src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy
author paulson <lp15@cam.ac.uk>
Tue Oct 27 15:17:02 2015 +0000 (2015-10-27)
changeset 61520 8f85bb443d33
parent 61518 ff12606337e9
child 61531 ab2e862263e7
permissions -rw-r--r--
Cauchy's integral formula, required lemmas, and a bit of reorganisation
lp15@56215
     1
(*  Author: John Harrison, Marco Maggesi, Graziano Gentili, Gianni Ciolli, Valentina Bruno
lp15@56215
     2
    Ported from "hol_light/Multivariate/canal.ml" by L C Paulson (2014)
lp15@56215
     3
*)
lp15@56215
     4
wenzelm@60420
     5
section \<open>Complex Analysis Basics\<close>
lp15@56215
     6
lp15@56215
     7
theory Complex_Analysis_Basics
lp15@56215
     8
imports  "~~/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space"
lp15@56215
     9
begin
lp15@56215
    10
lp15@59730
    11
lp15@59730
    12
lemma cmod_fact [simp]: "cmod (fact n) = fact n"
lp15@59730
    13
  by (metis norm_of_nat of_nat_fact)
lp15@59730
    14
wenzelm@60420
    15
subsection\<open>General lemmas\<close>
hoelzl@56370
    16
hoelzl@56370
    17
lemma has_derivative_mult_right:
hoelzl@56370
    18
  fixes c:: "'a :: real_normed_algebra"
hoelzl@56370
    19
  shows "((op * c) has_derivative (op * c)) F"
hoelzl@56370
    20
by (rule has_derivative_mult_right [OF has_derivative_id])
hoelzl@56370
    21
hoelzl@56381
    22
lemma has_derivative_of_real[derivative_intros, simp]: 
hoelzl@56370
    23
  "(f has_derivative f') F \<Longrightarrow> ((\<lambda>x. of_real (f x)) has_derivative (\<lambda>x. of_real (f' x))) F"
hoelzl@56370
    24
  using bounded_linear.has_derivative[OF bounded_linear_of_real] .
hoelzl@56370
    25
hoelzl@56370
    26
lemma has_vector_derivative_real_complex:
hoelzl@56370
    27
  "DERIV f (of_real a) :> f' \<Longrightarrow> ((\<lambda>x. f (of_real x)) has_vector_derivative f') (at a)"
hoelzl@56370
    28
  using has_derivative_compose[of of_real of_real a UNIV f "op * f'"]
hoelzl@56370
    29
  by (simp add: scaleR_conv_of_real ac_simps has_vector_derivative_def has_field_derivative_def)
lp15@56215
    30
lp15@56238
    31
lemma fact_cancel:
lp15@56238
    32
  fixes c :: "'a::real_field"
lp15@59730
    33
  shows "of_nat (Suc n) * c / (fact (Suc n)) = c / (fact n)"
hoelzl@56369
    34
  by (simp add: of_nat_mult del: of_nat_Suc times_nat.simps)
hoelzl@56889
    35
lp15@56215
    36
lemma linear_times:
hoelzl@56369
    37
  fixes c::"'a::real_algebra" shows "linear (\<lambda>x. c * x)"
lp15@56215
    38
  by (auto simp: linearI distrib_left)
lp15@56215
    39
lp15@56215
    40
lemma bilinear_times:
hoelzl@56369
    41
  fixes c::"'a::real_algebra" shows "bilinear (\<lambda>x y::'a. x*y)"
hoelzl@56369
    42
  by (auto simp: bilinear_def distrib_left distrib_right intro!: linearI)
lp15@56215
    43
lp15@56215
    44
lemma linear_cnj: "linear cnj"
hoelzl@56369
    45
  using bounded_linear.linear[OF bounded_linear_cnj] .
lp15@56215
    46
lp15@56215
    47
lemma tendsto_mult_left:
lp15@56215
    48
  fixes c::"'a::real_normed_algebra" 
lp15@56215
    49
  shows "(f ---> l) F \<Longrightarrow> ((\<lambda>x. c * (f x)) ---> c * l) F"
lp15@56215
    50
by (rule tendsto_mult [OF tendsto_const])
lp15@56215
    51
lp15@56215
    52
lemma tendsto_mult_right:
lp15@56215
    53
  fixes c::"'a::real_normed_algebra" 
lp15@56215
    54
  shows "(f ---> l) F \<Longrightarrow> ((\<lambda>x. (f x) * c) ---> l * c) F"
lp15@56215
    55
by (rule tendsto_mult [OF _ tendsto_const])
lp15@56215
    56
lp15@56215
    57
lemma tendsto_Re_upper:
lp15@56215
    58
  assumes "~ (trivial_limit F)" 
lp15@56215
    59
          "(f ---> l) F" 
lp15@56215
    60
          "eventually (\<lambda>x. Re(f x) \<le> b) F"
lp15@56215
    61
    shows  "Re(l) \<le> b"
lp15@56215
    62
  by (metis assms tendsto_le [OF _ tendsto_const]  tendsto_Re)
lp15@56215
    63
lp15@56215
    64
lemma tendsto_Re_lower:
lp15@56215
    65
  assumes "~ (trivial_limit F)" 
lp15@56215
    66
          "(f ---> l) F" 
lp15@56215
    67
          "eventually (\<lambda>x. b \<le> Re(f x)) F"
lp15@56215
    68
    shows  "b \<le> Re(l)"
lp15@56215
    69
  by (metis assms tendsto_le [OF _ _ tendsto_const]  tendsto_Re)
lp15@56215
    70
lp15@56215
    71
lemma tendsto_Im_upper:
lp15@56215
    72
  assumes "~ (trivial_limit F)" 
lp15@56215
    73
          "(f ---> l) F" 
lp15@56215
    74
          "eventually (\<lambda>x. Im(f x) \<le> b) F"
lp15@56215
    75
    shows  "Im(l) \<le> b"
lp15@56215
    76
  by (metis assms tendsto_le [OF _ tendsto_const]  tendsto_Im)
lp15@56215
    77
lp15@56215
    78
lemma tendsto_Im_lower:
lp15@56215
    79
  assumes "~ (trivial_limit F)" 
lp15@56215
    80
          "(f ---> l) F" 
lp15@56215
    81
          "eventually (\<lambda>x. b \<le> Im(f x)) F"
lp15@56215
    82
    shows  "b \<le> Im(l)"
lp15@56215
    83
  by (metis assms tendsto_le [OF _ _ tendsto_const]  tendsto_Im)
lp15@56215
    84
hoelzl@56370
    85
lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = op * 0"
hoelzl@56370
    86
  by auto
hoelzl@56370
    87
hoelzl@56370
    88
lemma lambda_one: "(\<lambda>x::'a::monoid_mult. x) = op * 1"
hoelzl@56370
    89
  by auto
hoelzl@56370
    90
lp15@56215
    91
lemma continuous_mult_left:
lp15@56215
    92
  fixes c::"'a::real_normed_algebra" 
lp15@56215
    93
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. c * f x)"
lp15@56215
    94
by (rule continuous_mult [OF continuous_const])
lp15@56215
    95
lp15@56215
    96
lemma continuous_mult_right:
lp15@56215
    97
  fixes c::"'a::real_normed_algebra" 
lp15@56215
    98
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x * c)"
lp15@56215
    99
by (rule continuous_mult [OF _ continuous_const])
lp15@56215
   100
lp15@56215
   101
lemma continuous_on_mult_left:
lp15@56215
   102
  fixes c::"'a::real_normed_algebra" 
lp15@56215
   103
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. c * f x)"
lp15@56215
   104
by (rule continuous_on_mult [OF continuous_on_const])
lp15@56215
   105
lp15@56215
   106
lemma continuous_on_mult_right:
lp15@56215
   107
  fixes c::"'a::real_normed_algebra" 
lp15@56215
   108
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x * c)"
lp15@56215
   109
by (rule continuous_on_mult [OF _ continuous_on_const])
lp15@56215
   110
hoelzl@56371
   111
lemma uniformly_continuous_on_cmul_right [continuous_intros]:
lp15@56215
   112
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
hoelzl@56332
   113
  shows "uniformly_continuous_on s f \<Longrightarrow> uniformly_continuous_on s (\<lambda>x. f x * c)"
hoelzl@56369
   114
  using bounded_linear.uniformly_continuous_on[OF bounded_linear_mult_left] . 
