;
nipkow@4281
   186
            val T = Sign.read_typ (sign,sorts) st;
nipkow@4281
   187
        in if Type.typ_instance(tsig,T,TVar(ixn,S)) then (ixn,T)
nipkow@4281
   188
           else inst_failure ixn
nipkow@4281
   189
        end
nipkow@4281
   190
    val tye = map readT tvs;
nipkow@4281
   191
    fun mkty(ixn,st) = (case rtypes ixn of
nipkow@4281
   192
                          Some T => (ixn,(st,typ_subst_TVars tye T))
nipkow@4281
   193
                        | None => absent ixn);
nipkow@4281
   194
    val ixnsTs = map mkty vs;
nipkow@4281
   195
    val ixns = map fst ixnsTs
nipkow@4281
   196
    and sTs  = map snd ixnsTs
nipkow@4281
   197
    val (cts,tye2) = read_def_cterms(sign,types,sorts) used false sTs;
nipkow@4281
   198
    fun mkcVar(ixn,T) =
nipkow@4281
   199
        let val U = typ_subst_TVars tye2 T
nipkow@4281
   200
        in cterm_of sign (Var(ixn,U)) end
nipkow@4281
   201
    val ixnTs = ListPair.zip(ixns, map snd sTs)
nipkow@4281
   202
in (map (fn (ixn,T) => (ixn,ctyp_of sign T)) (tye2 @ tye),
nipkow@4281
   203
    ListPair.zip(map mkcVar ixnTs,cts))
nipkow@4281
   204
end;
lcp@229
   205
lcp@229
   206
wenzelm@252
   207
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   208
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   209
     type variables) when reading another term.
clasohm@0
   210
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   211
***)
clasohm@0
   212
clasohm@0
   213
fun types_sorts thm =
clasohm@0
   214
    let val {prop,hyps,...} = rep_thm thm;
wenzelm@252
   215
        val big = list_comb(prop,hyps); (* bogus term! *)
wenzelm@252
   216
        val vars = map dest_Var (term_vars big);
wenzelm@252
   217
        val frees = map dest_Free (term_frees big);
wenzelm@252
   218
        val tvars = term_tvars big;
wenzelm@252
   219
        val tfrees = term_tfrees big;
wenzelm@252
   220
        fun typ(a,i) = if i<0 then assoc(frees,a) else assoc(vars,(a,i));
wenzelm@252
   221
        fun sort(a,i) = if i<0 then assoc(tfrees,a) else assoc(tvars,(a,i));
clasohm@0
   222
    in (typ,sort) end;
clasohm@0
   223
wenzelm@7636
   224
wenzelm@9455
   225
wenzelm@9455
   226
(** basic attributes **)
wenzelm@9455
   227
wenzelm@9455
   228
(* dependent rules *)
wenzelm@9455
   229
wenzelm@9455
   230
fun rule_attribute f (x, thm) = (x, (f x thm));
wenzelm@9455
   231
wenzelm@9455
   232
wenzelm@9455
   233
(* add / delete tags *)
wenzelm@9455
   234
wenzelm@9455
   235
fun map_tags f thm =
wenzelm@9455
   236
  Thm.put_name_tags (Thm.name_of_thm thm, f (#2 (Thm.get_name_tags thm))) thm;
wenzelm@9455
   237
wenzelm@9455
   238
fun tag_rule tg = map_tags (fn tgs => if tg mem tgs then tgs else tgs @ [tg]);
wenzelm@9455
   239
fun untag_rule s = map_tags (filter_out (equal s o #1));
wenzelm@9455
   240
wenzelm@9455
   241
fun tag tg x = rule_attribute (K (tag_rule tg)) x;
wenzelm@9455
   242
fun untag s x = rule_attribute (K (untag_rule s)) x;
wenzelm@9455
   243
wenzelm@9455
   244
fun simple_tag name x = tag (name, []) x;
wenzelm@9455
   245
wenzelm@9455
   246
fun tag_lemma x = simple_tag "lemma" x;
wenzelm@9455
   247
fun tag_assumption x = simple_tag "assumption" x;
wenzelm@9455
   248
wenzelm@9455
   249
val internal_tag = ("internal", []);
wenzelm@9455
   250
fun tag_internal x = tag internal_tag x;
wenzelm@9455
   251
fun has_internal tags = exists (equal internal_tag) tags;
wenzelm@9455
   252
wenzelm@9455
   253
wenzelm@9455
   254
clasohm@0
   255
(** Standardization of rules **)
clasohm@0
   256
wenzelm@7636
   257
(*Strip extraneous shyps as far as possible*)
wenzelm@7636
   258
fun strip_shyps_warning thm =
wenzelm@7636
   259
  let
wenzelm@7636
   260
    val str_of_sort = Sign.str_of_sort (Thm.sign_of_thm thm);
wenzelm@7636
   261
    val thm' = Thm.strip_shyps thm;
wenzelm@7636
   262
    val xshyps = Thm.extra_shyps thm';
wenzelm@7636
   263
  in
wenzelm@7636
   264
    if null xshyps then ()
wenzelm@7636
   265
    else warning ("Pending sort hypotheses: " ^ commas (map str_of_sort xshyps));
wenzelm@7636
   266
    thm'
wenzelm@7636
   267
  end;
wenzelm@7636
   268
clasohm@0
   269
(*Generalization over a list of variables, IGNORING bad ones*)
clasohm@0
   270
fun forall_intr_list [] th = th
clasohm@0
   271
  | forall_intr_list (y::ys) th =
wenzelm@252
   272
        let val gth = forall_intr_list ys th
wenzelm@252
   273
        in  forall_intr y gth   handle THM _ =>  gth  end;
clasohm@0
   274
clasohm@0
   275
(*Generalization over all suitable Free variables*)
clasohm@0
   276
