src/HOL/Library/Boolean_Algebra.thy
author wenzelm
Wed Jun 17 11:03:05 2015 +0200 (2015-06-17)
changeset 60500 903bb1495239
parent 58881 b9556a055632
child 60855 6449ae4b85f9
permissions -rw-r--r--
isabelle update_cartouches;
haftmann@29629
     1
(*  Title:      HOL/Library/Boolean_Algebra.thy
haftmann@29629
     2
    Author:     Brian Huffman
kleing@24332
     3
*)
kleing@24332
     4
wenzelm@60500
     5
section \<open>Boolean Algebras\<close>
kleing@24332
     6
kleing@24332
     7
theory Boolean_Algebra
haftmann@30663
     8
imports Main
kleing@24332
     9
begin
kleing@24332
    10
kleing@24332
    11
locale boolean =
huffman@24357
    12
  fixes conj :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<sqinter>" 70)
huffman@24357
    13
  fixes disj :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<squnion>" 65)
huffman@24357
    14
  fixes compl :: "'a \<Rightarrow> 'a" ("\<sim> _" [81] 80)
kleing@24332
    15
  fixes zero :: "'a" ("\<zero>")
kleing@24332
    16
  fixes one  :: "'a" ("\<one>")
kleing@24332
    17
  assumes conj_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"
kleing@24332
    18
  assumes disj_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"
kleing@24332
    19
  assumes conj_commute: "x \<sqinter> y = y \<sqinter> x"
kleing@24332
    20
  assumes disj_commute: "x \<squnion> y = y \<squnion> x"
kleing@24332
    21
  assumes conj_disj_distrib: "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"
kleing@24332
    22
  assumes disj_conj_distrib: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"
huffman@24357
    23
  assumes conj_one_right [simp]: "x \<sqinter> \<one> = x"
huffman@24357
    24
  assumes disj_zero_right [simp]: "x \<squnion> \<zero> = x"
huffman@24357
    25
  assumes conj_cancel_right [simp]: "x \<sqinter> \<sim> x = \<zero>"
huffman@24357
    26
  assumes disj_cancel_right [simp]: "x \<squnion> \<sim> x = \<one>"
haftmann@54868
    27
begin
haftmann@34973
    28
haftmann@54868
    29
sublocale conj!: abel_semigroup conj proof
haftmann@34973
    30
qed (fact conj_assoc conj_commute)+
haftmann@34973
    31
haftmann@54868
    32
sublocale disj!: abel_semigroup disj proof
haftmann@34973
    33
qed (fact disj_assoc disj_commute)+
haftmann@34973
    34
haftmann@34973
    35
lemmas conj_left_commute = conj.left_commute
kleing@24332
    36
haftmann@34973
    37
lemmas disj_left_commute = disj.left_commute
haftmann@34973
    38
haftmann@34973
    39
lemmas conj_ac = conj.assoc conj.commute conj.left_commute
haftmann@34973
    40
lemmas disj_ac = disj.assoc disj.commute disj.left_commute
kleing@24332
    41
kleing@24332
    42
lemma dual: "boolean disj conj compl one zero"
kleing@24332
    43
apply (rule boolean.intro)
kleing@24332
    44
apply (rule disj_assoc)
kleing@24332
    45
apply (rule conj_assoc)
kleing@24332
    46
apply (rule disj_commute)
kleing@24332
    47
apply (rule conj_commute)
kleing@24332
    48
apply (rule disj_conj_distrib)
kleing@24332
    49
apply (rule conj_disj_distrib)
kleing@24332
    50
apply (rule disj_zero_right)
kleing@24332
    51
apply (rule conj_one_right)
kleing@24332
    52
apply (rule disj_cancel_right)
kleing@24332
    53
apply (rule conj_cancel_right)
kleing@24332
    54
