blanchet@53311
|
1 |
(* Title: HOL/BNF/BNF_FP_Base.thy
|
blanchet@53311
|
2 |
Author: Lorenz Panny, TU Muenchen
|
blanchet@49308
|
3 |
Author: Dmitriy Traytel, TU Muenchen
|
blanchet@49308
|
4 |
Author: Jasmin Blanchette, TU Muenchen
|
blanchet@53311
|
5 |
Copyright 2012, 2013
|
blanchet@49308
|
6 |
|
blanchet@53311
|
7 |
Shared fixed point operations on bounded natural functors, including
|
blanchet@49308
|
8 |
*)
|
blanchet@49308
|
9 |
|
blanchet@53311
|
10 |
header {* Shared Fixed Point Operations on Bounded Natural Functors *}
|
blanchet@49308
|
11 |
|
blanchet@53311
|
12 |
theory BNF_FP_Base
|
blanchet@54006
|
13 |
imports BNF_Comp Ctr_Sugar
|
blanchet@49308
|
14 |
begin
|
blanchet@49308
|
15 |
|
blanchet@53900
|
16 |
lemma not_TrueE: "\<not> True \<Longrightarrow> P"
|
blanchet@53900
|
17 |
by (erule notE, rule TrueI)
|
blanchet@53900
|
18 |
|
blanchet@53903
|
19 |
lemma neq_eq_eq_contradict: "\<lbrakk>t \<noteq> u; s = t; s = u\<rbrakk> \<Longrightarrow> P"
|
blanchet@53903
|
20 |
by fast
|
blanchet@53903
|
21 |
|
blanchet@49590
|
22 |
lemma mp_conj: "(P \<longrightarrow> Q) \<and> R \<Longrightarrow> P \<Longrightarrow> R \<and> Q"
|
blanchet@49590
|
23 |
by auto
|
blanchet@49590
|
24 |
|
blanchet@49591
|
25 |
lemma eq_sym_Unity_conv: "(x = (() = ())) = x"
|
blanchet@49585
|
26 |
by blast
|
blanchet@49585
|
27 |
|
blanchet@53903
|
28 |
lemma unit_case_Unity: "(case u of () \<Rightarrow> f) = f"
|
blanchet@49312
|
29 |
by (cases u) (hypsubst, rule unit.cases)
|
blanchet@49312
|
30 |
|
blanchet@49539
|
31 |
lemma prod_case_Pair_iden: "(case p of (x, y) \<Rightarrow> (x, y)) = p"
|
blanchet@49539
|
32 |
by simp
|
blanchet@49539
|
33 |
|
blanchet@49335
|
34 |
lemma unit_all_impI: "(P () \<Longrightarrow> Q ()) \<Longrightarrow> \<forall>x. P x \<longrightarrow> Q x"
|
blanchet@49335
|
35 |
by simp
|
blanchet@49335
|
36 |
|
blanchet@49335
|
37 |
lemma prod_all_impI: "(\<And>x y. P (x, y) \<Longrightarrow> Q (x, y)) \<Longrightarrow> \<forall>x. P x \<longrightarrow> Q x"
|
blanchet@49335
|
38 |
by clarify
|
blanchet@49335
|
39 |
|
blanchet@49335
|
40 |
lemma prod_all_impI_step: "(\<And>x. \<forall>y. P (x, y) \<longrightarrow> Q (x, y)) \<Longrightarrow> \<forall>x. P x \<longrightarrow> Q x"
|
blanchet@49335
|
41 |
by auto
|
blanchet@49335
|
42 |
|
blanchet@49683
|
43 |
lemma pointfree_idE: "f \<circ> g = id \<Longrightarrow> f (g x) = x"
|
blanchet@49312
|
44 |
unfolding o_def fun_eq_iff by simp
|
blanchet@49312
|
45 |
|
blanchet@49312
|
46 |
lemma o_bij:
|
blanchet@49683
|
47 |
assumes gf: "g \<circ> f = id" and fg: "f \<circ> g = id"
|
blanchet@49312
|
48 |
shows "bij f"
|