lp15@56215
   115
hoelzl@56371
   116
lemma uniformly_continuous_on_cmul_left[continuous_intros]:
lp15@56215
   117
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
lp15@56215
   118
  assumes "uniformly_continuous_on s f"
lp15@56215
   119
    shows "uniformly_continuous_on s (\<lambda>x. c * f x)"
lp15@56215
   120
by (metis assms bounded_linear.uniformly_continuous_on bounded_linear_mult_right)
lp15@56215
   121
lp15@56215
   122
lemma continuous_within_norm_id [continuous_intros]: "continuous (at x within S) norm"
lp15@56215
   123
  by (rule continuous_norm [OF continuous_ident])
lp15@56215
   124
lp15@56215
   125
lemma continuous_on_norm_id [continuous_intros]: "continuous_on S norm"
hoelzl@56369
   126
  by (intro continuous_on_id continuous_on_norm)
lp15@56215
   127
wenzelm@60420
   128
subsection\<open>DERIV stuff\<close>
lp15@56215
   129
lp15@56215
   130
lemma DERIV_zero_connected_constant:
lp15@56215
   131
  fixes f :: "'a::{real_normed_field,euclidean_space} \<Rightarrow> 'a"
lp15@56215
   132
  assumes "connected s"
lp15@56215
   133
      and "open s"
lp15@56215
   134
      and "finite k"
lp15@56215
   135
      and "continuous_on s f"
lp15@56215
   136
      and "\<forall>x\<in>(s - k). DERIV f x :> 0"
lp15@56215
   137
    obtains c where "\<And>x. x \<in> s \<Longrightarrow> f(x) = c"
lp15@56215
   138
using has_derivative_zero_connected_constant [OF assms(1-4)] assms
hoelzl@56369
   139
by (metis DERIV_const has_derivative_const Diff_iff at_within_open frechet_derivative_at has_field_derivative_def)
lp15@56215
   140
lp15@56215
   141
lemma DERIV_zero_constant:
hoelzl@56370
   142
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
lp15@56215
   143
  shows    "\<lbrakk>convex s;
lp15@56215
   144
             \<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)\<rbrakk> 
lp15@56215
   145
             \<Longrightarrow> \<exists>c. \<forall>x \<in> s. f(x) = c"
hoelzl@56370
   146
  by (auto simp: has_field_derivative_def lambda_zero intro: has_derivative_zero_constant)
lp15@56215
   147
lp15@56215
   148
lemma DERIV_zero_unique:
hoelzl@56370
   149
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
lp15@56215
   150
  assumes "convex s"
lp15@56215
   151
      and d0: "\<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)"
lp15@56215
   152
      and "a \<in> s"
lp15@56215
   153
      and "x \<in> s"
lp15@56215
   154
    shows "f x = f a"
hoelzl@56370
   155
  by (rule has_derivative_zero_unique [OF assms(1) _ assms(4,3)])
hoelzl@56332
   156
     (metis d0 has_field_derivative_imp_has_derivative lambda_zero)
lp15@56215
   157
lp15@56215
   158
lemma DERIV_zero_connected_unique:
hoelzl@56370
   159
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
lp15@56215
   160
  assumes "connected s"
lp15@56215
   161
      and "open s"
lp15@56215
   162
      and d0: "\<And>x. x\<in>s \<Longrightarrow> DERIV f x :> 0"
lp15@56215
   163
      and "a \<in> s"
lp15@56215
   164
      and "x \<in> s"
lp15@56215
   165
    shows "f x = f a" 
hoelzl@56370
   166
    by (rule has_derivative_zero_unique_connected [OF assms(2,1) _ assms(5,4)])
hoelzl@56370
   167
       (metis has_field_derivative_def lambda_zero d0)
lp15@56215
   168
lp15@56215
   169
lemma DERIV_transform_within:
lp15@56215
   170
  assumes "(f has_field_derivative f') (at a within s)"
lp15@56215
   171
      and "0 < d" "a \<in> s"
lp15@56215
   172
      and "\<And>x. x\<in>s \<Longrightarrow> dist x a < d \<Longrightarrow> f x = g x"
lp15@56215
   173
    shows "(g has_field_derivative f') (at a within s)"
lp15@56215
   174
  using assms unfolding has_field_derivative_def
hoelzl@56332
   175
  by (blast intro: has_derivative_transform_within)
lp15@56215
   176
lp15@56215
   177
lemma DERIV_transform_within_open:
lp15@56215
   178
  assumes "DERIV f a :> f'"
lp15@56215
   179
      and "open s" "a \<in> s"
lp15@56215
   180
      and "\<And>x. x\<in>s \<Longrightarrow> f x = g x"
lp15@56215
   181
    shows "DERIV g a :> f'"
lp15@56215
   182
  using assms unfolding has_field_derivative_def
lp15@56215
   183
by (metis has_derivative_transform_within_open)
lp15@56215
   184
lp15@56215
   185
lemma DERIV_transform_at:
lp15@56215
   186
  assumes "DERIV f a :> f'"
lp15@56215
   187
      and "0 < d"
lp15@56215
   188
      and "\<And>x. dist x a < d \<Longrightarrow> f x = g x"
lp15@56215
   189
    shows "DERIV g a :> f'"
lp15@56215
   190
  by (blast intro: assms DERIV_transform_within)
lp15@56215
   191
lp15@59615
   192
(*generalising DERIV_isconst_all, which requires type real (using the ordering)*)
lp15@59615
   193
lemma DERIV_zero_UNIV_unique:
lp15@59615
   194
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
lp15@59615
   195
  shows "(\<And>x. DERIV f x :> 0) \<Longrightarrow> f x = f a" 
lp15@59615
   196
by (metis DERIV_zero_unique UNIV_I assms convex_UNIV)
lp15@59615
   197
wenzelm@60420
   198
subsection \<open>Some limit theorems about real part of real series etc.\<close>
hoelzl@56370
   199
hoelzl@56370
   200
(*MOVE? But not to Finite_Cartesian_Product*)
hoelzl@56370
   201
lemma sums_vec_nth :
hoelzl@56370
   202
  assumes "f sums a"
hoelzl@56370
   203
  shows "(\<lambda>x. f x $ i) sums a $ i"
hoelzl@56370
   204
using assms unfolding sums_def
hoelzl@56370
   205
by (auto dest: tendsto_vec_nth [where i=i])
hoelzl@56370
   206
hoelzl@56370
   207
lemma summable_vec_nth :
hoelzl@56370
   208
  assumes "summable f"
hoelzl@56370
   209
  shows "summable (\<lambda>x. f x $ i)"
hoelzl@56370
   210
using assms unfolding summable_def
hoelzl@56370
   211
by (blast intro: sums_vec_nth)
hoelzl@56370
   212
wenzelm@60420
   213
subsection \<open>Complex number lemmas\<close>
hoelzl@56370
   214
hoelzl@56370
   215
lemma
hoelzl@56370
   216
  shows open_halfspace_Re_lt: "open {z. Re(z) < b}"
hoelzl@56370
   217
    and open_halfspace_Re_gt: "open {z. Re(z) > b}"
hoelzl@56370
   218
    and closed_halfspace_Re_ge: "closed {z. Re(z) \<ge> b}"
hoelzl@56370
   219
    and closed_halfspace_Re_le: "closed {z. Re(z) \<le> b}"
hoelzl@56370
   220
    and closed_halfspace_Re_eq: "closed {z. Re(z) = b}"
hoelzl@56370
   221
    and open_halfspace_Im_lt: "open {z. Im(z) < b}"
hoelzl@56370
   222
    and open_halfspace_Im_gt: "open {z. Im(z) > b}"
hoelzl@56370
   223
    and closed_halfspace_Im_ge: "closed {z. Im(z) \<ge> b}"
hoelzl@56370
   224
    and closed_halfspace_Im_le: "closed {z. Im(z) \<le> b}"
hoelzl@56370
   225
    and closed_halfspace_Im_eq: "closed {z. Im(z) = b}"
hoelzl@56370
   226
  by (intro open_Collect_less closed_Collect_le closed_Collect_eq isCont_Re
lp15@60150
   227
            isCont_Im continuous_ident continuous_const)+
hoelzl@56370
   228
wenzelm@61070
   229
lemma closed_complex_Reals: "closed (\<real> :: complex set)"
hoelzl@56370
   230
proof -
wenzelm@61070
   231
  have "(\<real> :: complex set) = {z. Im z = 0}"
hoelzl@56370
   232
    by (auto simp: complex_is_Real_iff)
hoelzl@56370
   233
  then show ?thesis
hoelzl@56370
   234
    by (metis closed_halfspace_Im_eq)
hoelzl@56370
   235
qed
hoelzl@56370
   236
lp15@60017
   237
lemma closed_Real_halfspace_Re_le: "closed (\<real> \<inter> {w. Re w \<le> x})"
lp15@60017
   238
  by (simp add: closed_Int closed_complex_Reals closed_halfspace_Re_le)
lp15@60017
   239
lp15@60017
   240
lemma closed_Real_halfspace_Re_ge: "closed (\<real> \<inter> {w. x \<le> Re(w)})"
lp15@60017
   241
  using closed_halfspace_Re_ge
lp15@60017
   242
  by (simp add: closed_Int closed_complex_Reals)
lp15@60017
   243
lp15@60017
   244
lemma closed_real_abs_le: "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
lp15@60017
   245
proof -
lp15@60017
   246
  have "{w \<in> \<real>. \<bar>Re w\<bar> \<le> r} = (\<real> \<inter> {w. Re w \<le> r}) \<inter> (\<real> \<inter> {w. Re w \<ge> -r})"
lp15@60017
   247
    by auto
lp15@60017
   248
  then show "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
lp15@60017
   249
    by (simp add: closed_Int closed_Real_halfspace_Re_ge closed_Real_halfspace_Re_le)
lp15@60017
   250
qed
lp15@60017
   251
hoelzl@56370
   252
lemma real_lim:
hoelzl@56370
   253
  fixes l::complex
hoelzl@56370
   254
  assumes "(f ---> l) F" and "~(trivial_limit F)" and "eventually P F" and "\<And>a. P a \<Longrightarrow> f a \<in> \<real>"
hoelzl@56370
   255
  shows  "l \<in> \<real>"
hoelzl@56370
   256
proof (rule Lim_in_closed_set[OF closed_complex_Reals _ assms(2,1)])
hoelzl@56370
   257
  show "eventually (\<lambda>x. f x \<in> \<real>) F"
hoelzl@56370
   258
    using assms(3, 4) by (auto intro: eventually_mono)
hoelzl@56370
   259
qed
hoelzl@56370
   260
hoelzl@56370
   261
lemma real_lim_sequentially:
hoelzl@56370
   262
  fixes l::complex
hoelzl@56370
   263
  shows "(f ---> l) sequentially \<Longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>"
hoelzl@56370
   264
by (rule real_lim [where F=sequentially]) (auto simp: eventually_sequentially)
hoelzl@56370
   265
hoelzl@56370
   266
lemma real_series: 
hoelzl@56370
   267
  fixes l::complex
hoelzl@56370
   268
  shows "f sums l \<Longrightarrow> (\<And>n. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>"
hoelzl@56370
   269
unfolding sums_def
hoelzl@56370
   270
by (metis real_lim_sequentially setsum_in_Reals)
hoelzl@56370
   271
hoelzl@56370
   272
lemma Lim_null_comparison_Re:
hoelzl@56889
   273
  assumes "eventually (\<lambda>x. norm(f x) \<le> Re(g x)) F" "(g ---> 0) F" shows "(f ---> 0) F"
hoelzl@56889
   274
  by (rule Lim_null_comparison[OF assms(1)] tendsto_eq_intros assms(2))+ simp
lp15@56215
   275
wenzelm@60420
   276
subsection\<open>Holomorphic functions\<close>
lp15@56215
   277
lp15@56215
   278
definition complex_differentiable :: "[complex \<Rightarrow> complex, complex filter] \<Rightarrow> bool"
lp15@56215
   279
           (infixr "(complex'_differentiable)" 50)  
lp15@56215
   280
  where "f complex_differentiable F \<equiv> \<exists>f'. (f has_field_derivative f') F"
lp15@56215
   281
hoelzl@56370
   282
lemma complex_differentiable_imp_continuous_at:
hoelzl@56370
   283
    "f complex_differentiable (at x within s) \<Longrightarrow> continuous (at x within s) f"
lp15@56215
   284
  by (metis DERIV_continuous complex_differentiable_def)
lp15@56215
   285
lp15@56215
   286
lemma complex_differentiable_within_subset:
lp15@56215
   287
    "\<lbrakk>f complex_differentiable (at x within s); t \<subseteq> s\<rbrakk>
lp15@56215
   288
     \<Longrightarrow> f complex_differentiable (at x within t)"
hoelzl@56370
   289