fun forall_intr_frees th =
clasohm@0
   277
    let val {prop,sign,...} = rep_thm th
clasohm@0
   278
    in  forall_intr_list
wenzelm@4440
   279
         (map (cterm_of sign) (sort (make_ord atless) (term_frees prop)))
clasohm@0
   280
         th
clasohm@0
   281
    end;
clasohm@0
   282
wenzelm@7898
   283
val forall_elim_var = PureThy.forall_elim_var;
wenzelm@7898
   284
val forall_elim_vars = PureThy.forall_elim_vars;
clasohm@0
   285
clasohm@0
   286
(*Specialization over a list of cterms*)
clasohm@0
   287
fun forall_elim_list cts th = foldr (uncurry forall_elim) (rev cts, th);
clasohm@0
   288
clasohm@0
   289
(* maps [A1,...,An], B   to   [| A1;...;An |] ==> B  *)
clasohm@0
   290
fun implies_intr_list cAs th = foldr (uncurry implies_intr) (cAs,th);
clasohm@0
   291
clasohm@0
   292
(* maps [| A1;...;An |] ==> B and [A1,...,An]   to   B *)
clasohm@0
   293
fun implies_elim_list impth ths = foldl (uncurry implies_elim) (impth,ths);
clasohm@0
   294
clasohm@0
   295
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@252
   296
fun zero_var_indexes th =
clasohm@0
   297
    let val {prop,sign,...} = rep_thm th;
clasohm@0
   298
        val vars = term_vars prop
clasohm@0
   299
        val bs = foldl add_new_id ([], map (fn Var((a,_),_)=>a) vars)
wenzelm@252
   300
        val inrs = add_term_tvars(prop,[]);
wenzelm@252
   301
        val nms' = rev(foldl add_new_id ([], map (#1 o #1) inrs));
paulson@2266
   302
        val tye = ListPair.map (fn ((v,rs),a) => (v, TVar((a,0),rs)))
wenzelm@8328
   303
                     (inrs, nms')
wenzelm@252
   304
        val ctye = map (fn (v,T) => (v,ctyp_of sign T)) tye;
wenzelm@252
   305
        fun varpairs([],[]) = []
wenzelm@252
   306
          | varpairs((var as Var(v,T)) :: vars, b::bs) =
wenzelm@252
   307
                let val T' = typ_subst_TVars tye T
wenzelm@252
   308
                in (cterm_of sign (Var(v,T')),
wenzelm@252
   309
                    cterm_of sign (Var((b,0),T'))) :: varpairs(vars,bs)
wenzelm@252
   310
                end
wenzelm@252
   311
          | varpairs _ = raise TERM("varpairs", []);
paulson@8129
   312
    in Thm.instantiate (ctye, varpairs(vars,rev bs)) th end;
clasohm@0
   313
clasohm@0
   314
clasohm@0
   315
(*Standard form of object-rule: no hypotheses, Frees, or outer quantifiers;
clasohm@0
   316
    all generality expressed by Vars having index 0.*)
clasohm@0
   317
fun standard th =
wenzelm@1218
   318
  let val {maxidx,...} = rep_thm th
wenzelm@1237
   319
  in
wenzelm@1218
   320
    th |> implies_intr_hyps
paulson@1412
   321
       |> forall_intr_frees |> forall_elim_vars (maxidx + 1)
wenzelm@7636
   322
       |> strip_shyps_warning
paulson@1412
   323
       |> zero_var_indexes |> Thm.varifyT |> Thm.compress
wenzelm@1218
   324
  end;
wenzelm@1218
   325
clasohm@0
   326
wenzelm@8328
   327
(*Convert all Vars in a theorem to Frees.  Also return a function for
paulson@4610
   328
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   329
  Similar code in type/freeze_thaw*)
paulson@4610
   330
fun freeze_thaw th =
paulson@7248
   331
 let val fth = freezeT th
paulson@7248
   332
     val {prop,sign,...} = rep_thm fth
paulson@7248
   333
 in
paulson@7248
   334
   case term_vars prop of
paulson@7248
   335
       [] => (fth, fn x => x)
paulson@7248
   336
     | vars =>
wenzelm@8328
   337
         let fun newName (Var(ix,_), (pairs,used)) =
wenzelm@8328
   338
                   let val v = variant used (string_of_indexname ix)
wenzelm@8328
   339
                   in  ((ix,v)::pairs, v::used)  end;
wenzelm@8328
   340
             val (alist, _) = foldr newName
wenzelm@8328
   341
                                (vars, ([], add_term_names (prop, [])))
wenzelm@8328
   342
             fun mk_inst (Var(v,T)) =
wenzelm@8328
   343
                 (cterm_of sign (Var(v,T)),
wenzelm@8328
   344
                  cterm_of sign (Free(the (assoc(alist,v)), T)))
wenzelm@8328
   345
             val insts = map mk_inst vars
wenzelm@8328
   346
             fun thaw th' =
wenzelm@8328
   347
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   348
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   349
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   350
 end;
paulson@4610
   351
paulson@4610
   352
paulson@7248
   353
(*Rotates a rule's premises to the left by k*)
paulson@7248
   354
val rotate_prems = permute_prems 0;
paulson@4610
   355
paulson@4610
   356
wenzelm@252
   357
(*Assume a new formula, read following the same conventions as axioms.
