huffman@25903
|
1 |
(* Title: HOLCF/Bifinite.thy
|
huffman@25903
|
2 |
Author: Brian Huffman
|
huffman@25903
|
3 |
*)
|
huffman@25903
|
4 |
|
huffman@39985
|
5 |
header {* Bifinite domains *}
|
huffman@25903
|
6 |
|
huffman@25903
|
7 |
theory Bifinite
|
huffman@40502
|
8 |
imports Algebraic Map_Functions Countable
|
huffman@25903
|
9 |
begin
|
huffman@25903
|
10 |
|
huffman@39986
|
11 |
subsection {* Class of bifinite domains *}
|
huffman@39985
|
12 |
|
huffman@39985
|
13 |
text {*
|
huffman@40497
|
14 |
We define a ``domain'' as a pcpo that is isomorphic to some
|
huffman@40497
|
15 |
algebraic deflation over the universal domain; this is equivalent
|
huffman@40497
|
16 |
to being omega-bifinite.
|
huffman@40491
|
17 |
|
huffman@40497
|
18 |
A predomain is a cpo that, when lifted, becomes a domain.
|
huffman@39985
|
19 |
*}
|
huffman@39985
|
20 |
|
huffman@40491
|
21 |
class predomain = cpo +
|
huffman@40491
|
22 |
fixes liftdefl :: "('a::cpo) itself \<Rightarrow> defl"
|
huffman@40491
|
23 |
fixes liftemb :: "'a\<^sub>\<bottom> \<rightarrow> udom"
|
huffman@40491
|
24 |
fixes liftprj :: "udom \<rightarrow> 'a\<^sub>\<bottom>"
|
huffman@40491
|
25 |
assumes predomain_ep: "ep_pair liftemb liftprj"
|
huffman@40491
|
26 |
assumes cast_liftdefl: "cast\<cdot>(liftdefl TYPE('a::cpo)) = liftemb oo liftprj"
|
huffman@40491
|
27 |
|
huffman@40491
|
28 |
syntax "_LIFTDEFL" :: "type \<Rightarrow> logic" ("(1LIFTDEFL/(1'(_')))")
|
huffman@40491
|
29 |
translations "LIFTDEFL('t)" \<rightleftharpoons> "CONST liftdefl TYPE('t)"
|
huffman@40491
|
30 |
|
huffman@40497
|
31 |
class "domain" = predomain + pcpo +
|
huffman@40494
|
32 |
fixes emb :: "'a::cpo \<rightarrow> udom"
|
huffman@40494
|
33 |
fixes prj :: "udom \<rightarrow> 'a::cpo"
|
huffman@39989
|
34 |
fixes defl :: "'a itself \<Rightarrow> defl"
|
huffman@39985
|
35 |
assumes ep_pair_emb_prj: "ep_pair emb prj"
|
huffman@39989
|
36 |
assumes cast_DEFL: "cast\<cdot>(defl TYPE('a)) = emb oo prj"
|
huffman@31113
|
37 |
|
huffman@39989
|
38 |
syntax "_DEFL" :: "type \<Rightarrow> defl" ("(1DEFL/(1'(_')))")
|
huffman@39989
|
39 |
translations "DEFL('t)" \<rightleftharpoons> "CONST defl TYPE('t)"
|
huffman@39985
|
40 |
|
huffman@40497
|
41 |
interpretation "domain": pcpo_ep_pair emb prj
|
huffman@39985
|
42 |
unfolding pcpo_ep_pair_def
|
huffman@39985
|
43 |
by (rule ep_pair_emb_prj)
|
huffman@33504
|
44 |
|
huffman@40497
|
45 |
lemmas emb_inverse = domain.e_inverse
|
huffman@40497
|
46 |
lemmas emb_prj_below = domain.e_p_below
|
huffman@40497
|
47 |
lemmas emb_eq_iff = domain.e_eq_iff
|
huffman@40497
|
48 |
lemmas emb_strict = domain.e_strict
|
huffman@40497
|
49 |
lemmas prj_strict = domain.p_strict
|
huffman@33504
|
50 |
|
huffman@40497
|
51 |
subsection {* Domains have a countable compact basis *}
|
huffman@33808
|
52 |
|
huffman@39985
|
53 |
text {*
|
huffman@39985
|
54 |
Eventually it should be possible to generalize this to an unpointed
|
huffman@40497
|
55 |
variant of the domain class.
|
huffman@39985
|
56 |
*}
|
huffman@33587
|
57 |
|
huffman@39985
|
58 |
interpretation compact_basis:
|
huffman@40497
|
59 |
ideal_completion below Rep_compact_basis "approximants::'a::domain \<Rightarrow> _"
|
huffman@39985
|
60 |
proof -
|
huffman@39985
|
61 |
obtain Y where Y: "\<forall>i. Y i \<sqsubseteq> Y (Suc i)"
|
huffman@39989
|
62 |
and DEFL: "DEFL('a) = (\<Squnion>i. defl_principal (Y i))"
|
huffman@39989
|
63 |
by (rule defl.obtain_principal_chain)
|
huffman@39989
|
64 |
def approx \<equiv> "\<lambda>i. (prj oo cast\<cdot>(defl_principal (Y i)) oo emb) :: 'a \<rightarrow> 'a"
|
huffman@39989
|
65 |
interpret defl_approx: approx_chain approx
|
huffman@39985
|
66 |
proof (rule approx_chain.intro)
|
huffman@39985
|
67 |
show "chain (\<lambda>i. approx i)"
|
huffman@39985
|
68 |
unfolding approx_def by (simp add: Y)
|
huffman@39985
|
69 |
show "(\<Squnion>i. approx i) = ID"
|
huffman@39985
|
70 |
unfolding approx_def
|
huffman@40002
|
71 |
by (simp add: lub_distribs Y DEFL [symmetric] cast_DEFL cfun_eq_iff)
|
huffman@39985
|
72 |
show "\<And>i. finite_deflation (approx i)"
|
huffman@39985
|
73 |
unfolding approx_def
|
huffman@40497
|
74 |
apply (rule domain.finite_deflation_p_d_e)
|
huffman@39985
|
75 |
apply (rule finite_deflation_cast)
|
huffman@39989
|
76 |
apply (rule defl.compact_principal)
|
huffman@39985
|
77 |
apply (rule below_trans [OF monofun_cfun_fun])
|
huffman@39985
|
78 |
apply (rule is_ub_thelub, simp add: Y)
|
huffman@39989
|
79 |
apply (simp add: lub_distribs Y DEFL [symmetric] cast_DEFL)
|
huffman@39985
|
80 |
done
|
huffman@39985
|
81 |
qed
|
huffman@39985
|
82 |
(* FIXME: why does show ?thesis fail here? *)
|
huffman@39985
|
83 |
show "ideal_completion below Rep_compact_basis (approximants::'a \<Rightarrow> _)" ..