blanchet@49312
|
49 |
unfolding bij_def inj_on_def surj_def proof safe
|
blanchet@49312
|
50 |
fix a1 a2 assume "f a1 = f a2"
|
blanchet@49312
|
51 |
hence "g ( f a1) = g (f a2)" by simp
|
blanchet@49312
|
52 |
thus "a1 = a2" using gf unfolding fun_eq_iff by simp
|
blanchet@49312
|
53 |
next
|
blanchet@49312
|
54 |
fix b
|
blanchet@49312
|
55 |
have "b = f (g b)"
|
blanchet@49312
|
56 |
using fg unfolding fun_eq_iff by simp
|
blanchet@49312
|
57 |
thus "EX a. b = f a" by blast
|
blanchet@49312
|
58 |
qed
|
blanchet@49312
|
59 |
|
blanchet@49312
|
60 |
lemma ssubst_mem: "\<lbrakk>t = s; s \<in> X\<rbrakk> \<Longrightarrow> t \<in> X" by simp
|
blanchet@49312
|
61 |
|
blanchet@49312
|
62 |
lemma sum_case_step:
|
blanchet@49683
|
63 |
"sum_case (sum_case f' g') g (Inl p) = sum_case f' g' p"
|
blanchet@49683
|
64 |
"sum_case f (sum_case f' g') (Inr p) = sum_case f' g' p"
|
blanchet@49312
|
65 |
by auto
|
blanchet@49312
|
66 |
|
blanchet@49312
|
67 |
lemma one_pointE: "\<lbrakk>\<And>x. s = x \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
|
blanchet@49312
|
68 |
by simp
|
blanchet@49312
|
69 |
|
blanchet@49312
|
70 |
lemma obj_one_pointE: "\<forall>x. s = x \<longrightarrow> P \<Longrightarrow> P"
|
blanchet@49312
|
71 |
by blast
|
blanchet@49312
|
72 |
|
blanchet@49312
|
73 |
lemma obj_sumE_f:
|
blanchet@49312
|
74 |
"\<lbrakk>\<forall>x. s = f (Inl x) \<longrightarrow> P; \<forall>x. s = f (Inr x) \<longrightarrow> P\<rbrakk> \<Longrightarrow> \<forall>x. s = f x \<longrightarrow> P"
|
traytel@52660
|
75 |
by (rule allI) (metis sumE)
|
blanchet@49312
|
76 |
|
blanchet@49312
|
77 |
lemma obj_sumE: "\<lbrakk>\<forall>x. s = Inl x \<longrightarrow> P; \<forall>x. s = Inr x \<longrightarrow> P\<rbrakk> \<Longrightarrow> P"
|
blanchet@49312
|
78 |
by (cases s) auto
|
blanchet@49312
|
79 |
|
blanchet@49312
|
80 |
lemma sum_case_if:
|
blanchet@49312
|
81 |
"sum_case f g (if p then Inl x else Inr y) = (if p then f x else g y)"
|
blanchet@49312
|
82 |
by simp
|
blanchet@49312
|
83 |
|
blanchet@49428
|
84 |
lemma mem_UN_compreh_eq: "(z : \<Union>{y. \<exists>x\<in>A. y = F x}) = (\<exists>x\<in>A. z : F x)"
|
blanchet@49428
|
85 |
by blast
|
blanchet@49428
|
86 |
|
blanchet@49585
|
87 |
lemma UN_compreh_eq_eq:
|
blanchet@49585
|
88 |
"\<Union>{y. \<exists>x\<in>A. y = {}} = {}"
|
blanchet@49585
|
89 |
"\<Union>{y. \<exists>x\<in>A. y = {x}} = A"
|
blanchet@49585
|
90 |
by blast+
|
blanchet@49585
|
91 |
|
blanchet@51745
|
92 |
lemma Inl_Inr_False: "(Inl x = Inr y) = False"
|
blanchet@51745
|
93 |
by simp
|
blanchet@51745
|
94 |
|
blanchet@49429
|
95 |
lemma prod_set_simps:
|
blanchet@49429
|
