src/Pure/meta_simplifier.ML
author haftmann
Wed Oct 21 08:14:38 2009 +0200 (2009-10-21)
changeset 33038 8f9594c31de4
parent 33037 b22e44496dc2
child 33039 5018f6a76b3f
permissions -rw-r--r--
dropped redundant gen_ prefix
berghofe@10413
     1
(*  Title:      Pure/meta_simplifier.ML
wenzelm@29269
     2
    Author:     Tobias Nipkow and Stefan Berghofer, TU Muenchen
berghofe@10413
     3
wenzelm@11672
     4
Meta-level Simplification.
berghofe@10413
     5
*)
berghofe@10413
     6
skalberg@15006
     7
infix 4
wenzelm@15023
     8
  addsimps delsimps addeqcongs deleqcongs addcongs delcongs addsimprocs delsimprocs
nipkow@15199
     9
  setmksimps setmkcong setmksym setmkeqTrue settermless setsubgoaler
wenzelm@17882
    10
  setloop' setloop addloop addloop' delloop setSSolver addSSolver setSolver addSolver;
skalberg@15006
    11
wenzelm@11672
    12
signature BASIC_META_SIMPLIFIER =
wenzelm@11672
    13
sig
wenzelm@32738
    14
  val debug_simp: bool Unsynchronized.ref
wenzelm@32738
    15
  val trace_simp: bool Unsynchronized.ref
wenzelm@32738
    16
  val trace_simp_depth_limit: int Unsynchronized.ref
wenzelm@15023
    17
  type rrule
wenzelm@16807
    18
  val eq_rrule: rrule * rrule -> bool
wenzelm@15023
    19
  type simpset
wenzelm@15023
    20
  type proc
wenzelm@17614
    21
  type solver
wenzelm@17614
    22
  val mk_solver': string -> (simpset -> int -> tactic) -> solver
wenzelm@17614
    23
  val mk_solver: string -> (thm list -> int -> tactic) -> solver
wenzelm@15023
    24
  val empty_ss: simpset
wenzelm@15023
    25
  val merge_ss: simpset * simpset -> simpset
wenzelm@30356
    26
  val dest_ss: simpset ->
wenzelm@30356
    27
   {simps: (string * thm) list,
wenzelm@30356
    28
    procs: (string * cterm list) list,
wenzelm@30356
    29
    congs: (string * thm) list,
wenzelm@30356
    30
    weak_congs: string list,
wenzelm@30356
    31
    loopers: string list,
wenzelm@30356
    32
    unsafe_solvers: string list,
wenzelm@30356
    33
    safe_solvers: string list}
wenzelm@15023
    34
  type simproc
wenzelm@22234
    35
  val eq_simproc: simproc * simproc -> bool
wenzelm@22234
    36
  val morph_simproc: morphism -> simproc -> simproc
wenzelm@22234
    37
  val make_simproc: {name: string, lhss: cterm list,
wenzelm@22234
    38
    proc: morphism -> simpset -> cterm -> thm option, identifier: thm list} -> simproc
wenzelm@22008
    39
  val mk_simproc: string -> cterm list -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@15023
    40
  val add_prems: thm list -> simpset -> simpset
wenzelm@15023
    41
  val prems_of_ss: simpset -> thm list
wenzelm@15023
    42
  val addsimps: simpset * thm list -> simpset
wenzelm@15023
    43
  val delsimps: simpset * thm list -> simpset
wenzelm@15023
    44
  val addeqcongs: simpset * thm list -> simpset
wenzelm@15023
    45
  val deleqcongs: simpset * thm list -> simpset
wenzelm@15023
    46
  val addcongs: simpset * thm list -> simpset
wenzelm@15023
    47
  val delcongs: simpset * thm list -> simpset
wenzelm@15023
    48
  val addsimprocs: simpset * simproc list -> simpset
wenzelm@15023
    49
  val delsimprocs: simpset * simproc list -> simpset
wenzelm@30318
    50
  val mksimps: simpset -> thm -> thm list
wenzelm@15023
    51
  val setmksimps: simpset * (thm -> thm list) -> simpset
wenzelm@15023
    52
  val setmkcong: simpset * (thm -> thm) -> simpset
wenzelm@15023
    53
  val setmksym: simpset * (thm -> thm option) -> simpset
wenzelm@15023
    54
  val setmkeqTrue: simpset * (thm -> thm option) -> simpset
wenzelm@15023
    55
  val settermless: simpset * (term * term -> bool) -> simpset
wenzelm@15023
    56
  val setsubgoaler: simpset * (simpset -> int -> tactic) -> simpset
wenzelm@17882
    57
  val setloop': simpset * (simpset -> int -> tactic) -> simpset
wenzelm@15023
    58
  val setloop: simpset * (int -> tactic) -> simpset
wenzelm@17882
    59
  val addloop': simpset * (string * (simpset -> int -> tactic)) -> simpset
wenzelm@15023
    60
  val addloop: simpset * (string * (int -> tactic)) -> simpset
wenzelm@15023
    61
  val delloop: simpset * string -> simpset
wenzelm@15023
    62
  val setSSolver: simpset * solver -> simpset
wenzelm@15023
    63
  val addSSolver: simpset * solver -> simpset
wenzelm@15023
    64
  val setSolver: simpset * solver -> simpset
wenzelm@15023
    65
  val addSolver: simpset * solver -> simpset
wenzelm@21708
    66
wenzelm@21708
    67
  val rewrite_rule: thm list -> thm -> thm
wenzelm@21708
    68
  val rewrite_goals_rule: thm list -> thm -> thm
wenzelm@21708
    69
  val rewrite_goals_tac: thm list -> tactic
wenzelm@23536
    70
  val rewrite_goal_tac: thm list -> int -> tactic
wenzelm@21708
    71
  val rewtac: thm -> tactic
wenzelm@21708
    72
  val prune_params_tac: tactic
wenzelm@21708
    73
  val fold_rule: thm list -> thm -> thm
wenzelm@21708
    74
  val fold_goals_tac: thm list -> tactic
wenzelm@30552
    75
  val norm_hhf: thm -> thm
wenzelm@30552
    76
  val norm_hhf_protect: thm -> thm
skalberg@15006
    77
end;
skalberg@15006
    78
berghofe@10413
    79
signature META_SIMPLIFIER =
berghofe@10413
    80
sig
wenzelm@11672
    81
  include BASIC_META_SIMPLIFIER
berghofe@10413
    82
  exception SIMPLIFIER of string * thm
wenzelm@30336
    83
  val internal_ss: simpset ->
wenzelm@30336
    84
   {rules: rrule Net.net,
wenzelm@30336
    85
    prems: thm list,
wenzelm@30336
    86
    bounds: int * ((string * typ) * string) list,
wenzelm@32738
    87
    depth: int * bool Unsynchronized.ref,
wenzelm@30336
    88
    context: Proof.context option} *
krauss@30908
    89
   {congs: (string * thm) list * string list,
wenzelm@30336
    90
    procs: proc Net.net,
wenzelm@30336
    91
    mk_rews:
wenzelm@30336
    92
     {mk: thm -> thm list,
wenzelm@30336
    93
      mk_cong: thm -> thm,
wenzelm@30336
    94
      mk_sym: thm -> thm option,
wenzelm@30336
    95
      mk_eq_True: thm -> thm option,
wenzelm@30336
    96
      reorient: theory -> term list -> term -> term -> bool},
wenzelm@30336
    97
    termless: term * term -> bool,
wenzelm@30336
    98
    subgoal_tac: simpset -> int -> tactic,
wenzelm@30336
    99
    loop_tacs: (string * (simpset -> int -> tactic)) list,
wenzelm@30336
   100
    solvers: solver list * solver list}
haftmann@27558
   101
  val add_simp: thm -> simpset -> simpset
haftmann@27558
   102
  val del_simp: thm -> simpset -> simpset
wenzelm@17966
   103
  val solver: simpset -> solver -> int -> tactic
wenzelm@24124
   104
  val simp_depth_limit_value: Config.value Config.T
wenzelm@24124
   105
  val simp_depth_limit: int Config.T
wenzelm@15023
   106
  val clear_ss: simpset -> simpset
wenzelm@16458
   107
  val simproc_i: theory -> string -> term list
wenzelm@16458
   108
    -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@16458
   109
  val simproc: theory -> string -> string list
wenzelm@16458
   110
    -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@17882
   111
  val inherit_context: simpset -> simpset -> simpset
wenzelm@20289
   112
  val the_context: simpset -> Proof.context
wenzelm@20289
   113
  val context: Proof.context -> simpset -> simpset
wenzelm@17897
   114
  val theory_context: theory  -> simpset -> simpset
wenzelm@32738
   115
  val debug_bounds: bool Unsynchronized.ref
wenzelm@18208
   116
  val set_reorient: (theory -> term list -> term -> term -> bool) -> simpset -> simpset
wenzelm@17966
   117
  val set_solvers: solver list -> simpset -> simpset
wenzelm@23598
   118
  val rewrite_cterm: bool * bool * bool -> (simpset -> thm -> thm option) -> simpset -> conv
wenzelm@16458
   119
  val rewrite_term: theory -> thm list -> (term -> term option) list -> term -> term
wenzelm@15023
   120
  val rewrite_thm: bool * bool * bool ->
wenzelm@15023
   121
    (simpset -> thm -> thm option) -> simpset -> thm -> thm
wenzelm@15023
   122
  val rewrite_goal_rule: bool * bool * bool ->
wenzelm@15023
   123
    (simpset -> thm -> thm option) -> simpset -> int -> thm -> thm
wenzelm@23536
   124
  val asm_rewrite_goal_tac: bool * bool * bool ->
wenzelm@23536
   125
    (simpset -> tactic) -> simpset -> int -> tactic
wenzelm@23598
   126
  val rewrite: bool -> thm list -> conv
wenzelm@21708
   127
  val simplify: bool -> thm list -> thm -> thm
berghofe@10413
   128
end;
berghofe@10413
   129
wenzelm@15023
   130
structure MetaSimplifier: META_SIMPLIFIER =
berghofe@10413
   131
struct
berghofe@10413
   132
wenzelm@15023
   133
(** datatype simpset **)
wenzelm@15023
   134
wenzelm@15023
   135
(* rewrite rules *)
berghofe@10413
   136
wenzelm@20546
   137
type rrule =
wenzelm@20546
   138
 {thm: thm,         (*the rewrite rule*)
wenzelm@20546
   139
  name: string,     (*name of theorem from which rewrite rule was extracted*)
wenzelm@20546
   140
  lhs: term,        (*the left-hand side*)
wenzelm@20546
   141
  elhs: cterm,      (*the etac-contracted lhs*)
wenzelm@20546
   142
  extra: bool,      (*extra variables outside of elhs*)
wenzelm@20546
   143
  fo: bool,         (*use first-order matching*)
wenzelm@20546
   144
  perm: bool};      (*the rewrite rule is permutative*)
wenzelm@15023
   145
wenzelm@20546
   146
(*
wenzelm@12603
   147
Remarks:
berghofe@10413
   148
  - elhs is used for matching,
wenzelm@15023
   149
    lhs only for preservation of bound variable names;
berghofe@10413
   150
  - fo is set iff
berghofe@10413
   151
    either elhs is first-order (no Var is applied),
wenzelm@15023
   152
      in which case fo-matching is complete,
berghofe@10413
   153
    or elhs is not a pattern,
wenzelm@20546
   154
      in which case there is nothing better to do;
wenzelm@20546
   155
*)
berghofe@10413
   156
berghofe@10413
   157
fun eq_rrule ({thm = thm1, ...}: rrule, {thm = thm2, ...}: rrule) =
wenzelm@22360
   158
  Thm.eq_thm_prop (thm1, thm2);
wenzelm@15023
   159
wenzelm@15023
   160
wenzelm@17614
   161
(* simplification sets, procedures, and solvers *)
wenzelm@15023
   162
wenzelm@15023
   163
(*A simpset contains data required during conversion:
berghofe@10413
   164
    rules: discrimination net of rewrite rules;
wenzelm@15023
   165
    prems: current premises;
berghofe@15249
   166
    bounds: maximal index of bound variables already used
wenzelm@15023
   167
      (for generating new names when rewriting under lambda abstractions);
wenzelm@22892
   168
    depth: simp_depth and exceeded flag;
berghofe@10413
   169
    congs: association list of congruence rules and
berghofe@10413
   170
           a list of `weak' congruence constants.