  by (metis DERIV_subset complex_differentiable_def)
lp15@56215
   290
lp15@56215
   291
lemma complex_differentiable_at_within:
lp15@56215
   292
    "\<lbrakk>f complex_differentiable (at x)\<rbrakk>
lp15@56215
   293
     \<Longrightarrow> f complex_differentiable (at x within s)"
lp15@56215
   294
  unfolding complex_differentiable_def
lp15@56215
   295
  by (metis DERIV_subset top_greatest)
lp15@56215
   296
lp15@61520
   297
lemma complex_differentiable_linear [derivative_intros]: "(op * c) complex_differentiable F"
lp15@56215
   298
proof -
hoelzl@56370
   299
  show ?thesis
hoelzl@56370
   300
    unfolding complex_differentiable_def has_field_derivative_def mult_commute_abs
lp15@56215
   301
    by (force intro: has_derivative_mult_right)
lp15@56215
   302
qed
lp15@56215
   303
lp15@61520
   304
lemma complex_differentiable_const [derivative_intros]: "(\<lambda>z. c) complex_differentiable F"
lp15@56215
   305
  unfolding complex_differentiable_def has_field_derivative_def
hoelzl@56369
   306
  by (rule exI [where x=0])
hoelzl@56369
   307
     (metis has_derivative_const lambda_zero) 
lp15@56215
   308
lp15@61520
   309
lemma complex_differentiable_ident [derivative_intros]: "(\<lambda>z. z) complex_differentiable F"
lp15@56215
   310
  unfolding complex_differentiable_def has_field_derivative_def
hoelzl@56369
   311
  by (rule exI [where x=1])
hoelzl@56369
   312
     (simp add: lambda_one [symmetric])
lp15@56215
   313
lp15@61520
   314
lemma complex_differentiable_id [derivative_intros]: "id complex_differentiable F"
hoelzl@56370
   315
  unfolding id_def by (rule complex_differentiable_ident)
hoelzl@56370
   316
lp15@61520
   317
lemma complex_differentiable_minus [derivative_intros]:
hoelzl@56370
   318
  "f complex_differentiable F \<Longrightarrow> (\<lambda>z. - (f z)) complex_differentiable F"
lp15@56215
   319
  using assms unfolding complex_differentiable_def
lp15@56215
   320
  by (metis field_differentiable_minus)
lp15@56215
   321
lp15@61520
   322
lemma complex_differentiable_add [derivative_intros]:
lp15@56215
   323
  assumes "f complex_differentiable F" "g complex_differentiable F"
lp15@56215
   324
    shows "(\<lambda>z. f z + g z) complex_differentiable F"
lp15@56215
   325
  using assms unfolding complex_differentiable_def
lp15@56215
   326
  by (metis field_differentiable_add)
lp15@56215
   327
lp15@61520
   328
lemma complex_differentiable_setsum [derivative_intros]:
hoelzl@56370
   329
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) complex_differentiable F) \<Longrightarrow> (\<lambda>z. \<Sum>i\<in>I. f i z) complex_differentiable F"
hoelzl@56370
   330
  by (induct I rule: infinite_finite_induct)
hoelzl@56370
   331
     (auto intro: complex_differentiable_add complex_differentiable_const)
hoelzl@56370
   332
lp15@61520
   333
lemma complex_differentiable_diff [derivative_intros]:
lp15@56215
   334
  assumes "f complex_differentiable F" "g complex_differentiable F"
lp15@56215
   335
    shows "(\<lambda>z. f z - g z) complex_differentiable F"
lp15@56215
   336
  using assms unfolding complex_differentiable_def
lp15@56215
   337
  by (metis field_differentiable_diff)
lp15@56215
   338
lp15@61520
   339
lemma complex_differentiable_inverse [derivative_intros]:
lp15@56215
   340
  assumes "f complex_differentiable (at a within s)" "f a \<noteq> 0"
lp15@56215
   341
  shows "(\<lambda>z. inverse (f z)) complex_differentiable (at a within s)"
lp15@56215
   342
  using assms unfolding complex_differentiable_def
lp15@56215
   343
  by (metis DERIV_inverse_fun)
lp15@56215
   344
lp15@61520
   345
lemma complex_differentiable_mult [derivative_intros]:
lp15@56215
   346
  assumes "f complex_differentiable (at a within s)" 
lp15@56215
   347
          "g complex_differentiable (at a within s)"
lp15@56215
   348
    shows "(\<lambda>z. f z * g z) complex_differentiable (at a within s)"
lp15@56215
   349
  using assms unfolding complex_differentiable_def
lp15@56215
   350
  by (metis DERIV_mult [of f _ a s g])
lp15@56215
   351
  
lp15@61520
   352
lemma complex_differentiable_divide [derivative_intros]:
lp15@56215
   353
  assumes "f complex_differentiable (at a within s)" 
lp15@56215
   354
          "g complex_differentiable (at a within s)"
lp15@56215
   355
          "g a \<noteq> 0"
lp15@56215
   356
    shows "(\<lambda>z. f z / g z) complex_differentiable (at a within s)"
lp15@56215
   357
  using assms unfolding complex_differentiable_def
lp15@56215
   358
  by (metis DERIV_divide [of f _ a s g])
lp15@56215
   359
lp15@61520
   360
lemma complex_differentiable_power [derivative_intros]:
lp15@56215
   361
  assumes "f complex_differentiable (at a within s)" 
lp15@56215
   362
    shows "(\<lambda>z. f z ^ n) complex_differentiable (at a within s)"
lp15@56215
   363
  using assms unfolding complex_differentiable_def
lp15@56215
   364
  by (metis DERIV_power)
lp15@56215
   365
lp15@56215
   366
lemma complex_differentiable_transform_within:
lp15@56215
   367
  "0 < d \<Longrightarrow>
lp15@56215
   368
        x \<in> s \<Longrightarrow>
lp15@56215
   369
        (\<And>x'. x' \<in> s \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x') \<Longrightarrow>
lp15@56215
   370
        f complex_differentiable (at x within s)
lp15@56215
   371
        \<Longrightarrow> g complex_differentiable (at x within s)"
lp15@56215
   372
  unfolding complex_differentiable_def has_field_derivative_def
lp15@56215
   373
  by (blast intro: has_derivative_transform_within)
lp15@56215
   374
lp15@56215
   375
lemma complex_differentiable_compose_within:
lp15@56215
   376
  assumes "f complex_differentiable (at a within s)" 
lp15@56215
   377
          "g complex_differentiable (at (f a) within f`s)"
lp15@56215
   378
    shows "(g o f) complex_differentiable (at a within s)"
lp15@56215
   379
  using assms unfolding complex_differentiable_def
lp15@56215
   380
  by (metis DERIV_image_chain)
lp15@56215
   381
hoelzl@56370
   382
lemma complex_differentiable_compose:
hoelzl@56370
   383
  "f complex_differentiable at z \<Longrightarrow> g complex_differentiable at (f z)
hoelzl@56370
   384
          \<Longrightarrow> (g o f) complex_differentiable at z"
hoelzl@56370
   385
by (metis complex_differentiable_at_within complex_differentiable_compose_within)
hoelzl@56370
   386
lp15@56215
   387
lemma complex_differentiable_within_open:
lp15@56215
   388
     "\<lbrakk>a \<in> s; open s\<rbrakk> \<Longrightarrow> f complex_differentiable at a within s \<longleftrightarrow> 
lp15@56215
   389
                          f complex_differentiable at a"
lp15@56215
   390
  unfolding complex_differentiable_def
lp15@56215
   391
  by (metis at_within_open)
lp15@56215
   392
wenzelm@60420
   393
subsection\<open>Caratheodory characterization.\<close>
lp15@56215
   394
lp15@56215
   395
lemma complex_differentiable_caratheodory_at:
lp15@56215
   396
  "f complex_differentiable (at z) \<longleftrightarrow>
lp15@56215
   397
         (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z) g)"
lp15@56215
   398
  using CARAT_DERIV [of f]
lp15@56215
   399
  by (simp add: complex_differentiable_def has_field_derivative_def)
lp15@56215
   400
lp15@56215
   401
lemma complex_differentiable_caratheodory_within:
lp15@56215
   402
  "f complex_differentiable (at z within s) \<longleftrightarrow>
lp15@56215
   403
         (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z within s) g)"
lp15@56215
   404
  using DERIV_caratheodory_within [of f]
lp15@56215
   405
  by (simp add: complex_differentiable_def has_field_derivative_def)
lp15@56215
   406
wenzelm@60420
   407
subsection\<open>Holomorphic\<close>
hoelzl@56370
   408
hoelzl@56370
   409
definition holomorphic_on :: "[complex \<Rightarrow> complex, complex set] \<Rightarrow> bool"
hoelzl@56370
   410
           (infixl "(holomorphic'_on)" 50)
hoelzl@56370
   411
  where "f holomorphic_on s \<equiv> \<forall>x\<in>s. f complex_differentiable (at x within s)"
lp15@61520
   412
 
lp15@61520
   413
named_theorems holomorphic_intros "structural introduction rules for holomorphic_on"
lp15@61520
   414
lp15@61520
   415
lemma holomorphic_on_empty [holomorphic_intros]: "f holomorphic_on {}"
hoelzl@56370
   416
  by (simp add: holomorphic_on_def)
hoelzl@56370
   417
hoelzl@56370
   418
lemma holomorphic_on_open:
hoelzl@56370
   419
    "open s \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> (\<forall>x \<in> s. \<exists>f'. DERIV f x :> f')"
hoelzl@56370
   420
  by (auto simp: holomorphic_on_def complex_differentiable_def has_field_derivative_def at_within_open [of _ s])
hoelzl@56370
   421
hoelzl@56370
   422
lemma holomorphic_on_imp_continuous_on: 
hoelzl@56370
   423
    "f holomorphic_on s \<Longrightarrow> continuous_on s f"
hoelzl@56370
   424
  by (metis complex_differentiable_imp_continuous_at continuous_on_eq_continuous_within holomorphic_on_def) 
hoelzl@56370
   425
hoelzl@56370
   426
lemma holomorphic_on_subset:
hoelzl@56370
   427
    "f holomorphic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f holomorphic_on t"
hoelzl@56370
   428
  unfolding holomorphic_on_def
hoelzl@56370
   429
  by (metis complex_differentiable_within_subset subsetD)
hoelzl@56370
   430
hoelzl@56370
   431
lemma holomorphic_transform: "\<lbrakk>f holomorphic_on s; \<And>x. x \<in> s \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> g holomorphic_on s"
hoelzl@56370
   432
  by (metis complex_differentiable_transform_within linordered_field_no_ub holomorphic_on_def)
hoelzl@56370
   433
hoelzl@56370
   434
lemma holomorphic_cong: "s = t ==> (\<And>x. x \<in> s \<Longrightarrow> f x = g x) \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> g holomorphic_on t"
hoelzl@56370
   435
  by (metis holomorphic_transform)
hoelzl@56370
   436
lp15@61520
   437
lemma holomorphic_on_linear [holomorphic_intros]: "(op * c) holomorphic_on s"
hoelzl@56370
   438
  unfolding holomorphic_on_def by (metis complex_differentiable_linear)
hoelzl@56370
   439
lp15@61520
   440
lemma holomorphic_on_const [holomorphic_intros]: "(\<lambda>z. c) holomorphic_on s"
hoelzl@56370
   441
  unfolding holomorphic_on_def by (metis complex_differentiable_const)
hoelzl@56370
   442
lp15@61520
   443
lemma holomorphic_on_ident [holomorphic_intros]: "(\<lambda>x. x) holomorphic_on s"
hoelzl@56370
   444
  unfolding holomorphic_on_def by (metis complex_differentiable_ident)
hoelzl@56370
   445
lp15@61520
   446
lemma holomorphic_on_id [holomorphic_intros]: "id holomorphic_on s"
hoelzl@56370
   447