clasohm@0
   358
  Generalizes over Free variables,
clasohm@0
   359
  creates the assumption, and then strips quantifiers.
clasohm@0
   360
  Example is [| ALL x:?A. ?P(x) |] ==> [| ?P(?a) |]
wenzelm@252
   361
             [ !(A,P,a)[| ALL x:A. P(x) |] ==> [| P(a) |] ]    *)
clasohm@0
   362
fun assume_ax thy sP =
wenzelm@6390
   363
    let val sign = Theory.sign_of thy
paulson@4610
   364
        val prop = Logic.close_form (term_of (read_cterm sign (sP, propT)))
lcp@229
   365
    in forall_elim_vars 0 (assume (cterm_of sign prop))  end;
clasohm@0
   366
wenzelm@252
   367
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   368
fun tha RSN (i,thb) =
wenzelm@4270
   369
  case Seq.chop (2, biresolution false [(false,tha)] i thb) of
clasohm@0
   370
      ([th],_) => th
clasohm@0
   371
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   372
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   373
clasohm@0
   374
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   375
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   376
clasohm@0
   377
(*For joining lists of rules*)
wenzelm@252
   378
fun thas RLN (i,thbs) =
clasohm@0
   379
  let val resolve = biresolution false (map (pair false) thas) i
wenzelm@4270
   380
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
paulson@2672
   381
  in  List.concat (map resb thbs)  end;
clasohm@0
   382
clasohm@0
   383
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   384
lcp@11
   385
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   386
  makes proof trees*)
wenzelm@252
   387
fun rls MRS bottom_rl =
lcp@11
   388
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   389
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   390
  in  rs_aux 1 rls  end;
lcp@11
   391
lcp@11
   392
(*As above, but for rule lists*)
wenzelm@252
   393
fun rlss MRL bottom_rls =
lcp@11
   394
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   395
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   396
  in  rs_aux 1 rlss  end;
lcp@11
   397
wenzelm@9288
   398
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   399
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   400
wenzelm@252
   401
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   402
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   403
  ALWAYS deletes premise i *)
wenzelm@252
   404
fun compose(tha,i,thb) =
wenzelm@4270
   405
    Seq.list_of (bicompose false (false,tha,0) i thb);
clasohm@0
   406
wenzelm@6946
   407
fun compose_single (tha,i,thb) =
wenzelm@6946
   408
  (case compose (tha,i,thb) of
wenzelm@6946
   409
    [th] => th
wenzelm@6946
   410
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]));
wenzelm@6946
   411
clasohm@0
   412
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   413
fun tha COMP thb =
clasohm@0
   414
    case compose(tha,1,thb) of
wenzelm@252
   415
        [th] => th
clasohm@0
   416
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   417
wenzelm@4016
   418
(** theorem equality **)
clasohm@0
   419
clasohm@0
   420
(*Do the two theorems have the same signature?*)
wenzelm@252
   421
fun eq_thm_sg (th1,th2) = Sign.eq_sg(#sign(rep_thm th1), #sign(rep_thm th2));
wenzelm@9418
   422
fun merge_rules (ths1, ths2) = Library.generic_merge Thm.eq_thm I I ths1 ths2;
clasohm@0
   423
clasohm@0
   424
(*Useful "distance" function for BEST_FIRST*)
clasohm@0
   425
val size_of_thm = size_of_term o #prop o rep_thm;
clasohm@0
   426
clasohm@0
   427
lcp@1194
   428
(** Mark Staples's weaker version of eq_thm: ignores variable renaming and
lcp@1194
   429
    (some) type variable renaming **)
lcp@1194
   430
lcp@1194
   431
 (* Can't use term_vars, because it sorts the resulting list of variable names.
