src/HOL/Tools/inductive_package.ML
author wenzelm
Fri Oct 21 18:14:38 2005 +0200 (2005-10-21)
changeset 17959 8db36a108213
parent 17485 c39871c52977
child 17985 d5d576b72371
permissions -rw-r--r--
OldGoals;
berghofe@5094
     1
(*  Title:      HOL/Tools/inductive_package.ML
berghofe@5094
     2
    ID:         $Id$
berghofe@5094
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
wenzelm@10735
     4
    Author:     Stefan Berghofer, TU Muenchen
wenzelm@10735
     5
    Author:     Markus Wenzel, TU Muenchen
berghofe@5094
     6
wenzelm@6424
     7
(Co)Inductive Definition module for HOL.
berghofe@5094
     8
berghofe@5094
     9
Features:
wenzelm@6424
    10
  * least or greatest fixedpoints
wenzelm@6424
    11
  * user-specified product and sum constructions
wenzelm@6424
    12
  * mutually recursive definitions
wenzelm@6424
    13
  * definitions involving arbitrary monotone operators
wenzelm@6424
    14
  * automatically proves introduction and elimination rules
berghofe@5094
    15
wenzelm@6424
    16
The recursive sets must *already* be declared as constants in the
wenzelm@6424
    17
current theory!
berghofe@5094
    18
berghofe@5094
    19
  Introduction rules have the form
wenzelm@8316
    20
  [| ti:M(Sj), ..., P(x), ... |] ==> t: Sk
berghofe@5094
    21
  where M is some monotone operator (usually the identity)
berghofe@5094
    22
  P(x) is any side condition on the free variables
berghofe@5094
    23
  ti, t are any terms
berghofe@5094
    24
  Sj, Sk are two of the sets being defined in mutual recursion
berghofe@5094
    25
wenzelm@6424
    26
Sums are used only for mutual recursion.  Products are used only to
wenzelm@6424
    27
derive "streamlined" induction rules for relations.
berghofe@5094
    28
*)
berghofe@5094
    29
berghofe@5094
    30
signature INDUCTIVE_PACKAGE =
berghofe@5094
    31
sig
wenzelm@6424
    32
  val quiet_mode: bool ref
paulson@13626
    33
  val trace: bool ref
wenzelm@16432
    34
  val unify_consts: theory -> term list -> term list -> term list * term list
berghofe@10988
    35
  val split_rule_vars: term list -> thm -> thm
berghofe@9116
    36
  val get_inductive: theory -> string -> ({names: string list, coind: bool} *
berghofe@9116
    37
    {defs: thm list, elims: thm list, raw_induct: thm, induct: thm,
berghofe@9116
    38
     intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm}) option
wenzelm@12400
    39
  val the_mk_cases: theory -> string -> string -> thm
wenzelm@6437
    40
  val print_inductives: theory -> unit
berghofe@7710
    41
  val mono_add_global: theory attribute
berghofe@7710
    42
  val mono_del_global: theory attribute
berghofe@7710
    43
  val get_monos: theory -> thm list
wenzelm@10910
    44
  val inductive_forall_name: string
wenzelm@10910
    45
  val inductive_forall_def: thm
wenzelm@10910
    46
  val rulify: thm -> thm
wenzelm@15703
    47
  val inductive_cases: ((bstring * Attrib.src list) * string list) list -> theory -> theory
wenzelm@12876
    48
  val inductive_cases_i: ((bstring * theory attribute list) * term list) list -> theory -> theory
wenzelm@6424
    49
  val add_inductive_i: bool -> bool -> bstring -> bool -> bool -> bool -> term list ->
wenzelm@12180
    50
    ((bstring * term) * theory attribute list) list -> thm list -> theory -> theory *
wenzelm@6424
    51
      {defs: thm list, elims: thm list, raw_induct: thm, induct: thm,
wenzelm@6437
    52
       intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm}
wenzelm@11628
    53
  val add_inductive: bool -> bool -> string list ->
wenzelm@15703
    54
    ((bstring * string) * Attrib.src list) list -> (thmref * Attrib.src list) list ->
wenzelm@12180
    55
    theory -> theory *
wenzelm@6424
    56
      {defs: thm list, elims: thm list, raw_induct: thm, induct: thm,
wenzelm@6437
    57
       intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm}
wenzelm@6437
    58
  val setup: (theory -> theory) list
berghofe@5094
    59
end;
berghofe@5094
    60
wenzelm@6424
    61
structure InductivePackage: INDUCTIVE_PACKAGE =
berghofe@5094
    62
struct
berghofe@5094
    63
wenzelm@9598
    64
wenzelm@10729
    65
(** theory context references **)
wenzelm@10729
    66
nipkow@15525
    67
val mono_name = "Orderings.mono";
avigad@17010
    68
val gfp_name = "FixedPoint.gfp";
avigad@17010
    69
val lfp_name = "FixedPoint.lfp";
wenzelm@12259
    70
val vimage_name = "Set.vimage";
wenzelm@10735
    71
val Const _ $ (vimage_f $ _) $ _ = HOLogic.dest_Trueprop (Thm.concl_of vimageD);
wenzelm@10735
    72
wenzelm@11991
    73
val inductive_forall_name = "HOL.induct_forall";
wenzelm@11991
    74
val inductive_forall_def = thm "induct_forall_def";
wenzelm@11991
    75
val inductive_conj_name = "HOL.induct_conj";
wenzelm@11991
    76
val inductive_conj_def = thm "induct_conj_def";
wenzelm@11991
    77
val inductive_conj = thms "induct_conj";
wenzelm@11991
    78
val inductive_atomize = thms "induct_atomize";
wenzelm@11991
    79
val inductive_rulify1 = thms "induct_rulify1";
wenzelm@11991
    80
val inductive_rulify2 = thms "induct_rulify2";
wenzelm@10729
    81
wenzelm@10729
    82
wenzelm@10729
    83
wenzelm@10735
    84
(** theory data **)
berghofe@7710
    85
berghofe@7710
    86
(* data kind 'HOL/inductive' *)
berghofe@7710
    87
berghofe@7710
    88
type inductive_info =
berghofe@7710
    89
  {names: string list, coind: bool} * {defs: thm list, elims: thm list, raw_induct: thm,
berghofe@7710
    90
    induct: thm, intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm};
berghofe@7710
    91
wenzelm@16432
    92
structure InductiveData = TheoryDataFun
wenzelm@16432
    93
(struct
berghofe@7710
    94
  val name = "HOL/inductive";
berghofe@7710
    95
  type T = inductive_info Symtab.table * thm list;
berghofe@7710
    96
berghofe@7710
    97
  val empty = (Symtab.empty, []);
berghofe@7710
    98
  val copy = I;
wenzelm@16432
    99
  val extend = I;
wenzelm@16432
   100
  fun merge _ ((tab1, monos1), (tab2, monos2)) =
wenzelm@11502
   101
    (Symtab.merge (K true) (tab1, tab2), Drule.merge_rules (monos1, monos2));
berghofe@7710
   102
wenzelm@16432
   103
  fun print thy (tab, monos) =
wenzelm@16364
   104
    [Pretty.strs ("(co)inductives:" ::
wenzelm@16432
   105
      map #1 (NameSpace.extern_table (Sign.const_space thy, tab))),
wenzelm@16432
   106
     Pretty.big_list "monotonicity rules:" (map (Display.pretty_thm_sg thy) monos)]
wenzelm@8720
   107
    |> Pretty.chunks |> Pretty.writeln;
wenzelm@16432
   108
end);
berghofe@7710
   109
berghofe@7710