done
kleing@24332
    55
wenzelm@60500
    56
subsection \<open>Complement\<close>
kleing@24332
    57
kleing@24332
    58
lemma complement_unique:
kleing@24332
    59
  assumes 1: "a \<sqinter> x = \<zero>"
kleing@24332
    60
  assumes 2: "a \<squnion> x = \<one>"
kleing@24332
    61
  assumes 3: "a \<sqinter> y = \<zero>"
kleing@24332
    62
  assumes 4: "a \<squnion> y = \<one>"
kleing@24332
    63
  shows "x = y"
kleing@24332
    64
proof -
kleing@24332
    65
  have "(a \<sqinter> x) \<squnion> (x \<sqinter> y) = (a \<sqinter> y) \<squnion> (x \<sqinter> y)" using 1 3 by simp
kleing@24332
    66
  hence "(x \<sqinter> a) \<squnion> (x \<sqinter> y) = (y \<sqinter> a) \<squnion> (y \<sqinter> x)" using conj_commute by simp
kleing@24332
    67
  hence "x \<sqinter> (a \<squnion> y) = y \<sqinter> (a \<squnion> x)" using conj_disj_distrib by simp
kleing@24332
    68
  hence "x \<sqinter> \<one> = y \<sqinter> \<one>" using 2 4 by simp
kleing@24332
    69
  thus "x = y" using conj_one_right by simp
kleing@24332
    70
qed
kleing@24332
    71
huffman@24357
    72
lemma compl_unique: "\<lbrakk>x \<sqinter> y = \<zero>; x \<squnion> y = \<one>\<rbrakk> \<Longrightarrow> \<sim> x = y"
kleing@24332
    73
by (rule complement_unique [OF conj_cancel_right disj_cancel_right])
kleing@24332
    74
kleing@24332
    75
lemma double_compl [simp]: "\<sim> (\<sim> x) = x"
kleing@24332
    76
proof (rule compl_unique)
huffman@24357
    77
  from conj_cancel_right show "\<sim> x \<sqinter> x = \<zero>" by (simp only: conj_commute)
huffman@24357
    78
  from disj_cancel_right show "\<sim> x \<squnion> x = \<one>" by (simp only: disj_commute)
kleing@24332
    79
qed
kleing@24332
    80
kleing@24332
    81
lemma compl_eq_compl_iff [simp]: "(\<sim> x = \<sim> y) = (x = y)"
kleing@24332
    82
by (rule inj_eq [OF inj_on_inverseI], rule double_compl)
kleing@24332
    83
wenzelm@60500
    84
subsection \<open>Conjunction\<close>
kleing@24332
    85
huffman@24393
    86
lemma conj_absorb [simp]: "x \<sqinter> x = x"
kleing@24332
    87
proof -
kleing@24332
    88
  have "x \<sqinter> x = (x \<sqinter> x) \<squnion> \<zero>" using disj_zero_right by simp
kleing@24332
    89
  also have "... = (x \<sqinter> x) \<squnion> (x \<sqinter> \<sim> x)" using conj_cancel_right by simp
huffman@24357
    90
  also have "... = x \<sqinter> (x \<squnion> \<sim> x)" using conj_disj_distrib by (simp only:)
kleing@24332
    91
  also have "... = x \<sqinter> \<one>" using disj_cancel_right by simp
kleing@24332
    92
  also have "... = x" using conj_one_right by simp
kleing@24332
    93
  finally show ?thesis .
kleing@24332
    94
qed
kleing@24332
    95
kleing@24332
    96
lemma conj_zero_right [simp]: "x \<sqinter> \<zero> = \<zero>"
kleing@24332
    97
proof -
kleing@24332
    98
  have "x \<sqinter> \<zero> = x \<sqinter> (x \<sqinter> \<sim> x)" using conj_cancel_right by simp
huffman@24393
    99
  also have "... = (x \<sqinter> x) \<sqinter> \<sim> x" using conj_assoc by (simp only:)
kleing@24332
   100
  also have "... = x \<sqinter> \<sim> x" using conj_absorb by simp
kleing@24332
   101
  also have "... = \<zero>" using conj_cancel_right by simp
kleing@24332
   102
  finally show ?thesis .