lcp@1194
   432
    We instead need the unique list noramlised by the order of appearance
lcp@1194
   433
    in the term. *)
lcp@1194
   434
fun term_vars' (t as Var(v,T)) = [t]
lcp@1194
   435
  | term_vars' (Abs(_,_,b)) = term_vars' b
lcp@1194
   436
  | term_vars' (f$a) = (term_vars' f) @ (term_vars' a)
lcp@1194
   437
  | term_vars' _ = [];
lcp@1194
   438
lcp@1194
   439
fun forall_intr_vars th =
lcp@1194
   440
  let val {prop,sign,...} = rep_thm th;
lcp@1194
   441
      val vars = distinct (term_vars' prop);
lcp@1194
   442
  in forall_intr_list (map (cterm_of sign) vars) th end;
lcp@1194
   443
wenzelm@1237
   444
fun weak_eq_thm (tha,thb) =
lcp@1194
   445
    eq_thm(forall_intr_vars (freezeT tha), forall_intr_vars (freezeT thb));
lcp@1194
   446
lcp@1194
   447
lcp@1194
   448
clasohm@0
   449
(*** Meta-Rewriting Rules ***)
clasohm@0
   450
paulson@4610
   451
fun read_prop s = read_cterm proto_sign (s, propT);
paulson@4610
   452
wenzelm@9455
   453
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
wenzelm@9455
   454
fun store_standard_thm name thm = store_thm name (standard thm);
wenzelm@4016
   455
clasohm@0
   456
val reflexive_thm =
paulson@4610
   457
  let val cx = cterm_of proto_sign (Var(("x",0),TVar(("'a",0),logicS)))
wenzelm@9455
   458
  in store_standard_thm "reflexive" (Thm.reflexive cx) end;
clasohm@0
   459
clasohm@0
   460
val symmetric_thm =
paulson@4610
   461
  let val xy = read_prop "x::'a::logic == y"
wenzelm@9455
   462
  in store_standard_thm "symmetric" (Thm.implies_intr_hyps (Thm.symmetric (Thm.assume xy))) end;
clasohm@0
   463
clasohm@0
   464
val transitive_thm =
paulson@4610
   465
  let val xy = read_prop "x::'a::logic == y"
paulson@4610
   466
      val yz = read_prop "y::'a::logic == z"
clasohm@0
   467
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
wenzelm@9455
   468
  in store_standard_thm "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
clasohm@0
   469
nipkow@4679
   470
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   471
lcp@229
   472
(** Below, a "conversion" has type cterm -> thm **)
lcp@229
   473
paulson@9547
   474
val refl_implies = reflexive implies;
clasohm@0
   475
clasohm@0
   476
(*In [A1,...,An]==>B, rewrite the selected A's only -- for rewrite_goals_tac*)
nipkow@214
   477
(*Do not rewrite flex-flex pairs*)
wenzelm@252
   478
fun goals_conv pred cv =
lcp@229
   479
  let fun gconv i ct =
paulson@2004
   480
        let val (A,B) = dest_implies ct
lcp@229
   481
            val (thA,j) = case term_of A of
lcp@229
   482
                  Const("=?=",_)$_$_ => (reflexive A, i)
lcp@229
   483
                | _ => (if pred i then cv A else reflexive A, i+1)
paulson@2004
   484
        in  combination (combination refl_implies thA) (gconv j B) end
lcp@229
   485
        handle TERM _ => reflexive ct
clasohm@0
   486
  in gconv 1 end;
clasohm@0
   487
clasohm@0
   488
(*Use a conversion to transform a theorem*)
lcp@229
   489
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
clasohm@0
   490
clasohm@0
   491
(*rewriting conversion*)
lcp@229
   492
fun rew_conv mode prover mss = rewrite_cterm mode mss prover;
clasohm@0
   493
clasohm@0
   494
(*Rewrite a theorem*)
wenzelm@3575
   495
fun rewrite_rule_aux _ []   th = th
wenzelm@3575
   496
  | rewrite_rule_aux prover thms th =
nipkow@4713
   497
      fconv_rule (rew_conv (true,false,false) prover (Thm.mss_of thms)) th;
clasohm@0
   498
wenzelm@3555
   499
fun rewrite_thm mode prover mss = fconv_rule (rew_conv mode prover mss);
wenzelm@5079
   500
fun rewrite_cterm mode prover mss = Thm.rewrite_cterm mode mss prover;
wenzelm@3555
   501
clasohm@0
   502
(*Rewrite the subgoals of a proof state (represented by a theorem) *)