   110
val print_inductives = InductiveData.print;
berghofe@7710
   111
berghofe@7710
   112
berghofe@7710
   113
(* get and put data *)
berghofe@7710
   114
wenzelm@17412
   115
val get_inductive = Symtab.lookup o #1 o InductiveData.get;
berghofe@7710
   116
wenzelm@9598
   117
fun the_inductive thy name =
wenzelm@9598
   118
  (case get_inductive thy name of
skalberg@15531
   119
    NONE => error ("Unknown (co)inductive set " ^ quote name)
skalberg@15531
   120
  | SOME info => info);
wenzelm@9598
   121
wenzelm@12400
   122
val the_mk_cases = (#mk_cases o #2) oo the_inductive;
wenzelm@12400
   123
berghofe@7710
   124
fun put_inductives names info thy =
berghofe@7710
   125
  let
wenzelm@17412
   126
    fun upd ((tab, monos), name) = (Symtab.update_new (name, info) tab, monos);
skalberg@15570
   127
    val tab_monos = Library.foldl upd (InductiveData.get thy, names)
berghofe@7710
   128
      handle Symtab.DUP name => error ("Duplicate definition of (co)inductive set " ^ quote name);
berghofe@7710
   129
  in InductiveData.put tab_monos thy end;
berghofe@7710
   130
wenzelm@8277
   131
berghofe@7710
   132
berghofe@7710
   133
(** monotonicity rules **)
berghofe@7710
   134
wenzelm@9831
   135
val get_monos = #2 o InductiveData.get;
wenzelm@9831
   136
fun map_monos f = InductiveData.map (Library.apsnd f);
wenzelm@8277
   137
berghofe@7710
   138
fun mk_mono thm =
berghofe@7710
   139
  let
berghofe@7710
   140
    fun eq2mono thm' = [standard (thm' RS (thm' RS eq_to_mono))] @
berghofe@7710
   141
      (case concl_of thm of
berghofe@7710
   142
          (_ $ (_ $ (Const ("Not", _) $ _) $ _)) => []
berghofe@7710
   143
        | _ => [standard (thm' RS (thm' RS eq_to_mono2))]);
berghofe@7710
   144
    val concl = concl_of thm
berghofe@7710
   145
  in
berghofe@7710
   146
    if Logic.is_equals concl then
berghofe@7710
   147
      eq2mono (thm RS meta_eq_to_obj_eq)
berghofe@7710
   148
    else if can (HOLogic.dest_eq o HOLogic.dest_Trueprop) concl then
berghofe@7710
   149
      eq2mono thm
berghofe@7710
   150
    else [thm]
berghofe@7710
   151
  end;
berghofe@7710
   152
wenzelm@8634
   153
wenzelm@8634
   154
(* attributes *)
berghofe@7710
   155
wenzelm@9831
   156
fun mono_add_global (thy, thm) = (map_monos (Drule.add_rules (mk_mono thm)) thy, thm);
wenzelm@9831
   157
fun mono_del_global (thy, thm) = (map_monos (Drule.del_rules (mk_mono thm)) thy, thm);
berghofe@7710
   158
berghofe@7710
   159
val mono_attr =
wenzelm@8634
   160
 (Attrib.add_del_args mono_add_global mono_del_global,
wenzelm@8634
   161
  Attrib.add_del_args Attrib.undef_local_attribute Attrib.undef_local_attribute);
berghofe@7710
   162
berghofe@7710
   163
wenzelm@7107
   164
wenzelm@10735
   165
(** misc utilities **)
wenzelm@6424
   166
berghofe@5662
   167
val quiet_mode = ref false;
paulson@13626
   168
val trace = ref false;  (*for debugging*)
wenzelm@10735
   169
fun message s = if ! quiet_mode then () else writeln s;
wenzelm@10735
   170
fun clean_message s = if ! quick_and_dirty then () else message s;
berghofe@5662
   171
wenzelm@6424
   172
fun coind_prefix true = "co"
wenzelm@6424
   173
  | coind_prefix false = "";
wenzelm@6424
   174
wenzelm@6424
   175
wenzelm@10735
   176
(*the following code ensures that each recursive set always has the
wenzelm@10735
   177
  same type in all introduction rules*)
wenzelm@16432
   178
fun unify_consts thy cs intr_ts =
berghofe@7020
   179
  (let
wenzelm@16861
   180
    val add_term_consts_2 = fold_aterms (fn Const c => insert (op =) c | _ => I);
berghofe@7020
   181
    fun varify (t, (i, ts)) =
wenzelm@16876
   182
      let val t' = map_term_types (Logic.incr_tvar (i + 1)) (#1 (Type.varify (t, [])))
berghofe@7020
   183
      in (maxidx_of_term t', t'::ts) end;
skalberg@15574
   184
    val (i, cs') = foldr varify (~1, []) cs;
skalberg@15574
   185
    val (i', intr_ts') = foldr varify (i, []) intr_ts;
wenzelm@16861
   186
    val rec_consts = fold add_term_consts_2 cs' [];
wenzelm@16861
   187
    val intr_consts = fold add_term_consts_2 intr_ts' [];
wenzelm@16934
   188
    fun unify (cname, cT) =
skalberg@15570
   189
      let val consts = map snd (List.filter (fn c => fst c = cname) intr_consts)
wenzelm@16934
   190
      in fold (Sign.typ_unify thy) ((replicate (length consts) cT) ~~ consts) end;
wenzelm@16934
   191
    val (env, _) = fold unify rec_consts (Vartab.empty, i');
wenzelm@16287
   192
    val subst = Type.freeze o map_term_types (Envir.norm_type env)
berghofe@7020
   193
berghofe@7020
   194
  in (map subst cs', map subst intr_ts')
berghofe@7020
   195
  end) handle Type.TUNIFY =>
berghofe@7020
   196
    (warning "Occurrences of recursive constant have non-unifiable types"; (cs, intr_ts));
berghofe@7020
   197
berghofe@7020
   198
wenzelm@10735
   199
(*make injections used in mutually recursive definitions*)
berghofe@5094
   200
fun mk_inj cs sumT c x =
berghofe@5094
   201
  let
berghofe@5094
   202
    fun mk_inj' T n i =
berghofe@5094
   203
      if n = 1 then x else
berghofe@5094
   204
      let val n2 = n div 2;
berghofe@5094
   205
          val Type (_, [T1, T2]) = T
berghofe@5094
   206
      in
berghofe@5094
   207
        if i <= n2 then
paulson@15391
   208
          Const ("Sum_Type.Inl", T1 --> T) $ (mk_inj' T1 n2 i)
berghofe@5094
   209
        else
paulson@15391
   210
          Const ("Sum_Type.Inr", T2 --> T) $ (mk_inj' T2 (n - n2) (i - n2))
berghofe@5094
   211
      end
berghofe@5094
   212
  in mk_inj' sumT (length cs) (1 + find_index_eq c cs)
berghofe@5094
   213
  end;
berghofe@5094
   214
wenzelm@10735
   215
(*make "vimage" terms for selecting out components of mutually rec.def*)
berghofe@5094
   216
fun mk_vimage cs sumT t c = if length cs < 2 then t else
berghofe@5094
   217
  let
berghofe@5094
   218
    val cT = HOLogic.dest_setT (fastype_of c);
berghofe@5094
   219
    val vimageT = [cT --> sumT, HOLogic.mk_setT sumT] ---> HOLogic.mk_setT cT
berghofe@5094
   220
  in
berghofe@5094
   221
    Const (vimage_name, vimageT) $
berghofe@5094
   222
      Abs ("y", cT, mk_inj cs sumT c (Bound 0)) $ t
berghofe@5094
   223
  end;
berghofe@5094
   224
berghofe@10988
   225
(** proper splitting **)
berghofe@10988
   226
berghofe@10988
   227
fun prod_factors p (Const ("Pair", _) $ t $ u) =
berghofe@10988
   228
      p :: prod_factors (1::p) t @ prod_factors (2::p) u
berghofe@10988
   229
  | prod_factors p _ = [];
berghofe@10988
   230
haftmann@17485
   231
fun mg_prod_factors ts (t $ u) fs = if t mem ts then