berghofe@10413
   171
           A congruence is `weak' if it avoids normalization of some argument.
berghofe@10413
   172
    procs: discrimination net of simplification procedures
berghofe@10413
   173
      (functions that prove rewrite rules on the fly);
wenzelm@15023
   174
    mk_rews:
wenzelm@15023
   175
      mk: turn simplification thms into rewrite rules;
wenzelm@15023
   176
      mk_cong: prepare congruence rules;
wenzelm@15023
   177
      mk_sym: turn == around;
wenzelm@15023
   178
      mk_eq_True: turn P into P == True;
wenzelm@15023
   179
    termless: relation for ordered rewriting;*)
skalberg@15011
   180
wenzelm@15023
   181
type mk_rews =
wenzelm@15023
   182
 {mk: thm -> thm list,
wenzelm@15023
   183
  mk_cong: thm -> thm,
wenzelm@15023
   184
  mk_sym: thm -> thm option,
wenzelm@18208
   185
  mk_eq_True: thm -> thm option,
wenzelm@18208
   186
  reorient: theory -> term list -> term -> term -> bool};
wenzelm@15023
   187
wenzelm@15023
   188
datatype simpset =
wenzelm@15023
   189
  Simpset of
wenzelm@15023
   190
   {rules: rrule Net.net,
berghofe@10413
   191
    prems: thm list,
wenzelm@17882
   192
    bounds: int * ((string * typ) * string) list,
wenzelm@32738
   193
    depth: int * bool Unsynchronized.ref,
wenzelm@20289
   194
    context: Proof.context option} *
krauss@30908
   195
   {congs: (string * thm) list * string list,
wenzelm@15023
   196
    procs: proc Net.net,
wenzelm@15023
   197
    mk_rews: mk_rews,
nipkow@11504
   198
    termless: term * term -> bool,
skalberg@15011
   199
    subgoal_tac: simpset -> int -> tactic,
wenzelm@17882
   200
    loop_tacs: (string * (simpset -> int -> tactic)) list,
wenzelm@15023
   201
    solvers: solver list * solver list}
wenzelm@15023
   202
and proc =
wenzelm@15023
   203
  Proc of
wenzelm@15023
   204
   {name: string,
wenzelm@15023
   205
    lhs: cterm,
wenzelm@22008
   206
    proc: simpset -> cterm -> thm option,
wenzelm@22234
   207
    id: stamp * thm list}
wenzelm@17614
   208
and solver =
wenzelm@17614
   209
  Solver of
wenzelm@17614
   210
   {name: string,
wenzelm@17614
   211
    solver: simpset -> int -> tactic,
wenzelm@15023
   212
    id: stamp};
wenzelm@15023
   213
wenzelm@15023
   214
wenzelm@30336
   215
fun internal_ss (Simpset args) = args;
berghofe@10413
   216
wenzelm@22892
   217
fun make_ss1 (rules, prems, bounds, depth, context) =
wenzelm@22892
   218
  {rules = rules, prems = prems, bounds = bounds, depth = depth, context = context};
wenzelm@15023
   219
wenzelm@22892
   220
fun map_ss1 f {rules, prems, bounds, depth, context} =
wenzelm@22892
   221
  make_ss1 (f (rules, prems, bounds, depth, context));
berghofe@10413
   222
wenzelm@15023
   223
fun make_ss2 (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =
wenzelm@15023
   224
  {congs = congs, procs = procs, mk_rews = mk_rews, termless = termless,
wenzelm@15023
   225
    subgoal_tac = subgoal_tac, loop_tacs = loop_tacs, solvers = solvers};
wenzelm@15023
   226
wenzelm@15023
   227
fun map_ss2 f {congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers} =
wenzelm@15023
   228
  make_ss2 (f (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
wenzelm@15023
   229
wenzelm@15023
   230
fun make_simpset (args1, args2) = Simpset (make_ss1 args1, make_ss2 args2);
berghofe@10413
   231
wenzelm@15023
   232
fun map_simpset1 f (Simpset (r1, r2)) = Simpset (map_ss1 f r1, r2);
wenzelm@15023
   233
fun map_simpset2 f (Simpset (r1, r2)) = Simpset (r1, map_ss2 f r2);
wenzelm@15023
   234
wenzelm@17614
   235
fun prems_of_ss (Simpset ({prems, ...}, _)) = prems;
wenzelm@17614
   236
wenzelm@22234
   237
fun eq_procid ((s1: stamp, ths1: thm list), (s2, ths2)) =
wenzelm@22360
   238
  s1 = s2 andalso eq_list Thm.eq_thm (ths1, ths2);
wenzelm@22234
   239
fun eq_proc (Proc {id = id1, ...}, Proc {id = id2, ...}) = eq_procid (id1, id2);
wenzelm@17614
   240
wenzelm@17614
   241
fun mk_solver' name solver = Solver {name = name, solver = solver, id = stamp ()};
wenzelm@17614
   242
fun mk_solver name solver = mk_solver' name (solver o prems_of_ss);
wenzelm@17614
   243
wenzelm@17614
   244
fun solver_name (Solver {name, ...}) = name;
wenzelm@17966
   245
fun solver ss (Solver {solver = tac, ...}) = tac ss;
wenzelm@17614
   246
fun eq_solver (Solver {id = id1, ...}, Solver {id = id2, ...}) = (id1 = id2);
wenzelm@17614
   247
wenzelm@15023
   248
wenzelm@22892
   249
(* simp depth *)
wenzelm@22892
   250
wenzelm@24124
   251
val simp_depth_limit_value = Config.declare false "simp_depth_limit" (Config.Int 100);
wenzelm@24124
   252
val simp_depth_limit = Config.int simp_depth_limit_value;
wenzelm@24124
   253
wenzelm@32738
   254
val trace_simp_depth_limit = Unsynchronized.ref 1;
wenzelm@22892
   255
wenzelm@22892
   256
fun trace_depth (Simpset ({depth = (depth, exceeded), ...}, _)) msg =
wenzelm@23938
   257
  if depth > ! trace_simp_depth_limit then
wenzelm@23938
   258
    if ! exceeded then () else (tracing "trace_simp_depth_limit exceeded!"; exceeded := true)
wenzelm@22892
   259
  else
wenzelm@23938
   260
    (tracing (enclose "[" "]" (string_of_int depth) ^ msg); exceeded := false);
wenzelm@22892
   261
wenzelm@22892
   262
val inc_simp_depth = map_simpset1 (fn (rules, prems, bounds, (depth, exceeded), context) =>
wenzelm@22892
   263
  (rules, prems, bounds,
wenzelm@32738
   264
    (depth + 1,
wenzelm@32738
   265
      if depth = ! trace_simp_depth_limit then Unsynchronized.ref false else exceeded), context));
wenzelm@22892
   266
wenzelm@22892
   267
fun simp_depth (Simpset ({depth = (depth, _), ...}, _)) = depth;
wenzelm@22892
   268
wenzelm@22892
   269
wenzelm@16985
   270
(* diagnostics *)
wenzelm@16985
   271
wenzelm@16985
   272
exception SIMPLIFIER of string * thm;
wenzelm@16985
   273
wenzelm@32738
   274
val debug_simp = Unsynchronized.ref false;
wenzelm@32738
   275
val trace_simp = Unsynchronized.ref false;
wenzelm@22892
   276
wenzelm@16985
   277
local
wenzelm@16985
   278
wenzelm@22892
   279
fun prnt ss warn a = if warn then warning a else trace_depth ss a;
wenzelm@16985
   280
wenzelm@16985
   281
fun show_bounds (Simpset ({bounds = (_, bs), ...}, _)) t =
wenzelm@16985
   282
  let
wenzelm@20146
   283
    val names = Term.declare_term_names t Name.context;
wenzelm@20146
   284
    val xs = rev (#1 (Name.variants (rev (map #2 bs)) names));
wenzelm@17614
   285
    fun subst (((b, T), _), x') = (Free (b, T), Syntax.mark_boundT (x', T));
wenzelm@16985
   286
  in Term.subst_atomic (ListPair.map subst (bs, xs)) t end;
wenzelm@16985
   287
wenzelm@17705
   288
in
wenzelm@17705
   289
wenzelm@22892
   290
fun print_term ss warn a thy t = prnt ss warn (a ^ "\n" ^
wenzelm@26939
   291
  Syntax.string_of_term_global thy (if ! debug_simp then t else show_bounds ss t));
wenzelm@16985
   292
wenzelm@22892
   293
fun debug warn a ss = if ! debug_simp then prnt ss warn (a ()) else ();
wenzelm@22892
   294
fun trace warn a ss = if ! trace_simp then prnt ss warn (a ()) else ();
wenzelm@16985
   295
wenzelm@22892
   296
fun debug_term warn a ss thy t = if ! debug_simp then print_term ss warn (a ()) thy t else ();
wenzelm@22892
   297
fun trace_term warn a ss thy t = if ! trace_simp then print_term ss warn (a ()) thy t else ();
wenzelm@16985
   298
wenzelm@16985
   299
fun trace_cterm warn a ss ct =
wenzelm@22892
   300
  if ! trace_simp then print_term ss warn (a ()) (Thm.theory_of_cterm ct) (Thm.term_of ct)
wenzelm@22254
   301
  else ();
wenzelm@16985
   302
wenzelm@16985
   303
fun trace_thm a ss th =
wenzelm@22892
   304
  if ! trace_simp then print_term ss false (a ()) (Thm.theory_of_thm th) (Thm.full_prop_of th)
wenzelm@22254
   305
  else ();
wenzelm@16985
   306
wenzelm@16985
   307
fun trace_named_thm a ss (th, name) =
wenzelm@16985
   308
  if ! trace_simp then
wenzelm@22892
   309
    print_term ss false (if name = "" then a () else a () ^ " " ^ quote name ^ ":")
wenzelm@16985
   310
      (Thm.theory_of_thm th) (Thm.full_prop_of th)
wenzelm@16985
   311
  else ();
wenzelm@16985
   312
wenzelm@22892
   313
fun warn_thm a ss th =
wenzelm@22892
   314
  print_term ss true a (Thm.theory_of_thm th) (Thm.full_prop_of th);
wenzelm@16985
   315
wenzelm@20028
   316
fun cond_warn_thm a (ss as Simpset ({context, ...}, _)) th =
wenzelm@20546
   317
  if is_some context then () else warn_thm a ss th;
wenzelm@20028
   318
wenzelm@16985
   319
end;
wenzelm@16985
   320
wenzelm@16985
   321
berghofe@10413
   322
berghofe@10413
   323
(** simpset operations **)
berghofe@10413
   324
wenzelm@17882
   325
(* context *)
berghofe@10413
   326
wenzelm@17614
   327
fun eq_bound (x: string, (y, _)) = x = y;
wenzelm@17614
   328
wenzelm@22892
   329
fun add_bound bound = map_simpset1 (fn (rules, prems, (count, bounds), depth, context) =>
wenzelm@22892
   330
  (rules, prems, (count + 1, bound :: bounds), depth, context));
wenzelm@17882
   331
wenzelm@22892
   332
fun add_prems ths = map_simpset1 (fn (rules, prems, bounds, depth, context) =>
wenzelm@22892
   333
  (rules, ths @ prems, bounds, depth, context));
wenzelm@17882
   334
wenzelm@22892
   335
fun inherit_context (Simpset ({bounds, depth, context, ...}, _)) =
wenzelm@22892
   336
  map_simpset1 (fn (rules, prems, _, _, _) => (rules, prems, bounds, depth, context));
wenzelm@16985
   337
wenzelm@17882
   338
fun the_context (Simpset ({context = SOME ctxt, ...}, _)) = ctxt
wenzelm@17882
   339
  | the_context _ = raise Fail "Simplifier: no proof context in simpset";
berghofe@10413
   340
wenzelm@17897
   341
fun context ctxt =
wenzelm@22892
   342
  map_simpset1 (fn (rules, prems, bounds, depth, _) => (rules, prems, bounds, depth, SOME ctxt));
wenzelm@17882
   343
wenzelm@21516
   344
val theory_context = context o ProofContext.init;
wenzelm@17897
   345
wenzelm@27312
   346
fun activate_context thy ss =
wenzelm@27312
   347
  let
wenzelm@27312
   348
    val ctxt = the_context ss;
wenzelm@27312
   349
    val ctxt' = Context.transfer_proof (Theory.merge (thy, ProofContext.theory_of ctxt)) ctxt;
wenzelm@27312
   350
  in context ctxt' ss end;
wenzelm@17897
   351
wenzelm@17897
   352
wenzelm@20028
   353
(* maintain simp rules *)
berghofe@10413
   354
wenzelm@20546
   355
(* FIXME: it seems that the conditions on extra variables are too liberal if
wenzelm@20546
   356
prems are nonempty: does solving the prems really guarantee instantiation of
wenzelm@20546
   357
all its Vars? Better: a dynamic check each time a rule is applied.
