src/HOL/Set.ML
author paulson
Wed Sep 25 11:14:18 1996 +0200 (1996-09-25)
changeset 2024 909153d8318f
parent 1985 84cf16192e03
child 2031 03a843f0f447
permissions -rw-r--r--
Rationalized the rewriting of membership for {} and insert
by deleting the redundant theorems in_empty and in_insert
clasohm@1465
     1
(*  Title:      HOL/set
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@923
     4
    Copyright   1991  University of Cambridge
clasohm@923
     5
paulson@1985
     6
Set theory for higher-order logic.  A set is simply a predicate.
clasohm@923
     7
*)
clasohm@923
     8
clasohm@923
     9
open Set;
clasohm@923
    10
nipkow@1548
    11
section "Relating predicates and sets";
nipkow@1548
    12
nipkow@1548
    13
val [prem] = goal Set.thy "P(a) ==> a : {x.P(x)}";
clasohm@923
    14
by (rtac (mem_Collect_eq RS ssubst) 1);
clasohm@923
    15
by (rtac prem 1);
clasohm@923
    16
qed "CollectI";
clasohm@923
    17
clasohm@923
    18
val prems = goal Set.thy "[| a : {x.P(x)} |] ==> P(a)";
clasohm@923
    19
by (resolve_tac (prems RL [mem_Collect_eq  RS subst]) 1);
clasohm@923
    20
qed "CollectD";
clasohm@923
    21
clasohm@923
    22
val [prem] = goal Set.thy "[| !!x. (x:A) = (x:B) |] ==> A = B";
clasohm@923
    23
by (rtac (prem RS ext RS arg_cong RS box_equals) 1);
clasohm@923
    24
by (rtac Collect_mem_eq 1);
clasohm@923
    25
by (rtac Collect_mem_eq 1);
clasohm@923
    26
qed "set_ext";
clasohm@923
    27
clasohm@923
    28
val [prem] = goal Set.thy "[| !!x. P(x)=Q(x) |] ==> {x. P(x)} = {x. Q(x)}";
clasohm@923
    29
by (rtac (prem RS ext RS arg_cong) 1);
clasohm@923
    30
qed "Collect_cong";
clasohm@923
    31
clasohm@923
    32
val CollectE = make_elim CollectD;
clasohm@923
    33
nipkow@1548
    34
section "Bounded quantifiers";
clasohm@923
    35
clasohm@923
    36
val prems = goalw Set.thy [Ball_def]
clasohm@923
    37
    "[| !!x. x:A ==> P(x) |] ==> ! x:A. P(x)";
clasohm@923
    38
by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
clasohm@923
    39
qed "ballI";
clasohm@923
    40
clasohm@923
    41
val [major,minor] = goalw Set.thy [Ball_def]
clasohm@923
    42
    "[| ! x:A. P(x);  x:A |] ==> P(x)";
clasohm@923
    43
by (rtac (minor RS (major RS spec RS mp)) 1);
clasohm@923
    44
qed "bspec";
clasohm@923
    45
clasohm@923
    46
val major::prems = goalw Set.thy [Ball_def]
clasohm@923
    47
    "[| ! x:A. P(x);  P(x) ==> Q;  x~:A ==> Q |] ==> Q";
clasohm@923
    48
by (rtac (major RS spec RS impCE) 1);
clasohm@923
    49
by (REPEAT (eresolve_tac prems 1));
clasohm@923
    50
qed "ballE";
clasohm@923
    51
clasohm@923
    52
(*Takes assumptions ! x:A.P(x) and a:A; creates assumption P(a)*)
clasohm@923
    53
fun ball_tac i = etac ballE i THEN contr_tac (i+1);
clasohm@923
    54
clasohm@923
    55
val prems = goalw Set.thy [Bex_def]
clasohm@923
    56
    "[| P(x);  x:A |] ==> ? x:A. P(x)";
clasohm@923
    57
by (REPEAT (ares_tac (prems @ [exI,conjI]) 1));
clasohm@923
    58
qed "bexI";
clasohm@923
    59
clasohm@923
    60
qed_goal "bexCI" Set.thy 
clasohm@923
    61
   "[| ! x:A. ~P(x) ==> P(a);  a:A |] ==> ? x:A.P(x)"
clasohm@923
    62
 (fn prems=>
clasohm@923
    63
  [ (rtac classical 1),
clasohm@923
    64
    (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1))  ]);
clasohm@923
    65
clasohm@923
    66
val major::prems = goalw Set.thy [Bex_def]