|
huffman@33504
|
84 |
qed
|
huffman@33504
|
85 |
|
huffman@40484
|
86 |
subsection {* Chains of approx functions *}
|
huffman@40484
|
87 |
|
huffman@40484
|
88 |
definition u_approx :: "nat \<Rightarrow> udom\<^sub>\<bottom> \<rightarrow> udom\<^sub>\<bottom>"
|
huffman@40484
|
89 |
where "u_approx = (\<lambda>i. u_map\<cdot>(udom_approx i))"
|
huffman@40484
|
90 |
|
huffman@40484
|
91 |
definition cfun_approx :: "nat \<Rightarrow> (udom \<rightarrow> udom) \<rightarrow> (udom \<rightarrow> udom)"
|
huffman@40484
|
92 |
where "cfun_approx = (\<lambda>i. cfun_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
|
huffman@40484
|
93 |
|
huffman@40484
|
94 |
definition prod_approx :: "nat \<Rightarrow> udom \<times> udom \<rightarrow> udom \<times> udom"
|
huffman@40484
|
95 |
where "prod_approx = (\<lambda>i. cprod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
|
huffman@40484
|
96 |
|
huffman@40484
|
97 |
definition sprod_approx :: "nat \<Rightarrow> udom \<otimes> udom \<rightarrow> udom \<otimes> udom"
|
huffman@40484
|
98 |
where "sprod_approx = (\<lambda>i. sprod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
|
huffman@40484
|
99 |
|
huffman@40484
|
100 |
definition ssum_approx :: "nat \<Rightarrow> udom \<oplus> udom \<rightarrow> udom \<oplus> udom"
|
huffman@40484
|
101 |
where "ssum_approx = (\<lambda>i. ssum_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
|
huffman@40484
|
102 |
|
huffman@40484
|
103 |
lemma approx_chain_lemma1:
|
huffman@40484
|
104 |
assumes "m\<cdot>ID = ID"
|
huffman@40484
|
105 |
assumes "\<And>d. finite_deflation d \<Longrightarrow> finite_deflation (m\<cdot>d)"
|
huffman@40484
|
106 |
shows "approx_chain (\<lambda>i. m\<cdot>(udom_approx i))"
|
huffman@40484
|
107 |
by (rule approx_chain.intro)
|
huffman@40484
|
108 |
(simp_all add: lub_distribs finite_deflation_udom_approx assms)
|
huffman@40484
|
109 |
|
huffman@40484
|
110 |
lemma approx_chain_lemma2:
|
huffman@40484
|
111 |
assumes "m\<cdot>ID\<cdot>ID = ID"
|
huffman@40484
|
112 |
assumes "\<And>a b. \<lbrakk>finite_deflation a; finite_deflation b\<rbrakk>
|
huffman@40484
|
113 |
\<Longrightarrow> finite_deflation (m\<cdot>a\<cdot>b)"
|
huffman@40484
|
114 |
shows "approx_chain (\<lambda>i. m\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
|
huffman@40484
|
115 |
by (rule approx_chain.intro)
|
huffman@40484
|
116 |
(simp_all add: lub_distribs finite_deflation_udom_approx assms)
|
huffman@40484
|
117 |
|
huffman@40484
|
118 |
lemma u_approx: "approx_chain u_approx"
|
huffman@40484
|
119 |
using u_map_ID finite_deflation_u_map
|
huffman@40484
|
120 |
unfolding u_approx_def by (rule approx_chain_lemma1)
|
huffman@40484
|
121 |
|
huffman@40484
|
122 |
lemma cfun_approx: "approx_chain cfun_approx"
|
huffman@40484
|
123 |
using cfun_map_ID finite_deflation_cfun_map
|
huffman@40484
|
124 |
unfolding cfun_approx_def by (rule approx_chain_lemma2)
|
huffman@40484
|
125 |
|
huffman@40484
|
126 |
lemma prod_approx: "approx_chain prod_approx"
|
huffman@40484
|
127 |
using cprod_map_ID finite_deflation_cprod_map
|
huffman@40484
|
128 |
unfolding prod_approx_def by (rule approx_chain_lemma2)
|
huffman@40484
|
129 |
|
huffman@40484
|
130 |
lemma sprod_approx: "approx_chain sprod_approx"
|
huffman@40484
|
131 |
using sprod_map_ID finite_deflation_sprod_map
|
huffman@40484
|
132 |
unfolding sprod_approx_def by (rule approx_chain_lemma2)
|
huffman@40484
|
133 |
|
huffman@40484
|
134 |
lemma ssum_approx: "approx_chain ssum_approx"
|
huffman@40484
|
135 |
using ssum_map_ID finite_deflation_ssum_map
|
huffman@40484
|
136 |
unfolding ssum_approx_def by (rule approx_chain_lemma2)
|
huffman@40484
|
137 |
|
huffman@39985
|
138 |
subsection {* Type combinators *}
|
huffman@39985
|
139 |
|
huffman@39985
|
140 |
definition
|
huffman@39989
|
141 |
defl_fun1 ::
|
huffman@39989
|
142 |
"(nat \<Rightarrow> 'a \<rightarrow> 'a) \<Rightarrow> ((udom \<rightarrow> udom) \<rightarrow> ('a \<rightarrow> 'a)) \<Rightarrow> (defl \<rightarrow> defl)"
|
huffman@39985
|
143 |
where
|
huffman@39989
|
144 |
"defl_fun1 approx f =
|
huffman@39989
|
145 |
defl.basis_fun (\<lambda>a.
|
huffman@39989
|
146 |
defl_principal (Abs_fin_defl
|
huffman@39985
|
147 |
(udom_emb approx oo f\<cdot>(Rep_fin_defl a) oo udom_prj approx)))"
|
huffman@39985
|
148 |
|
huffman@39985
|
149 |
definition
|
huffman@39989
|
150 |
defl_fun2 ::
|
huffman@39985
|
151 |
"(nat \<Rightarrow> 'a \<rightarrow> 'a) \<Rightarrow> ((udom \<rightarrow> udom) \<rightarrow> (udom \<rightarrow> udom) \<rightarrow> ('a \<rightarrow> 'a))
|
huffman@39989
|
152 |
\<Rightarrow> (defl \<rightarrow> defl \<rightarrow> defl)"
|
huffman@39985
|
153 |
where
|
huffman@39989
|
154 |
"defl_fun2 approx f =
|
huffman@39989
|
155 |
defl.basis_fun (\<lambda>a.
|
huffman@39989
|
156 |
defl.basis_fun (\<lambda>b.