  unfolding id_def by (rule holomorphic_on_ident)
hoelzl@56370
   448
hoelzl@56370
   449
lemma holomorphic_on_compose:
hoelzl@56370
   450
  "f holomorphic_on s \<Longrightarrow> g holomorphic_on (f ` s) \<Longrightarrow> (g o f) holomorphic_on s"
hoelzl@56370
   451
  using complex_differentiable_compose_within[of f _ s g]
hoelzl@56370
   452
  by (auto simp: holomorphic_on_def)
hoelzl@56370
   453
hoelzl@56370
   454
lemma holomorphic_on_compose_gen:
hoelzl@56370
   455
  "f holomorphic_on s \<Longrightarrow> g holomorphic_on t \<Longrightarrow> f ` s \<subseteq> t \<Longrightarrow> (g o f) holomorphic_on s"
hoelzl@56370
   456
  by (metis holomorphic_on_compose holomorphic_on_subset)
hoelzl@56370
   457
lp15@61520
   458
lemma holomorphic_on_minus [holomorphic_intros]: "f holomorphic_on s \<Longrightarrow> (\<lambda>z. -(f z)) holomorphic_on s"
hoelzl@56370
   459
  by (metis complex_differentiable_minus holomorphic_on_def)
hoelzl@56370
   460
lp15@61520
   461
lemma holomorphic_on_add [holomorphic_intros]:
hoelzl@56370
   462
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z + g z) holomorphic_on s"
hoelzl@56370
   463
  unfolding holomorphic_on_def by (metis complex_differentiable_add)
hoelzl@56370
   464
lp15@61520
   465
lemma holomorphic_on_diff [holomorphic_intros]:
hoelzl@56370
   466
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z - g z) holomorphic_on s"
hoelzl@56370
   467
  unfolding holomorphic_on_def by (metis complex_differentiable_diff)
hoelzl@56370
   468
lp15@61520
   469
lemma holomorphic_on_mult [holomorphic_intros]:
hoelzl@56370
   470
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z * g z) holomorphic_on s"
hoelzl@56370
   471
  unfolding holomorphic_on_def by (metis complex_differentiable_mult)
hoelzl@56370
   472
lp15@61520
   473
lemma holomorphic_on_inverse [holomorphic_intros]:
hoelzl@56370
   474
  "\<lbrakk>f holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. inverse (f z)) holomorphic_on s"
hoelzl@56370
   475
  unfolding holomorphic_on_def by (metis complex_differentiable_inverse)
hoelzl@56370
   476
lp15@61520
   477
lemma holomorphic_on_divide [holomorphic_intros]:
hoelzl@56370
   478
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. f z / g z) holomorphic_on s"
hoelzl@56370
   479
  unfolding holomorphic_on_def by (metis complex_differentiable_divide)
hoelzl@56370
   480
lp15@61520
   481
lemma holomorphic_on_power [holomorphic_intros]:
hoelzl@56370
   482
  "f holomorphic_on s \<Longrightarrow> (\<lambda>z. (f z)^n) holomorphic_on s"
hoelzl@56370
   483
  unfolding holomorphic_on_def by (metis complex_differentiable_power)
hoelzl@56370
   484
lp15@61520
   485
lemma holomorphic_on_setsum [holomorphic_intros]:
hoelzl@56370
   486
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) holomorphic_on s) \<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) holomorphic_on s"
hoelzl@56370
   487
  unfolding holomorphic_on_def by (metis complex_differentiable_setsum)
hoelzl@56370
   488
hoelzl@56370
   489
lemma DERIV_deriv_iff_complex_differentiable:
hoelzl@56370
   490
  "DERIV f x :> deriv f x \<longleftrightarrow> f complex_differentiable at x"
hoelzl@56370
   491
  unfolding complex_differentiable_def by (metis DERIV_imp_deriv)
hoelzl@56370
   492
hoelzl@56370
   493
lemma complex_derivative_chain:
hoelzl@56370
   494
  "f complex_differentiable at x \<Longrightarrow> g complex_differentiable at (f x)
hoelzl@56370
   495
    \<Longrightarrow> deriv (g o f) x = deriv g (f x) * deriv f x"
hoelzl@56370
   496
  by (metis DERIV_deriv_iff_complex_differentiable DERIV_chain DERIV_imp_deriv)
hoelzl@56370
   497
hoelzl@56370
   498
lemma complex_derivative_linear: "deriv (\<lambda>w. c * w) = (\<lambda>z. c)"
hoelzl@56370
   499
  by (metis DERIV_imp_deriv DERIV_cmult_Id)
hoelzl@56370
   500
hoelzl@56370
   501
lemma complex_derivative_ident: "deriv (\<lambda>w. w) = (\<lambda>z. 1)"
hoelzl@56370
   502
  by (metis DERIV_imp_deriv DERIV_ident)
hoelzl@56370
   503
hoelzl@56370
   504
lemma complex_derivative_const: "deriv (\<lambda>w. c) = (\<lambda>z. 0)"
hoelzl@56370
   505
  by (metis DERIV_imp_deriv DERIV_const)
hoelzl@56370
   506
hoelzl@56370
   507
lemma complex_derivative_add:
hoelzl@56370
   508
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>  
hoelzl@56370
   509
   \<Longrightarrow> deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
hoelzl@56370
   510
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
hoelzl@56381
   511
  by (auto intro!: DERIV_imp_deriv derivative_intros)
hoelzl@56370
   512
hoelzl@56370
   513
lemma complex_derivative_diff:
hoelzl@56370
   514
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>  
hoelzl@56370
   515
   \<Longrightarrow> deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
hoelzl@56370
   516
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
hoelzl@56381
   517
  by (auto intro!: DERIV_imp_deriv derivative_intros)
hoelzl@56370
   518
hoelzl@56370
   519
lemma complex_derivative_mult:
hoelzl@56370
   520
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>  
hoelzl@56370
   521
   \<Longrightarrow> deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z"
hoelzl@56370
   522
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
hoelzl@56381
   523
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
hoelzl@56370
   524
hoelzl@56370
   525
lemma complex_derivative_cmult:
hoelzl@56370
   526
  "f complex_differentiable at z \<Longrightarrow> deriv (\<lambda>w. c * f w) z = c * deriv f z"
hoelzl@56370
   527
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
hoelzl@56381
   528
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
hoelzl@56370
   529
hoelzl@56370
   530
lemma complex_derivative_cmult_right:
hoelzl@56370
   531
  "f complex_differentiable at z \<Longrightarrow> deriv (\<lambda>w. f w * c) z = deriv f z * c"
hoelzl@56370
   532
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
hoelzl@56381
   533
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
hoelzl@56370
   534
hoelzl@56370
   535
lemma complex_derivative_transform_within_open:
hoelzl@56370
   536
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s; open s; z \<in> s; \<And>w. w \<in> s \<Longrightarrow> f w = g w\<rbrakk> 
hoelzl@56370
   537
   \<Longrightarrow> deriv f z = deriv g z"
hoelzl@56370
   538
  unfolding holomorphic_on_def
hoelzl@56370
   539
  by (rule DERIV_imp_deriv)
hoelzl@56370
   540
     (metis DERIV_deriv_iff_complex_differentiable DERIV_transform_within_open at_within_open)
hoelzl@56370
   541
hoelzl@56370
   542
lemma complex_derivative_compose_linear:
hoelzl@56370
   543
  "f complex_differentiable at (c * z) \<Longrightarrow> deriv (\<lambda>w. f (c * w)) z = c * deriv f (c * z)"
hoelzl@56370
   544
apply (rule DERIV_imp_deriv)
hoelzl@56370
   545
apply (simp add: DERIV_deriv_iff_complex_differentiable [symmetric])
haftmann@59554
   546
apply (drule DERIV_chain' [of "times c" c z UNIV f "deriv f (c * z)", OF DERIV_cmult_Id])
haftmann@59554
   547
apply (simp add: algebra_simps)
hoelzl@56370
   548
done
hoelzl@56370
   549
wenzelm@60420
   550
subsection\<open>Analyticity on a set\<close>
lp15@56215
   551
lp15@56215
   552
definition analytic_on (infixl "(analytic'_on)" 50)  
lp15@56215
   553
  where
lp15@56215
   554
   "f analytic_on s \<equiv> \<forall>x \<in> s. \<exists>e. 0 < e \<and> f holomorphic_on (ball x e)"
lp15@56215
   555
hoelzl@56370
   556
lemma analytic_imp_holomorphic: "f analytic_on s \<Longrightarrow> f holomorphic_on s"
hoelzl@56370
   557
  by (simp add: at_within_open [OF _ open_ball] analytic_on_def holomorphic_on_def)
hoelzl@56370
   558
     (metis centre_in_ball complex_differentiable_at_within)
lp15@56215
   559
hoelzl@56370
   560
lemma analytic_on_open: "open s \<Longrightarrow> f analytic_on s \<longleftrightarrow> f holomorphic_on s"
lp15@56215
   561
apply (auto simp: analytic_imp_holomorphic)
lp15@56215
   562
apply (auto simp: analytic_on_def holomorphic_on_def)
lp15@56215
   563
by (metis holomorphic_on_def holomorphic_on_subset open_contains_ball)
lp15@56215
   564
lp15@56215
   565
lemma analytic_on_imp_differentiable_at:
lp15@56215
   566
  "f analytic_on s \<Longrightarrow> x \<in> s \<Longrightarrow> f complex_differentiable (at x)"
hoelzl@56370
   567
 apply (auto simp: analytic_on_def holomorphic_on_def)
lp15@56215
   568
by (metis Topology_Euclidean_Space.open_ball centre_in_ball complex_differentiable_within_open)
lp15@56215
   569
hoelzl@56370
   570
lemma analytic_on_subset: "f analytic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f analytic_on t"
lp15@56215
   571
  by (auto simp: analytic_on_def)
lp15@56215
   572
hoelzl@56370
   573
lemma analytic_on_Un: "f analytic_on (s \<union> t) \<longleftrightarrow> f analytic_on s \<and> f analytic_on t"
lp15@56215
   574
  by (auto simp: analytic_on_def)
lp15@56215
   575
wenzelm@60585
   576
lemma analytic_on_Union: "f analytic_on (\<Union>s) \<longleftrightarrow> (\<forall>t \<in> s. f analytic_on t)"
hoelzl@56370
   577
  by (auto simp: analytic_on_def)
hoelzl@56370
   578
hoelzl@56370
   579
lemma analytic_on_UN: "f analytic_on (\<Union>i\<in>I. s i) \<longleftrightarrow> (\<forall>i\<in>I. f analytic_on (s i))"
lp15@56215
   580
  by (auto simp: analytic_on_def)
lp15@56215
   581
  
lp15@56215
   582
lemma analytic_on_holomorphic:
lp15@56215
   583
  "f analytic_on s \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f holomorphic_on t)"
lp15@56215
   584
  (is "?lhs = ?rhs")
lp15@56215
   585
proof -
lp15@56215
   586
  have "?lhs \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t)"
lp15@56215
   587
  proof safe
lp15@56215
   588
    assume "f analytic_on s"
lp15@56215
   589
    then show "\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t"
lp15@56215
   590
      apply (simp add: analytic_on_def)
lp15@56215
   591
      apply (rule exI [where x="\<Union>{u. open u \<and> f analytic_on u}"], auto)
lp15@56215
   592
      apply (metis Topology_Euclidean_Space.open_ball analytic_on_open centre_in_ball)
lp15@56215
   593
      by (metis analytic_on_def)
lp15@56215
   594
  next
lp15@56215
   595
    fix t
lp15@56215
   596
    assume "open t" "s \<subseteq> t" "f analytic_on t" 
lp15@56215
   597
    then show "f analytic_on s"
lp15@56215
   598
        by (metis analytic_on_subset)
lp15@56215
   599
  qed
lp15@56215
   600
  also have "... \<longleftrightarrow> ?rhs"
lp15@56215
   601
    by (auto simp: analytic_on_open)
lp15@56215
   602
  finally show ?thesis .