wenzelm@20546
   358
*)
wenzelm@20546
   359
fun rewrite_rule_extra_vars prems elhs erhs =
wenzelm@20546
   360
  let
wenzelm@20546
   361
    val elhss = elhs :: prems;
wenzelm@20546
   362
    val tvars = fold Term.add_tvars elhss [];
wenzelm@20546
   363
    val vars = fold Term.add_vars elhss [];
wenzelm@20546
   364
  in
wenzelm@20546
   365
    erhs |> Term.exists_type (Term.exists_subtype
wenzelm@20546
   366
      (fn TVar v => not (member (op =) tvars v) | _ => false)) orelse
wenzelm@20546
   367
    erhs |> Term.exists_subterm
wenzelm@20546
   368
      (fn Var v => not (member (op =) vars v) | _ => false)
wenzelm@20546
   369
  end;
wenzelm@20546
   370
wenzelm@20546
   371
fun rrule_extra_vars elhs thm =
wenzelm@20546
   372
  rewrite_rule_extra_vars [] (term_of elhs) (Thm.full_prop_of thm);
wenzelm@20546
   373
wenzelm@15023
   374
fun mk_rrule2 {thm, name, lhs, elhs, perm} =
wenzelm@15023
   375
  let
wenzelm@20546
   376
    val t = term_of elhs;
wenzelm@20546
   377
    val fo = Pattern.first_order t orelse not (Pattern.pattern t);
wenzelm@20546
   378
    val extra = rrule_extra_vars elhs thm;
wenzelm@20546
   379
  in {thm = thm, name = name, lhs = lhs, elhs = elhs, extra = extra, fo = fo, perm = perm} end;
berghofe@10413
   380
wenzelm@20028
   381
fun del_rrule (rrule as {thm, elhs, ...}) ss =
wenzelm@22892
   382
  ss |> map_simpset1 (fn (rules, prems, bounds, depth, context) =>
wenzelm@22892
   383
    (Net.delete_term eq_rrule (term_of elhs, rrule) rules, prems, bounds, depth, context))
wenzelm@20028
   384
  handle Net.DELETE => (cond_warn_thm "Rewrite rule not in simpset:" ss thm; ss);
wenzelm@20028
   385
wenzelm@32797
   386
fun insert_rrule (rrule as {thm, name, ...}) ss =
wenzelm@22254
   387
 (trace_named_thm (fn () => "Adding rewrite rule") ss (thm, name);
wenzelm@22892
   388
  ss |> map_simpset1 (fn (rules, prems, bounds, depth, context) =>
wenzelm@15023
   389
    let
wenzelm@15023
   390
      val rrule2 as {elhs, ...} = mk_rrule2 rrule;
wenzelm@16807
   391
      val rules' = Net.insert_term eq_rrule (term_of elhs, rrule2) rules;
wenzelm@22892
   392
    in (rules', prems, bounds, depth, context) end)
wenzelm@20028
   393
  handle Net.INSERT => (cond_warn_thm "Ignoring duplicate rewrite rule:" ss thm; ss));
berghofe@10413
   394
berghofe@10413
   395
fun vperm (Var _, Var _) = true
berghofe@10413
   396
  | vperm (Abs (_, _, s), Abs (_, _, t)) = vperm (s, t)
berghofe@10413
   397
  | vperm (t1 $ t2, u1 $ u2) = vperm (t1, u1) andalso vperm (t2, u2)
berghofe@10413
   398
  | vperm (t, u) = (t = u);
berghofe@10413
   399
berghofe@10413
   400
fun var_perm (t, u) =
haftmann@33038
   401
  vperm (t, u) andalso eq_set (op =) (Term.add_vars t [], Term.add_vars u []);
berghofe@10413
   402
wenzelm@15023
   403
(*simple test for looping rewrite rules and stupid orientations*)
wenzelm@18208
   404
fun default_reorient thy prems lhs rhs =
wenzelm@15023
   405
  rewrite_rule_extra_vars prems lhs rhs
wenzelm@15023
   406
    orelse
wenzelm@15023
   407
  is_Var (head_of lhs)
wenzelm@15023
   408
    orelse
nipkow@16305
   409
(* turns t = x around, which causes a headache if x is a local variable -
nipkow@16305
   410
   usually it is very useful :-(
nipkow@16305
   411
  is_Free rhs andalso not(is_Free lhs) andalso not(Logic.occs(rhs,lhs))
nipkow@16305
   412
  andalso not(exists_subterm is_Var lhs)
nipkow@16305
   413
    orelse
nipkow@16305
   414
*)
wenzelm@16842
   415
  exists (fn t => Logic.occs (lhs, t)) (rhs :: prems)
wenzelm@15023
   416
    orelse
wenzelm@17203
   417
  null prems andalso Pattern.matches thy (lhs, rhs)
berghofe@10413
   418
    (*the condition "null prems" is necessary because conditional rewrites
berghofe@10413
   419
      with extra variables in the conditions may terminate although
wenzelm@15023
   420
      the rhs is an instance of the lhs; example: ?m < ?n ==> f(?n) == f(?m)*)
wenzelm@15023
   421
    orelse
wenzelm@15023
   422
  is_Const lhs andalso not (is_Const rhs);
berghofe@10413
   423
berghofe@10413
   424
fun decomp_simp thm =
wenzelm@15023
   425
  let
wenzelm@26626
   426
    val thy = Thm.theory_of_thm thm;
wenzelm@26626
   427
    val prop = Thm.prop_of thm;
wenzelm@15023
   428
    val prems = Logic.strip_imp_prems prop;
wenzelm@15023
   429
    val concl = Drule.strip_imp_concl (Thm.cprop_of thm);
wenzelm@22902
   430
    val (lhs, rhs) = Thm.dest_equals concl handle TERM _ =>
wenzelm@15023
   431
      raise SIMPLIFIER ("Rewrite rule not a meta-equality", thm);
wenzelm@20579
   432
    val elhs = Thm.dest_arg (Thm.cprop_of (Thm.eta_conversion lhs));
wenzelm@16665
   433
    val elhs = if term_of elhs aconv term_of lhs then lhs else elhs;  (*share identical copies*)
wenzelm@18929
   434
    val erhs = Envir.eta_contract (term_of rhs);
wenzelm@15023
   435
    val perm =
wenzelm@15023
   436
      var_perm (term_of elhs, erhs) andalso
wenzelm@15023
   437
      not (term_of elhs aconv erhs) andalso
wenzelm@15023
   438
      not (is_Var (term_of elhs));
wenzelm@16458
   439
  in (thy, prems, term_of lhs, elhs, term_of rhs, perm) end;
berghofe@10413
   440
wenzelm@12783
   441
fun decomp_simp' thm =
wenzelm@12979
   442
  let val (_, _, lhs, _, rhs, _) = decomp_simp thm in
wenzelm@12783
   443
    if Thm.nprems_of thm > 0 then raise SIMPLIFIER ("Bad conditional rewrite rule", thm)
wenzelm@12979
   444
    else (lhs, rhs)
wenzelm@12783
   445
  end;
wenzelm@12783
   446
wenzelm@15023
   447
fun mk_eq_True (Simpset (_, {mk_rews = {mk_eq_True, ...}, ...})) (thm, name) =
wenzelm@15023
   448
  (case mk_eq_True thm of
skalberg@15531
   449
    NONE => []
skalberg@15531
   450
  | SOME eq_True =>
wenzelm@20546
   451
      let
wenzelm@20546
   452
        val (_, _, lhs, elhs, _, _) = decomp_simp eq_True;
wenzelm@15023
   453
      in [{thm = eq_True, name = name, lhs = lhs, elhs = elhs, perm = false}] end);
berghofe@10413
   454
wenzelm@15023
   455
(*create the rewrite rule and possibly also the eq_True variant,
wenzelm@15023
   456
  in case there are extra vars on the rhs*)
wenzelm@15023
   457
fun rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm2) =
wenzelm@15023
   458
  let val rrule = {thm = thm, name = name, lhs = lhs, elhs = elhs, perm = false} in
wenzelm@20546
   459
    if rewrite_rule_extra_vars [] lhs rhs then
wenzelm@20546
   460
      mk_eq_True ss (thm2, name) @ [rrule]
wenzelm@20546
   461
    else [rrule]
berghofe@10413
   462
  end;
berghofe@10413
   463
wenzelm@15023
   464
fun mk_rrule ss (thm, name) =
wenzelm@15023
   465
  let val (_, prems, lhs, elhs, rhs, perm) = decomp_simp thm in
wenzelm@15023
   466
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
wenzelm@15023
   467
    else
wenzelm@15023
   468
      (*weak test for loops*)
wenzelm@15023
   469
      if rewrite_rule_extra_vars prems lhs rhs orelse is_Var (term_of elhs)
wenzelm@15023
   470
      then mk_eq_True ss (thm, name)
wenzelm@15023
   471
      else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
berghofe@10413
   472
  end;
berghofe@10413
   473
wenzelm@15023
   474
fun orient_rrule ss (thm, name) =
wenzelm@18208
   475
  let
wenzelm@18208
   476
    val (thy, prems, lhs, elhs, rhs, perm) = decomp_simp thm;
wenzelm@18208
   477
    val Simpset (_, {mk_rews = {reorient, mk_sym, ...}, ...}) = ss;
wenzelm@18208
   478
  in
wenzelm@15023
   479
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
wenzelm@16458
   480
    else if reorient thy prems lhs rhs then
wenzelm@16458
   481
      if reorient thy prems rhs lhs
wenzelm@15023
   482
      then mk_eq_True ss (thm, name)
wenzelm@15023
   483
      else
wenzelm@18208
   484
        (case mk_sym thm of
wenzelm@18208
   485
          NONE => []
wenzelm@18208
   486
        | SOME thm' =>
wenzelm@18208
   487
            let val (_, _, lhs', elhs', rhs', _) = decomp_simp thm'
wenzelm@18208
   488
            in rrule_eq_True (thm', name, lhs', elhs', rhs', ss, thm) end)
wenzelm@15023
   489
    else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
berghofe@10413
   490
  end;
berghofe@10413
   491
nipkow@15199
   492
fun extract_rews (Simpset (_, {mk_rews = {mk, ...}, ...}), thms) =
wenzelm@27865
   493
  maps (fn thm => map (rpair (Thm.get_name_hint thm)) (mk thm)) thms;
berghofe@10413
   494
wenzelm@15023
   495
fun extract_safe_rrules (ss, thm) =
wenzelm@19482
   496
  maps (orient_rrule ss) (extract_rews (ss, [thm]));
berghofe@10413
   497
berghofe@10413
   498
wenzelm@20028
   499
(* add/del rules explicitly *)
berghofe@10413
   500
wenzelm@20028
   501
fun comb_simps comb mk_rrule (ss, thms) =
wenzelm@20028
   502
  let
wenzelm@20028
   503
    val rews = extract_rews (ss, thms);
wenzelm@20028
   504
  in fold (fold comb o mk_rrule) rews ss end;
berghofe@10413
   505
wenzelm@20028
   506
fun ss addsimps thms =
wenzelm@20028
   507
  comb_simps insert_rrule (mk_rrule ss) (ss, thms);
berghofe@10413
   508
wenzelm@15023
   509
fun ss delsimps thms =
wenzelm@20028
   510
  comb_simps del_rrule (map mk_rrule2 o mk_rrule ss) (ss, thms);
wenzelm@15023
   511
haftmann@27558
   512
fun add_simp thm ss = ss addsimps [thm];
haftmann@27558
   513
fun del_simp thm ss = ss delsimps [thm];
wenzelm@15023
   514
wenzelm@30318
   515
wenzelm@15023
   516
(* congs *)
berghofe@10413
   517
skalberg@15531
   518
fun cong_name (Const (a, _)) = SOME a
skalberg@15531
   519
  | cong_name (Free (a, _)) = SOME ("Free: " ^ a)
skalberg@15531
   520
  | cong_name _ = NONE;
ballarin@13835
   521
wenzelm@15023
   522
local
wenzelm@15023
   523
wenzelm@15023
   524