|
huffman@39989
|
157 |
defl_principal (Abs_fin_defl
|
huffman@39985
|
158 |
(udom_emb approx oo
|
huffman@39985
|
159 |
f\<cdot>(Rep_fin_defl a)\<cdot>(Rep_fin_defl b) oo udom_prj approx))))"
|
huffman@33504
|
160 |
|
huffman@39989
|
161 |
lemma cast_defl_fun1:
|
huffman@39985
|
162 |
assumes approx: "approx_chain approx"
|
huffman@39985
|
163 |
assumes f: "\<And>a. finite_deflation a \<Longrightarrow> finite_deflation (f\<cdot>a)"
|
huffman@39989
|
164 |
shows "cast\<cdot>(defl_fun1 approx f\<cdot>A) = udom_emb approx oo f\<cdot>(cast\<cdot>A) oo udom_prj approx"
|
huffman@39985
|
165 |
proof -
|
huffman@39985
|
166 |
have 1: "\<And>a. finite_deflation
|
huffman@39985
|
167 |
(udom_emb approx oo f\<cdot>(Rep_fin_defl a) oo udom_prj approx)"
|
huffman@39985
|
168 |
apply (rule ep_pair.finite_deflation_e_d_p)
|
huffman@39985
|
169 |
apply (rule approx_chain.ep_pair_udom [OF approx])
|
huffman@39985
|
170 |
apply (rule f, rule finite_deflation_Rep_fin_defl)
|
huffman@39985
|
171 |
done
|
huffman@39985
|
172 |
show ?thesis
|
huffman@39989
|
173 |
by (induct A rule: defl.principal_induct, simp)
|
huffman@39989
|
174 |
(simp only: defl_fun1_def
|
huffman@39989
|
175 |
defl.basis_fun_principal
|
huffman@39989
|
176 |
defl.basis_fun_mono
|
huffman@39989
|
177 |
defl.principal_mono
|
huffman@39985
|
178 |
Abs_fin_defl_mono [OF 1 1]
|
huffman@39985
|
179 |
monofun_cfun below_refl
|
huffman@39985
|
180 |
Rep_fin_defl_mono
|
huffman@39989
|
181 |
cast_defl_principal
|
huffman@39985
|
182 |
Abs_fin_defl_inverse [unfolded mem_Collect_eq, OF 1])
|
huffman@33504
|
183 |
qed
|
huffman@33504
|
184 |
|
huffman@39989
|
185 |
lemma cast_defl_fun2:
|
huffman@39985
|
186 |
assumes approx: "approx_chain approx"
|
huffman@39985
|
187 |
assumes f: "\<And>a b. finite_deflation a \<Longrightarrow> finite_deflation b \<Longrightarrow>
|
huffman@39985
|
188 |
finite_deflation (f\<cdot>a\<cdot>b)"
|
huffman@39989
|
189 |
shows "cast\<cdot>(defl_fun2 approx f\<cdot>A\<cdot>B) =
|
huffman@39985
|
190 |
udom_emb approx oo f\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo udom_prj approx"
|
huffman@39985
|
191 |
proof -
|
huffman@39985
|
192 |
have 1: "\<And>a b. finite_deflation (udom_emb approx oo
|
huffman@39985
|
193 |
f\<cdot>(Rep_fin_defl a)\<cdot>(Rep_fin_defl b) oo udom_prj approx)"
|
huffman@39985
|
194 |
apply (rule ep_pair.finite_deflation_e_d_p)
|
huffman@39985
|
195 |
apply (rule ep_pair_udom [OF approx])
|
huffman@39985
|
196 |
apply (rule f, (rule finite_deflation_Rep_fin_defl)+)
|
huffman@39985
|
197 |
done
|
huffman@39985
|
198 |
show ?thesis
|
huffman@39989
|
199 |
by (induct A B rule: defl.principal_induct2, simp, simp)
|
huffman@39989
|
200 |
(simp only: defl_fun2_def
|
huffman@39989
|
201 |
defl.basis_fun_principal
|
huffman@39989
|
202 |
defl.basis_fun_mono
|
huffman@39989
|
203 |
defl.principal_mono
|
huffman@39985
|
204 |
Abs_fin_defl_mono [OF 1 1]
|
huffman@39985
|
205 |
monofun_cfun below_refl
|
huffman@39985
|
206 |
Rep_fin_defl_mono
|
huffman@39989
|
207 |
cast_defl_principal
|
huffman@39985
|
208 |
Abs_fin_defl_inverse [unfolded mem_Collect_eq, OF 1])
|
huffman@39985
|
209 |
qed
|
huffman@39985
|
210 |
|
huffman@40484
|
211 |
definition u_defl :: "defl \<rightarrow> defl"
|
huffman@40484
|
212 |
where "u_defl = defl_fun1 u_approx u_map"
|
huffman@40484
|
213 |
|
huffman@40484
|
214 |
definition cfun_defl :: "defl \<rightarrow> defl \<rightarrow> defl"
|
huffman@40484
|
215 |
where "cfun_defl = defl_fun2 cfun_approx cfun_map"
|
huffman@40484
|
216 |
|
huffman@40484
|
217 |
definition prod_defl :: "defl \<rightarrow> defl \<rightarrow> defl"
|
huffman@40484
|
218 |
where "prod_defl = defl_fun2 prod_approx cprod_map"
|
huffman@40484
|
219 |
|
huffman@40484
|
220 |
definition sprod_defl :: "defl \<rightarrow> defl \<rightarrow> defl"
|
huffman@40484
|
221 |
where "sprod_defl = defl_fun2 sprod_approx sprod_map"
|
huffman@40484
|
222 |
|
huffman@40484
|
223 |
definition ssum_defl :: "defl \<rightarrow> defl \<rightarrow> defl"
|
huffman@40484
|
224 |
where "ssum_defl = defl_fun2 ssum_approx ssum_map"
|
huffman@40484
|
225 |
|
huffman@40484
|
226 |
lemma cast_u_defl:
|
huffman@40484
|
227 |
"cast\<cdot>(u_defl\<cdot>A) =
|
huffman@40484
|
228 |
udom_emb u_approx oo u_map\<cdot>(cast\<cdot>A) oo udom_prj u_approx"
|
huffman@40484
|
229 |
using u_approx finite_deflation_u_map
|
huffman@40484
|
230 |
unfolding u_defl_def by (rule cast_defl_fun1)
|
huffman@40484
|
231 |
|
huffman@40484
|
232 |
lemma cast_cfun_defl:
|
huffman@40484
|
233 |
"cast\<cdot>(cfun_defl\<cdot>A\<cdot>B) =
|
huffman@40484
|
234 |
udom_emb cfun_approx oo cfun_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo udom_prj cfun_approx"
|
huffman@40484
|
235 |
using cfun_approx finite_deflation_cfun_map
|
huffman@40484
|
236 |
unfolding cfun_defl_def by (rule cast_defl_fun2)
|
huffman@40484
|
237 |
|
huffman@40484
|
238 |
lemma cast_prod_defl:
|
huffman@40484
|
239 |
"cast\<cdot>(prod_defl\<cdot>A\<cdot>B) = udom_emb prod_approx oo
|
huffman@40484
|
240 |
cprod_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo udom_prj prod_approx"
|
huffman@40484
|
241 |
using prod_approx finite_deflation_cprod_map
|
huffman@40484
|
242 |
unfolding prod_defl_def by (rule cast_defl_fun2)
|
huffman@40484
|
243 |
|
huffman@40484
|
244 |
lemma cast_sprod_defl:
|
huffman@40484
|
245 |
"cast\<cdot>(sprod_defl\<cdot>A\<cdot>B) =
|
huffman@40484
|
246 |
udom_emb sprod_approx oo
|
huffman@40484
|
247 |
sprod_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo
|
huffman@40484
|
248 |
udom_prj sprod_approx"
|
huffman@40484
|
249 |
using sprod_approx finite_deflation_sprod_map
|
huffman@40484
|
250 |
unfolding sprod_defl_def by (rule cast_defl_fun2)
|
huffman@40484
|
251 |
|
huffman@40484
|
252 |
lemma cast_ssum_defl:
|
huffman@40484
|
253 |
"cast\<cdot>(ssum_defl\<cdot>A\<cdot>B) =
|
huffman@40484
|
254 |
udom_emb ssum_approx oo ssum_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo udom_prj ssum_approx"
|
huffman@40484
|
255 |
using ssum_approx finite_deflation_ssum_map
|
huffman@40484
|
256 |
unfolding ssum_defl_def by (rule cast_defl_fun2)
|
huffman@40484
|
257 |
|
huffman@40497
|
258 |
subsection {* Lemma for proving domain instances *}
|
huffman@40491
|
259 |
|
huffman@40494
|
260 |
text {*
|
huffman@40497
|
261 |
A class of domains where @{const liftemb}, @{const liftprj},
|
huffman@40494
|
262 |
and @{const liftdefl} are all defined in the standard way.