lp15@56215
   603
qed
lp15@56215
   604
lp15@56215
   605
lemma analytic_on_linear: "(op * c) analytic_on s"
hoelzl@56370
   606
  by (auto simp add: analytic_on_holomorphic holomorphic_on_linear)
lp15@56215
   607
lp15@56215
   608
lemma analytic_on_const: "(\<lambda>z. c) analytic_on s"
hoelzl@56370
   609
  by (metis analytic_on_def holomorphic_on_const zero_less_one)
hoelzl@56370
   610
hoelzl@56370
   611
lemma analytic_on_ident: "(\<lambda>x. x) analytic_on s"
hoelzl@56370
   612
  by (simp add: analytic_on_def holomorphic_on_ident gt_ex)
lp15@56215
   613
lp15@56215
   614
lemma analytic_on_id: "id analytic_on s"
hoelzl@56370
   615
  unfolding id_def by (rule analytic_on_ident)
lp15@56215
   616
lp15@56215
   617
lemma analytic_on_compose:
lp15@56215
   618
  assumes f: "f analytic_on s"
lp15@56215
   619
      and g: "g analytic_on (f ` s)"
lp15@56215
   620
    shows "(g o f) analytic_on s"
lp15@56215
   621
unfolding analytic_on_def
lp15@56215
   622
proof (intro ballI)
lp15@56215
   623
  fix x
lp15@56215
   624
  assume x: "x \<in> s"
lp15@56215
   625
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball x e" using f
lp15@56215
   626
    by (metis analytic_on_def)
lp15@56215
   627
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball (f x) e'" using g
lp15@56215
   628
    by (metis analytic_on_def g image_eqI x) 
lp15@56215
   629
  have "isCont f x"
lp15@56215
   630
    by (metis analytic_on_imp_differentiable_at complex_differentiable_imp_continuous_at f x)
lp15@56215
   631
  with e' obtain d where d: "0 < d" and fd: "f ` ball x d \<subseteq> ball (f x) e'"
lp15@56215
   632
     by (auto simp: continuous_at_ball)
lp15@56215
   633
  have "g \<circ> f holomorphic_on ball x (min d e)" 
lp15@56215
   634
    apply (rule holomorphic_on_compose)
lp15@56215
   635
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   636
    by (metis fd gh holomorphic_on_subset image_mono min.cobounded1 subset_ball)
lp15@56215
   637
  then show "\<exists>e>0. g \<circ> f holomorphic_on ball x e"
lp15@56215
   638
    by (metis d e min_less_iff_conj) 
lp15@56215
   639
qed
lp15@56215
   640
lp15@56215
   641
lemma analytic_on_compose_gen:
lp15@56215
   642
  "f analytic_on s \<Longrightarrow> g analytic_on t \<Longrightarrow> (\<And>z. z \<in> s \<Longrightarrow> f z \<in> t)
lp15@56215
   643
             \<Longrightarrow> g o f analytic_on s"
lp15@56215
   644
by (metis analytic_on_compose analytic_on_subset image_subset_iff)
lp15@56215
   645
lp15@56215
   646
lemma analytic_on_neg:
lp15@56215
   647
  "f analytic_on s \<Longrightarrow> (\<lambda>z. -(f z)) analytic_on s"
lp15@56215
   648
by (metis analytic_on_holomorphic holomorphic_on_minus)
lp15@56215
   649
lp15@56215
   650
lemma analytic_on_add:
lp15@56215
   651
  assumes f: "f analytic_on s"
lp15@56215
   652
      and g: "g analytic_on s"
lp15@56215
   653
    shows "(\<lambda>z. f z + g z) analytic_on s"
lp15@56215
   654
unfolding analytic_on_def
lp15@56215
   655
proof (intro ballI)
lp15@56215
   656
  fix z
lp15@56215
   657
  assume z: "z \<in> s"
lp15@56215
   658
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
lp15@56215
   659
    by (metis analytic_on_def)
lp15@56215
   660
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
lp15@56215
   661
    by (metis analytic_on_def g z) 
lp15@56215
   662
  have "(\<lambda>z. f z + g z) holomorphic_on ball z (min e e')" 
lp15@56215
   663
    apply (rule holomorphic_on_add) 
lp15@56215
   664
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   665
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   666
  then show "\<exists>e>0. (\<lambda>z. f z + g z) holomorphic_on ball z e"
lp15@56215
   667
    by (metis e e' min_less_iff_conj)
lp15@56215
   668
qed
lp15@56215
   669
lp15@56215
   670
lemma analytic_on_diff:
lp15@56215
   671
  assumes f: "f analytic_on s"
lp15@56215
   672
      and g: "g analytic_on s"
lp15@56215
   673
    shows "(\<lambda>z. f z - g z) analytic_on s"
lp15@56215
   674
unfolding analytic_on_def
lp15@56215
   675
proof (intro ballI)
lp15@56215
   676
  fix z
lp15@56215
   677
  assume z: "z \<in> s"
lp15@56215
   678
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
lp15@56215
   679
    by (metis analytic_on_def)
lp15@56215
   680
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
lp15@56215
   681
    by (metis analytic_on_def g z) 
lp15@56215
   682
  have "(\<lambda>z. f z - g z) holomorphic_on ball z (min e e')" 
lp15@56215
   683
    apply (rule holomorphic_on_diff) 
lp15@56215
   684
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   685
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   686
  then show "\<exists>e>0. (\<lambda>z. f z - g z) holomorphic_on ball z e"
lp15@56215
   687
    by (metis e e' min_less_iff_conj)
lp15@56215
   688
qed
lp15@56215
   689
lp15@56215
   690
lemma analytic_on_mult:
lp15@56215
   691
  assumes f: "f analytic_on s"
lp15@56215
   692
      and g: "g analytic_on s"
lp15@56215
   693
    shows "(\<lambda>z. f z * g z) analytic_on s"
lp15@56215
   694
unfolding analytic_on_def
lp15@56215
   695
proof (intro ballI)
lp15@56215
   696
  fix z
lp15@56215
   697
  assume z: "z \<in> s"
lp15@56215
   698
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
lp15@56215
   699
    by (metis analytic_on_def)
lp15@56215
   700
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
lp15@56215
   701
    by (metis analytic_on_def g z) 
lp15@56215
   702
  have "(\<lambda>z. f z * g z) holomorphic_on ball z (min e e')" 
lp15@56215
   703
    apply (rule holomorphic_on_mult) 
lp15@56215
   704
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   705
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   706
  then show "\<exists>e>0. (\<lambda>z. f z * g z) holomorphic_on ball z e"
lp15@56215
   707
    by (metis e e' min_less_iff_conj)
lp15@56215
   708
qed
lp15@56215
   709
lp15@56215
   710
lemma analytic_on_inverse:
lp15@56215
   711
  assumes f: "f analytic_on s"
lp15@56215
   712
      and nz: "(\<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0)"
lp15@56215
   713
    shows "(\<lambda>z. inverse (f z)) analytic_on s"
lp15@56215
   714
unfolding analytic_on_def
lp15@56215
   715
proof (intro ballI)
lp15@56215
   716
  fix z
lp15@56215
   717
  assume z: "z \<in> s"
lp15@56215
   718
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
lp15@56215
   719
    by (metis analytic_on_def)
lp15@56215
   720
  have "continuous_on (ball z e) f"
lp15@56215
   721
    by (metis fh holomorphic_on_imp_continuous_on)
lp15@56215
   722
  then obtain e' where e': "0 < e'" and nz': "\<And>y. dist z y < e' \<Longrightarrow> f y \<noteq> 0" 
lp15@56215
   723
    by (metis Topology_Euclidean_Space.open_ball centre_in_ball continuous_on_open_avoid e z nz)  
lp15@56215
   724
  have "(\<lambda>z. inverse (f z)) holomorphic_on ball z (min e e')" 
lp15@56215
   725
    apply (rule holomorphic_on_inverse)
lp15@56215
   726
    apply (metis fh holomorphic_on_subset min.cobounded2 min.commute subset_ball)
lp15@56215
   727
    by (metis nz' mem_ball min_less_iff_conj) 
lp15@56215
   728
  then show "\<exists>e>0. (\<lambda>z. inverse (f z)) holomorphic_on ball z e"
lp15@56215
   729
    by (metis e e' min_less_iff_conj)
lp15@56215
   730
qed
lp15@56215
   731
lp15@56215
   732
lp15@56215
   733
lemma analytic_on_divide:
lp15@56215
   734
  assumes f: "f analytic_on s"
lp15@56215
   735
      and g: "g analytic_on s"
lp15@56215
   736
      and nz: "(\<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0)"
lp15@56215
   737
    shows "(\<lambda>z. f z / g z) analytic_on s"
lp15@56215
   738
unfolding divide_inverse
lp15@56215
   739
by (metis analytic_on_inverse analytic_on_mult f g nz)
lp15@56215
   740
lp15@56215
   741
lemma analytic_on_power:
lp15@56215
   742
  "f analytic_on s \<Longrightarrow> (\<lambda>z. (f z) ^ n) analytic_on s"
lp15@56215
   743
by (induct n) (auto simp: analytic_on_const analytic_on_mult)
lp15@56215
   744
lp15@56215
   745
lemma analytic_on_setsum:
hoelzl@56369
   746
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) analytic_on s) \<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) analytic_on s"
hoelzl@56369
   747
  by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_const analytic_on_add)
lp15@56215
   748
wenzelm@60420
   749
subsection\<open>analyticity at a point.\<close>
lp15@56215
   750
lp15@56215
   751
lemma analytic_at_ball:
lp15@56215
   752
  "f analytic_on {z} \<longleftrightarrow> (\<exists>e. 0<e \<and> f holomorphic_on ball z e)"
lp15@56215
   753
by (metis analytic_on_def singleton_iff)
lp15@56215
   754
lp15@56215
   755
lemma analytic_at:
lp15@56215
   756
    "f analytic_on {z} \<longleftrightarrow> (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s)"
lp15@56215
   757
by (metis analytic_on_holomorphic empty_subsetI insert_subset)
lp15@56215
   758
lp15@56215
   759
lemma analytic_on_analytic_at:
lp15@56215
   760
    "f analytic_on s \<longleftrightarrow> (\<forall>z \<in> s. f analytic_on {z})"
lp15@56215
   761
by (metis analytic_at_ball analytic_on_def)
lp15@56215
   762
lp15@56215
   763
lemma analytic_at_two:
lp15@56215
   764
  "f analytic_on {z} \<and> g analytic_on {z} \<longleftrightarrow>
lp15@56215
   765
   (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s \<and> g holomorphic_on s)"
lp15@56215
   766
  (is "?lhs = ?rhs")
lp15@56215
   767
proof 
lp15@56215
   768
  assume ?lhs
lp15@56215
   769
  then obtain s t 
lp15@56215
   770
    where st: "open s" "z \<in> s" "f holomorphic_on s"
lp15@56215
   771
              "open t" "z \<in> t" "g holomorphic_on t"
lp15@56215
   772
    by (auto simp: analytic_at)
lp15@56215
   773
  show ?rhs
lp15@56215
   774
    apply (rule_tac x="s \<inter> t" in exI)
lp15@56215
   775
    using st
lp15@56215
   776
    apply (auto simp: Diff_subset holomorphic_on_subset)
lp15@56215
   777
    done
lp15@56215
   778
next
lp15@56215
   779
  assume ?rhs 
lp15@56215
   780
  then show ?lhs
lp15@56215
   781
    by (force simp add: analytic_at)