berghofe@10988
   232
        let val f = prod_factors [] u
haftmann@17325
   233
        in AList.update (op =) (t, f inter (AList.lookup (op =) fs t) |> the_default f) fs end
haftmann@17485
   234
      else mg_prod_factors ts u (mg_prod_factors ts t fs)
haftmann@17485
   235
  | mg_prod_factors ts (Abs (_, _, t)) fs = mg_prod_factors ts t fs
haftmann@17485
   236
  | mg_prod_factors ts _ fs = fs;
berghofe@10988
   237
berghofe@10988
   238
fun prodT_factors p ps (T as Type ("*", [T1, T2])) =
berghofe@10988
   239
      if p mem ps then prodT_factors (1::p) ps T1 @ prodT_factors (2::p) ps T2
berghofe@10988
   240
      else [T]
berghofe@10988
   241
  | prodT_factors _ _ T = [T];
berghofe@10988
   242
berghofe@10988
   243
fun ap_split p ps (Type ("*", [T1, T2])) T3 u =
berghofe@10988
   244
      if p mem ps then HOLogic.split_const (T1, T2, T3) $
berghofe@10988
   245
        Abs ("v", T1, ap_split (2::p) ps T2 T3 (ap_split (1::p) ps T1
berghofe@10988
   246
          (prodT_factors (2::p) ps T2 ---> T3) (incr_boundvars 1 u) $ Bound 0))
berghofe@10988
   247
      else u
berghofe@10988
   248
  | ap_split _ _ _ _ u =  u;
berghofe@10988
   249
berghofe@10988
   250
fun mk_tuple p ps (Type ("*", [T1, T2])) (tms as t::_) =
berghofe@10988
   251
      if p mem ps then HOLogic.mk_prod (mk_tuple (1::p) ps T1 tms, 
skalberg@15570
   252
        mk_tuple (2::p) ps T2 (Library.drop (length (prodT_factors (1::p) ps T1), tms)))
berghofe@10988
   253
      else t
berghofe@10988
   254
  | mk_tuple _ _ _ (t::_) = t;
berghofe@10988
   255
berghofe@10988
   256
fun split_rule_var' ((t as Var (v, Type ("fun", [T1, T2])), ps), rl) =
berghofe@10988
   257
      let val T' = prodT_factors [] ps T1 ---> T2
berghofe@10988
   258
          val newt = ap_split [] ps T1 T2 (Var (v, T'))
wenzelm@16432
   259
          val cterm = Thm.cterm_of (Thm.theory_of_thm rl)
berghofe@10988
   260
      in
berghofe@10988
   261
          instantiate ([], [(cterm t, cterm newt)]) rl
berghofe@10988
   262
      end
berghofe@10988
   263
  | split_rule_var' (_, rl) = rl;
berghofe@10988
   264
berghofe@10988
   265
val remove_split = rewrite_rule [split_conv RS eq_reflection];
berghofe@10988
   266
skalberg@15574
   267
fun split_rule_vars vs rl = standard (remove_split (foldr split_rule_var'
haftmann@17485
   268
  rl (mg_prod_factors vs (Thm.prop_of rl) [])));
berghofe@10988
   269
skalberg@15574
   270
fun split_rule vs rl = standard (remove_split (foldr split_rule_var'
skalberg@15574
   271
  rl (List.mapPartial (fn (t as Var ((a, _), _)) =>
haftmann@17485
   272
      Option.map (pair t) (AList.lookup (op =) vs a)) (term_vars (Thm.prop_of rl)))));
wenzelm@6424
   273
wenzelm@6424
   274
wenzelm@10729
   275
(** process rules **)
wenzelm@10729
   276
wenzelm@10729
   277
local
berghofe@5094
   278
wenzelm@16432
   279
fun err_in_rule thy name t msg =
wenzelm@16432
   280
  error (cat_lines ["Ill-formed introduction rule " ^ quote name,
wenzelm@16432
   281
    Sign.string_of_term thy t, msg]);
wenzelm@10729
   282
wenzelm@16432
   283
fun err_in_prem thy name t p msg =
wenzelm@16432
   284
  error (cat_lines ["Ill-formed premise", Sign.string_of_term thy p,
wenzelm@16432
   285
    "in introduction rule " ^ quote name, Sign.string_of_term thy t, msg]);
berghofe@5094
   286
wenzelm@10729
   287
val bad_concl = "Conclusion of introduction rule must have form \"t : S_i\"";
wenzelm@10729
   288
paulson@11358
   289
val all_not_allowed = 
paulson@11358
   290
    "Introduction rule must not have a leading \"!!\" quantifier";
paulson@11358
   291
wenzelm@16432
   292
fun atomize_term thy = MetaSimplifier.rewrite_term thy inductive_atomize [];
wenzelm@10729
   293
wenzelm@10729
   294
in
berghofe@5094
   295
wenzelm@16432
   296
fun check_rule thy cs ((name, rule), att) =
wenzelm@10729
   297
  let
wenzelm@10729
   298
    val concl = Logic.strip_imp_concl rule;
wenzelm@10729
   299
    val prems = Logic.strip_imp_prems rule;
wenzelm@16432
   300
    val aprems = map (atomize_term thy) prems;
wenzelm@10729
   301
    val arule = Logic.list_implies (aprems, concl);
berghofe@5094
   302
wenzelm@10729
   303
    fun check_prem (prem, aprem) =
wenzelm@10729
   304
      if can HOLogic.dest_Trueprop aprem then ()
wenzelm@16432
   305
      else err_in_prem thy name rule prem "Non-atomic premise";
wenzelm@10729
   306
  in
paulson@11358
   307
    (case concl of
paulson@11358
   308
      Const ("Trueprop", _) $ (Const ("op :", _) $ t $ u) =>
wenzelm@10729
   309
        if u mem cs then
wenzelm@10729
   310
          if exists (Logic.occs o rpair t) cs then
wenzelm@16432
   311
            err_in_rule thy name rule "Recursion term on left of member symbol"
skalberg@15570
   312
          else List.app check_prem (prems ~~ aprems)
wenzelm@16432
   313
        else err_in_rule thy name rule bad_concl
wenzelm@16432
   314
      | Const ("all", _) $ _ => err_in_rule thy name rule all_not_allowed
wenzelm@16432
   315
      | _ => err_in_rule thy name rule bad_concl);
wenzelm@10729
   316
    ((name, arule), att)
wenzelm@10729
   317
  end;
berghofe@5094
   318
wenzelm@10729
   319
val rulify =
berghofe@13709
   320
  standard o
wenzelm@11036
   321
  hol_simplify inductive_rulify2 o hol_simplify inductive_rulify1 o
wenzelm@11036
   322
  hol_simplify inductive_conj;
wenzelm@10729
   323
wenzelm@10729
   324
end;
wenzelm@10729
   325
berghofe@5094
   326
wenzelm@6424
   327
wenzelm@10735
   328
(** properties of (co)inductive sets **)
berghofe@5094
   329
wenzelm@10735
   330
(* elimination rules *)
berghofe@5094
   331
wenzelm@8375
   332
fun mk_elims cs cTs params intr_ts intr_names =
berghofe@5094
   333
  let
skalberg@15574
   334
    val used = foldr add_term_names [] intr_ts;
berghofe@5094
   335
    val [aname, pname] = variantlist (["a", "P"], used);
berghofe@5094
   336
    val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT));
berghofe@5094
   337
berghofe@5094
   338
    fun dest_intr r =
berghofe@5094
   339
      let val Const ("op :", _) $ t $ u =
berghofe@5094
   340
        HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
berghofe@5094
   341
      in (u, t, Logic.strip_imp_prems r) end;
berghofe@5094
   342
wenzelm@8380
   343
    val intrs = map dest_intr intr_ts ~~ intr_names;
berghofe@5094
   344
berghofe@5094
   345
    fun mk_elim (c, T) =
berghofe@5094
   346
      let
berghofe@5094
   347
        val a = Free (aname, T);
berghofe@5094
   348
berghofe@5094
   349
        fun mk_elim_prem (_, t, ts) =
skalberg@15574