wenzelm@3575
   503
fun rewrite_goals_rule_aux _ []   th = th
wenzelm@3575
   504
  | rewrite_goals_rule_aux prover thms th =
nipkow@4713
   505
      fconv_rule (goals_conv (K true) (rew_conv (true, true, false) prover
wenzelm@3575
   506
        (Thm.mss_of thms))) th;
clasohm@0
   507
clasohm@0
   508
(*Rewrite the subgoal of a proof state (represented by a theorem) *)
nipkow@214
   509
fun rewrite_goal_rule mode prover mss i thm =
nipkow@214
   510
  if 0 < i  andalso  i <= nprems_of thm
nipkow@214
   511
  then fconv_rule (goals_conv (fn j => j=i) (rew_conv mode prover mss)) thm
nipkow@214
   512
  else raise THM("rewrite_goal_rule",i,[thm]);
clasohm@0
   513
clasohm@0
   514
clasohm@0
   515
(*** Some useful meta-theorems ***)
clasohm@0
   516
clasohm@0
   517
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@9455
   518
val asm_rl = store_standard_thm "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
wenzelm@7380
   519
val _ = store_thm "_" asm_rl;
clasohm@0
   520
clasohm@0
   521
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   522
val cut_rl =
wenzelm@9455
   523
  store_standard_thm "cut_rl"
wenzelm@9455
   524
    (Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
clasohm@0
   525
wenzelm@252
   526
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   527
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   528
val revcut_rl =
paulson@4610
   529
  let val V = read_prop "PROP V"
paulson@4610
   530
      and VW = read_prop "PROP V ==> PROP W";
wenzelm@4016
   531
  in
wenzelm@9455
   532
    store_standard_thm "revcut_rl"
wenzelm@4016
   533
      (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
clasohm@0
   534
  end;
clasohm@0
   535
lcp@668
   536
(*for deleting an unwanted assumption*)
lcp@668
   537
val thin_rl =
paulson@4610
   538
  let val V = read_prop "PROP V"
paulson@4610
   539
      and W = read_prop "PROP W";
wenzelm@9455
   540
  in  store_standard_thm "thin_rl" (implies_intr V (implies_intr W (assume W)))
lcp@668
   541
  end;
lcp@668
   542
clasohm@0
   543
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   544
val triv_forall_equality =
paulson@4610
   545
  let val V  = read_prop "PROP V"
paulson@4610
   546
      and QV = read_prop "!!x::'a. PROP V"
wenzelm@8086
   547
      and x  = read_cterm proto_sign ("x", TypeInfer.logicT);
wenzelm@4016
   548
  in
wenzelm@9455
   549
    store_standard_thm "triv_forall_equality"
wenzelm@9455
   550
      (standard (equal_intr (implies_intr QV (forall_elim x (assume QV)))
wenzelm@9455
   551
        (implies_intr V  (forall_intr x (assume V)))))
clasohm@0
   552
  end;
clasohm@0
   553
nipkow@1756
   554
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   555
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   556
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   557
*)
nipkow@1756
   558
val swap_prems_rl =
paulson@4610
   559
  let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
nipkow@1756
   560
      val major = assume cmajor;
paulson@4610
   561
      val cminor1 = read_prop "PROP PhiA";
nipkow@1756
   562
      val minor1 = assume cminor1;
paulson@4610
   563
      val cminor2 = read_prop "PROP PhiB";
nipkow@1756
   564
      val minor2 = assume cminor2;
wenzelm@9455
   565
  in store_standard_thm "swap_prems_rl"
nipkow@1756
   566
       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
nipkow@1756
   567
         (implies_elim (implies_elim major minor1) minor2))))
nipkow@1756
   568
  end;
nipkow@1756
   569
nipkow@3653
   570
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   571
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   572
   Introduction rule for == as a meta-theorem.