96 |
"fsts (x, y) = {x}"
|
blanchet@49429
|
97 |
"snds (x, y) = {y}"
|
blanchet@49429
|
98 |
unfolding fsts_def snds_def by simp+
|
blanchet@49429
|
99 |
|
blanchet@49429
|
100 |
lemma sum_set_simps:
|
blanchet@49451
|
101 |
"setl (Inl x) = {x}"
|
blanchet@49451
|
102 |
"setl (Inr x) = {}"
|
blanchet@49451
|
103 |
"setr (Inl x) = {}"
|
blanchet@49451
|
104 |
"setr (Inr x) = {x}"
|
blanchet@49451
|
105 |
unfolding sum_set_defs by simp+
|
blanchet@49429
|
106 |
|
blanchet@49642
|
107 |
lemma prod_rel_simp:
|
blanchet@49642
|
108 |
"prod_rel P Q (x, y) (x', y') \<longleftrightarrow> P x x' \<and> Q y y'"
|
blanchet@49642
|
109 |
unfolding prod_rel_def by simp
|
blanchet@49642
|
110 |
|
blanchet@49642
|
111 |
lemma sum_rel_simps:
|
blanchet@49642
|
112 |
"sum_rel P Q (Inl x) (Inl x') \<longleftrightarrow> P x x'"
|
blanchet@49642
|
113 |
"sum_rel P Q (Inr y) (Inr y') \<longleftrightarrow> Q y y'"
|
blanchet@49642
|
114 |
"sum_rel P Q (Inl x) (Inr y') \<longleftrightarrow> False"
|
blanchet@49642
|
115 |
"sum_rel P Q (Inr y) (Inl x') \<longleftrightarrow> False"
|
blanchet@49642
|
116 |
unfolding sum_rel_def by simp+
|
blanchet@49642
|
117 |
|
traytel@52505
|
118 |
lemma spec2: "\<forall>x y. P x y \<Longrightarrow> P x y"
|
traytel@52505
|
119 |
by blast
|
traytel@52505
|
120 |
|
traytel@52913
|
121 |
lemma rewriteR_comp_comp: "\<lbrakk>g o h = r\<rbrakk> \<Longrightarrow> f o g o h = f o r"
|
traytel@52913
|
122 |
unfolding o_def fun_eq_iff by auto
|
traytel@52913
|
123 |
|
traytel@52913
|
124 |
lemma rewriteR_comp_comp2: "\<lbrakk>g o h = r1 o r2; f o r1 = l\<rbrakk> \<Longrightarrow> f o g o h = l o r2"
|
traytel@52913
|
125 |
unfolding o_def fun_eq_iff by auto
|
traytel@52913
|
126 |
|
traytel@52913
|
127 |
lemma rewriteL_comp_comp: "\<lbrakk>f o g = l\<rbrakk> \<Longrightarrow> f o (g o h) = l o h"
|
traytel@52913
|
128 |
unfolding o_def fun_eq_iff by auto
|
traytel@52913
|
129 |
|
traytel@52913
|
130 |
lemma rewriteL_comp_comp2: "\<lbrakk>f o g = l1 o l2; l2 o h = r\<rbrakk> \<Longrightarrow> f o (g o h) = l1 o r"
|
traytel@52913
|
131 |
unfolding o_def fun_eq_iff by auto
|
traytel@52913
|
132 |
|
traytel@52913
|
133 |
lemma convol_o: "<f, g> o h = <f o h, g o h>"
|
traytel@52913
|
134 |
unfolding convol_def by auto
|
traytel@52913
|
135 |
|
traytel@52913
|
136 |
lemma map_pair_o_convol: "map_pair h1 h2 o <f, g> = <h1 o f, h2 o g>"
|
traytel@52913
|
137 |
unfolding convol_def by auto
|
traytel@52913
|
138 |
|
traytel@52913
|
139 |
lemma map_pair_o_convol_id: "(map_pair f id \<circ> <id , g>) x = <id \<circ> f , g> x"
|
traytel@52913
|
140 |
unfolding map_pair_o_convol id_o o_id ..