   350
          list_all_free (map dest_Free ((foldr add_term_frees [] (t::ts)) \\ params),
berghofe@5094
   351
            Logic.list_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (a, t)) :: ts, P));
skalberg@15570
   352
        val c_intrs = (List.filter (equal c o #1 o #1) intrs);
berghofe@5094
   353
      in
wenzelm@8375
   354
        (Logic.list_implies (HOLogic.mk_Trueprop (HOLogic.mk_mem (a, c)) ::
wenzelm@8375
   355
          map mk_elim_prem (map #1 c_intrs), P), map #2 c_intrs)
berghofe@5094
   356
      end
berghofe@5094
   357
  in
berghofe@5094
   358
    map mk_elim (cs ~~ cTs)
berghofe@5094
   359
  end;
wenzelm@9598
   360
wenzelm@6424
   361
wenzelm@10735
   362
(* premises and conclusions of induction rules *)
berghofe@5094
   363
berghofe@5094
   364
fun mk_indrule cs cTs params intr_ts =
berghofe@5094
   365
  let
skalberg@15574
   366
    val used = foldr add_term_names [] intr_ts;
berghofe@5094
   367
berghofe@5094
   368
    (* predicates for induction rule *)
berghofe@5094
   369
berghofe@5094
   370
    val preds = map Free (variantlist (if length cs < 2 then ["P"] else
berghofe@5094
   371
      map (fn i => "P" ^ string_of_int i) (1 upto length cs), used) ~~
berghofe@5094
   372
        map (fn T => T --> HOLogic.boolT) cTs);
berghofe@5094
   373
berghofe@5094
   374
    (* transform an introduction rule into a premise for induction rule *)
berghofe@5094
   375
berghofe@5094
   376
    fun mk_ind_prem r =
berghofe@5094
   377
      let
berghofe@5094
   378
        val frees = map dest_Free ((add_term_frees (r, [])) \\ params);
berghofe@5094
   379
haftmann@17485
   380
        val pred_of = AList.lookup (op aconv) (cs ~~ preds);
berghofe@5094
   381
berghofe@7710
   382
        fun subst (s as ((m as Const ("op :", T)) $ t $ u)) =
berghofe@7710
   383
              (case pred_of u of
skalberg@15531
   384
                  NONE => (m $ fst (subst t) $ fst (subst u), NONE)
skalberg@15531
   385
                | SOME P => (HOLogic.mk_binop inductive_conj_name (s, P $ t), SOME (s, P $ t)))
berghofe@7710
   386
          | subst s =
berghofe@7710
   387
              (case pred_of s of
skalberg@15531
   388
                  SOME P => (HOLogic.mk_binop "op Int"
berghofe@7710
   389
                    (s, HOLogic.Collect_const (HOLogic.dest_setT
skalberg@15531
   390
                      (fastype_of s)) $ P), NONE)
skalberg@15531
   391
                | NONE => (case s of
skalberg@15531
   392
                     (t $ u) => (fst (subst t) $ fst (subst u), NONE)
skalberg@15531
   393
                   | (Abs (a, T, t)) => (Abs (a, T, fst (subst t)), NONE)
skalberg@15531
   394
                   | _ => (s, NONE)));
berghofe@7710
   395
berghofe@7710
   396
        fun mk_prem (s, prems) = (case subst s of
skalberg@15531
   397
              (_, SOME (t, u)) => t :: u :: prems
berghofe@7710
   398
            | (t, _) => t :: prems);
wenzelm@9598
   399
berghofe@5094
   400
        val Const ("op :", _) $ t $ u =
berghofe@5094
   401
          HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
berghofe@5094
   402
berghofe@5094
   403
      in list_all_free (frees,
skalberg@15574
   404
           Logic.list_implies (map HOLogic.mk_Trueprop (foldr mk_prem
skalberg@15574
   405
             [] (map HOLogic.dest_Trueprop (Logic.strip_imp_prems r))),
skalberg@15570
   406
               HOLogic.mk_Trueprop (valOf (pred_of u) $ t)))
berghofe@5094
   407
      end;
berghofe@5094
   408
berghofe@5094
   409
    val ind_prems = map mk_ind_prem intr_ts;
paulson@13626
   410
haftmann@17485
   411
    val factors = Library.fold (mg_prod_factors preds) ind_prems [];
berghofe@5094
   412
berghofe@5094
   413
    (* make conclusions for induction rules *)
berghofe@5094
   414
berghofe@5094
   415
    fun mk_ind_concl ((c, P), (ts, x)) =
berghofe@5094
   416
      let val T = HOLogic.dest_setT (fastype_of c);
haftmann@17485
   417
          val ps = AList.lookup (op =) factors P |> the_default [];
berghofe@10988
   418
          val Ts = prodT_factors [] ps T;
skalberg@15574
   419
          val (frees, x') = foldr (fn (T', (fs, s)) =>
skalberg@15574
   420
            ((Free (s, T'))::fs, Symbol.bump_string s)) ([], x) Ts;
berghofe@10988
   421
          val tuple = mk_tuple [] ps T frees;
berghofe@5094
   422
      in ((HOLogic.mk_binop "op -->"
berghofe@5094
   423
        (HOLogic.mk_mem (tuple, c), P $ tuple))::ts, x')
berghofe@5094
   424
      end;
berghofe@5094
   425
berghofe@7710
   426
    val mutual_ind_concl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
skalberg@15574
   427
        (fst (foldr mk_ind_concl ([], "xa") (cs ~~ preds))))
berghofe@5094
   428
berghofe@10988
   429
  in (preds, ind_prems, mutual_ind_concl,
berghofe@10988
   430
    map (apfst (fst o dest_Free)) factors)
berghofe@5094
   431
  end;
berghofe@5094
   432
wenzelm@6424
   433
wenzelm@10735
   434
(* prepare cases and induct rules *)
wenzelm@8316
   435
wenzelm@8316
   436
(*
wenzelm@8316
   437
  transform mutual rule:
wenzelm@8316
   438
    HH ==> (x1:A1 --> P1 x1) & ... & (xn:An --> Pn xn)
wenzelm@8316
   439
  into i-th projection:
wenzelm@8316
   440
    xi:Ai ==> HH ==> Pi xi
wenzelm@8316
   441
*)
wenzelm@8316
   442
wenzelm@8316
   443
fun project_rules [name] rule = [(name, rule)]
wenzelm@8316
   444
  | project_rules names mutual_rule =
wenzelm@8316
   445
      let
wenzelm@8316
   446
        val n = length names;
wenzelm@8316
   447
        fun proj i =
wenzelm@8316
   448
          (if i < n then (fn th => th RS conjunct1) else I)
wenzelm@8316
   449
            (Library.funpow (i - 1) (fn th => th RS conjunct2) mutual_rule)
wenzelm@8316
   450
            RS mp |> Thm.permute_prems 0 ~1 |> Drule.standard;
wenzelm@8316
   451
      in names ~~ map proj (1 upto n) end;
wenzelm@8316
   452
wenzelm@12172
   453
fun add_cases_induct no_elim no_induct names elims induct =
wenzelm@8316
   454
  let
wenzelm@9405
   455
    fun cases_spec (name, elim) thy =
wenzelm@9405
   456
      thy
wenzelm@9405
   457
      |> Theory.add_path (Sign.base_name name)
wenzelm@10279
   458
      |> (#1 o PureThy.add_thms [(("cases", elim), [InductAttrib.cases_set_global name])])
wenzelm@9405
   459
      |> Theory.parent_path;
wenzelm@8375
   460
    val cases_specs = if no_elim then [] else map2 cases_spec (names, elims);
wenzelm@8316
   461
wenzelm@11005
   462
    fun induct_spec (name, th) = #1 o PureThy.add_thms
wenzelm@11005
   463
      [(("", RuleCases.save induct th), [InductAttrib.induct_set_global name])];