|
huffman@40494
|
263 |
*}
|
huffman@40494
|
264 |
|
huffman@40497
|
265 |
class liftdomain = "domain" +
|
huffman@40494
|
266 |
assumes liftemb_eq: "liftemb = udom_emb u_approx oo u_map\<cdot>emb"
|
huffman@40494
|
267 |
assumes liftprj_eq: "liftprj = u_map\<cdot>prj oo udom_prj u_approx"
|
huffman@40494
|
268 |
assumes liftdefl_eq: "liftdefl TYPE('a::cpo) = u_defl\<cdot>DEFL('a)"
|
huffman@40494
|
269 |
|
huffman@40491
|
270 |
text {* Temporarily relax type constraints. *}
|
huffman@40491
|
271 |
|
huffman@40491
|
272 |
setup {*
|
huffman@40491
|
273 |
fold Sign.add_const_constraint
|
huffman@40491
|
274 |
[ (@{const_name defl}, SOME @{typ "'a::pcpo itself \<Rightarrow> defl"})
|
huffman@40491
|
275 |
, (@{const_name emb}, SOME @{typ "'a::pcpo \<rightarrow> udom"})
|
huffman@40491
|
276 |
, (@{const_name prj}, SOME @{typ "udom \<rightarrow> 'a::pcpo"})
|
huffman@40491
|
277 |
, (@{const_name liftdefl}, SOME @{typ "'a::pcpo itself \<Rightarrow> defl"})
|
huffman@40491
|
278 |
, (@{const_name liftemb}, SOME @{typ "'a::pcpo u \<rightarrow> udom"})
|
huffman@40491
|
279 |
, (@{const_name liftprj}, SOME @{typ "udom \<rightarrow> 'a::pcpo u"}) ]
|
huffman@40491
|
280 |
*}
|
huffman@40491
|
281 |
|
huffman@40494
|
282 |
lemma liftdomain_class_intro:
|
huffman@40491
|
283 |
assumes liftemb: "(liftemb :: 'a u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
|
huffman@40491
|
284 |
assumes liftprj: "(liftprj :: udom \<rightarrow> 'a u) = u_map\<cdot>prj oo udom_prj u_approx"
|
huffman@40491
|
285 |
assumes liftdefl: "liftdefl TYPE('a) = u_defl\<cdot>DEFL('a)"
|
huffman@40491
|
286 |
assumes ep_pair: "ep_pair emb (prj :: udom \<rightarrow> 'a)"
|
huffman@40491
|
287 |
assumes cast_defl: "cast\<cdot>DEFL('a) = emb oo (prj :: udom \<rightarrow> 'a)"
|
huffman@40494
|
288 |
shows "OFCLASS('a, liftdomain_class)"
|
huffman@40491
|
289 |
proof
|
huffman@40491
|
290 |
show "ep_pair liftemb (liftprj :: udom \<rightarrow> 'a u)"
|
huffman@40491
|
291 |
unfolding liftemb liftprj
|
huffman@40491
|
292 |
by (intro ep_pair_comp ep_pair_u_map ep_pair ep_pair_udom u_approx)
|
huffman@40491
|
293 |
show "cast\<cdot>LIFTDEFL('a) = liftemb oo (liftprj :: udom \<rightarrow> 'a u)"
|
huffman@40491
|
294 |
unfolding liftemb liftprj liftdefl
|
huffman@40491
|
295 |
by (simp add: cfcomp1 cast_u_defl cast_defl u_map_map)
|
huffman@40494
|
296 |
next
|
huffman@40491
|
297 |
qed fact+
|
huffman@40491
|
298 |
|
huffman@40491
|
299 |
text {* Restore original type constraints. *}
|
huffman@40491
|
300 |
|
huffman@40491
|
301 |
setup {*
|
huffman@40491
|
302 |
fold Sign.add_const_constraint
|
huffman@40497
|
303 |
[ (@{const_name defl}, SOME @{typ "'a::domain itself \<Rightarrow> defl"})
|
huffman@40497
|
304 |
, (@{const_name emb}, SOME @{typ "'a::domain \<rightarrow> udom"})
|
huffman@40497
|
305 |
, (@{const_name prj}, SOME @{typ "udom \<rightarrow> 'a::domain"})
|
huffman@40491
|
306 |
, (@{const_name liftdefl}, SOME @{typ "'a::predomain itself \<Rightarrow> defl"})
|
huffman@40491
|
307 |
, (@{const_name liftemb}, SOME @{typ "'a::predomain u \<rightarrow> udom"})
|
huffman@40491
|
308 |
, (@{const_name liftprj}, SOME @{typ "udom \<rightarrow> 'a::predomain u"}) ]
|
huffman@40491
|
309 |
*}
|
huffman@40491
|
310 |
|
huffman@40497
|
311 |
subsection {* The universal domain is a domain *}
|
huffman@39985
|
312 |
|
huffman@40494
|
313 |
instantiation udom :: liftdomain
|
huffman@39985
|
314 |
begin
|
huffman@39985
|
315 |
|
huffman@39985
|
316 |
definition [simp]:
|
huffman@39985
|
317 |
"emb = (ID :: udom \<rightarrow> udom)"
|
huffman@39985
|
318 |
|
huffman@39985
|
319 |
definition [simp]:
|
huffman@39985
|
320 |
"prj = (ID :: udom \<rightarrow> udom)"
|
huffman@25903
|
321 |
|
huffman@33504
|
322 |
definition
|
huffman@39989
|
323 |
"defl (t::udom itself) = (\<Squnion>i. defl_principal (Abs_fin_defl (udom_approx i)))"
|
huffman@33808
|
324 |
|
huffman@40491
|
325 |
definition
|
huffman@40491
|
326 |
"(liftemb :: udom u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
|
huffman@40491
|
327 |
|
huffman@40491
|
328 |
definition
|
huffman@40491
|
329 |
"(liftprj :: udom \<rightarrow> udom u) = u_map\<cdot>prj oo udom_prj u_approx"
|
huffman@40491
|
330 |
|
huffman@40491
|
331 |
definition
|
huffman@40491
|
332 |
"liftdefl (t::udom itself) = u_defl\<cdot>DEFL(udom)"
|
huffman@40491
|
333 |
|
huffman@40491
|
334 |
instance
|
huffman@40491
|
335 |
using liftemb_udom_def liftprj_udom_def liftdefl_udom_def
|
huffman@40494
|
336 |
proof (rule liftdomain_class_intro)
|
huffman@39985
|
337 |
show "ep_pair emb (prj :: udom \<rightarrow> udom)"
|
huffman@39985
|
338 |
by (simp add: ep_pair.intro)
|
huffman@39989
|
339 |
show "cast\<cdot>DEFL(udom) = emb oo (prj :: udom \<rightarrow> udom)"
|
huffman@39989
|
340 |
unfolding defl_udom_def
|
huffman@39985
|
341 |
apply (subst contlub_cfun_arg)
|
huffman@39985
|
342 |
apply (rule chainI)
|
huffman@39989
|
343 |
apply (rule defl.principal_mono)
|
huffman@39985
|
344 |