lp15@56215
   782
qed
lp15@56215
   783
wenzelm@60420
   784
subsection\<open>Combining theorems for derivative with ``analytic at'' hypotheses\<close>
lp15@56215
   785
lp15@56215
   786
lemma 
lp15@56215
   787
  assumes "f analytic_on {z}" "g analytic_on {z}"
hoelzl@56370
   788
  shows complex_derivative_add_at: "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
hoelzl@56370
   789
    and complex_derivative_diff_at: "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
hoelzl@56370
   790
    and complex_derivative_mult_at: "deriv (\<lambda>w. f w * g w) z =
hoelzl@56370
   791
           f z * deriv g z + deriv f z * g z"
lp15@56215
   792
proof -
lp15@56215
   793
  obtain s where s: "open s" "z \<in> s" "f holomorphic_on s" "g holomorphic_on s"
lp15@56215
   794
    using assms by (metis analytic_at_two)
hoelzl@56370
   795
  show "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
hoelzl@56370
   796
    apply (rule DERIV_imp_deriv [OF DERIV_add])
lp15@56215
   797
    using s
hoelzl@56370
   798
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
lp15@56215
   799
    done
hoelzl@56370
   800
  show "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
hoelzl@56370
   801
    apply (rule DERIV_imp_deriv [OF DERIV_diff])
lp15@56215
   802
    using s
hoelzl@56370
   803
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
lp15@56215
   804
    done
hoelzl@56370
   805
  show "deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z"
hoelzl@56370
   806
    apply (rule DERIV_imp_deriv [OF DERIV_mult'])
lp15@56215
   807
    using s
hoelzl@56370
   808
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
lp15@56215
   809
    done
lp15@56215
   810
qed
lp15@56215
   811
lp15@56215
   812
lemma complex_derivative_cmult_at:
hoelzl@56370
   813
  "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. c * f w) z = c * deriv f z"
lp15@56215
   814
by (auto simp: complex_derivative_mult_at complex_derivative_const analytic_on_const)
lp15@56215
   815
lp15@56215
   816
lemma complex_derivative_cmult_right_at:
hoelzl@56370
   817
  "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. f w * c) z = deriv f z * c"
lp15@56215
   818
by (auto simp: complex_derivative_mult_at complex_derivative_const analytic_on_const)
lp15@56215
   819
wenzelm@60420
   820
subsection\<open>Complex differentiation of sequences and series\<close>
lp15@56215
   821
lp15@56215
   822
lemma has_complex_derivative_sequence:
lp15@56215
   823
  fixes s :: "complex set"
lp15@56215
   824
  assumes cvs: "convex s"
lp15@56215
   825
      and df:  "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)"
lp15@56215
   826
      and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s \<longrightarrow> norm (f' n x - g' x) \<le> e"
lp15@56215
   827
      and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) ---> l) sequentially"
lp15@56215
   828
    shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) ---> g x) sequentially \<and> 
lp15@56215
   829
                       (g has_field_derivative (g' x)) (at x within s)"
lp15@56215
   830
proof -
lp15@56215
   831
  from assms obtain x l where x: "x \<in> s" and tf: "((\<lambda>n. f n x) ---> l) sequentially"
lp15@56215
   832
    by blast
lp15@56215
   833
  { fix e::real assume e: "e > 0"
lp15@56215
   834
    then obtain N where N: "\<forall>n\<ge>N. \<forall>x. x \<in> s \<longrightarrow> cmod (f' n x - g' x) \<le> e"
lp15@56215
   835
      by (metis conv)    
lp15@56215
   836
    have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h"
lp15@56215
   837
    proof (rule exI [of _ N], clarify)
lp15@56215
   838
      fix n y h
lp15@56215
   839
      assume "N \<le> n" "y \<in> s"
lp15@56215
   840
      then have "cmod (f' n y - g' y) \<le> e"
lp15@56215
   841
        by (metis N)
lp15@56215
   842
      then have "cmod h * cmod (f' n y - g' y) \<le> cmod h * e"
lp15@56215
   843
        by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
lp15@56215
   844
      then show "cmod (f' n y * h - g' y * h) \<le> e * cmod h"
lp15@56215
   845
        by (simp add: norm_mult [symmetric] field_simps)
lp15@56215
   846
    qed
lp15@56215
   847
  } note ** = this
lp15@56215
   848
  show ?thesis
lp15@56215
   849
  unfolding has_field_derivative_def
lp15@56215
   850
  proof (rule has_derivative_sequence [OF cvs _ _ x])
lp15@56215
   851
    show "\<forall>n. \<forall>x\<in>s. (f n has_derivative (op * (f' n x))) (at x within s)"
lp15@56215
   852
      by (metis has_field_derivative_def df)
lp15@56215
   853
  next show "(\<lambda>n. f n x) ----> l"
lp15@56215
   854
    by (rule tf)
lp15@56215
   855
  next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h"
lp15@56215
   856
    by (blast intro: **)
lp15@56215
   857
  qed
lp15@56215
   858
qed
lp15@56215
   859
lp15@56215
   860
lp15@56215
   861
lemma has_complex_derivative_series:
lp15@56215
   862
  fixes s :: "complex set"
lp15@56215
   863
  assumes cvs: "convex s"
lp15@56215
   864
      and df:  "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)"
lp15@56215
   865
      and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s 
lp15@56215
   866
                \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e"
lp15@56215
   867
      and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) sums l)"
lp15@56215
   868
    shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) sums g x) \<and> ((g has_field_derivative g' x) (at x within s))"
lp15@56215
   869
proof -
lp15@56215
   870
  from assms obtain x l where x: "x \<in> s" and sf: "((\<lambda>n. f n x) sums l)"
lp15@56215
   871
    by blast
lp15@56215
   872
  { fix e::real assume e: "e > 0"
lp15@56215
   873
    then obtain N where N: "\<forall>n x. n \<ge> N \<longrightarrow> x \<in> s 
lp15@56215
   874
            \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e"
lp15@56215
   875
      by (metis conv)    
lp15@56215
   876
    have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h"
lp15@56215
   877
    proof (rule exI [of _ N], clarify)
lp15@56215
   878
      fix n y h
lp15@56215
   879
      assume "N \<le> n" "y \<in> s"
lp15@56215
   880
      then have "cmod ((\<Sum>i<n. f' i y) - g' y) \<le> e"
lp15@56215
   881
        by (metis N)
lp15@56215
   882
      then have "cmod h * cmod ((\<Sum>i<n. f' i y) - g' y) \<le> cmod h * e"
lp15@56215
   883
        by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
lp15@56215
   884
      then show "cmod ((\<Sum>i<n. h * f' i y) - g' y * h) \<le> e * cmod h"
lp15@56215
   885
        by (simp add: norm_mult [symmetric] field_simps setsum_right_distrib)
lp15@56215
   886
    qed
lp15@56215
   887
  } note ** = this
lp15@56215
   888
  show ?thesis
lp15@56215
   889
  unfolding has_field_derivative_def
lp15@56215
   890
  proof (rule has_derivative_series [OF cvs _ _ x])
lp15@56215
   891
    fix n x
lp15@56215
   892
    assume "x \<in> s"
lp15@56215
   893
    then show "((f n) has_derivative (\<lambda>z. z * f' n x)) (at x within s)"
lp15@56215
   894
      by (metis df has_field_derivative_def mult_commute_abs)
lp15@56215
   895
  next show " ((\<lambda>n. f n x) sums l)"
lp15@56215
   896
    by (rule sf)
lp15@56215
   897
  next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h"
lp15@56215
   898
    by (blast intro: **)
lp15@56215
   899
  qed
lp15@56215
   900
qed
lp15@56215
   901
wenzelm@60420
   902
subsection\<open>Bound theorem\<close>
lp15@56215
   903
lp15@56215
   904
lemma complex_differentiable_bound:
lp15@56215
   905
  fixes s :: "complex set"
lp15@56215
   906
  assumes cvs: "convex s"
lp15@56215
   907
      and df:  "\<And>z. z \<in> s \<Longrightarrow> (f has_field_derivative f' z) (at z within s)"
lp15@56215
   908
      and dn:  "\<And>z. z \<in> s \<Longrightarrow> norm (f' z) \<le> B"
lp15@56215
   909
      and "x \<in> s"  "y \<in> s"
lp15@56215
   910
    shows "norm(f x - f y) \<le> B * norm(x - y)"
lp15@56215
   911
  apply (rule differentiable_bound [OF cvs])
huffman@56223
   912
  apply (rule ballI, erule df [unfolded has_field_derivative_def])
huffman@56223
   913
  apply (rule ballI, rule onorm_le, simp add: norm_mult mult_right_mono dn)
huffman@56223
   914
  apply fact
huffman@56223
   915
  apply fact
lp15@56215
   916
  done
lp15@56215
   917
wenzelm@60420
   918
subsection\<open>Inverse function theorem for complex derivatives.\<close>
lp15@56215
   919
lp15@56215
   920
lemma has_complex_derivative_inverse_basic:
lp15@56215
   921
  fixes f :: "complex \<Rightarrow> complex"
lp15@56215
   922
  shows "DERIV f (g y) :> f' \<Longrightarrow>
lp15@56215
   923
        f' \<noteq> 0 \<Longrightarrow>
lp15@56215
   924
        continuous (at y) g \<Longrightarrow>
lp15@56215
   925
        open t \<Longrightarrow>
lp15@56215
   926
        y \<in> t \<Longrightarrow>
lp15@56215
   927
        (\<And>z. z \<in> t \<Longrightarrow> f (g z) = z)
lp15@56215
   928
        \<Longrightarrow> DERIV g y :> inverse (f')"
lp15@56215
   929
  unfolding has_field_derivative_def
lp15@56215
   930
  apply (rule has_derivative_inverse_basic)
lp15@56215
   931
  apply (auto simp:  bounded_linear_mult_right)
lp15@56215
   932
  done
lp15@56215
   933
lp15@56215
   934
(*Used only once, in Multivariate/cauchy.ml. *)
lp15@56215
   935
lemma has_complex_derivative_inverse_strong:
lp15@56215
   936
  fixes f :: "complex \<Rightarrow> complex"
lp15@56215
   937
  shows "DERIV f x :> f' \<Longrightarrow>
lp15@56215
   938
         f' \<noteq> 0 \<Longrightarrow>
lp15@56215
   939
         open s \<Longrightarrow>
lp15@56215
   940
         x \<in> s \<Longrightarrow>
lp15@56215
   941
         continuous_on s f \<Longrightarrow>
lp15@56215
   942
         (\<And>z. z \<in> s \<Longrightarrow> g (f z) = z)
lp15@56215
   943
         \<Longrightarrow> DERIV g (f x) :> inverse (f')"
lp15@56215
   944
  unfolding has_field_derivative_def
lp15@56215
   945
  apply (rule has_derivative_inverse_strong [of s x f g ])
lp15@56215
   946
  using assms 
lp15@56215
   947
  by auto
lp15@56215