wenzelm@12172
   464
    val induct_specs = if no_induct then [] else map induct_spec (project_rules names induct);
wenzelm@9405
   465
  in Library.apply (cases_specs @ induct_specs) end;
wenzelm@8316
   466
wenzelm@8316
   467
wenzelm@8316
   468
wenzelm@10735
   469
(** proofs for (co)inductive sets **)
wenzelm@6424
   470
wenzelm@10735
   471
(* prove monotonicity -- NOT subject to quick_and_dirty! *)
berghofe@5094
   472
berghofe@5094
   473
fun prove_mono setT fp_fun monos thy =
wenzelm@10735
   474
 (message "  Proving monotonicity ...";
wenzelm@17959
   475
  OldGoals.prove_goalw_cterm []      (*NO quick_and_dirty_prove_goalw_cterm here!*)
wenzelm@16432
   476
    (Thm.cterm_of thy (HOLogic.mk_Trueprop
berghofe@5094
   477
      (Const (mono_name, (setT --> setT) --> HOLogic.boolT) $ fp_fun)))
skalberg@15570
   478
    (fn _ => [rtac monoI 1, REPEAT (ares_tac (List.concat (map mk_mono monos) @ get_monos thy) 1)]));
berghofe@5094
   479
wenzelm@6424
   480
wenzelm@10735
   481
(* prove introduction rules *)
berghofe@5094
   482
wenzelm@12180
   483
fun prove_intrs coind mono fp_def intr_ts rec_sets_defs thy =
berghofe@5094
   484
  let
wenzelm@10735
   485
    val _ = clean_message "  Proving the introduction rules ...";
berghofe@5094
   486
berghofe@13657
   487
    val unfold = standard' (mono RS (fp_def RS
nipkow@10186
   488
      (if coind then def_gfp_unfold else def_lfp_unfold)));
berghofe@5094
   489
berghofe@5094
   490
    fun select_disj 1 1 = []
berghofe@5094
   491
      | select_disj _ 1 = [rtac disjI1]
berghofe@5094
   492
      | select_disj n i = (rtac disjI2)::(select_disj (n - 1) (i - 1));
berghofe@5094
   493
wenzelm@17959
   494
    val intrs = map (fn (i, intr) => OldGoals.quick_and_dirty_prove_goalw_cterm thy rec_sets_defs
wenzelm@16432
   495
      (Thm.cterm_of thy intr) (fn prems =>
berghofe@5094
   496
       [(*insert prems and underlying sets*)
berghofe@5094
   497
       cut_facts_tac prems 1,
berghofe@5094
   498
       stac unfold 1,
berghofe@5094
   499
       REPEAT (resolve_tac [vimageI2, CollectI] 1),
berghofe@5094
   500
       (*Now 1-2 subgoals: the disjunction, perhaps equality.*)
berghofe@5094
   501
       EVERY1 (select_disj (length intr_ts) i),
berghofe@5094
   502
       (*Not ares_tac, since refl must be tried before any equality assumptions;
berghofe@5094
   503
         backtracking may occur if the premises have extra variables!*)
wenzelm@10735
   504
       DEPTH_SOLVE_1 (resolve_tac [refl, exI, conjI] 1 APPEND assume_tac 1),
berghofe@5094
   505
       (*Now solve the equations like Inl 0 = Inl ?b2*)
wenzelm@10729
   506
       REPEAT (rtac refl 1)])
wenzelm@10729
   507
      |> rulify) (1 upto (length intr_ts) ~~ intr_ts)
berghofe@5094
   508
berghofe@5094
   509
  in (intrs, unfold) end;
berghofe@5094
   510
wenzelm@6424
   511
wenzelm@10735
   512
(* prove elimination rules *)
berghofe@5094
   513
wenzelm@8375
   514
fun prove_elims cs cTs params intr_ts intr_names unfold rec_sets_defs thy =
berghofe@5094
   515
  let
wenzelm@10735
   516
    val _ = clean_message "  Proving the elimination rules ...";
berghofe@5094
   517
berghofe@7710
   518
    val rules1 = [CollectE, disjE, make_elim vimageD, exE];
wenzelm@10735
   519
    val rules2 = [conjE, Inl_neq_Inr, Inr_neq_Inl] @ map make_elim [Inl_inject, Inr_inject];
wenzelm@8375
   520
  in
wenzelm@11005
   521
    mk_elims cs cTs params intr_ts intr_names |> map (fn (t, cases) =>
wenzelm@17959
   522
      OldGoals.quick_and_dirty_prove_goalw_cterm thy rec_sets_defs
wenzelm@16432
   523
        (Thm.cterm_of thy t) (fn prems =>
wenzelm@11005
   524
          [cut_facts_tac [hd prems] 1,
wenzelm@11005
   525
           dtac (unfold RS subst) 1,
wenzelm@11005
   526
           REPEAT (FIRSTGOAL (eresolve_tac rules1)),
wenzelm@11005
   527
           REPEAT (FIRSTGOAL (eresolve_tac rules2)),
wenzelm@11005
   528
           EVERY (map (fn prem => DEPTH_SOLVE_1 (ares_tac [prem, conjI] 1)) (tl prems))])
wenzelm@11005
   529
        |> rulify
wenzelm@11005
   530
        |> RuleCases.name cases)
wenzelm@8375
   531
  end;
berghofe@5094
   532
wenzelm@6424
   533
wenzelm@10735
   534
(* derivation of simplified elimination rules *)
berghofe@5094
   535
wenzelm@11682
   536
local
wenzelm@11682
   537
wenzelm@7107
   538
(*cprop should have the form t:Si where Si is an inductive set*)
wenzelm@11682
   539
val mk_cases_err = "mk_cases: proposition not of form \"t : S_i\"";
wenzelm@9598
   540
wenzelm@11682
   541
(*delete needless equality assumptions*)
wenzelm@11682
   542
val refl_thin = prove_goal HOL.thy "!!P. a = a ==> P ==> P" (fn _ => [assume_tac 1]);
wenzelm@11682
   543
val elim_rls = [asm_rl, FalseE, refl_thin, conjE, exE, Pair_inject];
wenzelm@11682
   544
val elim_tac = REPEAT o Tactic.eresolve_tac elim_rls;
wenzelm@11682
   545
wenzelm@11682
   546
fun simp_case_tac solved ss i =
wenzelm@11682
   547
  EVERY' [elim_tac, asm_full_simp_tac ss, elim_tac, REPEAT o bound_hyp_subst_tac] i
wenzelm@11682
   548
  THEN_MAYBE (if solved then no_tac else all_tac);
wenzelm@11682
   549
wenzelm@11682
   550
in
wenzelm@9598
   551
wenzelm@9598
   552
fun mk_cases_i elims ss cprop =
wenzelm@7107
   553
  let
wenzelm@7107
   554
    val prem = Thm.assume cprop;
wenzelm@11682
   555
    val tac = ALLGOALS (simp_case_tac false ss) THEN prune_params_tac;
wenzelm@9298
   556
    fun mk_elim rl = Drule.standard (Tactic.rule_by_tactic tac (prem RS rl));
wenzelm@7107
   557
  in
wenzelm@7107
   558
    (case get_first (try mk_elim) elims of
skalberg@15531
   559
      SOME r => r
skalberg@15531
   560
    | NONE => error (Pretty.string_of (Pretty.block
wenzelm@9598
   561
        [Pretty.str mk_cases_err, Pretty.fbrk, Display.pretty_cterm cprop])))
wenzelm@7107
   562
  end;
wenzelm@7107
   563
paulson@6141
   564
fun mk_cases elims s =
wenzelm@16432
   565
  mk_cases_i elims (simpset()) (Thm.read_cterm (Thm.theory_of_thm (hd elims)) (s, propT));
wenzelm@9598
   566
wenzelm@9598
   567
fun smart_mk_cases thy ss cprop =
wenzelm@9598
   568
  let
wenzelm@9598
   569
    val c = #1 (Term.dest_Const (Term.head_of (#2 (HOLogic.dest_mem (HOLogic.dest_Trueprop
wenzelm@9598
   570
      (Logic.strip_imp_concl (Thm.term_of cprop))))))) handle TERM _ => error mk_cases_err;
wenzelm@9598
   571
    val (_, {elims, ...}) = the_inductive thy c;
wenzelm@9598
   572
  in mk_cases_i elims ss cprop end;
wenzelm@7107
   573
wenzelm@11682
   574
end;
wenzelm@11682
   575
wenzelm@7107
   576
wenzelm@7107