clasohm@923
    67
    "[| ? x:A. P(x);  !!x. [| x:A; P(x) |] ==> Q  |] ==> Q";
clasohm@923
    68
by (rtac (major RS exE) 1);
clasohm@923
    69
by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1));
clasohm@923
    70
qed "bexE";
clasohm@923
    71
clasohm@923
    72
(*Trival rewrite rule;   (! x:A.P)=P holds only if A is nonempty!*)
paulson@1882
    73
goalw Set.thy [Ball_def] "(! x:A. True) = True";
paulson@1882
    74
by (Simp_tac 1);
paulson@1816
    75
qed "ball_True";
paulson@1816
    76
paulson@1882
    77
(*Dual form for existentials*)
paulson@1882
    78
goalw Set.thy [Bex_def] "(? x:A. False) = False";
paulson@1882
    79
by (Simp_tac 1);
paulson@1882
    80
qed "bex_False";
paulson@1882
    81
paulson@1882
    82
Addsimps [ball_True, bex_False];
clasohm@923
    83
clasohm@923
    84
(** Congruence rules **)
clasohm@923
    85
clasohm@923
    86
val prems = goal Set.thy
clasohm@923
    87
    "[| A=B;  !!x. x:B ==> P(x) = Q(x) |] ==> \
clasohm@923
    88
\    (! x:A. P(x)) = (! x:B. Q(x))";
clasohm@923
    89
by (resolve_tac (prems RL [ssubst]) 1);
clasohm@923
    90
by (REPEAT (ares_tac [ballI,iffI] 1
clasohm@923
    91
     ORELSE eresolve_tac ([make_elim bspec, mp] @ (prems RL [iffE])) 1));
clasohm@923
    92
qed "ball_cong";
clasohm@923
    93
clasohm@923
    94
val prems = goal Set.thy
clasohm@923
    95
    "[| A=B;  !!x. x:B ==> P(x) = Q(x) |] ==> \
clasohm@923
    96
\    (? x:A. P(x)) = (? x:B. Q(x))";
clasohm@923
    97
by (resolve_tac (prems RL [ssubst]) 1);
clasohm@923
    98
by (REPEAT (etac bexE 1
clasohm@923
    99
     ORELSE ares_tac ([bexI,iffI] @ (prems RL [iffD1,iffD2])) 1));
clasohm@923
   100
qed "bex_cong";
clasohm@923
   101
nipkow@1548
   102
section "Subsets";
clasohm@923
   103
clasohm@923
   104
val prems = goalw Set.thy [subset_def] "(!!x.x:A ==> x:B) ==> A <= B";
clasohm@923
   105
by (REPEAT (ares_tac (prems @ [ballI]) 1));
clasohm@923
   106
qed "subsetI";
clasohm@923
   107
clasohm@923
   108
(*Rule in Modus Ponens style*)
clasohm@923
   109
val major::prems = goalw Set.thy [subset_def] "[| A <= B;  c:A |] ==> c:B";
clasohm@923
   110
by (rtac (major RS bspec) 1);
clasohm@923
   111
by (resolve_tac prems 1);
clasohm@923
   112
qed "subsetD";
clasohm@923
   113
clasohm@923
   114
(*The same, with reversed premises for use with etac -- cf rev_mp*)
clasohm@923
   115
qed_goal "rev_subsetD" Set.thy "[| c:A;  A <= B |] ==> c:B"
clasohm@923
   116
 (fn prems=>  [ (REPEAT (resolve_tac (prems@[subsetD]) 1)) ]);
clasohm@923
   117
paulson@1920
   118
(*Converts A<=B to x:A ==> x:B*)
paulson@1920
   119
fun impOfSubs th = th RSN (2, rev_subsetD);
paulson@1920
   120
paulson@1841
   121
qed_goal "contra_subsetD" Set.thy "!!c. [| A <= B; c ~: B |] ==> c ~: A"
paulson@1841
   122
 (fn prems=>  [ (REPEAT (eresolve_tac [asm_rl, contrapos, subsetD] 1)) ]);
paulson@1841
   123
paulson@1841
   124
qed_goal "rev_contra_subsetD" Set.thy "!!c. [| c ~: B;  A <= B |] ==> c ~: A"
paulson@1841
   125
 (fn prems=>  [ (REPEAT (eresolve_tac [asm_rl, contrapos, subsetD] 1)) ]);
paulson@1841
   126
clasohm@923
   127
(*Classical elimination rule*)
clasohm@923
   128
val major::prems = goalw Set.thy [subset_def] 
clasohm@923
   129
    "[| A <= B;  c~:A ==> P;  c:B ==> P |] ==> P";
clasohm@923
   130
by (rtac (major RS ballE) 1);
clasohm@923
   131