fun is_full_cong_prems [] [] = true
wenzelm@15023
   525
  | is_full_cong_prems [] _ = false
wenzelm@15023
   526
  | is_full_cong_prems (p :: prems) varpairs =
wenzelm@15023
   527
      (case Logic.strip_assums_concl p of
wenzelm@15023
   528
        Const ("==", _) $ lhs $ rhs =>
wenzelm@15023
   529
          let val (x, xs) = strip_comb lhs and (y, ys) = strip_comb rhs in
wenzelm@15023
   530
            is_Var x andalso forall is_Bound xs andalso
haftmann@20972
   531
            not (has_duplicates (op =) xs) andalso xs = ys andalso
wenzelm@20671
   532
            member (op =) varpairs (x, y) andalso
wenzelm@19303
   533
            is_full_cong_prems prems (remove (op =) (x, y) varpairs)
wenzelm@15023
   534
          end
wenzelm@15023
   535
      | _ => false);
wenzelm@15023
   536
wenzelm@15023
   537
fun is_full_cong thm =
berghofe@10413
   538
  let
wenzelm@15023
   539
    val prems = prems_of thm and concl = concl_of thm;
wenzelm@15023
   540
    val (lhs, rhs) = Logic.dest_equals concl;
wenzelm@15023
   541
    val (f, xs) = strip_comb lhs and (g, ys) = strip_comb rhs;
berghofe@10413
   542
  in
haftmann@20972
   543
    f = g andalso not (has_duplicates (op =) (xs @ ys)) andalso length xs = length ys andalso
wenzelm@15023
   544
    is_full_cong_prems prems (xs ~~ ys)
berghofe@10413
   545
  end;
berghofe@10413
   546
wenzelm@15023
   547
fun add_cong (ss, thm) = ss |>
wenzelm@15023
   548
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   549
    let
wenzelm@22902
   550
      val (lhs, _) = Thm.dest_equals (Drule.strip_imp_concl (Thm.cprop_of thm))
wenzelm@15023
   551
        handle TERM _ => raise SIMPLIFIER ("Congruence not a meta-equality", thm);
wenzelm@18929
   552
    (*val lhs = Envir.eta_contract lhs;*)
wenzelm@20057
   553
      val a = the (cong_name (head_of (term_of lhs))) handle Option.Option =>
wenzelm@15023
   554
        raise SIMPLIFIER ("Congruence must start with a constant or free variable", thm);
haftmann@22221
   555
      val (xs, weak) = congs;
haftmann@22221
   556
      val _ =  if AList.defined (op =) xs a
haftmann@22221
   557
        then warning ("Overwriting congruence rule for " ^ quote a)
haftmann@22221
   558
        else ();
krauss@30908
   559
      val xs' = AList.update (op =) (a, thm) xs;
haftmann@22221
   560
      val weak' = if is_full_cong thm then weak else a :: weak;
haftmann@22221
   561
    in ((xs', weak'), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
berghofe@10413
   562
wenzelm@15023
   563
fun del_cong (ss, thm) = ss |>
wenzelm@15023
   564
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   565
    let
wenzelm@15023
   566
      val (lhs, _) = Logic.dest_equals (Thm.concl_of thm) handle TERM _ =>
wenzelm@15023
   567
        raise SIMPLIFIER ("Congruence not a meta-equality", thm);
wenzelm@18929
   568
    (*val lhs = Envir.eta_contract lhs;*)
wenzelm@20057
   569
      val a = the (cong_name (head_of lhs)) handle Option.Option =>
wenzelm@15023
   570
        raise SIMPLIFIER ("Congruence must start with a constant", thm);
haftmann@22221
   571
      val (xs, _) = congs;
haftmann@22221
   572
      val xs' = filter_out (fn (x : string, _) => x = a) xs;
krauss@30908
   573
      val weak' = xs' |> map_filter (fn (a, thm) =>
skalberg@15531
   574
        if is_full_cong thm then NONE else SOME a);
haftmann@22221
   575
    in ((xs', weak'), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
berghofe@10413
   576
wenzelm@15023
   577
fun mk_cong (Simpset (_, {mk_rews = {mk_cong = f, ...}, ...})) = f;
wenzelm@15023
   578
wenzelm@15023
   579
in
wenzelm@15023
   580
skalberg@15570
   581
val (op addeqcongs) = Library.foldl add_cong;
skalberg@15570
   582
val (op deleqcongs) = Library.foldl del_cong;
wenzelm@15023
   583
wenzelm@15023
   584
fun ss addcongs congs = ss addeqcongs map (mk_cong ss) congs;
wenzelm@15023
   585
fun ss delcongs congs = ss deleqcongs map (mk_cong ss) congs;
wenzelm@15023
   586
wenzelm@15023
   587
end;
berghofe@10413
   588
berghofe@10413
   589
wenzelm@15023
   590
(* simprocs *)
wenzelm@15023
   591
wenzelm@22234
   592
datatype simproc =
wenzelm@22234
   593
  Simproc of
wenzelm@22234
   594
    {name: string,
wenzelm@22234
   595
     lhss: cterm list,
wenzelm@22234
   596
     proc: morphism -> simpset -> cterm -> thm option,
wenzelm@22234
   597
     id: stamp * thm list};
wenzelm@22234
   598
wenzelm@22234
   599
fun eq_simproc (Simproc {id = id1, ...}, Simproc {id = id2, ...}) = eq_procid (id1, id2);
wenzelm@22008
   600
wenzelm@22234
   601
fun morph_simproc phi (Simproc {name, lhss, proc, id = (s, ths)}) =
wenzelm@22234
   602
  Simproc
wenzelm@22234
   603
   {name = name,
wenzelm@22234
   604
    lhss = map (Morphism.cterm phi) lhss,
wenzelm@22669
   605
    proc = Morphism.transform phi proc,
wenzelm@22234
   606
    id = (s, Morphism.fact phi ths)};
wenzelm@22234
   607
wenzelm@22234
   608
fun make_simproc {name, lhss, proc, identifier} =
wenzelm@22234
   609
  Simproc {name = name, lhss = lhss, proc = proc, id = (stamp (), identifier)};
wenzelm@22008
   610
wenzelm@22008
   611
fun mk_simproc name lhss proc =
wenzelm@22234
   612
  make_simproc {name = name, lhss = lhss, proc = fn _ => fn ss => fn ct =>
wenzelm@22234
   613
    proc (ProofContext.theory_of (the_context ss)) ss (Thm.term_of ct), identifier = []};
wenzelm@22008
   614
wenzelm@22008
   615
(* FIXME avoid global thy and Logic.varify *)
wenzelm@22008
   616
fun simproc_i thy name = mk_simproc name o map (Thm.cterm_of thy o Logic.varify);
wenzelm@24707
   617
fun simproc thy name = simproc_i thy name o map (Syntax.read_term_global thy);
wenzelm@22008
   618
wenzelm@22008
   619
wenzelm@15023
   620
local
berghofe@10413
   621
wenzelm@16985
   622
fun add_proc (proc as Proc {name, lhs, ...}) ss =
wenzelm@22254
   623
 (trace_cterm false (fn () => "Adding simplification procedure " ^ quote name ^ " for") ss lhs;
wenzelm@15023
   624
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@16807
   625
    (congs, Net.insert_term eq_proc (term_of lhs, proc) procs,
wenzelm@15023
   626
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
wenzelm@15023
   627
  handle Net.INSERT =>
wenzelm@15023
   628
    (warning ("Ignoring duplicate simplification procedure " ^ quote name); ss));
berghofe@10413
   629
wenzelm@16985
   630
fun del_proc (proc as Proc {name, lhs, ...}) ss =
wenzelm@15023
   631
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@16807
   632
    (congs, Net.delete_term eq_proc (term_of lhs, proc) procs,
wenzelm@15023
   633
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
wenzelm@15023
   634
  handle Net.DELETE =>
wenzelm@15023
   635
    (warning ("Simplification procedure " ^ quote name ^ " not in simpset"); ss);
berghofe@10413
   636
wenzelm@22234
   637
fun prep_procs (Simproc {name, lhss, proc, id}) =
wenzelm@22669
   638
  lhss |> map (fn lhs => Proc {name = name, lhs = lhs, proc = Morphism.form proc, id = id});
wenzelm@22234
   639
wenzelm@15023
   640
in
berghofe@10413
   641
wenzelm@22234
   642
fun ss addsimprocs ps = fold (fold add_proc o prep_procs) ps ss;
wenzelm@22234
   643
fun ss delsimprocs ps = fold (fold del_proc o prep_procs) ps ss;
berghofe@10413
   644
wenzelm@15023
   645
end;
berghofe@10413
   646
berghofe@10413
   647
berghofe@10413
   648
(* mk_rews *)
berghofe@10413
   649
wenzelm@15023
   650
local
wenzelm@15023
   651
wenzelm@18208
   652
fun map_mk_rews f = map_simpset2 (fn (congs, procs, {mk, mk_cong, mk_sym, mk_eq_True, reorient},
wenzelm@15023
   653
      termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@18208
   654
  let
wenzelm@18208
   655
    val (mk', mk_cong', mk_sym', mk_eq_True', reorient') =
wenzelm@18208
   656
      f (mk, mk_cong, mk_sym, mk_eq_True, reorient);
wenzelm@18208
   657
    val mk_rews' = {mk = mk', mk_cong = mk_cong', mk_sym = mk_sym', mk_eq_True = mk_eq_True',
wenzelm@18208
   658
      reorient = reorient'};
wenzelm@18208
   659
  in (congs, procs, mk_rews', termless, subgoal_tac, loop_tacs, solvers) end);
wenzelm@15023
   660
wenzelm@15023
   661
in
berghofe@10413
   662
wenzelm@30336
   663
fun mksimps (Simpset (_, {mk_rews = {mk, ...}, ...})) = mk;
wenzelm@30318
   664
wenzelm@18208
   665
fun ss setmksimps mk = ss |> map_mk_rews (fn (_, mk_cong, mk_sym, mk_eq_True, reorient) =>
wenzelm@18208
   666
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@15023
   667
wenzelm@18208
   668
fun ss setmkcong mk_cong = ss |> map_mk_rews (fn (mk, _, mk_sym, mk_eq_True, reorient) =>
wenzelm@18208
   669
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
berghofe@10413
   670
wenzelm@18208
   671
fun ss setmksym mk_sym = ss |> map_mk_rews (fn (mk, mk_cong, _, mk_eq_True, reorient) =>
wenzelm@18208
   672
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
berghofe@10413
   673
wenzelm@18208
   674
fun ss setmkeqTrue mk_eq_True = ss |> map_mk_rews (fn (mk, mk_cong, mk_sym, _, reorient) =>
wenzelm@18208
   675
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@18208
   676
wenzelm@18208
   677
fun set_reorient reorient = map_mk_rews (fn (mk, mk_cong, mk_sym, mk_eq_True, _) =>
wenzelm@18208
   678
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@15023
   679
wenzelm@15023
   680
end;
wenzelm@15023
   681
skalberg@14242
   682
berghofe@10413
   683
(* termless *)
berghofe@10413
   684
wenzelm@15023
   685
fun ss settermless termless = ss |>
wenzelm@15023
   686
  map_simpset2 (fn (congs, procs, mk_rews, _, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   687