apply (simp add: below_fin_defl_def)
|
huffman@39985
|
345 |
apply (simp add: Abs_fin_defl_inverse finite_deflation_udom_approx)
|
huffman@39985
|
346 |
apply (rule chainE)
|
huffman@39985
|
347 |
apply (rule chain_udom_approx)
|
huffman@39989
|
348 |
apply (subst cast_defl_principal)
|
huffman@39985
|
349 |
apply (simp add: Abs_fin_defl_inverse finite_deflation_udom_approx)
|
huffman@33504
|
350 |
done
|
huffman@33504
|
351 |
qed
|
huffman@33504
|
352 |
|
huffman@39985
|
353 |
end
|
huffman@39985
|
354 |
|
huffman@40497
|
355 |
subsection {* Lifted predomains are domains *}
|
huffman@40491
|
356 |
|
huffman@40494
|
357 |
instantiation u :: (predomain) liftdomain
|
huffman@40491
|
358 |
begin
|
huffman@40491
|
359 |
|
huffman@40491
|
360 |
definition
|
huffman@40491
|
361 |
"emb = liftemb"
|
huffman@40491
|
362 |
|
huffman@40491
|
363 |
definition
|
huffman@40491
|
364 |
"prj = liftprj"
|
huffman@40491
|
365 |
|
huffman@40491
|
366 |
definition
|
huffman@40491
|
367 |
"defl (t::'a u itself) = LIFTDEFL('a)"
|
huffman@40491
|
368 |
|
huffman@40491
|
369 |
definition
|
huffman@40491
|
370 |
"(liftemb :: 'a u u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
|
huffman@40491
|
371 |
|
huffman@40491
|
372 |
definition
|
huffman@40491
|
373 |
"(liftprj :: udom \<rightarrow> 'a u u) = u_map\<cdot>prj oo udom_prj u_approx"
|
huffman@40491
|
374 |
|
huffman@40491
|
375 |
definition
|
huffman@40491
|
376 |
"liftdefl (t::'a u itself) = u_defl\<cdot>DEFL('a u)"
|
huffman@40491
|
377 |
|
huffman@40491
|
378 |
instance
|
huffman@40491
|
379 |
using liftemb_u_def liftprj_u_def liftdefl_u_def
|
huffman@40494
|
380 |
proof (rule liftdomain_class_intro)
|
huffman@40491
|
381 |
show "ep_pair emb (prj :: udom \<rightarrow> 'a u)"
|
huffman@40491
|
382 |
unfolding emb_u_def prj_u_def
|
huffman@40491
|
383 |
by (rule predomain_ep)
|
huffman@40491
|
384 |
show "cast\<cdot>DEFL('a u) = emb oo (prj :: udom \<rightarrow> 'a u)"
|
huffman@40491
|
385 |
unfolding emb_u_def prj_u_def defl_u_def
|
huffman@40491
|
386 |
by (rule cast_liftdefl)
|
huffman@40491
|
387 |
qed
|
huffman@40491
|
388 |
|
huffman@40491
|
389 |
end
|
huffman@40491
|
390 |
|
huffman@40491
|
391 |
lemma DEFL_u: "DEFL('a::predomain u) = LIFTDEFL('a)"
|
huffman@40491
|
392 |
by (rule defl_u_def)
|
huffman@40491
|
393 |
|
huffman@40497
|
394 |
subsection {* Continuous function space is a domain *}
|
huffman@39985
|
395 |
|
huffman@40497
|
396 |
text {* TODO: Allow argument type to be a predomain. *}
|
huffman@40497
|
397 |
|
huffman@40497
|
398 |
instantiation cfun :: ("domain", "domain") liftdomain
|
huffman@39985
|
399 |
begin
|
huffman@39985
|
400 |
|
huffman@39985
|
401 |
definition
|
huffman@39985
|
402 |
"emb = udom_emb cfun_approx oo cfun_map\<cdot>prj\<cdot>emb"
|
huffman@39985
|
403 |
|
huffman@39985
|
404 |
definition
|
huffman@39985
|
405 |
"prj = cfun_map\<cdot>emb\<cdot>prj oo udom_prj cfun_approx"
|
huffman@39985
|
406 |
|
huffman@39985
|
407 |
definition
|
huffman@39989
|
408 |
"defl (t::('a \<rightarrow> 'b) itself) = cfun_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
|
huffman@39985
|
409 |
|
huffman@40491
|
410 |
definition
|
huffman@40491
|
411 |
"(liftemb :: ('a \<rightarrow> 'b) u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
|
huffman@40491
|
412 |
|
huffman@40491
|
413 |
definition
|
huffman@40491
|
414 |
"(liftprj :: udom \<rightarrow> ('a \<rightarrow> 'b) u) = u_map\<cdot>prj oo udom_prj u_approx"
|
huffman@40491
|
415 |
|
huffman@40491
|
416 |
definition
|
huffman@40491
|
417 |
"liftdefl (t::('a \<rightarrow> 'b) itself) = u_defl\<cdot>DEFL('a \<rightarrow> 'b)"
|
huffman@40491
|
418 |
|
huffman@40491
|
419 |
instance
|
huffman@40491
|
420 |
using liftemb_cfun_def liftprj_cfun_def liftdefl_cfun_def
|
huffman@40494
|
421 |
proof (rule liftdomain_class_intro)
|
huffman@39985
|
422 |
show "ep_pair emb (prj :: udom \<rightarrow> 'a \<rightarrow> 'b)"
|
huffman@39985
|
423 |
unfolding emb_cfun_def prj_cfun_def
|
huffman@39985
|
424 |
using ep_pair_udom [OF cfun_approx]
|
huffman@39985
|
425 |
by (intro ep_pair_comp ep_pair_cfun_map ep_pair_emb_prj)
|
huffman@39989
|
426 |
show "cast\<cdot>DEFL('a \<rightarrow> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<rightarrow> 'b)"
|
huffman@39989
|
427 |
unfolding emb_cfun_def prj_cfun_def defl_cfun_def cast_cfun_defl
|
huffman@40002
|
428 |
by (simp add: cast_DEFL oo_def cfun_eq_iff cfun_map_map)
|
huffman@27402
|
429 |
qed
|
huffman@25903
|
430 |
|
huffman@39985
|
431 |
end
|
huffman@33504
|
432 |
|
huffman@39989
|
433 |
lemma DEFL_cfun:
|
huffman@40497
|
434 |
"DEFL('a::domain \<rightarrow> 'b::domain) = cfun_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
|
huffman@39989
|
435 |
by (rule defl_cfun_def)
|
brianh@39972
|
436 |
|
huffman@40497
|
437 |
subsection {* Cartesian product is a domain *}
|
huffman@39987
|
438 |
|
huffman@40493
|
439 |
text {*
|
huffman@40493
|
440 |
Types @{typ "('a * 'b) u"} and @{typ "'a u \<otimes> 'b u"} are isomorphic.