nipkow@3653
   573
*)
nipkow@3653
   574
val equal_intr_rule =
paulson@4610
   575
  let val PQ = read_prop "PROP phi ==> PROP psi"
paulson@4610
   576
      and QP = read_prop "PROP psi ==> PROP phi"
wenzelm@4016
   577
  in
wenzelm@9455
   578
    store_standard_thm "equal_intr_rule"
wenzelm@4016
   579
      (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
nipkow@3653
   580
  end;
nipkow@3653
   581
wenzelm@4285
   582
paulson@8129
   583
(*** Instantiate theorem th, reading instantiations under signature sg ****)
paulson@8129
   584
paulson@8129
   585
(*Version that normalizes the result: Thm.instantiate no longer does that*)
paulson@8129
   586
fun instantiate instpair th = Thm.instantiate instpair th  COMP   asm_rl;
paulson@8129
   587
paulson@8129
   588
fun read_instantiate_sg sg sinsts th =
paulson@8129
   589
    let val ts = types_sorts th;
paulson@8129
   590
        val used = add_term_tvarnames(#prop(rep_thm th),[]);
paulson@8129
   591
    in  instantiate (read_insts sg ts ts used sinsts) th  end;
paulson@8129
   592
paulson@8129
   593
(*Instantiate theorem th, reading instantiations under theory of th*)
paulson@8129
   594
fun read_instantiate sinsts th =
paulson@8129
   595
    read_instantiate_sg (#sign (rep_thm th)) sinsts th;
paulson@8129
   596
paulson@8129
   597
paulson@8129
   598
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
paulson@8129
   599
  Instantiates distinct Vars by terms, inferring type instantiations. *)
paulson@8129
   600
local
paulson@8129
   601
  fun add_types ((ct,cu), (sign,tye,maxidx)) =
paulson@8129
   602
    let val {sign=signt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
paulson@8129
   603
        and {sign=signu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
paulson@8129
   604
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
paulson@8129
   605
        val sign' = Sign.merge(sign, Sign.merge(signt, signu))
paulson@8129
   606
        val (tye',maxi') = Type.unify (#tsig(Sign.rep_sg sign')) maxi tye (T,U)
paulson@8129
   607
          handle Type.TUNIFY => raise TYPE("add_types", [T,U], [t,u])
paulson@8129
   608
    in  (sign', tye', maxi')  end;
paulson@8129
   609
in
paulson@8129
   610
fun cterm_instantiate ctpairs0 th =
berghofe@8406
   611
  let val (sign,tye,_) = foldr add_types (ctpairs0, (#sign(rep_thm th), Vartab.empty, 0))
paulson@8129
   612
      val tsig = #tsig(Sign.rep_sg sign);
berghofe@8406
   613
      fun instT(ct,cu) = let val inst = subst_TVars_Vartab tye
paulson@8129
   614
                         in (cterm_fun inst ct, cterm_fun inst cu) end
paulson@8129
   615
      fun ctyp2 (ix,T) = (ix, ctyp_of sign T)
berghofe@8406
   616
  in  instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th  end
paulson@8129
   617
  handle TERM _ =>
paulson@8129
   618
           raise THM("cterm_instantiate: incompatible signatures",0,[th])
paulson@8129
   619
       | TYPE (msg, _, _) => raise THM(msg, 0, [th])
paulson@8129
   620
end;
paulson@8129
   621
paulson@8129
   622
paulson@8129
   623
(** Derived rules mainly for METAHYPS **)
paulson@8129
   624
paulson@8129
   625
(*Given the term "a", takes (%x.t)==(%x.u) to t[a/x]==u[a/x]*)
paulson@8129
   626
fun equal_abs_elim ca eqth =
paulson@8129
   627
  let val {sign=signa, t=a, ...} = rep_cterm ca
paulson@8129
   628
      and combth = combination eqth (reflexive ca)
paulson@8129
   629
      val {sign,prop,...} = rep_thm eqth
paulson@8129
   630
      val (abst,absu) = Logic.dest_equals prop
paulson@8129
   631
      val cterm = cterm_of (Sign.merge (sign,signa))
paulson@8129
   632
  in  transitive (symmetric (beta_conversion (cterm (abst$a))))
paulson@8129
   633
           (transitive combth (beta_conversion (cterm (absu$a))))
paulson@8129
   634
  end
paulson@8129
   635
  handle THM _ => raise THM("equal_abs_elim", 0, [eqth]);
paulson@8129
   636
paulson@8129
   637
(*Calling equal_abs_elim with multiple terms*)
paulson@8129
   638
fun equal_abs_elim_list cts th = foldr (uncurry equal_abs_elim) (rev cts, th);
paulson@8129
   639
paulson@8129
   640
local
paulson@8129
   641
  val alpha = TVar(("'a",0), [])     (*  type ?'a::{}  *)