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
skalberg@15006
   688
skalberg@15006
   689
wenzelm@15023
   690
(* tactics *)
skalberg@15006
   691
wenzelm@15023
   692
fun ss setsubgoaler subgoal_tac = ss |>
wenzelm@15023
   693
  map_simpset2 (fn (congs, procs, mk_rews, termless, _, loop_tacs, solvers) =>
wenzelm@15023
   694
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
skalberg@15006
   695
wenzelm@17882
   696
fun ss setloop' tac = ss |>
wenzelm@15023
   697
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, _, solvers) =>
wenzelm@15023
   698
   (congs, procs, mk_rews, termless, subgoal_tac, [("", tac)], solvers));
skalberg@15006
   699
wenzelm@17882
   700
fun ss setloop tac = ss setloop' (K tac);
wenzelm@17882
   701
wenzelm@17882
   702
fun ss addloop' (name, tac) = ss |>
wenzelm@15023
   703
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   704
    (congs, procs, mk_rews, termless, subgoal_tac,
haftmann@21286
   705
      (if AList.defined (op =) loop_tacs name
haftmann@21286
   706
        then warning ("Overwriting looper " ^ quote name)
haftmann@21286
   707
        else (); AList.update (op =) (name, tac) loop_tacs),
wenzelm@15023
   708
      solvers));
skalberg@15006
   709
wenzelm@17882
   710
fun ss addloop (name, tac) = ss addloop' (name, K tac);
wenzelm@17882
   711
wenzelm@15023
   712
fun ss delloop name = ss |>
wenzelm@15023
   713
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
haftmann@21286
   714
    (congs, procs, mk_rews, termless, subgoal_tac,
haftmann@21286
   715
      (if AList.defined (op =) loop_tacs name
haftmann@21286
   716
        then ()
haftmann@21286
   717
        else warning ("No such looper in simpset: " ^ quote name);
haftmann@21286
   718
       AList.delete (op =) name loop_tacs), solvers));
skalberg@15006
   719
wenzelm@15023
   720
fun ss setSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   721
  subgoal_tac, loop_tacs, (unsafe_solvers, _)) =>
wenzelm@15023
   722
    (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, (unsafe_solvers, [solver])));
skalberg@15006
   723
wenzelm@15023
   724
fun ss addSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   725
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
haftmann@22717
   726
    subgoal_tac, loop_tacs, (unsafe_solvers, insert eq_solver solver solvers)));
skalberg@15006
   727
wenzelm@15023
   728
fun ss setSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   729
  subgoal_tac, loop_tacs, (_, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   730
    subgoal_tac, loop_tacs, ([solver], solvers)));
skalberg@15006
   731
wenzelm@15023
   732
fun ss addSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   733
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
haftmann@22717
   734
    subgoal_tac, loop_tacs, (insert eq_solver solver unsafe_solvers, solvers)));
skalberg@15006
   735
wenzelm@15023
   736
fun set_solvers solvers = map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   737
  subgoal_tac, loop_tacs, _) => (congs, procs, mk_rews, termless,
wenzelm@15023
   738
  subgoal_tac, loop_tacs, (solvers, solvers)));
skalberg@15006
   739
skalberg@15006
   740
wenzelm@18208
   741
(* empty *)
wenzelm@18208
   742
wenzelm@18208
   743
fun init_ss mk_rews termless subgoal_tac solvers =
wenzelm@32738
   744
  make_simpset ((Net.empty, [], (0, []), (0, Unsynchronized.ref false), NONE),
wenzelm@18208
   745
    (([], []), Net.empty, mk_rews, termless, subgoal_tac, [], solvers));
wenzelm@18208
   746
wenzelm@18208
   747
fun clear_ss (ss as Simpset (_, {mk_rews, termless, subgoal_tac, solvers, ...})) =
wenzelm@18208
   748
  init_ss mk_rews termless subgoal_tac solvers
wenzelm@18208
   749
  |> inherit_context ss;
wenzelm@18208
   750
wenzelm@18208
   751
val basic_mk_rews: mk_rews =
wenzelm@18208
   752
 {mk = fn th => if can Logic.dest_equals (Thm.concl_of th) then [th] else [],
wenzelm@18208
   753
  mk_cong = I,
wenzelm@18208
   754
  mk_sym = SOME o Drule.symmetric_fun,
wenzelm@18208
   755
  mk_eq_True = K NONE,
wenzelm@18208
   756
  reorient = default_reorient};
wenzelm@18208
   757
wenzelm@29269
   758
val empty_ss = init_ss basic_mk_rews TermOrd.termless (K (K no_tac)) ([], []);
wenzelm@18208
   759
wenzelm@18208
   760
wenzelm@18208
   761
(* merge *)  (*NOTE: ignores some fields of 2nd simpset*)
wenzelm@18208
   762
wenzelm@18208
   763
fun merge_ss (ss1, ss2) =
wenzelm@24358
   764
  if pointer_eq (ss1, ss2) then ss1
wenzelm@24358
   765
  else
wenzelm@24358
   766
    let
wenzelm@24358
   767
      val Simpset ({rules = rules1, prems = prems1, bounds = bounds1, depth = depth1, context = _},
wenzelm@24358
   768
       {congs = (congs1, weak1), procs = procs1, mk_rews, termless, subgoal_tac,
wenzelm@24358
   769
        loop_tacs = loop_tacs1, solvers = (unsafe_solvers1, solvers1)}) = ss1;
wenzelm@24358
   770
      val Simpset ({rules = rules2, prems = prems2, bounds = bounds2, depth = depth2, context = _},
wenzelm@24358
   771
       {congs = (congs2, weak2), procs = procs2, mk_rews = _, termless = _, subgoal_tac = _,
wenzelm@24358
   772
        loop_tacs = loop_tacs2, solvers = (unsafe_solvers2, solvers2)}) = ss2;
wenzelm@30356
   773
wenzelm@24358
   774
      val rules' = Net.merge eq_rrule (rules1, rules2);
wenzelm@24358
   775
      val prems' = merge Thm.eq_thm_prop (prems1, prems2);
wenzelm@24358
   776
      val bounds' = if #1 bounds1 < #1 bounds2 then bounds2 else bounds1;
wenzelm@24358
   777
      val depth' = if #1 depth1 < #1 depth2 then depth2 else depth1;
wenzelm@31298
   778
      val congs' = merge (Thm.eq_thm_prop o pairself #2) (congs1, congs2);
wenzelm@24358
   779
      val weak' = merge (op =) (weak1, weak2);
wenzelm@24358
   780
      val procs' = Net.merge eq_proc (procs1, procs2);
wenzelm@24358
   781
      val loop_tacs' = AList.merge (op =) (K true) (loop_tacs1, loop_tacs2);
wenzelm@24358
   782
      val unsafe_solvers' = merge eq_solver (unsafe_solvers1, unsafe_solvers2);
wenzelm@24358
   783
      val solvers' = merge eq_solver (solvers1, solvers2);
wenzelm@24358
   784
    in
wenzelm@24358
   785
      make_simpset ((rules', prems', bounds', depth', NONE), ((congs', weak'), procs',
wenzelm@24358
   786
        mk_rews, termless, subgoal_tac, loop_tacs', (unsafe_solvers', solvers')))
wenzelm@24358
   787
    end;
wenzelm@18208
   788
wenzelm@18208
   789
wenzelm@30356
   790
(* dest_ss *)
wenzelm@30356
   791
wenzelm@30356
   792
fun dest_ss (Simpset ({rules, ...}, {congs, procs, loop_tacs, solvers, ...})) =
wenzelm@30356
   793
 {simps = Net.entries rules
wenzelm@30356
   794
    |> map (fn {name, thm, ...} => (name, thm)),
wenzelm@30356
   795
  procs = Net.entries procs
wenzelm@30356
   796
    |> map (fn Proc {name, lhs, id, ...} => ((name, lhs), id))
wenzelm@30356
   797
    |> partition_eq (eq_snd eq_procid)
wenzelm@30356
   798
    |> map (fn ps => (fst (fst (hd ps)), map (snd o fst) ps)),
krauss@30908
   799
  congs = #1 congs,
wenzelm@30356
   800
  weak_congs = #2 congs,
wenzelm@30356
   801
  loopers = map fst loop_tacs,
wenzelm@30356
   802
  unsafe_solvers = map solver_name (#1 solvers),
wenzelm@30356
   803
  safe_solvers = map solver_name (#2 solvers)};
wenzelm@30356
   804
wenzelm@30356
   805
skalberg@15006
   806
berghofe@10413
   807
(** rewriting **)
berghofe@10413
   808
berghofe@10413
   809
(*
berghofe@10413
   810
  Uses conversions, see:
berghofe@10413
   811
    L C Paulson, A higher-order implementation of rewriting,
berghofe@10413
   812
    Science of Computer Programming 3 (1983), pages 119-149.
berghofe@10413
   813
*)
berghofe@10413
   814
wenzelm@16985
   815
fun check_conv msg ss thm thm' =
berghofe@10413
   816
  let
berghofe@25472
   817
    val thm'' = transitive thm thm' handle THM _ =>
berghofe@25472
   818
     transitive thm (transitive
berghofe@25472
   819
       (symmetric (Drule.beta_eta_conversion (Thm.lhs_of thm'))) thm')
wenzelm@22254
   820
  in if msg then trace_thm (fn () => "SUCCEEDED") ss thm' else (); SOME thm'' end
berghofe@10413
   821
  handle THM _ =>
wenzelm@26626
   822
    let
wenzelm@26626
   823
      val thy = Thm.theory_of_thm thm;
wenzelm@26626
   824
      val _ $ _ $ prop0 = Thm.prop_of thm;
wenzelm@26626
   825
    in
wenzelm@22254
   826
      trace_thm (fn () => "Proved wrong thm (Check subgoaler?)") ss thm';
wenzelm@22254
   827
      trace_term false (fn () => "Should have proved:") ss thy prop0;
skalberg@15531
   828
      NONE
berghofe@10413
   829
    end;
berghofe@10413
   830
berghofe@10413
   831
berghofe@10413
   832
(* mk_procrule *)
berghofe@10413
   833
wenzelm@16985
   834
fun mk_procrule ss thm =
wenzelm@15023
   835
  let val (_, prems, lhs, elhs, rhs, _) = decomp_simp thm in
wenzelm@15023
   836
    if rewrite_rule_extra_vars prems lhs rhs
wenzelm@16985
   837
    then (warn_thm "Extra vars on rhs:" ss thm; [])
wenzelm@15023
   838
    else [mk_rrule2 {thm = thm, name = "", lhs = lhs, elhs = elhs, perm = false}]
berghofe@10413
   839
  end;
berghofe@10413
   840
berghofe@10413
   841
wenzelm@15023
   842
(* rewritec: conversion to apply the meta simpset to a term *)
berghofe@10413
   843
wenzelm@15023
   844
(*Since the rewriting strategy is bottom-up, we avoid re-normalizing already
wenzelm@15023
   845
  normalized terms by carrying around the rhs of the rewrite rule just
wenzelm@15023
   846
  applied. This is called the `skeleton'. It is decomposed in parallel
wenzelm@15023
   847
  with the term. Once a Var is encountered, the corresponding term is
wenzelm@15023
   848
  already in normal form.