|
huffman@40493
|
441 |
*}
|
huffman@40493
|
442 |
|
huffman@40493
|
443 |
definition
|
huffman@40493
|
444 |
"encode_prod_u = (\<Lambda>(up\<cdot>(x, y)). (:up\<cdot>x, up\<cdot>y:))"
|
huffman@40493
|
445 |
|
huffman@40493
|
446 |
definition
|
huffman@40493
|
447 |
"decode_prod_u = (\<Lambda>(:up\<cdot>x, up\<cdot>y:). up\<cdot>(x, y))"
|
huffman@40493
|
448 |
|
huffman@40493
|
449 |
lemma decode_encode_prod_u [simp]: "decode_prod_u\<cdot>(encode_prod_u\<cdot>x) = x"
|
huffman@40493
|
450 |
unfolding encode_prod_u_def decode_prod_u_def
|
huffman@40493
|
451 |
by (case_tac x, simp, rename_tac y, case_tac y, simp)
|
huffman@40493
|
452 |
|
huffman@40493
|
453 |
lemma encode_decode_prod_u [simp]: "encode_prod_u\<cdot>(decode_prod_u\<cdot>y) = y"
|
huffman@40493
|
454 |
unfolding encode_prod_u_def decode_prod_u_def
|
huffman@40493
|
455 |
apply (case_tac y, simp, rename_tac a b)
|
huffman@40493
|
456 |
apply (case_tac a, simp, case_tac b, simp, simp)
|
huffman@40493
|
457 |
done
|
huffman@40493
|
458 |
|
huffman@40493
|
459 |
instantiation prod :: (predomain, predomain) predomain
|
huffman@40493
|
460 |
begin
|
huffman@40493
|
461 |
|
huffman@40493
|
462 |
definition
|
huffman@40493
|
463 |
"liftemb =
|
huffman@40493
|
464 |
(udom_emb sprod_approx oo sprod_map\<cdot>emb\<cdot>emb) oo encode_prod_u"
|
huffman@40493
|
465 |
|
huffman@40493
|
466 |
definition
|
huffman@40493
|
467 |
"liftprj =
|
huffman@40493
|
468 |
decode_prod_u oo (sprod_map\<cdot>prj\<cdot>prj oo udom_prj sprod_approx)"
|
huffman@40493
|
469 |
|
huffman@40493
|
470 |
definition
|
huffman@40493
|
471 |
"liftdefl (t::('a \<times> 'b) itself) = sprod_defl\<cdot>DEFL('a u)\<cdot>DEFL('b u)"
|
huffman@40493
|
472 |
|
huffman@40493
|
473 |
instance proof
|
huffman@40493
|
474 |
have "ep_pair encode_prod_u decode_prod_u"
|
huffman@40493
|
475 |
by (rule ep_pair.intro, simp_all)
|
huffman@40493
|
476 |
thus "ep_pair liftemb (liftprj :: udom \<rightarrow> ('a \<times> 'b) u)"
|
huffman@40493
|
477 |
unfolding liftemb_prod_def liftprj_prod_def
|
huffman@40493
|
478 |
apply (rule ep_pair_comp)
|
huffman@40493
|
479 |
apply (rule ep_pair_comp)
|
huffman@40493
|
480 |
apply (intro ep_pair_sprod_map ep_pair_emb_prj)
|
huffman@40493
|
481 |
apply (rule ep_pair_udom [OF sprod_approx])
|
huffman@40493
|
482 |
done
|
huffman@40493
|
483 |
show "cast\<cdot>LIFTDEFL('a \<times> 'b) = liftemb oo (liftprj :: udom \<rightarrow> ('a \<times> 'b) u)"
|
huffman@40493
|
484 |
unfolding liftemb_prod_def liftprj_prod_def liftdefl_prod_def
|
huffman@40493
|
485 |
by (simp add: cast_sprod_defl cast_DEFL cfcomp1 sprod_map_map)
|
huffman@40493
|
486 |
qed
|
huffman@40493
|
487 |
|
huffman@40493
|
488 |
end
|
huffman@40493
|
489 |
|
huffman@40497
|
490 |
instantiation prod :: ("domain", "domain") "domain"
|
huffman@39987
|
491 |
begin
|
huffman@39987
|
492 |
|
huffman@39987
|
493 |
definition
|
huffman@39987
|
494 |
"emb = udom_emb prod_approx oo cprod_map\<cdot>emb\<cdot>emb"
|
huffman@39987
|
495 |
|
huffman@39987
|
496 |
definition
|
huffman@39987
|
497 |
"prj = cprod_map\<cdot>prj\<cdot>prj oo udom_prj prod_approx"
|
huffman@39987
|
498 |
|
huffman@39987
|
499 |
definition
|
huffman@39989
|
500 |
"defl (t::('a \<times> 'b) itself) = prod_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
|
huffman@39987
|
501 |
|
huffman@40493
|
502 |
instance proof
|
huffman@39987
|
503 |
show "ep_pair emb (prj :: udom \<rightarrow> 'a \<times> 'b)"
|
huffman@39987
|
504 |
unfolding emb_prod_def prj_prod_def
|
huffman@39987
|
505 |
using ep_pair_udom [OF prod_approx]
|
huffman@39987
|
506 |
by (intro ep_pair_comp ep_pair_cprod_map ep_pair_emb_prj)
|
huffman@39987
|
507 |
next
|
huffman@39989
|
508 |
show "cast\<cdot>DEFL('a \<times> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<times> 'b)"
|
huffman@39989
|
509 |
unfolding emb_prod_def prj_prod_def defl_prod_def cast_prod_defl
|
huffman@40002
|
510 |
by (simp add: cast_DEFL oo_def cfun_eq_iff cprod_map_map)
|
huffman@39987
|
511 |
qed
|
huffman@39987
|
512 |
|
huffman@26962
|
513 |
end
|
huffman@39987
|
514 |
|
huffman@39989
|
515 |
lemma DEFL_prod:
|
huffman@40497
|
516 |
"DEFL('a::domain \<times> 'b::domain) = prod_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
|
huffman@39989
|
517 |
by (rule defl_prod_def)
|
huffman@39987
|
518 |
|
huffman@40491
|
519 |
lemma LIFTDEFL_prod:
|
huffman@40493
|
520 |
"LIFTDEFL('a::predomain \<times> 'b::predomain) = sprod_defl\<cdot>DEFL('a u)\<cdot>DEFL('b u)"
|
huffman@40491
|
521 |
by (rule liftdefl_prod_def)
|
huffman@40491
|
522 |
|
huffman@40497
|
523 |
subsection {* Strict product is a domain *}
|
huffman@39987
|
524 |
|
huffman@40497
|
525 |
instantiation sprod :: ("domain", "domain") liftdomain
|
huffman@39987
|
526 |
begin
|
huffman@39987
|
527 |
|
huffman@39987
|
528 |
definition
|
huffman@39987
|
529 |
"emb = udom_emb sprod_approx oo sprod_map\<cdot>emb\<cdot>emb"
|
huffman@39987
|
530 |
|
huffman@39987
|
531 |
definition
|
huffman@39987
|
532 |
"prj = sprod_map\<cdot>prj\<cdot>prj oo udom_prj sprod_approx"
|
huffman@39987
|
533 |
|
huffman@39987
|
534 |
definition
|
huffman@39989
|
535 |
"defl (t::('a \<otimes> 'b) itself) = sprod_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
|
huffman@39987
|
536 |
|
huffman@40491
|
537 |
definition
|
huffman@40491
|
538 |
"(liftemb :: ('a \<otimes> 'b) u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
|
huffman@40491
|
539 |
|
huffman@40491
|
540 |
