author | huffman |
Wed Nov 10 17:56:08 2010 -0800 (2010-11-10) | |
changeset 40502 | 8e92772bc0e8 |
parent 40323 | 4cce7c708402 |
permissions | -rw-r--r-- |
slotosch@2640 | 1 |
(* Title: HOLCF/Lift.thy |
wenzelm@12026 | 2 |
Author: Olaf Mueller |
slotosch@2640 | 3 |
*) |
slotosch@2640 | 4 |
|
wenzelm@12338 | 5 |
header {* Lifting types of class type to flat pcpo's *} |
wenzelm@12026 | 6 |
|
huffman@15577 | 7 |
theory Lift |
huffman@40086 | 8 |
imports Discrete Up |
huffman@15577 | 9 |
begin |
wenzelm@12026 | 10 |
|
wenzelm@36452 | 11 |
default_sort type |
wenzelm@12026 | 12 |
|
huffman@40082 | 13 |
pcpodef (open) 'a lift = "UNIV :: 'a discr u set" |
wenzelm@29063 | 14 |
by simp_all |
wenzelm@12026 | 15 |
|
huffman@16748 | 16 |
lemmas inst_lift_pcpo = Abs_lift_strict [symmetric] |
wenzelm@12026 | 17 |
|
wenzelm@25131 | 18 |
definition |
wenzelm@25131 | 19 |
Def :: "'a \<Rightarrow> 'a lift" where |
wenzelm@25131 | 20 |
"Def x = Abs_lift (up\<cdot>(Discr x))" |
wenzelm@12026 | 21 |
|
wenzelm@12026 | 22 |
subsection {* Lift as a datatype *} |
wenzelm@12026 | 23 |
|
huffman@16748 | 24 |
lemma lift_induct: "\<lbrakk>P \<bottom>; \<And>x. P (Def x)\<rbrakk> \<Longrightarrow> P y" |
huffman@16748 | 25 |
apply (induct y) |
huffman@16755 | 26 |
apply (rule_tac p=y in upE) |
huffman@16748 | 27 |
apply (simp add: Abs_lift_strict) |
huffman@16748 | 28 |
apply (case_tac x) |
huffman@16748 | 29 |
apply (simp add: Def_def) |
huffman@16748 | 30 |
done |
wenzelm@12026 | 31 |
|
haftmann@27104 | 32 |
rep_datatype "\<bottom>\<Colon>'a lift" Def |
huffman@40082 | 33 |
by (erule lift_induct) (simp_all add: Def_def Abs_lift_inject inst_lift_pcpo) |
wenzelm@12026 | 34 |
|
haftmann@27104 | 35 |
lemmas lift_distinct1 = lift.distinct(1) |
haftmann@27104 | 36 |
lemmas lift_distinct2 = lift.distinct(2) |
haftmann@27104 | 37 |
lemmas Def_not_UU = lift.distinct(2) |
haftmann@27104 | 38 |
lemmas Def_inject = lift.inject |
wenzelm@12026 | 39 |
|
wenzelm@12026 | 40 |
|
huffman@16748 | 41 |
text {* @{term UU} and @{term Def} *} |
wenzelm@12026 | 42 |
|
huffman@16748 | 43 |
lemma not_Undef_is_Def: "(x \<noteq> \<bottom>) = (\<exists>y. x = Def y)" |
wenzelm@12026 | 44 |
by (cases x) simp_all |
wenzelm@12026 | 45 |
|
huffman@16630 | 46 |
lemma lift_definedE: "\<lbrakk>x \<noteq> \<bottom>; \<And>a. x = Def a \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R" |
huffman@16630 | 47 |
by (cases x) simp_all |
huffman@16630 | 48 |
|
wenzelm@12026 | 49 |
text {* |
wenzelm@30607 | 50 |
For @{term "x ~= UU"} in assumptions @{text defined} replaces @{text |
wenzelm@12026 | 51 |
x} by @{text "Def a"} in conclusion. *} |
wenzelm@12026 | 52 |
|
wenzelm@30607 | 53 |
method_setup defined = {* |
wenzelm@30607 | 54 |
Scan.succeed (fn ctxt => SIMPLE_METHOD' |
wenzelm@32149 | 55 |
(etac @{thm lift_definedE} THEN' asm_simp_tac (simpset_of ctxt))) |
wenzelm@30607 | 56 |
*} "" |
wenzelm@12026 | 57 |
|
huffman@16748 | 58 |
lemma DefE: "Def x = \<bottom> \<Longrightarrow> R" |
huffman@16748 | 59 |
by simp |
wenzelm@12026 | 60 |
|
huffman@16748 | 61 |
lemma DefE2: "\<lbrakk>x = Def s; x = \<bottom>\<rbrakk> \<Longrightarrow> R" |
wenzelm@12026 | 62 |
by simp |
wenzelm@12026 | 63 |
|
huffman@31076 | 64 |
lemma Def_below_Def: "Def x \<sqsubseteq> Def y \<longleftrightarrow> x = y" |
huffman@40082 | 65 |
by (simp add: below_lift_def Def_def Abs_lift_inverse) |
wenzelm@12026 | 66 |
|
huffman@31076 | 67 |
lemma Def_below_iff [simp]: "Def x \<sqsubseteq> y \<longleftrightarrow> Def x = y" |
huffman@31076 | 68 |
by (induct y, simp, simp add: Def_below_Def) |
wenzelm@12026 | 69 |
|
wenzelm@12026 | 70 |
|
wenzelm@12026 | 71 |