kleing@24332
   103
qed
kleing@24332
   104
kleing@24332
   105
lemma compl_one [simp]: "\<sim> \<one> = \<zero>"
kleing@24332
   106
by (rule compl_unique [OF conj_zero_right disj_zero_right])
kleing@24332
   107
kleing@24332
   108
lemma conj_zero_left [simp]: "\<zero> \<sqinter> x = \<zero>"
kleing@24332
   109
by (subst conj_commute) (rule conj_zero_right)
kleing@24332
   110
kleing@24332
   111
lemma conj_one_left [simp]: "\<one> \<sqinter> x = x"
kleing@24332
   112
by (subst conj_commute) (rule conj_one_right)
kleing@24332
   113
kleing@24332
   114
lemma conj_cancel_left [simp]: "\<sim> x \<sqinter> x = \<zero>"
kleing@24332
   115
by (subst conj_commute) (rule conj_cancel_right)
kleing@24332
   116
kleing@24332
   117
lemma conj_left_absorb [simp]: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y"
huffman@24357
   118
by (simp only: conj_assoc [symmetric] conj_absorb)
kleing@24332
   119
kleing@24332
   120
lemma conj_disj_distrib2:
kleing@24332
   121
  "(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)" 
huffman@24357
   122
by (simp only: conj_commute conj_disj_distrib)
kleing@24332
   123
kleing@24332
   124
lemmas conj_disj_distribs =
kleing@24332
   125
   conj_disj_distrib conj_disj_distrib2
kleing@24332
   126
wenzelm@60500
   127
subsection \<open>Disjunction\<close>
kleing@24332
   128
kleing@24332
   129
lemma disj_absorb [simp]: "x \<squnion> x = x"
kleing@24332
   130
by (rule boolean.conj_absorb [OF dual])
kleing@24332
   131
kleing@24332
   132
lemma disj_one_right [simp]: "x \<squnion> \<one> = \<one>"
kleing@24332
   133
by (rule boolean.conj_zero_right [OF dual])
kleing@24332
   134
kleing@24332
   135
lemma compl_zero [simp]: "\<sim> \<zero> = \<one>"
kleing@24332
   136
by (rule boolean.compl_one [OF dual])
kleing@24332
   137
kleing@24332
   138
lemma disj_zero_left [simp]: "\<zero> \<squnion> x = x"
kleing@24332
   139
by (rule boolean.conj_one_left [OF dual])
kleing@24332
   140
kleing@24332
   141
lemma disj_one_left [simp]: "\<one> \<squnion> x = \<one>"
kleing@24332
   142
by (rule boolean.conj_zero_left [OF dual])
kleing@24332
   143
kleing@24332
   144
lemma disj_cancel_left [simp]: "\<sim> x \<squnion> x = \<one>"
kleing@24332
   145
by (rule boolean.conj_cancel_left [OF dual])
kleing@24332
   146
kleing@24332
   147
lemma disj_left_absorb [simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y"
kleing@24332
   148
by (rule boolean.conj_left_absorb [OF dual])
kleing@24332
   149
kleing@24332
   150
lemma disj_conj_distrib2:
kleing@24332
   151
  "(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)"
kleing@24332
   152
by (rule boolean.conj_disj_distrib2 [OF dual])
kleing@24332
   153
kleing@24332
   154
lemmas disj_conj_distribs =
kleing@24332
   155
   disj_conj_distrib disj_conj_distrib2
kleing@24332
   156
wenzelm@60500
   157
subsection \<open>De Morgan's Laws\<close>
kleing@24332
   158
kleing@24332
   159
lemma de_Morgan_conj [simp]: "\<sim> (x \<sqinter> y) = \<sim> x \<squnion> \<sim> y"
kleing@24332
   160
proof (rule compl_unique)
kleing@24332
   161
  have "(x \<sqinter> y) \<sqinter> (\<sim> x \<squnion> \<sim> y) = ((x \<sqinter> y) \<sqinter> \<sim> x) \<squnion> ((x \<sqinter> y) \<sqinter> \<sim> y)"
kleing@24332
   162
    by (rule conj_disj_distrib)
kleing@24332
   163
  also have "... = (y \<sqinter> (x \<sqinter> \<sim> x)) \<squnion> (x \<sqinter> (y \<sqinter> \<sim> y))"
huffman@24357
   164
    by (simp only: conj_ac)
kleing@24332
   165
  finally show "(x \<sqinter> y) \<sqinter> (\<sim> x \<squnion> \<sim> y) = \<zero>"
huffman@24357
   166