wenzelm@15023
   849
  skel0 is a dummy skeleton that is to enforce complete normalization.*)
wenzelm@15023
   850
berghofe@10413
   851
val skel0 = Bound 0;
berghofe@10413
   852
wenzelm@15023
   853
(*Use rhs as skeleton only if the lhs does not contain unnormalized bits.
wenzelm@15023
   854
  The latter may happen iff there are weak congruence rules for constants
wenzelm@15023
   855
  in the lhs.*)
berghofe@10413
   856
wenzelm@15023
   857
fun uncond_skel ((_, weak), (lhs, rhs)) =
wenzelm@15023
   858
  if null weak then rhs  (*optimization*)
wenzelm@20671
   859
  else if exists_Const (member (op =) weak o #1) lhs then skel0
wenzelm@15023
   860
  else rhs;
wenzelm@15023
   861
wenzelm@15023
   862
(*Behaves like unconditional rule if rhs does not contain vars not in the lhs.
wenzelm@15023
   863
  Otherwise those vars may become instantiated with unnormalized terms
wenzelm@15023
   864
  while the premises are solved.*)
wenzelm@15023
   865
wenzelm@32797
   866
fun cond_skel (args as (_, (lhs, rhs))) =
haftmann@33038
   867
  if subset (op =) (Term.add_vars rhs [], Term.add_vars lhs []) then uncond_skel args
berghofe@10413
   868
  else skel0;
berghofe@10413
   869
berghofe@10413
   870
(*
wenzelm@15023
   871
  Rewriting -- we try in order:
berghofe@10413
   872
    (1) beta reduction
berghofe@10413
   873
    (2) unconditional rewrite rules
berghofe@10413
   874
    (3) conditional rewrite rules
berghofe@10413
   875
    (4) simplification procedures
berghofe@10413
   876
berghofe@10413
   877
  IMPORTANT: rewrite rules must not introduce new Vars or TVars!
berghofe@10413
   878
*)
berghofe@10413
   879
wenzelm@16458
   880
fun rewritec (prover, thyt, maxt) ss t =
berghofe@10413
   881
  let
wenzelm@24124
   882
    val ctxt = the_context ss;
wenzelm@15023
   883
    val Simpset ({rules, ...}, {congs, procs, termless, ...}) = ss;
berghofe@10413
   884
    val eta_thm = Thm.eta_conversion t;
wenzelm@22902
   885
    val eta_t' = Thm.rhs_of eta_thm;
berghofe@10413
   886
    val eta_t = term_of eta_t';
wenzelm@20546
   887
    fun rew {thm, name, lhs, elhs, extra, fo, perm} =
berghofe@10413
   888
      let
wenzelm@32797
   889
        val prop = Thm.prop_of thm;
wenzelm@20546
   890
        val (rthm, elhs') =
wenzelm@20546
   891
          if maxt = ~1 orelse not extra then (thm, elhs)
wenzelm@22902
   892
          else (Thm.incr_indexes (maxt + 1) thm, Thm.incr_indexes_cterm (maxt + 1) elhs);
wenzelm@22902
   893
        val insts =
wenzelm@22902
   894
          if fo then Thm.first_order_match (elhs', eta_t')
wenzelm@22902
   895
          else Thm.match (elhs', eta_t');
berghofe@10413
   896
        val thm' = Thm.instantiate insts (Thm.rename_boundvars lhs eta_t rthm);
wenzelm@14643
   897
        val prop' = Thm.prop_of thm';
wenzelm@21576
   898
        val unconditional = (Logic.count_prems prop' = 0);
berghofe@10413
   899
        val (lhs', rhs') = Logic.dest_equals (Logic.strip_imp_concl prop')
berghofe@10413
   900
      in
nipkow@11295
   901
        if perm andalso not (termless (rhs', lhs'))
wenzelm@22254
   902
        then (trace_named_thm (fn () => "Cannot apply permutative rewrite rule") ss (thm, name);
wenzelm@22254
   903
              trace_thm (fn () => "Term does not become smaller:") ss thm'; NONE)
wenzelm@22254
   904
        else (trace_named_thm (fn () => "Applying instance of rewrite rule") ss (thm, name);
berghofe@10413
   905
           if unconditional
berghofe@10413
   906
           then
wenzelm@22254
   907
             (trace_thm (fn () => "Rewriting:") ss thm';
berghofe@10413
   908
              let val lr = Logic.dest_equals prop;
wenzelm@16985
   909
                  val SOME thm'' = check_conv false ss eta_thm thm'
skalberg@15531
   910
              in SOME (thm'', uncond_skel (congs, lr)) end)
berghofe@10413
   911
           else
wenzelm@22254
   912
             (trace_thm (fn () => "Trying to rewrite:") ss thm';
wenzelm@24124
   913
              if simp_depth ss > Config.get ctxt simp_depth_limit
nipkow@16042
   914
              then let val s = "simp_depth_limit exceeded - giving up"
wenzelm@22892
   915
                   in trace false (fn () => s) ss; warning s; NONE end
nipkow@16042
   916
              else
nipkow@16042
   917
              case prover ss thm' of
wenzelm@22254
   918
                NONE => (trace_thm (fn () => "FAILED") ss thm'; NONE)
skalberg@15531
   919
              | SOME thm2 =>
wenzelm@16985
   920
                  (case check_conv true ss eta_thm thm2 of
skalberg@15531
   921
                     NONE => NONE |
skalberg@15531
   922
                     SOME thm2' =>
berghofe@10413
   923
                       let val concl = Logic.strip_imp_concl prop
berghofe@10413
   924
                           val lr = Logic.dest_equals concl
nipkow@16042
   925
                       in SOME (thm2', cond_skel (congs, lr)) end)))
berghofe@10413
   926
      end
berghofe@10413
   927
skalberg@15531
   928
    fun rews [] = NONE
berghofe@10413
   929
      | rews (rrule :: rrules) =
skalberg@15531
   930
          let val opt = rew rrule handle Pattern.MATCH => NONE
skalberg@15531
   931
          in case opt of NONE => rews rrules | some => some end;
berghofe@10413
   932
berghofe@10413
   933
    fun sort_rrules rrs = let
wenzelm@14643
   934
      fun is_simple({thm, ...}:rrule) = case Thm.prop_of thm of
berghofe@10413
   935
                                      Const("==",_) $ _ $ _ => true
wenzelm@12603
   936
                                      | _                   => false
berghofe@10413
   937
      fun sort []        (re1,re2) = re1 @ re2
wenzelm@12603
   938
        | sort (rr::rrs) (re1,re2) = if is_simple rr
berghofe@10413
   939
                                     then sort rrs (rr::re1,re2)
berghofe@10413
   940
                                     else sort rrs (re1,rr::re2)
berghofe@10413
   941
    in sort rrs ([],[]) end
berghofe@10413
   942
skalberg@15531
   943
    fun proc_rews [] = NONE
wenzelm@15023
   944
      | proc_rews (Proc {name, proc, lhs, ...} :: ps) =
wenzelm@17203
   945
          if Pattern.matches thyt (Thm.term_of lhs, Thm.term_of t) then
wenzelm@22254
   946
            (debug_term false (fn () => "Trying procedure " ^ quote name ^ " on:") ss thyt eta_t;
wenzelm@23938
   947
             case proc ss eta_t' of
wenzelm@22892
   948
               NONE => (debug false (fn () => "FAILED") ss; proc_rews ps)
skalberg@15531
   949
             | SOME raw_thm =>
wenzelm@22254
   950
                 (trace_thm (fn () => "Procedure " ^ quote name ^ " produced rewrite rule:")
wenzelm@22254
   951
                   ss raw_thm;
wenzelm@16985
   952
                  (case rews (mk_procrule ss raw_thm) of
wenzelm@22254
   953
                    NONE => (trace_cterm true (fn () => "IGNORED result of simproc " ^ quote name ^
wenzelm@16985
   954
                      " -- does not match") ss t; proc_rews ps)
berghofe@10413
   955
                  | some => some)))
berghofe@10413
   956
          else proc_rews ps;
berghofe@10413
   957
  in case eta_t of
skalberg@15531
   958
       Abs _ $ _ => SOME (transitive eta_thm
berghofe@12155
   959
         (beta_conversion false eta_t'), skel0)
berghofe@10413
   960
     | _ => (case rews (sort_rrules (Net.match_term rules eta_t)) of
skalberg@15531
   961
               NONE => proc_rews (Net.match_term procs eta_t)
berghofe@10413
   962
             | some => some)
berghofe@10413
   963
  end;
berghofe@10413
   964
berghofe@10413
   965
berghofe@10413
   966
(* conversion to apply a congruence rule to a term *)
berghofe@10413
   967
krauss@30908
   968
fun congc prover ss maxt cong t =
wenzelm@22902
   969
  let val rthm = Thm.incr_indexes (maxt + 1) cong;
wenzelm@22902
   970
      val rlhs = fst (Thm.dest_equals (Drule.strip_imp_concl (cprop_of rthm)));
wenzelm@22902
   971
      val insts = Thm.match (rlhs, t)
wenzelm@22902
   972
      (* Thm.match can raise Pattern.MATCH;
berghofe@10413
   973
         is handled when congc is called *)
berghofe@10413
   974
      val thm' = Thm.instantiate insts (Thm.rename_boundvars (term_of rlhs) (term_of t) rthm);
wenzelm@32797
   975
      val _ = trace_thm (fn () => "Applying congruence rule:") ss thm';
wenzelm@22254
   976
      fun err (msg, thm) = (trace_thm (fn () => msg) ss thm; NONE)
berghofe@10413
   977
  in case prover thm' of
skalberg@15531
   978
       NONE => err ("Congruence proof failed.  Could not prove", thm')
wenzelm@16985
   979
     | SOME thm2 => (case check_conv true ss (Drule.beta_eta_conversion t) thm2 of
skalberg@15531
   980
          NONE => err ("Congruence proof failed.  Should not have proved", thm2)
skalberg@15531
   981
        | SOME thm2' =>
wenzelm@22902
   982
            if op aconv (pairself term_of (Thm.dest_equals (cprop_of thm2')))
skalberg@15531
   983
            then NONE else SOME thm2')
berghofe@10413
   984
  end;
berghofe@10413
   985
berghofe@10413
   986
val (cA, (cB, cC)) =
wenzelm@22902
   987
  apsnd Thm.dest_equals (Thm.dest_implies (hd (cprems_of Drule.imp_cong)));
berghofe@10413
   988
skalberg@15531
   989
fun transitive1 NONE NONE = NONE
skalberg@15531
   990
  | transitive1 (SOME thm1) NONE = SOME thm1
skalberg@15531
   991
  | transitive1 NONE (SOME thm2) = SOME thm2
skalberg@15531
   992
  | transitive1 (SOME thm1) (SOME thm2) = SOME (transitive thm1 thm2)
berghofe@10413
   993
skalberg@15531
   994
fun transitive2 thm = transitive1 (SOME thm);
skalberg@15531
   995
fun transitive3 thm = transitive1 thm o SOME;
berghofe@13607
   996
wenzelm@16458
   997
fun bottomc ((simprem, useprem, mutsimp), prover, thy, maxidx) =
berghofe@10413
   998
  let
wenzelm@15023
   999
    fun botc skel ss t =
skalberg@15531
  1000
          if is_Var skel then NONE
berghofe@10413
  1001
          else
wenzelm@15023
  1002
          (case subc skel ss t of
skalberg@15531
  1003
             some as SOME thm1 =>
wenzelm@22902
  1004
               (case rewritec (prover, thy, maxidx) ss (Thm.rhs_of thm1) of
skalberg@15531
  1005
                  SOME (thm2, skel2) =>