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   132
qed "subsetCE";
clasohm@923
   133
clasohm@923
   134
(*Takes assumptions A<=B; c:A and creates the assumption c:B *)
clasohm@923
   135
fun set_mp_tac i = etac subsetCE i  THEN  mp_tac i;
clasohm@923
   136
clasohm@923
   137
qed_goal "subset_refl" Set.thy "A <= (A::'a set)"
clasohm@923
   138
 (fn _=> [ (REPEAT (ares_tac [subsetI] 1)) ]);
clasohm@923
   139
clasohm@923
   140
val prems = goal Set.thy "[| A<=B;  B<=C |] ==> A<=(C::'a set)";
clasohm@923
   141
by (cut_facts_tac prems 1);
clasohm@923
   142
by (REPEAT (ares_tac [subsetI] 1 ORELSE set_mp_tac 1));
clasohm@923
   143
qed "subset_trans";
clasohm@923
   144
clasohm@923
   145
nipkow@1548
   146
section "Equality";
clasohm@923
   147
clasohm@923
   148
(*Anti-symmetry of the subset relation*)
clasohm@923
   149
val prems = goal Set.thy "[| A <= B;  B <= A |] ==> A = (B::'a set)";
clasohm@923
   150
by (rtac (iffI RS set_ext) 1);
clasohm@923
   151
by (REPEAT (ares_tac (prems RL [subsetD]) 1));
clasohm@923
   152
qed "subset_antisym";
clasohm@923
   153
val equalityI = subset_antisym;
clasohm@923
   154
berghofe@1762
   155
AddSIs [equalityI];
berghofe@1762
   156
clasohm@923
   157
(* Equality rules from ZF set theory -- are they appropriate here? *)
clasohm@923
   158
val prems = goal Set.thy "A = B ==> A<=(B::'a set)";
clasohm@923
   159
by (resolve_tac (prems RL [subst]) 1);
clasohm@923
   160
by (rtac subset_refl 1);
clasohm@923
   161
qed "equalityD1";
clasohm@923
   162
clasohm@923
   163
val prems = goal Set.thy "A = B ==> B<=(A::'a set)";
clasohm@923
   164
by (resolve_tac (prems RL [subst]) 1);
clasohm@923
   165
by (rtac subset_refl 1);
clasohm@923
   166
qed "equalityD2";
clasohm@923
   167
clasohm@923
   168
val prems = goal Set.thy
clasohm@923
   169
    "[| A = B;  [| A<=B; B<=(A::'a set) |] ==> P |]  ==>  P";
clasohm@923
   170
by (resolve_tac prems 1);
clasohm@923
   171
by (REPEAT (resolve_tac (prems RL [equalityD1,equalityD2]) 1));
clasohm@923
   172
qed "equalityE";
clasohm@923
   173
clasohm@923
   174
val major::prems = goal Set.thy
clasohm@923
   175
    "[| A = B;  [| c:A; c:B |] ==> P;  [| c~:A; c~:B |] ==> P |]  ==>  P";
clasohm@923
   176
by (rtac (major RS equalityE) 1);
clasohm@923
   177
by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1));
clasohm@923
   178
qed "equalityCE";
clasohm@923
   179
clasohm@923
   180
(*Lemma for creating induction formulae -- for "pattern matching" on p
clasohm@923
   181
  To make the induction hypotheses usable, apply "spec" or "bspec" to
clasohm@923
   182
  put universal quantifiers over the free variables in p. *)
clasohm@923
   183
val prems = goal Set.thy 
clasohm@923
   184
    "[| p:A;  !!z. z:A ==> p=z --> R |] ==> R";
clasohm@923
   185
by (rtac mp 1);
clasohm@923
   186
by (REPEAT (resolve_tac (refl::prems) 1));
clasohm@923
   187
qed "setup_induction";
clasohm@923
   188
clasohm@923
   189
nipkow@1548
   190
section "Set complement -- Compl";
clasohm@923
   191
clasohm@923
   192
val prems = goalw Set.thy [Compl_def]
clasohm@923
   193
    "[| c:A ==> False |] ==> c : Compl(A)";
clasohm@923
   194
by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1));
clasohm@923
   195
qed "ComplI";
clasohm@923
   196
clasohm@923
   197
(*This form, with negated conclusion, works well with the Classical prover.