definition
|
huffman@40491
|
541 |
"(liftprj :: udom \<rightarrow> ('a \<otimes> 'b) u) = u_map\<cdot>prj oo udom_prj u_approx"
|
huffman@40491
|
542 |
|
huffman@40491
|
543 |
definition
|
huffman@40491
|
544 |
"liftdefl (t::('a \<otimes> 'b) itself) = u_defl\<cdot>DEFL('a \<otimes> 'b)"
|
huffman@40491
|
545 |
|
huffman@40491
|
546 |
instance
|
huffman@40491
|
547 |
using liftemb_sprod_def liftprj_sprod_def liftdefl_sprod_def
|
huffman@40494
|
548 |
proof (rule liftdomain_class_intro)
|
huffman@39987
|
549 |
show "ep_pair emb (prj :: udom \<rightarrow> 'a \<otimes> 'b)"
|
huffman@39987
|
550 |
unfolding emb_sprod_def prj_sprod_def
|
huffman@39987
|
551 |
using ep_pair_udom [OF sprod_approx]
|
huffman@39987
|
552 |
by (intro ep_pair_comp ep_pair_sprod_map ep_pair_emb_prj)
|
huffman@39987
|
553 |
next
|
huffman@39989
|
554 |
show "cast\<cdot>DEFL('a \<otimes> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<otimes> 'b)"
|
huffman@39989
|
555 |
unfolding emb_sprod_def prj_sprod_def defl_sprod_def cast_sprod_defl
|
huffman@40002
|
556 |
by (simp add: cast_DEFL oo_def cfun_eq_iff sprod_map_map)
|
huffman@39987
|
557 |
qed
|
huffman@39987
|
558 |
|
huffman@39987
|
559 |
end
|
huffman@39987
|
560 |
|
huffman@39989
|
561 |
lemma DEFL_sprod:
|
huffman@40497
|
562 |
"DEFL('a::domain \<otimes> 'b::domain) = sprod_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
|
huffman@39989
|
563 |
by (rule defl_sprod_def)
|
huffman@39987
|
564 |
|
huffman@40491
|
565 |
subsection {* Countable discrete cpos are predomains *}
|
huffman@39987
|
566 |
|
huffman@40491
|
567 |
definition discr_approx :: "nat \<Rightarrow> 'a::countable discr u \<rightarrow> 'a discr u"
|
huffman@40491
|
568 |
where "discr_approx = (\<lambda>i. \<Lambda>(up\<cdot>x). if to_nat (undiscr x) < i then up\<cdot>x else \<bottom>)"
|
huffman@39987
|
569 |
|
huffman@40491
|
570 |
lemma chain_discr_approx [simp]: "chain discr_approx"
|
huffman@40491
|
571 |
unfolding discr_approx_def
|
huffman@40491
|
572 |
by (rule chainI, simp add: monofun_cfun monofun_LAM)
|
huffman@39987
|
573 |
|
huffman@40491
|
574 |
lemma lub_discr_approx [simp]: "(\<Squnion>i. discr_approx i) = ID"
|
huffman@40002
|
575 |
apply (rule cfun_eqI)
|
huffman@39987
|
576 |
apply (simp add: contlub_cfun_fun)
|
huffman@40491
|
577 |
apply (simp add: discr_approx_def)
|
huffman@39987
|
578 |
apply (case_tac x, simp)
|
huffman@39987
|
579 |
apply (rule thelubI)
|
huffman@39987
|
580 |
apply (rule is_lubI)
|
huffman@39987
|
581 |
apply (rule ub_rangeI, simp)
|
huffman@39987
|
582 |
apply (drule ub_rangeD)
|
huffman@39987
|
583 |
apply (erule rev_below_trans)
|
huffman@39987
|
584 |
apply simp
|
huffman@39987
|
585 |
apply (rule lessI)
|
huffman@39987
|
586 |
done
|
huffman@39987
|
587 |
|
huffman@40491
|
588 |
lemma inj_on_undiscr [simp]: "inj_on undiscr A"
|
huffman@40491
|
589 |
using Discr_undiscr by (rule inj_on_inverseI)
|
huffman@40491
|
590 |
|
huffman@40491
|
591 |
lemma finite_deflation_discr_approx: "finite_deflation (discr_approx i)"
|
huffman@39987
|
592 |
proof
|
huffman@40491
|
593 |
fix x :: "'a discr u"
|
huffman@40491
|
594 |
show "discr_approx i\<cdot>x \<sqsubseteq> x"
|
huffman@40491
|
595 |
unfolding discr_approx_def
|
huffman@39987
|
596 |
by (cases x, simp, simp)
|
huffman@40491
|
597 |
show "discr_approx i\<cdot>(discr_approx i\<cdot>x) = discr_approx i\<cdot>x"
|
huffman@40491
|
598 |
unfolding discr_approx_def
|
huffman@39987
|
599 |
by (cases x, simp, simp)
|
huffman@40491
|
600 |
show "finite {x::'a discr u. discr_approx i\<cdot>x = x}"
|
huffman@39987
|
601 |
proof (rule finite_subset)
|
huffman@40491
|
602 |
let ?S = "insert (\<bottom>::'a discr u) ((\<lambda>x. up\<cdot>x) ` undiscr -` to_nat -` {..<i})"
|
huffman@40491
|
603 |
show "{x::'a discr u. discr_approx i\<cdot>x = x} \<subseteq> ?S"
|
huffman@40491
|
604 |
unfolding discr_approx_def
|
huffman@39987
|
605 |
by (rule subsetI, case_tac x, simp, simp split: split_if_asm)
|
huffman@39987
|
606 |
show "finite ?S"
|
huffman@39987
|
607 |
by (simp add: finite_vimageI)
|
huffman@39987
|
608 |
qed
|
huffman@39987
|
609 |
qed
|
huffman@39987
|
610 |
|
huffman@40491
|
611 |
lemma discr_approx: "approx_chain discr_approx"
|
huffman@40491
|
612 |
using chain_discr_approx lub_discr_approx finite_deflation_discr_approx
|
huffman@39987
|
613 |
by (rule approx_chain.intro)
|
huffman@39987
|
614 |
|
huffman@40491
|
615 |
instantiation discr :: (countable) predomain
|
huffman@39987
|
616 |
begin
|
huffman@39987
|
617 |
|
huffman@39987
|
618 |
definition
|
huffman@40491
|
619 |
"liftemb = udom_emb discr_approx"
|
huffman@39987
|
620 |
|
huffman@39987
|
621 |
definition
|
huffman@40491
|
622 |
"liftprj = udom_prj discr_approx"
|
huffman@39987
|
623 |
|
huffman@39987
|
624 |
definition
|
huffman@40491
|
625 |
"liftdefl (t::'a discr itself) =
|
huffman@40491
|
626 |
(\<Squnion>i. defl_principal (Abs_fin_defl (liftemb oo discr_approx i oo liftprj)))"
|
huffman@39987
|
627 |
|
huffman@39987
|
628 |
instance proof
|
huffman@40491
|
629 |
show "ep_pair liftemb (liftprj :: udom \<rightarrow> 'a discr u)"
|
huffman@40491
|
630 |
unfolding liftemb_discr_def liftprj_discr_def
|
huffman@40491
|
631 |
by (rule ep_pair_udom [OF discr_approx])
|
huffman@40491
|
632 |
show "cast\<cdot>LIFTDEFL('a discr) = liftemb oo (liftprj :: udom \<rightarrow> 'a discr u)"
|
huffman@40491
|
633 |
unfolding liftemb_discr_def liftprj_discr_def liftdefl_discr_def
|
huffman@39987