berghofe@13607
  1006
                    transitive2 (transitive thm1 thm2)
wenzelm@22902
  1007
                      (botc skel2 ss (Thm.rhs_of thm2))
skalberg@15531
  1008
                | NONE => some)
skalberg@15531
  1009
           | NONE =>
wenzelm@16458
  1010
               (case rewritec (prover, thy, maxidx) ss t of
skalberg@15531
  1011
                  SOME (thm2, skel2) => transitive2 thm2
wenzelm@22902
  1012
                    (botc skel2 ss (Thm.rhs_of thm2))
skalberg@15531
  1013
                | NONE => NONE))
berghofe@10413
  1014
wenzelm@15023
  1015
    and try_botc ss t =
wenzelm@15023
  1016
          (case botc skel0 ss t of
skalberg@15531
  1017
             SOME trec1 => trec1 | NONE => (reflexive t))
berghofe@10413
  1018
wenzelm@15023
  1019
    and subc skel (ss as Simpset ({bounds, ...}, {congs, ...})) t0 =
berghofe@10413
  1020
       (case term_of t0 of
wenzelm@32797
  1021
           Abs (a, T, _) =>
wenzelm@15023
  1022
             let
wenzelm@20079
  1023
                 val b = Name.bound (#1 bounds);
wenzelm@16985
  1024
                 val (v, t') = Thm.dest_abs (SOME b) t0;
wenzelm@16985
  1025
                 val b' = #1 (Term.dest_Free (Thm.term_of v));
wenzelm@21962
  1026
                 val _ =
wenzelm@21962
  1027
                   if b <> b' then
wenzelm@21962
  1028
                     warning ("Simplifier: renamed bound variable " ^ quote b ^ " to " ^ quote b')
wenzelm@21962
  1029
                   else ();
wenzelm@17614
  1030
                 val ss' = add_bound ((b', T), a) ss;
wenzelm@15023
  1031
                 val skel' = case skel of Abs (_, _, sk) => sk | _ => skel0;
wenzelm@15023
  1032
             in case botc skel' ss' t' of
skalberg@15531
  1033
                  SOME thm => SOME (abstract_rule a v thm)
skalberg@15531
  1034
                | NONE => NONE
berghofe@10413
  1035
             end
berghofe@10413
  1036
         | t $ _ => (case t of
wenzelm@15023
  1037
             Const ("==>", _) $ _  => impc t0 ss
berghofe@10413
  1038
           | Abs _ =>
berghofe@10413
  1039
               let val thm = beta_conversion false t0
wenzelm@22902
  1040
               in case subc skel0 ss (Thm.rhs_of thm) of
skalberg@15531
  1041
                    NONE => SOME thm
skalberg@15531
  1042
                  | SOME thm' => SOME (transitive thm thm')
berghofe@10413
  1043
               end
berghofe@10413
  1044
           | _  =>
berghofe@10413
  1045
               let fun appc () =
berghofe@10413
  1046
                     let
berghofe@10413
  1047
                       val (tskel, uskel) = case skel of
berghofe@10413
  1048
                           tskel $ uskel => (tskel, uskel)
berghofe@10413
  1049
                         | _ => (skel0, skel0);
wenzelm@10767
  1050
                       val (ct, cu) = Thm.dest_comb t0
berghofe@10413
  1051
                     in
wenzelm@15023
  1052
                     (case botc tskel ss ct of
skalberg@15531
  1053
                        SOME thm1 =>
wenzelm@15023
  1054
                          (case botc uskel ss cu of
skalberg@15531
  1055
                             SOME thm2 => SOME (combination thm1 thm2)
skalberg@15531
  1056
                           | NONE => SOME (combination thm1 (reflexive cu)))
skalberg@15531
  1057
                      | NONE =>
wenzelm@15023
  1058
                          (case botc uskel ss cu of
skalberg@15531
  1059
                             SOME thm1 => SOME (combination (reflexive ct) thm1)
skalberg@15531
  1060
                           | NONE => NONE))
berghofe@10413
  1061
                     end
berghofe@10413
  1062
                   val (h, ts) = strip_comb t
ballarin@13835
  1063
               in case cong_name h of
skalberg@15531
  1064
                    SOME a =>
haftmann@17232
  1065
                      (case AList.lookup (op =) (fst congs) a of
skalberg@15531
  1066
                         NONE => appc ()
skalberg@15531
  1067
                       | SOME cong =>
wenzelm@15023
  1068
  (*post processing: some partial applications h t1 ... tj, j <= length ts,
wenzelm@15023
  1069
    may be a redex. Example: map (%x. x) = (%xs. xs) wrt map_cong*)
berghofe@10413
  1070
                          (let
wenzelm@16985
  1071
                             val thm = congc (prover ss) ss maxidx cong t0;
wenzelm@22902
  1072
                             val t = the_default t0 (Option.map Thm.rhs_of thm);
wenzelm@10767
  1073
                             val (cl, cr) = Thm.dest_comb t
berghofe@10413
  1074
                             val dVar = Var(("", 0), dummyT)
berghofe@10413
  1075
                             val skel =
berghofe@10413
  1076
                               list_comb (h, replicate (length ts) dVar)
wenzelm@15023
  1077
                           in case botc skel ss cl of
skalberg@15531
  1078
                                NONE => thm
skalberg@15531
  1079
                              | SOME thm' => transitive3 thm
berghofe@12155
  1080
                                  (combination thm' (reflexive cr))
wenzelm@20057
  1081
                           end handle Pattern.MATCH => appc ()))
berghofe@10413
  1082
                  | _ => appc ()
berghofe@10413
  1083
               end)
skalberg@15531
  1084
         | _ => NONE)
berghofe@10413
  1085
wenzelm@15023
  1086
    and impc ct ss =
wenzelm@15023
  1087
      if mutsimp then mut_impc0 [] ct [] [] ss else nonmut_impc ct ss
berghofe@10413
  1088
wenzelm@15023
  1089
    and rules_of_prem ss prem =
berghofe@13607
  1090
      if maxidx_of_term (term_of prem) <> ~1
berghofe@13607
  1091
      then (trace_cterm true
wenzelm@22254
  1092
        (fn () => "Cannot add premise as rewrite rule because it contains (type) unknowns:")
wenzelm@22254
  1093
          ss prem; ([], NONE))
berghofe@13607
  1094
      else
berghofe@13607
  1095
        let val asm = assume prem
skalberg@15531
  1096
        in (extract_safe_rrules (ss, asm), SOME asm) end
berghofe@10413
  1097
wenzelm@15023
  1098
    and add_rrules (rrss, asms) ss =
wenzelm@20028
  1099
      (fold o fold) insert_rrule rrss ss |> add_prems (map_filter I asms)
berghofe@10413
  1100
wenzelm@23178
  1101
    and disch r prem eq =
berghofe@13607
  1102
      let
wenzelm@22902
  1103
        val (lhs, rhs) = Thm.dest_equals (Thm.cprop_of eq);
berghofe@13607
  1104
        val eq' = implies_elim (Thm.instantiate
berghofe@13607
  1105
          ([], [(cA, prem), (cB, lhs), (cC, rhs)]) Drule.imp_cong)
berghofe@13607
  1106
          (implies_intr prem eq)
berghofe@13607
  1107
      in if not r then eq' else
berghofe@10413
  1108
        let
wenzelm@22902
  1109
          val (prem', concl) = Thm.dest_implies lhs;
wenzelm@22902
  1110
          val (prem'', _) = Thm.dest_implies rhs
berghofe@13607
  1111
        in transitive (transitive
berghofe@13607
  1112
          (Thm.instantiate ([], [(cA, prem'), (cB, prem), (cC, concl)])
berghofe@13607
  1113
             Drule.swap_prems_eq) eq')
berghofe@13607
  1114
          (Thm.instantiate ([], [(cA, prem), (cB, prem''), (cC, concl)])
berghofe@13607
  1115
             Drule.swap_prems_eq)
berghofe@10413
  1116
        end
berghofe@10413
  1117
      end
berghofe@10413
  1118
berghofe@13607
  1119
    and rebuild [] _ _ _ _ eq = eq
wenzelm@32797
  1120
      | rebuild (prem :: prems) concl (_ :: rrss) (_ :: asms) ss eq =
berghofe@13607
  1121
          let
wenzelm@15023
  1122
            val ss' = add_rrules (rev rrss, rev asms) ss;
berghofe@13607
  1123
            val concl' =
wenzelm@22902
  1124
              Drule.mk_implies (prem, the_default concl (Option.map Thm.rhs_of eq));
wenzelm@23178
  1125
            val dprem = Option.map (disch false prem)
wenzelm@16458
  1126
          in case rewritec (prover, thy, maxidx) ss' concl' of
skalberg@15531
  1127
              NONE => rebuild prems concl' rrss asms ss (dprem eq)
wenzelm@23178
  1128
            | SOME (eq', _) => transitive2 (fold (disch false)
wenzelm@23178
  1129
                  prems (the (transitive3 (dprem eq) eq')))
wenzelm@22902
  1130
                (mut_impc0 (rev prems) (Thm.rhs_of eq') (rev rrss) (rev asms) ss)
berghofe@13607
  1131
          end
wenzelm@15023
  1132
wenzelm@15023
  1133
    and mut_impc0 prems concl rrss asms ss =
berghofe@13607
  1134
      let
berghofe@13607
  1135
        val prems' = strip_imp_prems concl;
wenzelm@15023
  1136
        val (rrss', asms') = split_list (map (rules_of_prem ss) prems')
berghofe@13607
  1137
      in mut_impc (prems @ prems') (strip_imp_concl concl) (rrss @ rrss')
wenzelm@15023
  1138
        (asms @ asms') [] [] [] [] ss ~1 ~1
berghofe@13607
  1139
      end
wenzelm@15023
  1140
wenzelm@15023
  1141
    and mut_impc [] concl [] [] prems' rrss' asms' eqns ss changed k =
skalberg@15570
  1142
        transitive1 (Library.foldl (fn (eq2, (eq1, prem)) => transitive1 eq1
wenzelm@23178
  1143
            (Option.map (disch false prem) eq2)) (NONE, eqns ~~ prems'))
berghofe@13607
  1144
          (if changed > 0 then
berghofe@13607
  1145
             mut_impc (rev prems') concl (rev rrss') (rev asms')
wenzelm@15023
  1146
               [] [] [] [] ss ~1 changed
wenzelm@15023
  1147
           else rebuild prems' concl rrss' asms' ss
wenzelm@15023
  1148
             (botc skel0 (add_rrules (rev rrss', rev asms') ss) concl))
berghofe@13607
  1149
berghofe@13607
  1150
      | mut_impc (prem :: prems) concl (rrs :: rrss) (asm :: asms)
wenzelm@15023
  1151
          prems' rrss' asms' eqns ss changed k =
skalberg@15531
  1152
        case (if k = 0 then NONE else botc skel0 (add_rrules
wenzelm@15023
  1153
          (rev rrss' @ rrss, rev asms' @ asms) ss) prem) of
skalberg@15531
  1154
            NONE => mut_impc prems concl rrss asms (prem :: prems')
skalberg@15531
  1155
              (rrs :: rrss') (asm :: asms') (NONE :: eqns) ss changed
berghofe@13607
  1156
              (if k = 0 then 0 else k - 1)
skalberg@15531
  1157
          | SOME eqn =>
berghofe@13607
  1158
            let
wenzelm@22902
  1159