clasohm@923
   198
  Negated assumptions behave like formulae on the right side of the notional
clasohm@923
   199
  turnstile...*)
clasohm@923
   200
val major::prems = goalw Set.thy [Compl_def]
clasohm@923
   201
    "[| c : Compl(A) |] ==> c~:A";
clasohm@923
   202
by (rtac (major RS CollectD) 1);
clasohm@923
   203
qed "ComplD";
clasohm@923
   204
clasohm@923
   205
val ComplE = make_elim ComplD;
clasohm@923
   206
paulson@1640
   207
qed_goal "Compl_iff" Set.thy "(c : Compl(A)) = (c~:A)"
berghofe@1760
   208
 (fn _ => [ (fast_tac (!claset addSIs [ComplI] addSEs [ComplE]) 1) ]);
paulson@1640
   209
clasohm@923
   210
nipkow@1548
   211
section "Binary union -- Un";
clasohm@923
   212
clasohm@923
   213
val prems = goalw Set.thy [Un_def] "c:A ==> c : A Un B";
clasohm@923
   214
by (REPEAT (resolve_tac (prems @ [CollectI,disjI1]) 1));
clasohm@923
   215
qed "UnI1";
clasohm@923
   216
clasohm@923
   217
val prems = goalw Set.thy [Un_def] "c:B ==> c : A Un B";
clasohm@923
   218
by (REPEAT (resolve_tac (prems @ [CollectI,disjI2]) 1));
clasohm@923
   219
qed "UnI2";
clasohm@923
   220
clasohm@923
   221
(*Classical introduction rule: no commitment to A vs B*)
clasohm@923
   222
qed_goal "UnCI" Set.thy "(c~:B ==> c:A) ==> c : A Un B"
clasohm@923
   223
 (fn prems=>
clasohm@923
   224
  [ (rtac classical 1),
clasohm@923
   225
    (REPEAT (ares_tac (prems@[UnI1,notI]) 1)),
clasohm@923
   226
    (REPEAT (ares_tac (prems@[UnI2,notE]) 1)) ]);
clasohm@923
   227
clasohm@923
   228
val major::prems = goalw Set.thy [Un_def]
clasohm@923
   229
    "[| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P";
clasohm@923
   230
by (rtac (major RS CollectD RS disjE) 1);
clasohm@923
   231
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   232
qed "UnE";
clasohm@923
   233
paulson@1640
   234
qed_goal "Un_iff" Set.thy "(c : A Un B) = (c:A | c:B)"
berghofe@1760
   235
 (fn _ => [ (fast_tac (!claset addSIs [UnCI] addSEs [UnE]) 1) ]);
paulson@1640
   236
clasohm@923
   237
nipkow@1548
   238
section "Binary intersection -- Int";
clasohm@923
   239
clasohm@923
   240
val prems = goalw Set.thy [Int_def]
clasohm@923
   241
    "[| c:A;  c:B |] ==> c : A Int B";
clasohm@923
   242
by (REPEAT (resolve_tac (prems @ [CollectI,conjI]) 1));
clasohm@923
   243
qed "IntI";
clasohm@923
   244
clasohm@923
   245
val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:A";
clasohm@923
   246
by (rtac (major RS CollectD RS conjunct1) 1);
clasohm@923
   247
qed "IntD1";
clasohm@923
   248
clasohm@923
   249
val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:B";
clasohm@923
   250
by (rtac (major RS CollectD RS conjunct2) 1);
clasohm@923
   251
qed "IntD2";
clasohm@923
   252
clasohm@923
   253
val [major,minor] = goal Set.thy
clasohm@923
   254
    "[| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P";
clasohm@923
   255
by (rtac minor 1);
clasohm@923
   256
by (rtac (major RS IntD1) 1);
clasohm@923
   257
by (rtac (major RS IntD2) 1);
clasohm@923
   258
qed "IntE";
clasohm@923
   259
paulson@1640
   260
qed_goal "Int_iff" Set.thy "(c : A Int B) = (c:A & c:B)"
berghofe@1760