paulson@8129
   642
  fun err th = raise THM("flexpair_inst: ", 0, [th])
paulson@8129
   643
  fun flexpair_inst def th =
paulson@8129
   644
    let val {prop = Const _ $ t $ u,  sign,...} = rep_thm th
paulson@8129
   645
        val cterm = cterm_of sign
paulson@8129
   646
        fun cvar a = cterm(Var((a,0),alpha))
paulson@8129
   647
        val def' = cterm_instantiate [(cvar"t", cterm t), (cvar"u", cterm u)]
paulson@8129
   648
                   def
paulson@8129
   649
    in  equal_elim def' th
paulson@8129
   650
    end
paulson@8129
   651
    handle THM _ => err th | Bind => err th
paulson@8129
   652
in
paulson@8129
   653
val flexpair_intr = flexpair_inst (symmetric ProtoPure.flexpair_def)
paulson@8129
   654
and flexpair_elim = flexpair_inst ProtoPure.flexpair_def
paulson@8129
   655
end;
paulson@8129
   656
paulson@8129
   657
(*Version for flexflex pairs -- this supports lifting.*)
paulson@8129
   658
fun flexpair_abs_elim_list cts =
paulson@8129
   659
    flexpair_intr o equal_abs_elim_list cts o flexpair_elim;
paulson@8129
   660
paulson@8129
   661
paulson@8129
   662
(*** GOAL (PROP A) <==> PROP A ***)
wenzelm@4789
   663
wenzelm@4789
   664
local
wenzelm@4789
   665
  val A = read_prop "PROP A";
wenzelm@4789
   666
  val G = read_prop "GOAL (PROP A)";
wenzelm@4789
   667
  val (G_def, _) = freeze_thaw ProtoPure.Goal_def;
wenzelm@4789
   668
in
wenzelm@9455
   669
  val triv_goal = store_thm "triv_goal"
wenzelm@9455
   670
    (tag_rule internal_tag (standard (Thm.equal_elim (Thm.symmetric G_def) (Thm.assume A))));
wenzelm@9455
   671
  val rev_triv_goal = store_thm "rev_triv_goal"
wenzelm@9455
   672
    (tag_rule internal_tag (standard (Thm.equal_elim G_def (Thm.assume G))));
wenzelm@4789
   673
end;
wenzelm@4789
   674
wenzelm@9460
   675
val mk_cgoal = Thm.capply (Thm.cterm_of proto_sign Logic.goal_const);
wenzelm@6995
   676
fun assume_goal ct = Thm.assume (mk_cgoal ct) RS rev_triv_goal;
wenzelm@6995
   677
wenzelm@4789
   678
wenzelm@4285
   679
wenzelm@5688
   680
(** variations on instantiate **)
wenzelm@4285
   681
paulson@8550
   682
(*shorthand for instantiating just one variable in the current theory*)
paulson@8550
   683
fun inst x t = read_instantiate_sg (sign_of (the_context())) [(x,t)];
paulson@8550
   684
paulson@8550
   685
wenzelm@4285
   686
(* collect vars *)
wenzelm@4285
   687
wenzelm@4285
   688
val add_tvarsT = foldl_atyps (fn (vs, TVar v) => v ins vs | (vs, _) => vs);
wenzelm@4285
   689
val add_tvars = foldl_types add_tvarsT;
wenzelm@4285
   690
val add_vars = foldl_aterms (fn (vs, Var v) => v ins vs | (vs, _) => vs);
wenzelm@4285
   691
wenzelm@5903
   692
fun tvars_of_terms ts = rev (foldl add_tvars ([], ts));
wenzelm@5903
   693
fun vars_of_terms ts = rev (foldl add_vars ([], ts));
wenzelm@5903
   694
wenzelm@5903
   695
fun tvars_of thm = tvars_of_terms [#prop (Thm.rep_thm thm)];
wenzelm@5903
   696
fun vars_of thm = vars_of_terms [#prop (Thm.rep_thm thm)];
wenzelm@4285
   697
wenzelm@4285
   698
wenzelm@4285
   699
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   700
wenzelm@4285
   701
fun instantiate' cTs cts thm =
wenzelm@4285
   702
  let
wenzelm@4285
   703
    fun err msg =
wenzelm@4285
   704
      raise TYPE ("instantiate': " ^ msg,
wenzelm@4285
   705
        mapfilter (apsome Thm.typ_of) cTs,
wenzelm@4285
   706
        mapfilter (apsome Thm.term_of) cts);
wenzelm@4285
   707
wenzelm@4285
   708
    fun inst_of (v, ct) =
wenzelm@4285
   709
      (Thm.cterm_of (#sign (Thm.rep_cterm ct)) (Var v), ct)
wenzelm@4285
   710
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
   711
wenzelm@4285
   712
    fun zip_vars _ [] = []
wenzelm@4285
   713
      | zip_vars (_ :: vs) (None :: opt_ts) = zip_vars vs opt_ts
wenzelm@4285
   714
      | zip_vars (v :: vs) (Some t :: opt_ts) = (v, t) :: zip_vars vs opt_ts
wenzelm@4285
   715
      | zip_vars [] _ = err "more instantiations than variables in thm";
wenzelm@4285
   716
wenzelm@4285
   717
    (*instantiate types first!*)
wenzelm@4285
   718
    val thm' =
wenzelm@4285
   719
      if forall is_none cTs then thm
wenzelm@4285
   720
      else Thm.instantiate (zip_vars (map fst (tvars_of thm)) cTs, []) thm;