   948
lp15@56215
   949
lemma has_complex_derivative_inverse_strong_x:
lp15@56215
   950
  fixes f :: "complex \<Rightarrow> complex"
lp15@56215
   951
  shows  "DERIV f (g y) :> f' \<Longrightarrow>
lp15@56215
   952
          f' \<noteq> 0 \<Longrightarrow>
lp15@56215
   953
          open s \<Longrightarrow>
lp15@56215
   954
          continuous_on s f \<Longrightarrow>
lp15@56215
   955
          g y \<in> s \<Longrightarrow> f(g y) = y \<Longrightarrow>
lp15@56215
   956
          (\<And>z. z \<in> s \<Longrightarrow> g (f z) = z)
lp15@56215
   957
          \<Longrightarrow> DERIV g y :> inverse (f')"
lp15@56215
   958
  unfolding has_field_derivative_def
lp15@56215
   959
  apply (rule has_derivative_inverse_strong_x [of s g y f])
lp15@56215
   960
  using assms 
lp15@56215
   961
  by auto
lp15@56215
   962
wenzelm@60420
   963
subsection \<open>Taylor on Complex Numbers\<close>
lp15@56215
   964
lp15@56215
   965
lemma setsum_Suc_reindex:
lp15@56215
   966
  fixes f :: "nat \<Rightarrow> 'a::ab_group_add"
lp15@56215
   967
    shows  "setsum f {0..n} = f 0 - f (Suc n) + setsum (\<lambda>i. f (Suc i)) {0..n}"
lp15@56215
   968
by (induct n) auto
lp15@56215
   969
lp15@56215
   970
lemma complex_taylor:
lp15@56215
   971
  assumes s: "convex s" 
lp15@56215
   972
      and f: "\<And>i x. x \<in> s \<Longrightarrow> i \<le> n \<Longrightarrow> (f i has_field_derivative f (Suc i) x) (at x within s)"
lp15@56215
   973
      and B: "\<And>x. x \<in> s \<Longrightarrow> cmod (f (Suc n) x) \<le> B"
lp15@56215
   974
      and w: "w \<in> s"
lp15@56215
   975
      and z: "z \<in> s"
lp15@59730
   976
    shows "cmod(f 0 z - (\<Sum>i\<le>n. f i w * (z-w) ^ i / (fact i)))
lp15@56215
   977
          \<le> B * cmod(z - w)^(Suc n) / fact n"
lp15@56215
   978
proof -
lp15@56215
   979
  have wzs: "closed_segment w z \<subseteq> s" using assms
lp15@56215
   980
    by (metis convex_contains_segment)
lp15@56215
   981
  { fix u
lp15@56215
   982
    assume "u \<in> closed_segment w z"
lp15@56215
   983
    then have "u \<in> s"
lp15@56215
   984
      by (metis wzs subsetD)
lp15@59730
   985
    have "(\<Sum>i\<le>n. f i u * (- of_nat i * (z-u)^(i - 1)) / (fact i) +
lp15@59730
   986
                      f (Suc i) u * (z-u)^i / (fact i)) = 
lp15@59730
   987
              f (Suc n) u * (z-u) ^ n / (fact n)"
lp15@56215
   988
    proof (induction n)
lp15@56215
   989
      case 0 show ?case by simp
lp15@56215
   990
    next
lp15@56215
   991
      case (Suc n)
lp15@59730
   992
      have "(\<Sum>i\<le>Suc n. f i u * (- of_nat i * (z-u) ^ (i - 1)) / (fact i) +
lp15@59730
   993
                             f (Suc i) u * (z-u) ^ i / (fact i)) =  
lp15@59730
   994
           f (Suc n) u * (z-u) ^ n / (fact n) +
lp15@59730
   995
           f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n) / (fact (Suc n)) -
lp15@59730
   996
           f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n) / (fact (Suc n))"
hoelzl@56479
   997
        using Suc by simp
lp15@59730
   998
      also have "... = f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n))"
lp15@56215
   999
      proof -
lp15@59730
  1000
        have "(fact(Suc n)) *
lp15@59730
  1001
             (f(Suc n) u *(z-u) ^ n / (fact n) +
lp15@59730
  1002
               f(Suc(Suc n)) u *((z-u) *(z-u) ^ n) / (fact(Suc n)) -
lp15@59730
  1003
               f(Suc n) u *((1 + of_nat n) *(z-u) ^ n) / (fact(Suc n))) =
lp15@59730
  1004
            ((fact(Suc n)) *(f(Suc n) u *(z-u) ^ n)) / (fact n) +
lp15@59730
  1005
            ((fact(Suc n)) *(f(Suc(Suc n)) u *((z-u) *(z-u) ^ n)) / (fact(Suc n))) -
lp15@59730
  1006
            ((fact(Suc n)) *(f(Suc n) u *(of_nat(Suc n) *(z-u) ^ n))) / (fact(Suc n))"
lp15@59730
  1007
          by (simp add: algebra_simps del: fact.simps)
lp15@59730
  1008
        also have "... = ((fact (Suc n)) * (f (Suc n) u * (z-u) ^ n)) / (fact n) +
lp15@59730
  1009
                         (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
lp15@59730
  1010
                         (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
lp15@59730
  1011
          by (simp del: fact.simps)
lp15@59730
  1012
        also have "... = (of_nat (Suc n) * (f (Suc n) u * (z-u) ^ n)) +
lp15@59730
  1013
                         (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
lp15@59730
  1014
                         (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
lp15@59730
  1015
          by (simp only: fact.simps of_nat_mult ac_simps) simp
lp15@56215
  1016
        also have "... = f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)"
lp15@56215
  1017
          by (simp add: algebra_simps)
lp15@56215
  1018
        finally show ?thesis
lp15@59730
  1019
        by (simp add: mult_left_cancel [where c = "(fact (Suc n))", THEN iffD1] del: fact.simps)
lp15@56215
  1020
      qed
lp15@56215
  1021
      finally show ?case .
lp15@56215
  1022
    qed
lp15@59730
  1023
    then have "((\<lambda>v. (\<Sum>i\<le>n. f i v * (z - v)^i / (fact i))) 
lp15@59730
  1024
                has_field_derivative f (Suc n) u * (z-u) ^ n / (fact n))
lp15@56215
  1025
               (at u within s)"
hoelzl@56381
  1026
      apply (intro derivative_eq_intros)
wenzelm@60420
  1027
      apply (blast intro: assms \<open>u \<in> s\<close>)
lp15@56215
  1028
      apply (rule refl)+
lp15@56215
  1029
      apply (auto simp: field_simps)
lp15@56215
  1030
      done
lp15@56215
  1031
  } note sum_deriv = this
lp15@56215
  1032
  { fix u
lp15@56215
  1033
    assume u: "u \<in> closed_segment w z"
lp15@56215
  1034
    then have us: "u \<in> s"
lp15@56215
  1035
      by (metis wzs subsetD)
lp15@56215
  1036
    have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> cmod (f (Suc n) u) * cmod (u - z) ^ n"
lp15@56215
  1037
      by (metis norm_minus_commute order_refl)
lp15@56215
  1038
    also have "... \<le> cmod (f (Suc n) u) * cmod (z - w) ^ n"
lp15@56215
  1039
      by (metis mult_left_mono norm_ge_zero power_mono segment_bound [OF u])
lp15@56215
  1040
    also have "... \<le> B * cmod (z - w) ^ n"
lp15@56215
  1041
      by (metis norm_ge_zero zero_le_power mult_right_mono  B [OF us])
lp15@56215
  1042
    finally have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> B * cmod (z - w) ^ n" .
lp15@56215
  1043
  } note cmod_bound = this
lp15@59730
  1044
  have "(\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)) = (\<Sum>i\<le>n. (f i z / (fact i)) * 0 ^ i)"
lp15@56215
  1045
    by simp
lp15@59730
  1046
  also have "\<dots> = f 0 z / (fact 0)"
lp15@56215
  1047
    by (subst setsum_zero_power) simp
lp15@59730
  1048
  finally have "cmod (f 0 z - (\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i))) 
lp15@59730
  1049
                \<le> cmod ((\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i)) -
lp15@59730
  1050
                        (\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)))"
lp15@56215
  1051
    by (simp add: norm_minus_commute)
lp15@59730
  1052
  also have "... \<le> B * cmod (z - w) ^ n / (fact n) * cmod (w - z)"
lp15@56215
  1053
    apply (rule complex_differentiable_bound 
lp15@59730
  1054
      [where f' = "\<lambda>w. f (Suc n) w * (z - w)^n / (fact n)"
paulson@61518
  1055
         and s = "closed_segment w z", OF convex_closed_segment])
lp15@56215
  1056
    apply (auto simp: ends_in_segment real_of_nat_def DERIV_subset [OF sum_deriv wzs]
lp15@56215
  1057
                  norm_divide norm_mult norm_power divide_le_cancel cmod_bound)
lp15@56215
  1058
    done
lp15@59730
  1059
  also have "...  \<le> B * cmod (z - w) ^ Suc n / (fact n)"
lp15@56215
  1060
    by (simp add: algebra_simps norm_minus_commute real_of_nat_def)
lp15@56215
  1061
  finally show ?thesis .
lp15@56215
  1062
qed
lp15@56215
  1063
wenzelm@60420
  1064
text\<open>Something more like the traditional MVT for real components.\<close>
hoelzl@56370
  1065
lp15@56238
  1066
lemma complex_mvt_line:
hoelzl@56369
  1067
  assumes "\<And>u. u \<in> closed_segment w z \<Longrightarrow> (f has_field_derivative f'(u)) (at u)"
paulson@61518
  1068
    shows "\<exists>u. u \<in> closed_segment w z \<and> Re(f z) - Re(f w) = Re(f'(u) * (z - w))"
lp15@56238
  1069
proof -
lp15@56238
  1070
  have twz: "\<And>t. (1 - t) *\<^sub>R w + t *\<^sub>R z = w + t *\<^sub>R (z - w)"
lp15@56238
  1071
    by (simp add: real_vector.scale_left_diff_distrib real_vector.scale_right_diff_distrib)
hoelzl@56381
  1072
  note assms[unfolded has_field_derivative_def, derivative_intros]
lp15@56238
  1073
  show ?thesis
lp15@56238
  1074
    apply (cut_tac mvt_simple
lp15@56238
  1075
                     [of 0 1 "Re o f o (\<lambda>t. (1 - t) *\<^sub>R w +  t *\<^sub>R z)"
lp15@56238
  1076
                      "\<lambda>u. Re o (\<lambda>h. f'((1 - u) *\<^sub>R w + u *\<^sub>R z) * h) o (\<lambda>t. t *\<^sub>R (z - w))"])
lp15@56238
  1077
    apply auto
lp15@56238
  1078
    apply (rule_tac x="(1 - x) *\<^sub>R w + x *\<^sub>R z" in exI)
paulson@61518
  1079
    apply (auto simp: closed_segment_def twz) []
paulson@61518
  1080
    apply (intro derivative_eq_intros has_derivative_at_within, simp_all)
hoelzl@56369
  1081
    apply (simp add: fun_eq_iff real_vector.scale_right_diff_distrib)
paulson@61518
  1082
    apply (force simp: twz closed_segment_def)
lp15@56238
  1083
    done
lp15@56238
  1084
qed
lp15@56238
  1085
lp15@56238
  1086
lemma complex_taylor_mvt:
lp15@56238
  1087
  assumes "\<And>i x. \<lbrakk>x \<in> closed_segment w z; i \<le> n\<rbrakk> \<Longrightarrow> ((f i) has_field_derivative f (Suc i) x) (at x)"
lp15@56238
  1088
    shows "\<exists>u. u \<in> closed_segment w z \<and>
lp15@56238
  1089
            Re (f 0 z) =
lp15@59730
  1090
            Re ((\<Sum>i = 0..n. f i w * (z - w) ^ i / (fact i)) +
lp15@59730
  1091
                (f (Suc n) u * (z-u)^n / (fact n)) * (z - w))"
lp15@56238
  1092
proof -
lp15@56238
  1093
  { fix u
lp15@56238
  1094
    assume u: "u \<in> closed_segment w z"
lp15@56238
  1095
    have "(\<Sum>i = 0..n.