              val prem' = Thm.rhs_of eqn;
berghofe@13607
  1160
              val tprems = map term_of prems;
skalberg@15570
  1161
              val i = 1 + Library.foldl Int.max (~1, map (fn p =>
wenzelm@19618
  1162
                find_index (fn q => q aconv p) tprems) (#hyps (rep_thm eqn)));
wenzelm@15023
  1163
              val (rrs', asm') = rules_of_prem ss prem'
berghofe@13607
  1164
            in mut_impc prems concl rrss asms (prem' :: prems')
wenzelm@23178
  1165
              (rrs' :: rrss') (asm' :: asms') (SOME (fold_rev (disch true)
wenzelm@23178
  1166
                (Library.take (i, prems))
wenzelm@18470
  1167
                (Drule.imp_cong_rule eqn (reflexive (Drule.list_implies
wenzelm@23178
  1168
                  (Library.drop (i, prems), concl))))) :: eqns)
wenzelm@20671
  1169
                  ss (length prems') ~1
berghofe@13607
  1170
            end
berghofe@13607
  1171
wenzelm@15023
  1172
     (*legacy code - only for backwards compatibility*)
wenzelm@15023
  1173
     and nonmut_impc ct ss =
wenzelm@22902
  1174
       let val (prem, conc) = Thm.dest_implies ct;
skalberg@15531
  1175
           val thm1 = if simprem then botc skel0 ss prem else NONE;
wenzelm@22902
  1176
           val prem1 = the_default prem (Option.map Thm.rhs_of thm1);
wenzelm@15023
  1177
           val ss1 = if not useprem then ss else add_rrules
wenzelm@15023
  1178
             (apsnd single (apfst single (rules_of_prem ss prem1))) ss
wenzelm@15023
  1179
       in (case botc skel0 ss1 conc of
skalberg@15531
  1180
           NONE => (case thm1 of
skalberg@15531
  1181
               NONE => NONE
wenzelm@18470
  1182
             | SOME thm1' => SOME (Drule.imp_cong_rule thm1' (reflexive conc)))
skalberg@15531
  1183
         | SOME thm2 =>
wenzelm@23178
  1184
           let val thm2' = disch false prem1 thm2
berghofe@10413
  1185
           in (case thm1 of
skalberg@15531
  1186
               NONE => SOME thm2'
skalberg@15531
  1187
             | SOME thm1' =>
wenzelm@18470
  1188
                 SOME (transitive (Drule.imp_cong_rule thm1' (reflexive conc)) thm2'))
berghofe@10413
  1189
           end)
berghofe@10413
  1190
       end
berghofe@10413
  1191
wenzelm@15023
  1192
 in try_botc end;
berghofe@10413
  1193
berghofe@10413
  1194
wenzelm@15023
  1195
(* Meta-rewriting: rewrites t to u and returns the theorem t==u *)
berghofe@10413
  1196
berghofe@10413
  1197
(*
berghofe@10413
  1198
  Parameters:
berghofe@10413
  1199
    mode = (simplify A,
berghofe@10413
  1200
            use A in simplifying B,
berghofe@10413
  1201
            use prems of B (if B is again a meta-impl.) to simplify A)
berghofe@10413
  1202
           when simplifying A ==> B
berghofe@10413
  1203
    prover: how to solve premises in conditional rewrites and congruences
berghofe@10413
  1204
*)
berghofe@10413
  1205
wenzelm@32738
  1206
val debug_bounds = Unsynchronized.ref false;
wenzelm@17705
  1207
wenzelm@21962
  1208
fun check_bounds ss ct =
wenzelm@21962
  1209
  if ! debug_bounds then
wenzelm@21962
  1210
    let
wenzelm@21962
  1211
      val Simpset ({bounds = (_, bounds), ...}, _) = ss;
wenzelm@21962
  1212
      val bs = fold_aterms (fn Free (x, _) =>
wenzelm@21962
  1213
          if Name.is_bound x andalso not (AList.defined eq_bound bounds x)
wenzelm@21962
  1214
          then insert (op =) x else I
wenzelm@21962
  1215
        | _ => I) (term_of ct) [];
wenzelm@21962
  1216
    in
wenzelm@21962
  1217
      if null bs then ()
wenzelm@22892
  1218
      else print_term ss true ("Simplifier: term contains loose bounds: " ^ commas_quote bs)
wenzelm@21962
  1219
        (Thm.theory_of_cterm ct) (Thm.term_of ct)
wenzelm@21962
  1220
    end
wenzelm@21962
  1221
  else ();
wenzelm@17614
  1222
wenzelm@19052
  1223
fun rewrite_cterm mode prover raw_ss raw_ct =
wenzelm@17882
  1224
  let
wenzelm@26626
  1225
    val thy = Thm.theory_of_cterm raw_ct;
wenzelm@20260
  1226
    val ct = Thm.adjust_maxidx_cterm ~1 raw_ct;
wenzelm@32797
  1227
    val {maxidx, ...} = Thm.rep_cterm ct;
wenzelm@22892
  1228
    val ss = inc_simp_depth (activate_context thy raw_ss);
wenzelm@22892
  1229
    val depth = simp_depth ss;
wenzelm@21962
  1230
    val _ =
wenzelm@22892
  1231
      if depth mod 20 = 0 then
wenzelm@22892
  1232
        warning ("Simplification depth " ^ string_of_int depth)
wenzelm@21962
  1233
      else ();
wenzelm@22254
  1234
    val _ = trace_cterm false (fn () => "SIMPLIFIER INVOKED ON THE FOLLOWING TERM:") ss ct;
wenzelm@17882
  1235
    val _ = check_bounds ss ct;
wenzelm@22892
  1236
  in bottomc (mode, Option.map Drule.flexflex_unique oo prover, thy, maxidx) ss ct end;
berghofe@10413
  1237
wenzelm@21708
  1238
val simple_prover =
wenzelm@21708
  1239
  SINGLE o (fn ss => ALLGOALS (resolve_tac (prems_of_ss ss)));
wenzelm@21708
  1240
wenzelm@21708
  1241
fun rewrite _ [] ct = Thm.reflexive ct
haftmann@27582
  1242
  | rewrite full thms ct = rewrite_cterm (full, false, false) simple_prover
haftmann@27582
  1243
      (theory_context (Thm.theory_of_cterm ct) empty_ss addsimps thms) ct;
wenzelm@11672
  1244
wenzelm@23598
  1245
fun simplify full thms = Conv.fconv_rule (rewrite full thms);
wenzelm@21708
  1246
val rewrite_rule = simplify true;
wenzelm@21708
  1247
wenzelm@15023
  1248
(*simple term rewriting -- no proof*)
wenzelm@16458
  1249
fun rewrite_term thy rules procs =
wenzelm@17203
  1250
  Pattern.rewrite_term thy (map decomp_simp' rules) procs;
wenzelm@15023
  1251
wenzelm@22902
  1252
fun rewrite_thm mode prover ss = Conv.fconv_rule (rewrite_cterm mode prover ss);
berghofe@10413
  1253
wenzelm@23536
  1254
(*Rewrite the subgoals of a proof state (represented by a theorem)*)
wenzelm@21708
  1255
fun rewrite_goals_rule thms th =
wenzelm@23584
  1256
  Conv.fconv_rule (Conv.prems_conv ~1 (rewrite_cterm (true, true, true) simple_prover
wenzelm@23584
  1257
    (theory_context (Thm.theory_of_thm th) empty_ss addsimps thms))) th;
berghofe@10413
  1258
wenzelm@15023
  1259
(*Rewrite the subgoal of a proof state (represented by a theorem)*)
skalberg@15011
  1260
fun rewrite_goal_rule mode prover ss i thm =
wenzelm@23536
  1261
  if 0 < i andalso i <= Thm.nprems_of thm
wenzelm@23584
  1262
  then Conv.gconv_rule (rewrite_cterm mode prover ss) i thm
wenzelm@23536
  1263
  else raise THM ("rewrite_goal_rule", i, [thm]);
berghofe@10413
  1264
wenzelm@20228
  1265
wenzelm@21708
  1266
(** meta-rewriting tactics **)
wenzelm@21708
  1267
wenzelm@28839
  1268
(*Rewrite all subgoals*)
wenzelm@21708
  1269
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
wenzelm@21708
  1270
fun rewtac def = rewrite_goals_tac [def];
wenzelm@21708
  1271
wenzelm@28839
  1272
(*Rewrite one subgoal*)
wenzelm@25203
  1273
fun asm_rewrite_goal_tac mode prover_tac ss i thm =
wenzelm@25203
  1274
  if 0 < i andalso i <= Thm.nprems_of thm then
wenzelm@25203
  1275
    Seq.single (Conv.gconv_rule (rewrite_cterm mode (SINGLE o prover_tac) ss) i thm)
wenzelm@25203
  1276
  else Seq.empty;
wenzelm@23536
  1277
wenzelm@23536
  1278
fun rewrite_goal_tac rews =
wenzelm@23536
  1279
  let val ss = empty_ss addsimps rews in
wenzelm@23536
  1280
    fn i => fn st => asm_rewrite_goal_tac (true, false, false) (K no_tac)
wenzelm@23536
  1281
      (theory_context (Thm.theory_of_thm st) ss) i st
wenzelm@23536
  1282
  end;
wenzelm@23536
  1283
wenzelm@21708
  1284
(*Prunes all redundant parameters from the proof state by rewriting.
wenzelm@21708
  1285
  DOES NOT rewrite main goal, where quantification over an unused bound
wenzelm@21708
  1286
    variable is sometimes done to avoid the need for cut_facts_tac.*)
wenzelm@21708
  1287
val prune_params_tac = rewrite_goals_tac [triv_forall_equality];
wenzelm@21708
  1288
wenzelm@21708
  1289
wenzelm@21708
  1290
(* for folding definitions, handling critical pairs *)
wenzelm@21708
  1291
wenzelm@21708
  1292
(*The depth of nesting in a term*)
wenzelm@32797
  1293
fun term_depth (Abs (_, _, t)) = 1 + term_depth t
wenzelm@32797
  1294
  | term_depth (f $ t) = 1 + Int.max (term_depth f, term_depth t)
wenzelm@21708
  1295
  | term_depth _ = 0;
wenzelm@21708
  1296
wenzelm@21708
  1297
val lhs_of_thm = #1 o Logic.dest_equals o prop_of;
wenzelm@21708
  1298
wenzelm@21708
  1299
(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
wenzelm@21708
  1300
  Returns longest lhs first to avoid folding its subexpressions.*)
wenzelm@21708
  1301
fun sort_lhs_depths defs =
wenzelm@21708
  1302
  let val keylist = AList.make (term_depth o lhs_of_thm) defs
wenzelm@21708
  1303
      val keys = sort_distinct (rev_order o int_ord) (map #2 keylist)
wenzelm@21708
  1304
  in map (AList.find (op =) keylist) keys end;
wenzelm@21708
  1305
wenzelm@21708
  1306
val rev_defs = sort_lhs_depths o map symmetric;
wenzelm@21708
  1307
wenzelm@21708
  1308
fun fold_rule defs = fold rewrite_rule (rev_defs defs);
wenzelm@21708
  1309
fun fold_goals_tac defs = EVERY (map rewrite_goals_tac (rev_defs defs));
wenzelm@21708
  1310
wenzelm@21708
  1311
wenzelm@20228
  1312
(* HHF normal form: !! before ==>, outermost !! generalized *)
wenzelm@20228
  1313
wenzelm@20228
  1314
local
wenzelm@20228
  1315
wenzelm@21565
  1316
fun gen_norm_hhf ss th =
wenzelm@21565
  1317
  (if Drule.is_norm_hhf (Thm.prop_of th) then th
wenzelm@26424
  1318
   else Conv.fconv_rule
wenzelm@26424
  1319
    (rewrite_cterm (true, false, false) (K (K NONE)) (theory_context (Thm.theory_of_thm th) ss)) th)
wenzelm@21565
  1320
  |> Thm.adjust_maxidx_thm ~1
wenzelm@21565
  1321
  |> Drule.gen_all;
wenzelm@20228
  1322
wenzelm@28620
  1323
val hhf_ss = empty_ss addsimps Drule.norm_hhf_eqs;
wenzelm@20228
  1324
wenzelm@20228
  1325
in
wenzelm@20228
  1326
wenzelm@26424
  1327
val norm_hhf = gen_norm_hhf hhf_ss;
wenzelm@26424
  1328
val norm_hhf_protect = gen_norm_hhf (hhf_ss addeqcongs [Drule.protect_cong]);
wenzelm@20228
  1329
wenzelm@20228
  1330
end;
wenzelm@20228
  1331
berghofe@10413
  1332
end;
berghofe@10413
  1333
wenzelm@32738
  1334
structure Basic_Meta_Simplifier: BASIC_META_SIMPLIFIER = MetaSimplifier;
wenzelm@32738
  1335
open Basic_Meta_Simplifier;