wenzelm@4285
   721
    in
wenzelm@4285
   722
      if forall is_none cts then thm'
wenzelm@4285
   723
      else Thm.instantiate ([], map inst_of (zip_vars (vars_of thm') cts)) thm'
wenzelm@4285
   724
    end;
wenzelm@4285
   725
wenzelm@4285
   726
wenzelm@5688
   727
(* unvarify(T) *)
wenzelm@5688
   728
wenzelm@5688
   729
(*assume thm in standard form, i.e. no frees, 0 var indexes*)
wenzelm@5688
   730
wenzelm@5688
   731
fun unvarifyT thm =
wenzelm@5688
   732
  let
wenzelm@5688
   733
    val cT = Thm.ctyp_of (Thm.sign_of_thm thm);
wenzelm@5688
   734
    val tfrees = map (fn ((x, _), S) => Some (cT (TFree (x, S)))) (tvars_of thm);
wenzelm@5688
   735
  in instantiate' tfrees [] thm end;
wenzelm@5688
   736
wenzelm@5688
   737
fun unvarify raw_thm =
wenzelm@5688
   738
  let
wenzelm@5688
   739
    val thm = unvarifyT raw_thm;
wenzelm@5688
   740
    val ct = Thm.cterm_of (Thm.sign_of_thm thm);
wenzelm@5688
   741
    val frees = map (fn ((x, _), T) => Some (ct (Free (x, T)))) (vars_of thm);
wenzelm@5688
   742
  in instantiate' [] frees thm end;
wenzelm@5688
   743
wenzelm@5688
   744
wenzelm@8605
   745
(* tvars_intr_list *)
wenzelm@8605
   746
wenzelm@8605
   747
fun tfrees_of thm =
wenzelm@8605
   748
  let val {hyps, prop, ...} = Thm.rep_thm thm
wenzelm@8605
   749
  in foldr Term.add_term_tfree_names (prop :: hyps, []) end;
wenzelm@8605
   750
wenzelm@8605
   751
fun tvars_intr_list tfrees thm =
wenzelm@8605
   752
  Thm.varifyT' (tfrees_of thm \\ tfrees) thm;
wenzelm@8605
   753
wenzelm@8605
   754
wenzelm@6435
   755
(* increment var indexes *)
wenzelm@6435
   756
wenzelm@6435
   757
fun incr_indexes 0 thm = thm
wenzelm@6435
   758
  | incr_indexes inc thm =
wenzelm@6435
   759
      let
wenzelm@6435
   760
        val sign = Thm.sign_of_thm thm;
wenzelm@6435
   761
wenzelm@6435
   762
        fun inc_tvar ((x, i), S) = Some (Thm.ctyp_of sign (TVar ((x, i + inc), S)));
wenzelm@6435
   763
        fun inc_var ((x, i), T) = Some (Thm.cterm_of sign (Var ((x, i + inc), T)));
wenzelm@6930
   764
        val thm' = instantiate' (map inc_tvar (tvars_of thm)) [] thm;
wenzelm@6930
   765
        val thm'' = instantiate' [] (map inc_var (vars_of thm')) thm';
wenzelm@6930
   766
      in thm'' end;
wenzelm@6435
   767
wenzelm@6435
   768
fun incr_indexes_wrt is cTs cts thms =
wenzelm@6435
   769
  let
wenzelm@6435
   770
    val maxidx =
wenzelm@6435
   771
      foldl Int.max (~1, is @
wenzelm@6435
   772
        map (maxidx_of_typ o #T o Thm.rep_ctyp) cTs @
wenzelm@6435
   773
        map (#maxidx o Thm.rep_cterm) cts @
wenzelm@6435
   774
        map (#maxidx o Thm.rep_thm) thms);
wenzelm@6435
   775
  in incr_indexes (maxidx + 1) end;
wenzelm@6435
   776
wenzelm@6435
   777
wenzelm@8328
   778
(* freeze_all *)
wenzelm@8328
   779
wenzelm@8328
   780
(*freeze all (T)Vars; assumes thm in standard form*)
wenzelm@8328
   781
wenzelm@8328
   782
fun freeze_all_TVars thm =
wenzelm@8328
   783
  (case tvars_of thm of
wenzelm@8328
   784
    [] => thm
wenzelm@8328
   785
  | tvars =>
wenzelm@8328
   786
      let val cert = Thm.ctyp_of (Thm.sign_of_thm thm)
wenzelm@8328
   787
      in instantiate' (map (fn ((x, _), S) => Some (cert (TFree (x, S)))) tvars) [] thm end);
wenzelm@8328
   788
wenzelm@8328
   789
fun freeze_all_Vars thm =
wenzelm@8328
   790
  (case vars_of thm of
wenzelm@8328
   791
    [] => thm
wenzelm@8328
   792
  | vars =>
wenzelm@8328
   793
      let val cert = Thm.cterm_of (Thm.sign_of_thm thm)
wenzelm@8328
   794
      in instantiate' [] (map (fn ((x, _), T) => Some (cert (Free (x, T)))) vars) thm end);
wenzelm@8328
   795
wenzelm@8328
   796
val freeze_all = freeze_all_Vars o freeze_all_TVars;
wenzelm@8328
   797
wenzelm@8328
   798
wenzelm@5688
   799
(* mk_triv_goal *)
wenzelm@5688
   800
wenzelm@5688
   801
(*make an initial proof state, "PROP A ==> (PROP A)" *)
paulson@5311
   802
fun mk_triv_goal ct = instantiate' [] [Some ct] triv_goal;
paulson@5311
   803
wenzelm@5688
   804
clasohm@0
   805
end;
wenzelm@252
   806
wenzelm@5903
   807
wenzelm@5903
   808
structure BasicDrule: BASIC_DRULE = Drule;
wenzelm@5903
   809
open BasicDrule;