lp15@56238
  1096
               (f (Suc i) u * (z-u) ^ i - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) /
lp15@59730
  1097
               (fact i)) =
lp15@56238
  1098
          f (Suc 0) u -
lp15@56238
  1099
             (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
lp15@59730
  1100
             (fact (Suc n)) +
lp15@56238
  1101
             (\<Sum>i = 0..n.
lp15@56238
  1102
                 (f (Suc (Suc i)) u * ((z-u) ^ Suc i) - of_nat (Suc i) * (f (Suc i) u * (z-u) ^ i)) /
lp15@59730
  1103
                 (fact (Suc i)))"
lp15@56238
  1104
       by (subst setsum_Suc_reindex) simp
lp15@56238
  1105
    also have "... = f (Suc 0) u -
lp15@56238
  1106
             (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
lp15@59730
  1107
             (fact (Suc n)) +
lp15@56238
  1108
             (\<Sum>i = 0..n.
lp15@59730
  1109
                 f (Suc (Suc i)) u * ((z-u) ^ Suc i) / (fact (Suc i))  - 
lp15@59730
  1110
                 f (Suc i) u * (z-u) ^ i / (fact i))"
haftmann@57514
  1111
      by (simp only: diff_divide_distrib fact_cancel ac_simps)
lp15@56238
  1112
    also have "... = f (Suc 0) u -
lp15@56238
  1113
             (f (Suc (Suc n)) u * (z-u) ^ Suc n - of_nat (Suc n) * (z-u) ^ n * f (Suc n) u) /
lp15@59730
  1114
             (fact (Suc n)) +
lp15@59730
  1115
             f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n)) - f (Suc 0) u"
lp15@56238
  1116
      by (subst setsum_Suc_diff) auto
lp15@59730
  1117
    also have "... = f (Suc n) u * (z-u) ^ n / (fact n)"
lp15@56238
  1118
      by (simp only: algebra_simps diff_divide_distrib fact_cancel)
lp15@56238
  1119
    finally have "(\<Sum>i = 0..n. (f (Suc i) u * (z - u) ^ i 
lp15@59730
  1120
                             - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) / (fact i)) =
lp15@59730
  1121
                  f (Suc n) u * (z - u) ^ n / (fact n)" .
lp15@59730
  1122
    then have "((\<lambda>u. \<Sum>i = 0..n. f i u * (z - u) ^ i / (fact i)) has_field_derivative
lp15@59730
  1123
                f (Suc n) u * (z - u) ^ n / (fact n))  (at u)"
hoelzl@56381
  1124
      apply (intro derivative_eq_intros)+
lp15@56238
  1125
      apply (force intro: u assms)
lp15@56238
  1126
      apply (rule refl)+
haftmann@57514
  1127
      apply (auto simp: ac_simps)
lp15@56238
  1128
      done
lp15@56238
  1129
  }
lp15@56238
  1130
  then show ?thesis
lp15@59730
  1131
    apply (cut_tac complex_mvt_line [of w z "\<lambda>u. \<Sum>i = 0..n. f i u * (z-u) ^ i / (fact i)"
lp15@59730
  1132
               "\<lambda>u. (f (Suc n) u * (z-u)^n / (fact n))"])
lp15@56238
  1133
    apply (auto simp add: intro: open_closed_segment)
lp15@56238
  1134
    done
lp15@56238
  1135
qed
lp15@56238
  1136
lp15@60017
  1137
wenzelm@60420
  1138
subsection \<open>Polynomal function extremal theorem, from HOL Light\<close>
lp15@60017
  1139
lp15@60017
  1140
lemma polyfun_extremal_lemma: (*COMPLEX_POLYFUN_EXTREMAL_LEMMA in HOL Light*)
lp15@60017
  1141
    fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
lp15@60017
  1142
  assumes "0 < e"
lp15@60017
  1143
    shows "\<exists>M. \<forall>z. M \<le> norm(z) \<longrightarrow> norm (\<Sum>i\<le>n. c(i) * z^i) \<le> e * norm(z) ^ (Suc n)"
lp15@60017
  1144
proof (induct n)
lp15@60017
  1145
  case 0 with assms
lp15@60017
  1146
  show ?case
lp15@60017
  1147
    apply (rule_tac x="norm (c 0) / e" in exI)
lp15@60017
  1148
    apply (auto simp: field_simps)
lp15@60017
  1149
    done
lp15@60017
  1150
next
lp15@60017
  1151
  case (Suc n)
lp15@60017
  1152
  obtain M where M: "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n"
lp15@60017
  1153
    using Suc assms by blast
lp15@60017
  1154
  show ?case
lp15@60017
  1155
  proof (rule exI [where x= "max M (1 + norm(c(Suc n)) / e)"], clarsimp simp del: power_Suc)
lp15@60017
  1156
    fix z::'a
lp15@60017
  1157
    assume z1: "M \<le> norm z" and "1 + norm (c (Suc n)) / e \<le> norm z"
lp15@60017
  1158
    then have z2: "e + norm (c (Suc n)) \<le> e * norm z"
lp15@60017
  1159
      using assms by (simp add: field_simps)
lp15@60017
  1160
    have "norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n"
lp15@60017
  1161
      using M [OF z1] by simp
lp15@60017
  1162
    then have "norm (\<Sum>i\<le>n. c i * z^i) + norm (c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)"
lp15@60017
  1163
      by simp
lp15@60017
  1164
    then have "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)"
lp15@60017
  1165
      by (blast intro: norm_triangle_le elim: )
lp15@60017
  1166
    also have "... \<le> (e + norm (c (Suc n))) * norm z ^ Suc n"
lp15@60017
  1167
      by (simp add: norm_power norm_mult algebra_simps)
lp15@60017
  1168
    also have "... \<le> (e * norm z) * norm z ^ Suc n"
lp15@60017
  1169
      by (metis z2 mult.commute mult_left_mono norm_ge_zero norm_power)
lp15@60017
  1170
    finally show "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc (Suc n)"
lp15@60162
  1171
      by simp
lp15@60017
  1172
  qed
lp15@60017
  1173
qed
lp15@60017
  1174
lp15@60017
  1175
lemma polyfun_extremal: (*COMPLEX_POLYFUN_EXTREMAL in HOL Light*)
lp15@60017
  1176
    fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
lp15@60017
  1177
  assumes k: "c k \<noteq> 0" "1\<le>k" and kn: "k\<le>n"
lp15@60017
  1178
    shows "eventually (\<lambda>z. norm (\<Sum>i\<le>n. c(i) * z^i) \<ge> B) at_infinity"
lp15@60017
  1179
using kn
lp15@60017
  1180
proof (induction n)
lp15@60017
  1181
  case 0
lp15@60017
  1182
  then show ?case
lp15@60017
  1183
    using k  by simp
lp15@60017
  1184
next
lp15@60017
  1185
  case (Suc m)
lp15@60017
  1186
  let ?even = ?case
lp15@60017
  1187
  show ?even
lp15@60017
  1188
  proof (cases "c (Suc m) = 0")
lp15@60017
  1189
    case True
lp15@60017
  1190
    then show ?even using Suc k
lp15@60017
  1191
      by auto (metis antisym_conv less_eq_Suc_le not_le)
lp15@60017
  1192
  next
lp15@60017
  1193
    case False
lp15@60017
  1194
    then obtain M where M:
lp15@60017
  1195
          "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>m. c i * z^i) \<le> norm (c (Suc m)) / 2 * norm z ^ Suc m"
lp15@60017
  1196
      using polyfun_extremal_lemma [of "norm(c (Suc m)) / 2" c m] Suc
lp15@60017
  1197
      by auto
lp15@60017
  1198
    have "\<exists>b. \<forall>z. b \<le> norm z \<longrightarrow> B \<le> norm (\<Sum>i\<le>Suc m. c i * z^i)"
lp15@60017
  1199
    proof (rule exI [where x="max M (max 1 (\<bar>B\<bar> / (norm(c (Suc m)) / 2)))"], clarsimp simp del: power_Suc)
lp15@60017
  1200
      fix z::'a
lp15@60017
  1201
      assume z1: "M \<le> norm z" "1 \<le> norm z"
lp15@60017
  1202
         and "\<bar>B\<bar> * 2 / norm (c (Suc m)) \<le> norm z"
lp15@60017
  1203
      then have z2: "\<bar>B\<bar> \<le> norm (c (Suc m)) * norm z / 2"
lp15@60017
  1204
        using False by (simp add: field_simps)
lp15@60017
  1205
      have nz: "norm z \<le> norm z ^ Suc m"
wenzelm@60420
  1206
        by (metis \<open>1 \<le> norm z\<close> One_nat_def less_eq_Suc_le power_increasing power_one_right zero_less_Suc)
lp15@60017
  1207
      have *: "\<And>y x. norm (c (Suc m)) * norm z / 2 \<le> norm y - norm x \<Longrightarrow> B \<le> norm (x + y)"
lp15@60017
  1208
        by (metis abs_le_iff add.commute norm_diff_ineq order_trans z2)
lp15@60017
  1209
      have "norm z * norm (c (Suc m)) + 2 * norm (\<Sum>i\<le>m. c i * z^i)
lp15@60017
  1210
            \<le> norm (c (Suc m)) * norm z + norm (c (Suc m)) * norm z ^ Suc m"
lp15@60017
  1211
        using M [of z] Suc z1  by auto
lp15@60017
  1212
      also have "... \<le> 2 * (norm (c (Suc m)) * norm z ^ Suc m)"
lp15@60017
  1213
        using nz by (simp add: mult_mono del: power_Suc)
lp15@60017
  1214
      finally show "B \<le> norm ((\<Sum>i\<le>m. c i * z^i) + c (Suc m) * z ^ Suc m)"
lp15@60017
  1215
        using Suc.IH
lp15@60017
  1216
        apply (auto simp: eventually_at_infinity)
lp15@60017
  1217
        apply (rule *)
lp15@60017
  1218
        apply (simp add: field_simps norm_mult norm_power)
lp15@60017
  1219
        done
lp15@60017
  1220
    qed
lp15@60017
  1221
    then show ?even
lp15@60017
  1222
      by (simp add: eventually_at_infinity)
lp15@60017
  1223
  qed
lp15@60017
  1224
qed
lp15@60017
  1225
lp15@56215
  1226
end