    by (simp only: conj_cancel_right conj_zero_right disj_zero_right)
kleing@24332
   167
next
kleing@24332
   168
  have "(x \<sqinter> y) \<squnion> (\<sim> x \<squnion> \<sim> y) = (x \<squnion> (\<sim> x \<squnion> \<sim> y)) \<sqinter> (y \<squnion> (\<sim> x \<squnion> \<sim> y))"
kleing@24332
   169
    by (rule disj_conj_distrib2)
kleing@24332
   170
  also have "... = (\<sim> y \<squnion> (x \<squnion> \<sim> x)) \<sqinter> (\<sim> x \<squnion> (y \<squnion> \<sim> y))"
huffman@24357
   171
    by (simp only: disj_ac)
kleing@24332
   172
  finally show "(x \<sqinter> y) \<squnion> (\<sim> x \<squnion> \<sim> y) = \<one>"
huffman@24357
   173
    by (simp only: disj_cancel_right disj_one_right conj_one_right)
kleing@24332
   174
qed
kleing@24332
   175
kleing@24332
   176
lemma de_Morgan_disj [simp]: "\<sim> (x \<squnion> y) = \<sim> x \<sqinter> \<sim> y"
kleing@24332
   177
by (rule boolean.de_Morgan_conj [OF dual])
kleing@24332
   178
kleing@24332
   179
end
kleing@24332
   180
wenzelm@60500
   181
subsection \<open>Symmetric Difference\<close>
kleing@24332
   182
kleing@24332
   183
locale boolean_xor = boolean +
kleing@24332
   184
  fixes xor :: "'a => 'a => 'a"  (infixr "\<oplus>" 65)
kleing@24332
   185
  assumes xor_def: "x \<oplus> y = (x \<sqinter> \<sim> y) \<squnion> (\<sim> x \<sqinter> y)"
haftmann@54868
   186
begin
kleing@24332
   187
haftmann@54868
   188
sublocale xor!: abel_semigroup xor proof
haftmann@34973
   189
  fix x y z :: 'a
kleing@24332
   190
  let ?t = "(x \<sqinter> y \<sqinter> z) \<squnion> (x \<sqinter> \<sim> y \<sqinter> \<sim> z) \<squnion>
kleing@24332
   191
            (\<sim> x \<sqinter> y \<sqinter> \<sim> z) \<squnion> (\<sim> x \<sqinter> \<sim> y \<sqinter> z)"
kleing@24332
   192
  have "?t \<squnion> (z \<sqinter> x \<sqinter> \<sim> x) \<squnion> (z \<sqinter> y \<sqinter> \<sim> y) =
kleing@24332
   193
        ?t \<squnion> (x \<sqinter> y \<sqinter> \<sim> y) \<squnion> (x \<sqinter> z \<sqinter> \<sim> z)"
huffman@24357
   194
    by (simp only: conj_cancel_right conj_zero_right)
kleing@24332
   195
  thus "(x \<oplus> y) \<oplus> z = x \<oplus> (y \<oplus> z)"
huffman@24357
   196
    apply (simp only: xor_def de_Morgan_disj de_Morgan_conj double_compl)
huffman@24357
   197
    apply (simp only: conj_disj_distribs conj_ac disj_ac)
kleing@24332
   198
    done
haftmann@34973
   199
  show "x \<oplus> y = y \<oplus> x"
haftmann@34973
   200
    by (simp only: xor_def conj_commute disj_commute)
kleing@24332
   201
qed
kleing@24332
   202
haftmann@34973
   203
lemmas xor_assoc = xor.assoc
haftmann@34973
   204
lemmas xor_commute = xor.commute
haftmann@34973
   205
lemmas xor_left_commute = xor.left_commute
haftmann@34973
   206
haftmann@34973
   207
lemmas xor_ac = xor.assoc xor.commute xor.left_commute
haftmann@34973
   208
haftmann@34973
   209
lemma xor_def2:
haftmann@34973
   210
  "x \<oplus> y = (x \<squnion> y) \<sqinter> (\<sim> x \<squnion> \<sim> y)"
haftmann@34973
   211
by (simp only: xor_def conj_disj_distribs
haftmann@34973
   212
               disj_ac conj_ac conj_cancel_right disj_zero_left)
kleing@24332
   213
kleing@24332
   214
lemma xor_zero_right [simp]: "x \<oplus> \<zero> = x"
huffman@24357
   215
by (simp only: xor_def compl_zero conj_one_right conj_zero_right disj_zero_right)
kleing@24332
   216
kleing@24332
   217
lemma xor_zero_left [simp]: "\<zero> \<oplus> x = x"
kleing@24332
   218
by (subst xor_commute) (rule xor_zero_right)
kleing@24332
   219
kleing@24332
   220
lemma xor_one_right [simp]: "x \<oplus> \<one> = \<sim> x"