|
634 |
apply (subst contlub_cfun_arg)
|
huffman@39987
|
635 |
apply (rule chainI)
|
huffman@39989
|
636 |
apply (rule defl.principal_mono)
|
huffman@39987
|
637 |
apply (simp add: below_fin_defl_def)
|
huffman@40491
|
638 |
apply (simp add: Abs_fin_defl_inverse
|
huffman@40491
|
639 |
ep_pair.finite_deflation_e_d_p [OF ep_pair_udom [OF discr_approx]]
|
huffman@40491
|
640 |
approx_chain.finite_deflation_approx [OF discr_approx])
|
huffman@39987
|
641 |
apply (intro monofun_cfun below_refl)
|
huffman@39987
|
642 |
apply (rule chainE)
|
huffman@40491
|
643 |
apply (rule chain_discr_approx)
|
huffman@39989
|
644 |
apply (subst cast_defl_principal)
|
huffman@40491
|
645 |
apply (simp add: Abs_fin_defl_inverse
|
huffman@40491
|
646 |
ep_pair.finite_deflation_e_d_p [OF ep_pair_udom [OF discr_approx]]
|
huffman@40491
|
647 |
approx_chain.finite_deflation_approx [OF discr_approx])
|
huffman@40491
|
648 |
apply (simp add: lub_distribs)
|
huffman@39987
|
649 |
done
|
huffman@39987
|
650 |
qed
|
huffman@39987
|
651 |
|
huffman@39987
|
652 |
end
|
huffman@39987
|
653 |
|
huffman@40497
|
654 |
subsection {* Strict sum is a domain *}
|
huffman@39987
|
655 |
|
huffman@40497
|
656 |
instantiation ssum :: ("domain", "domain") liftdomain
|
huffman@39987
|
657 |
begin
|
huffman@39987
|
658 |
|
huffman@39987
|
659 |
definition
|
huffman@39987
|
660 |
"emb = udom_emb ssum_approx oo ssum_map\<cdot>emb\<cdot>emb"
|
huffman@39987
|
661 |
|
huffman@39987
|
662 |
definition
|
huffman@39987
|
663 |
"prj = ssum_map\<cdot>prj\<cdot>prj oo udom_prj ssum_approx"
|
huffman@39987
|
664 |
|
huffman@39987
|
665 |
definition
|
huffman@39989
|
666 |
"defl (t::('a \<oplus> 'b) itself) = ssum_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
|
huffman@39987
|
667 |
|
huffman@40491
|
668 |
definition
|
huffman@40491
|
669 |
"(liftemb :: ('a \<oplus> 'b) u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
|
huffman@40491
|
670 |
|
huffman@40491
|
671 |
definition
|
huffman@40491
|
672 |
"(liftprj :: udom \<rightarrow> ('a \<oplus> 'b) u) = u_map\<cdot>prj oo udom_prj u_approx"
|
huffman@40491
|
673 |
|
huffman@40491
|
674 |
definition
|
huffman@40491
|
675 |
"liftdefl (t::('a \<oplus> 'b) itself) = u_defl\<cdot>DEFL('a \<oplus> 'b)"
|
huffman@40491
|
676 |
|
huffman@40491
|
677 |
instance
|
huffman@40491
|
678 |
using liftemb_ssum_def liftprj_ssum_def liftdefl_ssum_def
|
huffman@40494
|
679 |
proof (rule liftdomain_class_intro)
|
huffman@39987
|
680 |
show "ep_pair emb (prj :: udom \<rightarrow> 'a \<oplus> 'b)"
|
huffman@39987
|
681 |
unfolding emb_ssum_def prj_ssum_def
|
huffman@39987
|
682 |
using ep_pair_udom [OF ssum_approx]
|
huffman@39987
|
683 |
by (intro ep_pair_comp ep_pair_ssum_map ep_pair_emb_prj)
|
huffman@39989
|
684 |
show "cast\<cdot>DEFL('a \<oplus> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<oplus> 'b)"
|
huffman@39989
|
685 |
unfolding emb_ssum_def prj_ssum_def defl_ssum_def cast_ssum_defl
|
huffman@40002
|
686 |
by (simp add: cast_DEFL oo_def cfun_eq_iff ssum_map_map)
|
huffman@39987
|
687 |
qed
|
huffman@39987
|
688 |
|
huffman@39987
|
689 |
end
|
huffman@39987
|
690 |
|
huffman@39989
|
691 |
lemma DEFL_ssum:
|
huffman@40497
|
692 |
"DEFL('a::domain \<oplus> 'b::domain) = ssum_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
|
huffman@39989
|
693 |
by (rule defl_ssum_def)
|
huffman@39987
|
694 |
|
huffman@40491
|
695 |
subsection {* Lifted countable types are bifinite domains *}
|
huffman@40491
|
696 |
|
huffman@40494
|
697 |
instantiation lift :: (countable) liftdomain
|
huffman@40491
|
698 |
begin
|
huffman@40491
|
699 |
|
huffman@40491
|
700 |
definition
|
huffman@40491
|
701 |
"emb = emb oo (\<Lambda> x. Rep_lift x)"
|
huffman@40491
|
702 |
|
huffman@40491
|
703 |
definition
|
huffman@40491
|
704 |
"prj = (\<Lambda> y. Abs_lift y) oo prj"
|
huffman@40491
|
705 |
|
huffman@40491
|
706 |
definition
|
huffman@40491
|
707 |
"defl (t::'a lift itself) = DEFL('a discr u)"
|
huffman@40491
|
708 |
|
huffman@40491
|
709 |
definition
|
huffman@40491
|
710 |
"(liftemb :: 'a lift u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
|
huffman@40491
|
711 |
|
huffman@40491
|
712 |
definition
|
huffman@40491
|
713 |
"(liftprj :: udom \<rightarrow> 'a lift u) = u_map\<cdot>prj oo udom_prj u_approx"
|
huffman@40491
|
714 |
|
huffman@40491
|
715 |
definition
|
huffman@40491
|
716 |
"liftdefl (t::'a lift itself) = u_defl\<cdot>DEFL('a lift)"
|
huffman@40491
|
717 |
|
huffman@40491
|
718 |
instance
|
huffman@40491
|
719 |
using liftemb_lift_def liftprj_lift_def liftdefl_lift_def
|
huffman@40494
|
720 |
proof (rule liftdomain_class_intro)
|
huffman@40491
|
721 |
note [simp] = cont_Rep_lift cont_Abs_lift Rep_lift_inverse Abs_lift_inverse
|
huffman@40491
|
722 |
have "ep_pair (\<Lambda>(x::'a lift). Rep_lift x) (\<Lambda> y. Abs_lift y)"
|
huffman@40491
|
723 |
by (simp add: ep_pair_def)
|
huffman@40491
|
724 |
thus "ep_pair emb (prj :: udom \<rightarrow> 'a lift)"
|
huffman@40491
|
725 |
unfolding emb_lift_def prj_lift_def
|
huffman@40491
|
726 |
using ep_pair_emb_prj by (rule ep_pair_comp)
|
huffman@40491
|
727 |
show "cast\<cdot>DEFL('a lift) = emb oo (prj :: udom \<rightarrow> 'a lift)"
|
huffman@40491
|
728 |
unfolding emb_lift_def prj_lift_def defl_lift_def cast_DEFL
|
huffman@40491
|
729 |
by (simp add: cfcomp1)
|
huffman@40491
|
730 |
qed
|
huffman@40491
|
731 |
|
huffman@39987
|
732 |
end
|
huffman@40491
|
733 |
|
huffman@40491
|
734 |
end
|