   577
(* inductive_cases(_i) *)
wenzelm@7107
   578
wenzelm@12609
   579
fun gen_inductive_cases prep_att prep_prop args thy =
wenzelm@9598
   580
  let
wenzelm@16432
   581
    val cert_prop = Thm.cterm_of thy o prep_prop (ProofContext.init thy);
wenzelm@12609
   582
    val mk_cases = smart_mk_cases thy (Simplifier.simpset_of thy) o cert_prop;
wenzelm@12609
   583
wenzelm@12876
   584
    val facts = args |> map (fn ((a, atts), props) =>
wenzelm@12876
   585
     ((a, map (prep_att thy) atts), map (Thm.no_attributes o single o mk_cases) props));
wenzelm@12709
   586
  in thy |> IsarThy.theorems_i Drule.lemmaK facts |> #1 end;
berghofe@5094
   587
wenzelm@12172
   588
val inductive_cases = gen_inductive_cases Attrib.global_attribute ProofContext.read_prop;
wenzelm@12172
   589
val inductive_cases_i = gen_inductive_cases (K I) ProofContext.cert_prop;
wenzelm@7107
   590
wenzelm@6424
   591
wenzelm@9598
   592
(* mk_cases_meth *)
wenzelm@9598
   593
wenzelm@9598
   594
fun mk_cases_meth (ctxt, raw_props) =
wenzelm@9598
   595
  let
wenzelm@9598
   596
    val thy = ProofContext.theory_of ctxt;
wenzelm@15032
   597
    val ss = local_simpset_of ctxt;
wenzelm@16432
   598
    val cprops = map (Thm.cterm_of thy o ProofContext.read_prop ctxt) raw_props;
wenzelm@10743
   599
  in Method.erule 0 (map (smart_mk_cases thy ss) cprops) end;
wenzelm@9598
   600
wenzelm@9598
   601
val mk_cases_args = Method.syntax (Scan.lift (Scan.repeat1 Args.name));
wenzelm@9598
   602
wenzelm@9598
   603
wenzelm@10735
   604
(* prove induction rule *)
berghofe@5094
   605
berghofe@5094
   606
fun prove_indrule cs cTs sumT rec_const params intr_ts mono
berghofe@5094
   607
    fp_def rec_sets_defs thy =
berghofe@5094
   608
  let
wenzelm@10735
   609
    val _ = clean_message "  Proving the induction rule ...";
berghofe@5094
   610
wenzelm@12922
   611
    val sum_case_rewrites =
wenzelm@16432
   612
      (if Context.theory_name thy = "Datatype" then
wenzelm@16486
   613
        PureThy.get_thms thy (Name "sum.cases")
wenzelm@16432
   614
      else
wenzelm@16432
   615
        (case ThyInfo.lookup_theory "Datatype" of
wenzelm@16432
   616
          NONE => []
wenzelm@16975
   617
        | SOME thy' =>
wenzelm@16975
   618
            if Theory.subthy (thy', thy) then
wenzelm@16975
   619
              PureThy.get_thms thy' (Name "sum.cases")
wenzelm@16975
   620
            else []))
wenzelm@16432
   621
      |> map mk_meta_eq;
berghofe@7293
   622
berghofe@10988
   623
    val (preds, ind_prems, mutual_ind_concl, factors) =
berghofe@10988
   624
      mk_indrule cs cTs params intr_ts;
berghofe@5094
   625
paulson@13626
   626
    val dummy = if !trace then
paulson@13626
   627
		(writeln "ind_prems = ";
wenzelm@16432
   628
		 List.app (writeln o Sign.string_of_term thy) ind_prems)
paulson@13626
   629
	    else ();
paulson@13626
   630
berghofe@5094
   631
    (* make predicate for instantiation of abstract induction rule *)
berghofe@5094
   632
berghofe@5094
   633
    fun mk_ind_pred _ [P] = P
berghofe@5094
   634
      | mk_ind_pred T Ps =
berghofe@5094
   635
         let val n = (length Ps) div 2;
berghofe@5094
   636
             val Type (_, [T1, T2]) = T
berghofe@7293
   637
         in Const ("Datatype.sum.sum_case",
berghofe@5094
   638
           [T1 --> HOLogic.boolT, T2 --> HOLogic.boolT, T] ---> HOLogic.boolT) $
skalberg@15570
   639
             mk_ind_pred T1 (Library.take (n, Ps)) $ mk_ind_pred T2 (Library.drop (n, Ps))
berghofe@5094
   640
         end;
berghofe@5094
   641
berghofe@5094
   642
    val ind_pred = mk_ind_pred sumT preds;
berghofe@5094
   643
berghofe@5094
   644
    val ind_concl = HOLogic.mk_Trueprop
berghofe@5094
   645
      (HOLogic.all_const sumT $ Abs ("x", sumT, HOLogic.mk_binop "op -->"
berghofe@5094
   646
        (HOLogic.mk_mem (Bound 0, rec_const), ind_pred $ Bound 0)));
berghofe@5094
   647
berghofe@5094
   648
    (* simplification rules for vimage and Collect *)
berghofe@5094
   649
berghofe@5094
   650
    val vimage_simps = if length cs < 2 then [] else
wenzelm@17959
   651
      map (fn c => OldGoals.quick_and_dirty_prove_goalw_cterm thy [] (Thm.cterm_of thy
berghofe@5094
   652
        (HOLogic.mk_Trueprop (HOLogic.mk_eq
berghofe@5094
   653
          (mk_vimage cs sumT (HOLogic.Collect_const sumT $ ind_pred) c,
berghofe@5094
   654
           HOLogic.Collect_const (HOLogic.dest_setT (fastype_of c)) $
skalberg@15570
   655
             List.nth (preds, find_index_eq c cs)))))
wenzelm@10735
   656
        (fn _ => [rtac vimage_Collect 1, rewrite_goals_tac sum_case_rewrites, rtac refl 1])) cs;
berghofe@5094
   657
paulson@13626
   658
    val raw_fp_induct = (mono RS (fp_def RS def_lfp_induct));
paulson@13626
   659
paulson@13626
   660
    val dummy = if !trace then
paulson@13626
   661
		(writeln "raw_fp_induct = "; print_thm raw_fp_induct)
paulson@13626
   662
	    else ();
paulson@13626
   663
wenzelm@17959
   664
    val induct = OldGoals.quick_and_dirty_prove_goalw_cterm thy [inductive_conj_def] (Thm.cterm_of thy
berghofe@5094
   665
      (Logic.list_implies (ind_prems, ind_concl))) (fn prems =>
berghofe@5094
   666
        [rtac (impI RS allI) 1,
paulson@13626
   667
         DETERM (etac raw_fp_induct 1),
berghofe@7710
   668
         rewrite_goals_tac (map mk_meta_eq (vimage_Int::Int_Collect::vimage_simps)),
berghofe@5094
   669
         fold_goals_tac rec_sets_defs,
berghofe@5094
   670
         (*This CollectE and disjE separates out the introduction rules*)
berghofe@7710
   671
         REPEAT (FIRSTGOAL (eresolve_tac [CollectE, disjE, exE])),
berghofe@5094
   672
         (*Now break down the individual cases.  No disjE here in case
berghofe@5094
   673
           some premise involves disjunction.*)
paulson@13747
   674
         REPEAT (FIRSTGOAL (etac conjE ORELSE' bound_hyp_subst_tac)),
paulson@15416
   675
         ALLGOALS (simp_tac (HOL_basic_ss addsimps sum_case_rewrites)),
berghofe@5094
   676
         EVERY (map (fn prem =>
paulson@13747
   677
   	             DEPTH_SOLVE_1 (ares_tac [prem, conjI, refl] 1)) prems)]);
berghofe@5094
   678
wenzelm@17959
   679
    val lemma = OldGoals.quick_and_dirty_prove_goalw_cterm thy rec_sets_defs (Thm.cterm_of thy
berghofe@5094
   680
      (Logic.mk_implies (ind_concl, mutual_ind_concl))) (fn prems =>
berghofe@5094
   681
        [cut_facts_tac prems 1,
berghofe@5094
   682
         REPEAT (EVERY
berghofe@5094
   683
           [REPEAT (resolve_tac [conjI, impI] 1),
berghofe@5094
   684