huffman@24357
   221
by (simp only: xor_def compl_one conj_zero_right conj_one_right disj_zero_left)
kleing@24332
   222
kleing@24332
   223
lemma xor_one_left [simp]: "\<one> \<oplus> x = \<sim> x"
kleing@24332
   224
by (subst xor_commute) (rule xor_one_right)
kleing@24332
   225
kleing@24332
   226
lemma xor_self [simp]: "x \<oplus> x = \<zero>"
huffman@24357
   227
by (simp only: xor_def conj_cancel_right conj_cancel_left disj_zero_right)
kleing@24332
   228
kleing@24332
   229
lemma xor_left_self [simp]: "x \<oplus> (x \<oplus> y) = y"
huffman@24357
   230
by (simp only: xor_assoc [symmetric] xor_self xor_zero_left)
kleing@24332
   231
huffman@29996
   232
lemma xor_compl_left [simp]: "\<sim> x \<oplus> y = \<sim> (x \<oplus> y)"
huffman@24357
   233
apply (simp only: xor_def de_Morgan_disj de_Morgan_conj double_compl)
huffman@24357
   234
apply (simp only: conj_disj_distribs)
huffman@24357
   235
apply (simp only: conj_cancel_right conj_cancel_left)
huffman@24357
   236
apply (simp only: disj_zero_left disj_zero_right)
huffman@24357
   237
apply (simp only: disj_ac conj_ac)
kleing@24332
   238
done
kleing@24332
   239
huffman@29996
   240
lemma xor_compl_right [simp]: "x \<oplus> \<sim> y = \<sim> (x \<oplus> y)"
huffman@24357
   241
apply (simp only: xor_def de_Morgan_disj de_Morgan_conj double_compl)
huffman@24357
   242
apply (simp only: conj_disj_distribs)
huffman@24357
   243
apply (simp only: conj_cancel_right conj_cancel_left)
huffman@24357
   244
apply (simp only: disj_zero_left disj_zero_right)
huffman@24357
   245
apply (simp only: disj_ac conj_ac)
kleing@24332
   246
done
kleing@24332
   247
huffman@29996
   248
lemma xor_cancel_right: "x \<oplus> \<sim> x = \<one>"
huffman@24357
   249
by (simp only: xor_compl_right xor_self compl_zero)
kleing@24332
   250
huffman@29996
   251
lemma xor_cancel_left: "\<sim> x \<oplus> x = \<one>"
huffman@29996
   252
by (simp only: xor_compl_left xor_self compl_zero)
kleing@24332
   253
kleing@24332
   254
lemma conj_xor_distrib: "x \<sqinter> (y \<oplus> z) = (x \<sqinter> y) \<oplus> (x \<sqinter> z)"
kleing@24332
   255
proof -
kleing@24332
   256
  have "(x \<sqinter> y \<sqinter> \<sim> z) \<squnion> (x \<sqinter> \<sim> y \<sqinter> z) =
kleing@24332
   257
        (y \<sqinter> x \<sqinter> \<sim> x) \<squnion> (z \<sqinter> x \<sqinter> \<sim> x) \<squnion> (x \<sqinter> y \<sqinter> \<sim> z) \<squnion> (x \<sqinter> \<sim> y \<sqinter> z)"
huffman@24357
   258
    by (simp only: conj_cancel_right conj_zero_right disj_zero_left)
kleing@24332
   259
  thus "x \<sqinter> (y \<oplus> z) = (x \<sqinter> y) \<oplus> (x \<sqinter> z)"
huffman@24357
   260
    by (simp (no_asm_use) only:
kleing@24332
   261
        xor_def de_Morgan_disj de_Morgan_conj double_compl
kleing@24332
   262
        conj_disj_distribs conj_ac disj_ac)
kleing@24332
   263
qed
kleing@24332
   264
kleing@24332
   265
lemma conj_xor_distrib2:
kleing@24332
   266
  "(y \<oplus> z) \<sqinter> x = (y \<sqinter> x) \<oplus> (z \<sqinter> x)"
kleing@24332
   267
proof -
kleing@24332
   268
  have "x \<sqinter> (y \<oplus> z) = (x \<sqinter> y) \<oplus> (x \<sqinter> z)"
kleing@24332
   269
    by (rule conj_xor_distrib)
kleing@24332
   270
  thus "(y \<oplus> z) \<sqinter> x = (y \<sqinter> x) \<oplus> (z \<sqinter> x)"
huffman@24357
   271
    by (simp only: conj_commute)
kleing@24332
   272
qed
kleing@24332
   273
kleing@24332
   274
lemmas conj_xor_distribs =
kleing@24332
   275
   conj_xor_distrib conj_xor_distrib2
kleing@24332
   276
kleing@24332
   277
end
kleing@24332
   278
kleing@24332
   279
end