subsection {* Lift is flat *} |
wenzelm@12026 | 72 |
|
wenzelm@12338 | 73 |
instance lift :: (type) flat |
huffman@27292 | 74 |
proof |
huffman@27292 | 75 |
fix x y :: "'a lift" |
huffman@27292 | 76 |
assume "x \<sqsubseteq> y" thus "x = \<bottom> \<or> x = y" |
huffman@27292 | 77 |
by (induct x) auto |
huffman@27292 | 78 |
qed |
wenzelm@12026 | 79 |
|
huffman@40088 | 80 |
subsection {* Continuity of @{const lift_case} *} |
huffman@40088 | 81 |
|
huffman@40088 | 82 |
lemma lift_case_eq: "lift_case \<bottom> f x = fup\<cdot>(\<Lambda> y. f (undiscr y))\<cdot>(Rep_lift x)" |
huffman@40088 | 83 |
apply (induct x, unfold lift.cases) |
huffman@40088 | 84 |
apply (simp add: Rep_lift_strict) |
huffman@40088 | 85 |
apply (simp add: Def_def Abs_lift_inverse) |
huffman@40088 | 86 |
done |
huffman@40088 | 87 |
|
huffman@40088 | 88 |
lemma cont2cont_lift_case [simp]: |
huffman@40088 | 89 |
"\<lbrakk>\<And>y. cont (\<lambda>x. f x y); cont g\<rbrakk> \<Longrightarrow> cont (\<lambda>x. lift_case \<bottom> (f x) (g x))" |
huffman@40088 | 90 |
unfolding lift_case_eq by (simp add: cont_Rep_lift [THEN cont_compose]) |
huffman@40088 | 91 |
|
huffman@16695 | 92 |
subsection {* Further operations *} |
huffman@16695 | 93 |
|
wenzelm@25131 | 94 |
definition |
wenzelm@25131 | 95 |
flift1 :: "('a \<Rightarrow> 'b::pcpo) \<Rightarrow> ('a lift \<rightarrow> 'b)" (binder "FLIFT " 10) where |
wenzelm@25131 | 96 |
"flift1 = (\<lambda>f. (\<Lambda> x. lift_case \<bottom> f x))" |
huffman@16695 | 97 |
|
huffman@40323 | 98 |
translations |
huffman@40323 | 99 |
"\<Lambda>(XCONST Def x). t" => "CONST flift1 (\<lambda>x. t)" |
huffman@40323 | 100 |
"\<Lambda>(CONST Def x). FLIFT y. t" <= "FLIFT x y. t" |
huffman@40323 | 101 |
"\<Lambda>(CONST Def x). t" <= "FLIFT x. t" |
huffman@40323 | 102 |
|
wenzelm@25131 | 103 |
definition |
wenzelm@25131 | 104 |
flift2 :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a lift \<rightarrow> 'b lift)" where |
wenzelm@25131 | 105 |
"flift2 f = (FLIFT x. Def (f x))" |
huffman@16695 | 106 |
|
huffman@16695 | 107 |
lemma flift1_Def [simp]: "flift1 f\<cdot>(Def x) = (f x)" |
huffman@40088 | 108 |
by (simp add: flift1_def) |
huffman@16695 | 109 |
|
huffman@16695 | 110 |
lemma flift2_Def [simp]: "flift2 f\<cdot>(Def x) = Def (f x)" |
huffman@16695 | 111 |
by (simp add: flift2_def) |
huffman@16695 | 112 |
|
huffman@16695 | 113 |
lemma flift1_strict [simp]: "flift1 f\<cdot>\<bottom> = \<bottom>" |
huffman@40088 | 114 |
by (simp add: flift1_def) |
huffman@16695 | 115 |
|
huffman@16695 | 116 |
lemma flift2_strict [simp]: "flift2 f\<cdot>\<bottom> = \<bottom>" |
huffman@16695 | 117 |
by (simp add: flift2_def) |
huffman@16695 | 118 |
|
huffman@16695 | 119 |
lemma flift2_defined [simp]: "x \<noteq> \<bottom> \<Longrightarrow> (flift2 f)\<cdot>x \<noteq> \<bottom>" |
huffman@16695 | 120 |
by (erule lift_definedE, simp) |
huffman@16695 | 121 |
|
huffman@40321 | 122 |
lemma flift2_bottom_iff [simp]: "(flift2 f\<cdot>x = \<bottom>) = (x = \<bottom>)" |
huffman@19520 | 123 |
by (cases x, simp_all) |
huffman@19520 | 124 |
|
huffman@40088 | 125 |
lemma FLIFT_mono: |
huffman@40088 | 126 |
"(\<And>x. f x \<sqsubseteq> g x) \<Longrightarrow> (FLIFT x. f x) \<sqsubseteq> (FLIFT x. g x)" |
huffman@40088 | 127 |
by (rule cfun_belowI, case_tac x, simp_all) |
huffman@40088 | 128 |
|
huffman@40088 | 129 |
lemma cont2cont_flift1 [simp, cont2cont]: |
huffman@40088 | 130 |
"\<lbrakk>\<And>y. cont (\<lambda>x. f x y)\<rbrakk> \<Longrightarrow> cont (\<lambda>x. FLIFT y. f x y)" |
huffman@40088 | 131 |
by (simp add: flift1_def cont2cont_LAM) |
huffman@40088 | 132 |
|
slotosch@2640 | 133 |
end |