            TRY (dtac vimageD 1), etac allE 1, dtac mp 1, atac 1,
berghofe@7293
   685
            rewrite_goals_tac sum_case_rewrites,
berghofe@5094
   686
            atac 1])])
berghofe@5094
   687
berghofe@10988
   688
  in standard (split_rule factors (induct RS lemma)) end;
berghofe@5094
   689
wenzelm@6424
   690
wenzelm@6424
   691
wenzelm@10735
   692
(** specification of (co)inductive sets **)
berghofe@5094
   693
wenzelm@10729
   694
fun cond_declare_consts declare_consts cs paramTs cnames =
wenzelm@10729
   695
  if declare_consts then
berghofe@14235
   696
    Theory.add_consts_i (map (fn (c, n) => (Sign.base_name n, paramTs ---> fastype_of c, NoSyn)) (cs ~~ cnames))
wenzelm@10729
   697
  else I;
wenzelm@10729
   698
wenzelm@12180
   699
fun mk_ind_def declare_consts alt_name coind cs intr_ts monos thy
berghofe@9072
   700
      params paramTs cTs cnames =
berghofe@5094
   701
  let
berghofe@5094
   702
    val sumT = fold_bal (fn (T, U) => Type ("+", [T, U])) cTs;
berghofe@5094
   703
    val setT = HOLogic.mk_setT sumT;
berghofe@5094
   704
wenzelm@10735
   705
    val fp_name = if coind then gfp_name else lfp_name;
berghofe@5094
   706
skalberg@15574
   707
    val used = foldr add_term_names [] intr_ts;
berghofe@5149
   708
    val [sname, xname] = variantlist (["S", "x"], used);
berghofe@5149
   709
berghofe@5094
   710
    (* transform an introduction rule into a conjunction  *)
berghofe@5094
   711
    (*   [| t : ... S_i ... ; ... |] ==> u : S_j          *)
berghofe@5094
   712
    (* is transformed into                                *)
berghofe@5094
   713
    (*   x = Inj_j u & t : ... Inj_i -`` S ... & ...      *)
berghofe@5094
   714
berghofe@5094
   715
    fun transform_rule r =
berghofe@5094
   716
      let
berghofe@5094
   717
        val frees = map dest_Free ((add_term_frees (r, [])) \\ params);
berghofe@5149
   718
        val subst = subst_free
berghofe@5149
   719
          (cs ~~ (map (mk_vimage cs sumT (Free (sname, setT))) cs));
berghofe@5094
   720
        val Const ("op :", _) $ t $ u =
berghofe@5094
   721
          HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
berghofe@5094
   722
skalberg@15574
   723
      in foldr (fn ((x, T), P) => HOLogic.mk_exists (x, T, P))
skalberg@15574
   724
        (foldr1 HOLogic.mk_conj
berghofe@5149
   725
          (((HOLogic.eq_const sumT) $ Free (xname, sumT) $ (mk_inj cs sumT u t))::
berghofe@5094
   726
            (map (subst o HOLogic.dest_Trueprop)
skalberg@15574
   727
              (Logic.strip_imp_prems r)))) frees
berghofe@5094
   728
      end
berghofe@5094
   729
berghofe@5094
   730
    (* make a disjunction of all introduction rules *)
berghofe@5094
   731
berghofe@5149
   732
    val fp_fun = absfree (sname, setT, (HOLogic.Collect_const sumT) $
berghofe@7710
   733
      absfree (xname, sumT, foldr1 HOLogic.mk_disj (map transform_rule intr_ts)));
berghofe@5094
   734
berghofe@5094
   735
    (* add definiton of recursive sets to theory *)
berghofe@5094
   736
berghofe@14235
   737
    val rec_name = if alt_name = "" then
berghofe@14235
   738
      space_implode "_" (map Sign.base_name cnames) else alt_name;
berghofe@14235
   739
    val full_rec_name = if length cs < 2 then hd cnames
wenzelm@16432
   740
      else Sign.full_name thy rec_name;
berghofe@5094
   741
berghofe@5094
   742
    val rec_const = list_comb
berghofe@5094
   743
      (Const (full_rec_name, paramTs ---> setT), params);
berghofe@5094
   744
berghofe@5094
   745
    val fp_def_term = Logic.mk_equals (rec_const,
wenzelm@10735
   746
      Const (fp_name, (setT --> setT) --> setT) $ fp_fun);
berghofe@5094
   747
berghofe@5094
   748
    val def_terms = fp_def_term :: (if length cs < 2 then [] else
berghofe@5094
   749
      map (fn c => Logic.mk_equals (c, mk_vimage cs sumT rec_const c)) cs);
berghofe@5094
   750
wenzelm@8433
   751
    val (thy', [fp_def :: rec_sets_defs]) =
wenzelm@8433
   752
      thy
wenzelm@10729
   753
      |> cond_declare_consts declare_consts cs paramTs cnames
wenzelm@8433
   754
      |> (if length cs < 2 then I
wenzelm@8433
   755
          else Theory.add_consts_i [(rec_name, paramTs ---> setT, NoSyn)])
wenzelm@8433
   756
      |> Theory.add_path rec_name
wenzelm@9315
   757
      |> PureThy.add_defss_i false [(("defs", def_terms), [])];
berghofe@5094
   758
berghofe@9072
   759
    val mono = prove_mono setT fp_fun monos thy'
berghofe@5094
   760
wenzelm@10735
   761
  in (thy', mono, fp_def, rec_sets_defs, rec_const, sumT) end;
berghofe@5094
   762
berghofe@9072
   763
fun add_ind_def verbose declare_consts alt_name coind no_elim no_ind cs
wenzelm@12180
   764
    intros monos thy params paramTs cTs cnames induct_cases =
berghofe@9072
   765
  let
wenzelm@10735
   766
    val _ =
wenzelm@10735
   767
      if verbose then message ("Proofs for " ^ coind_prefix coind ^ "inductive set(s) " ^
berghofe@14235
   768
        commas_quote (map Sign.base_name cnames)) else ();
berghofe@9072
   769
berghofe@9072
   770
    val ((intr_names, intr_ts), intr_atts) = apfst split_list (split_list intros);
berghofe@9072
   771
wenzelm@9939
   772
    val (thy1, mono, fp_def, rec_sets_defs, rec_const, sumT) =
wenzelm@12180
   773
      mk_ind_def declare_consts alt_name coind cs intr_ts monos thy
berghofe@9072
   774
        params paramTs cTs cnames;
berghofe@9072
   775
wenzelm@12180
   776
    val (intrs, unfold) = prove_intrs coind mono fp_def intr_ts rec_sets_defs thy1;
berghofe@5094
   777
    val elims = if no_elim then [] else
wenzelm@9939
   778
      prove_elims cs cTs params intr_ts intr_names unfold rec_sets_defs thy1;
wenzelm@8312
   779
    val raw_induct = if no_ind then Drule.asm_rl else
berghofe@5094
   780
      if coind then standard (rule_by_tactic
oheimb@5553
   781
        (rewrite_tac [mk_meta_eq vimage_Un] THEN
berghofe@5094
   782
          fold_tac rec_sets_defs) (mono RS (fp_def RS def_Collect_coinduct)))
berghofe@5094
   783
      else
berghofe@5094
   784
        prove_indrule cs cTs sumT rec_const params intr_ts mono fp_def
wenzelm@9939
   785
          rec_sets_defs thy1;
wenzelm@12165
   786
    val induct =
wenzelm@12165
   787
      if coind orelse no_ind orelse length cs > 1 then (raw_induct, [RuleCases.consumes 0])
wenzelm@12165
   788
      else (raw_induct RSN (2, rev_mp), [RuleCases.consumes 1]);
berghofe@5094
   789
wenzelm@9939
   790
    val (thy2, intrs') =
wenzelm@9939
   791
      thy1 |> PureThy.add_thms ((intr_names ~~ intrs) ~~ intr_atts);
wenzelm@10735
   792