|
traytel@52913
|
141 |
|
traytel@52913
|
142 |
lemma o_sum_case: "h o sum_case f g = sum_case (h o f) (h o g)"
|
traytel@52913
|
143 |
unfolding o_def by (auto split: sum.splits)
|
traytel@52913
|
144 |
|
traytel@52913
|
145 |
lemma sum_case_o_sum_map: "sum_case f g o sum_map h1 h2 = sum_case (f o h1) (g o h2)"
|
traytel@52913
|
146 |
unfolding o_def by (auto split: sum.splits)
|
traytel@52913
|
147 |
|
traytel@52913
|
148 |
lemma sum_case_o_sum_map_id: "(sum_case id g o sum_map f id) x = sum_case (f o id) g x"
|
traytel@52913
|
149 |
unfolding sum_case_o_sum_map id_o o_id ..
|
traytel@52913
|
150 |
|
traytel@52731
|
151 |
lemma fun_rel_def_butlast:
|
traytel@52731
|
152 |
"(fun_rel R (fun_rel S T)) f g = (\<forall>x y. R x y \<longrightarrow> (fun_rel S T) (f x) (g y))"
|
traytel@52731
|
153 |
unfolding fun_rel_def ..
|
traytel@52731
|
154 |
|
traytel@53105
|
155 |
lemma subst_eq_imp: "(\<forall>a b. a = b \<longrightarrow> P a b) \<equiv> (\<forall>a. P a a)"
|
traytel@53105
|
156 |
by auto
|
traytel@53105
|
157 |
|
traytel@53105
|
158 |
lemma eq_subset: "op = \<le> (\<lambda>a b. P a b \<or> a = b)"
|
traytel@53105
|
159 |
by auto
|
traytel@53105
|
160 |
|
blanchet@53308
|
161 |
lemma eq_le_Grp_id_iff: "(op = \<le> Grp (Collect R) id) = (All R)"
|
blanchet@53308
|
162 |
unfolding Grp_def id_apply by blast
|
blanchet@53308
|
163 |
|
blanchet@53308
|
164 |
lemma Grp_id_mono_subst: "(\<And>x y. Grp P id x y \<Longrightarrow> Grp Q id (f x) (f y)) \<equiv>
|
blanchet@53308
|
165 |
(\<And>x. x \<in> P \<Longrightarrow> f x \<in> Q)"
|
blanchet@53308
|
166 |
unfolding Grp_def by rule auto
|
blanchet@53308
|
167 |
|
blanchet@51850
|
168 |
ML_file "Tools/bnf_fp_util.ML"
|
blanchet@49636
|
169 |
ML_file "Tools/bnf_fp_def_sugar_tactics.ML"
|
blanchet@49636
|
170 |
ML_file "Tools/bnf_fp_def_sugar.ML"
|
blanchet@53308
|
171 |
ML_file "Tools/bnf_fp_n2m_tactics.ML"
|
blanchet@53308
|
172 |
ML_file "Tools/bnf_fp_n2m.ML"
|
blanchet@53308
|
173 |
ML_file "Tools/bnf_fp_n2m_sugar.ML"
|
blanchet@53305
|
174 |
ML_file "Tools/bnf_fp_rec_sugar_util.ML"
|
blanchet@49309
|
175 |
|
blanchet@49308
|
176 |
end
|