    val (thy3, ([intrs'', elims'], [induct'])) =
wenzelm@10735
   793
      thy2
wenzelm@11005
   794
      |> PureThy.add_thmss
wenzelm@11628
   795
        [(("intros", intrs'), []),
wenzelm@11005
   796
          (("elims", elims), [RuleCases.consumes 1])]
wenzelm@10735
   797
      |>>> PureThy.add_thms
wenzelm@12165
   798
        [((coind_prefix coind ^ "induct", rulify (#1 induct)),
wenzelm@12165
   799
         (RuleCases.case_names induct_cases :: #2 induct))]
wenzelm@8433
   800
      |>> Theory.parent_path;
wenzelm@9939
   801
  in (thy3,
wenzelm@10735
   802
    {defs = fp_def :: rec_sets_defs,
berghofe@5094
   803
     mono = mono,
berghofe@5094
   804
     unfold = unfold,
berghofe@13709
   805
     intrs = intrs',
wenzelm@7798
   806
     elims = elims',
wenzelm@7798
   807
     mk_cases = mk_cases elims',
wenzelm@10729
   808
     raw_induct = rulify raw_induct,
wenzelm@7798
   809
     induct = induct'})
berghofe@5094
   810
  end;
berghofe@5094
   811
wenzelm@6424
   812
wenzelm@10735
   813
(* external interfaces *)
berghofe@5094
   814
wenzelm@16432
   815
fun try_term f msg thy t =
wenzelm@10735
   816
  (case Library.try f t of
skalberg@15531
   817
    SOME x => x
wenzelm@16432
   818
  | NONE => error (msg ^ Sign.string_of_term thy t));
berghofe@5094
   819
wenzelm@12180
   820
fun add_inductive_i verbose declare_consts alt_name coind no_elim no_ind cs pre_intros monos thy =
berghofe@5094
   821
  let
wenzelm@6424
   822
    val _ = Theory.requires thy "Inductive" (coind_prefix coind ^ "inductive definitions");
berghofe@5094
   823
berghofe@5094
   824
    (*parameters should agree for all mutually recursive components*)
berghofe@5094
   825
    val (_, params) = strip_comb (hd cs);
wenzelm@10735
   826
    val paramTs = map (try_term (snd o dest_Free) "Parameter in recursive\
wenzelm@16432
   827
      \ component is not a free variable: " thy) params;
berghofe@5094
   828
wenzelm@10735
   829
    val cTs = map (try_term (HOLogic.dest_setT o fastype_of)
wenzelm@16432
   830
      "Recursive component not of type set: " thy) cs;
berghofe@5094
   831
berghofe@14235
   832
    val cnames = map (try_term (fst o dest_Const o head_of)
wenzelm@16432
   833
      "Recursive set not previously declared as constant: " thy) cs;
berghofe@5094
   834
wenzelm@16432
   835
    val save_thy = thy
wenzelm@16432
   836
      |> Theory.copy |> cond_declare_consts declare_consts cs paramTs cnames;
wenzelm@16432
   837
    val intros = map (check_rule save_thy cs) pre_intros;
wenzelm@8401
   838
    val induct_cases = map (#1 o #1) intros;
wenzelm@6437
   839
wenzelm@9405
   840
    val (thy1, result as {elims, induct, ...}) =
wenzelm@11628
   841
      add_ind_def verbose declare_consts alt_name coind no_elim no_ind cs intros monos
wenzelm@12180
   842
        thy params paramTs cTs cnames induct_cases;
wenzelm@8307
   843
    val thy2 = thy1
berghofe@14235
   844
      |> put_inductives cnames ({names = cnames, coind = coind}, result)
wenzelm@12172
   845
      |> add_cases_induct no_elim (no_ind orelse coind orelse length cs > 1)
berghofe@14235
   846
          cnames elims induct;
wenzelm@6437
   847
  in (thy2, result) end;
berghofe@5094
   848
wenzelm@12180
   849
fun add_inductive verbose coind c_strings intro_srcs raw_monos thy =
berghofe@5094
   850
  let
wenzelm@16975
   851
    val cs = map (Sign.read_term thy) c_strings;
wenzelm@6424
   852
wenzelm@6424
   853
    val intr_names = map (fst o fst) intro_srcs;
wenzelm@16432
   854
    fun read_rule s = Thm.read_cterm thy (s, propT)
wenzelm@9405
   855
      handle ERROR => error ("The error(s) above occurred for " ^ s);
wenzelm@9405
   856
    val intr_ts = map (Thm.term_of o read_rule o snd o fst) intro_srcs;
wenzelm@6424
   857
    val intr_atts = map (map (Attrib.global_attribute thy) o snd) intro_srcs;
wenzelm@16432
   858
    val (cs', intr_ts') = unify_consts thy cs intr_ts;
berghofe@5094
   859
wenzelm@12180
   860
    val (thy', monos) = thy |> IsarThy.apply_theorems raw_monos;
wenzelm@6424
   861
  in
berghofe@7020
   862
    add_inductive_i verbose false "" coind false false cs'
wenzelm@12180
   863
      ((intr_names ~~ intr_ts') ~~ intr_atts) monos thy'
berghofe@5094
   864
  end;
berghofe@5094
   865
wenzelm@6424
   866
wenzelm@6424
   867
wenzelm@6437
   868
(** package setup **)
wenzelm@6437
   869
wenzelm@6437
   870
(* setup theory *)
wenzelm@6437
   871
wenzelm@8634
   872
val setup =
wenzelm@8634
   873
 [InductiveData.init,
wenzelm@9625
   874
  Method.add_methods [("ind_cases", mk_cases_meth oo mk_cases_args,
wenzelm@9598
   875
    "dynamic case analysis on sets")],
wenzelm@9893
   876
  Attrib.add_attributes [("mono", mono_attr, "declaration of monotonicity rule")]];
wenzelm@6437
   877
wenzelm@6437
   878
wenzelm@6437
   879
(* outer syntax *)
wenzelm@6424
   880
wenzelm@17057
   881
local structure P = OuterParse and K = OuterKeyword in
wenzelm@6424
   882
wenzelm@12180
   883
fun mk_ind coind ((sets, intrs), monos) =
wenzelm@12180
   884
  #1 o add_inductive true coind sets (map P.triple_swap intrs) monos;
wenzelm@6424
   885
wenzelm@6424
   886
fun ind_decl coind =
wenzelm@12876
   887
  Scan.repeat1 P.term --
wenzelm@9598
   888
  (P.$$$ "intros" |--
wenzelm@12876
   889
    P.!!! (Scan.repeat1 (P.opt_thm_name ":" -- P.prop))) --
wenzelm@12876
   890
  Scan.optional (P.$$$ "monos" |-- P.!!! P.xthms1) []
wenzelm@6424
   891
  >> (Toplevel.theory o mk_ind coind);
wenzelm@6424
   892
wenzelm@6723
   893
val inductiveP =
wenzelm@6723
   894
  OuterSyntax.command "inductive" "define inductive sets" K.thy_decl (ind_decl false);
wenzelm@6723
   895
wenzelm@6723
   896
val coinductiveP =
wenzelm@6723
   897
  OuterSyntax.command "coinductive" "define coinductive sets" K.thy_decl (ind_decl true);
wenzelm@6424
   898
wenzelm@7107
   899
wenzelm@7107
   900
val ind_cases =
wenzelm@12876
   901
  P.and_list1 (P.opt_thm_name ":" -- Scan.repeat1 P.prop)
wenzelm@7107
   902
  >> (Toplevel.theory o inductive_cases);
wenzelm@7107
   903
wenzelm@7107
   904
val inductive_casesP =
wenzelm@9804
   905
  OuterSyntax.command "inductive_cases"
wenzelm@9598
   906
    "create simplified instances of elimination rules (improper)" K.thy_script ind_cases;
wenzelm@7107
   907
wenzelm@12180
   908
val _ = OuterSyntax.add_keywords ["intros", "monos"];
wenzelm@7107
   909
val _ = OuterSyntax.add_parsers [inductiveP, coinductiveP, inductive_casesP];
wenzelm@6424
   910
berghofe@5094
   911
end;
wenzelm@6424
   912
wenzelm@6424
   913
end;
wenzelm@15705
   914