   261
 (fn _ => [ (fast_tac (!claset addSIs [IntI] addSEs [IntE]) 1) ]);
paulson@1640
   262
clasohm@923
   263
nipkow@1548
   264
section "Set difference";
clasohm@923
   265
clasohm@923
   266
qed_goalw "DiffI" Set.thy [set_diff_def]
clasohm@923
   267
    "[| c : A;  c ~: B |] ==> c : A - B"
clasohm@923
   268
 (fn prems=> [ (REPEAT (resolve_tac (prems @ [CollectI,conjI]) 1)) ]);
clasohm@923
   269
clasohm@923
   270
qed_goalw "DiffD1" Set.thy [set_diff_def]
clasohm@923
   271
    "c : A - B ==> c : A"
clasohm@923
   272
 (fn [major]=> [ (rtac (major RS CollectD RS conjunct1) 1) ]);
clasohm@923
   273
clasohm@923
   274
qed_goalw "DiffD2" Set.thy [set_diff_def]
clasohm@923
   275
    "[| c : A - B;  c : B |] ==> P"
clasohm@923
   276
 (fn [major,minor]=>
clasohm@923
   277
     [rtac (minor RS (major RS CollectD RS conjunct2 RS notE)) 1]);
clasohm@923
   278
clasohm@923
   279
qed_goal "DiffE" Set.thy
clasohm@923
   280
    "[| c : A - B;  [| c:A; c~:B |] ==> P |] ==> P"
clasohm@923
   281
 (fn prems=>
clasohm@923
   282
  [ (resolve_tac prems 1),
clasohm@923
   283
    (REPEAT (ares_tac (prems RL [DiffD1, DiffD2 RS notI]) 1)) ]);
clasohm@923
   284
clasohm@923
   285
qed_goal "Diff_iff" Set.thy "(c : A-B) = (c:A & c~:B)"
berghofe@1760
   286
 (fn _ => [ (fast_tac (!claset addSIs [DiffI] addSEs [DiffE]) 1) ]);
clasohm@923
   287
nipkow@1548
   288
section "The empty set -- {}";
clasohm@923
   289
clasohm@923
   290
qed_goalw "emptyE" Set.thy [empty_def] "a:{} ==> P"
clasohm@923
   291
 (fn [prem] => [rtac (prem RS CollectD RS FalseE) 1]);
clasohm@923
   292
clasohm@923
   293
qed_goal "empty_subsetI" Set.thy "{} <= A"
clasohm@923
   294
 (fn _ => [ (REPEAT (ares_tac [equalityI,subsetI,emptyE] 1)) ]);
clasohm@923
   295
clasohm@923
   296
qed_goal "equals0I" Set.thy "[| !!y. y:A ==> False |] ==> A={}"
clasohm@923
   297
 (fn prems=>
clasohm@923
   298
  [ (REPEAT (ares_tac (prems@[empty_subsetI,subsetI,equalityI]) 1 
clasohm@923
   299
      ORELSE eresolve_tac (prems RL [FalseE]) 1)) ]);
clasohm@923
   300
clasohm@923
   301
qed_goal "equals0D" Set.thy "[| A={};  a:A |] ==> P"
clasohm@923
   302
 (fn [major,minor]=>
clasohm@923
   303
  [ (rtac (minor RS (major RS equalityD1 RS subsetD RS emptyE)) 1) ]);
clasohm@923
   304
paulson@1640
   305
qed_goal "empty_iff" Set.thy "(c : {}) = False"
berghofe@1760
   306
 (fn _ => [ (fast_tac (!claset addSEs [emptyE]) 1) ]);
paulson@1640
   307
paulson@1816
   308
goal Set.thy "Ball {} P = True";
paulson@1816
   309
by (simp_tac (HOL_ss addsimps [mem_Collect_eq, Ball_def, empty_def]) 1);
paulson@1816
   310
qed "ball_empty";
paulson@1816
   311
paulson@1816
   312
goal Set.thy "Bex {} P = False";
paulson@1816
   313
by (simp_tac (HOL_ss addsimps [mem_Collect_eq, Bex_def, empty_def]) 1);
paulson@1816
   314
qed "bex_empty";
paulson@1816
   315
Addsimps [ball_empty, bex_empty];
paulson@1816
   316
clasohm@923
   317
nipkow@1548
   318
section "Augmenting a set -- insert";
clasohm@923
   319
clasohm@923
   320
qed_goalw "insertI1" Set.thy [insert_def] "a : insert a B"
clasohm@923
   321
 (fn _ => [rtac (CollectI RS UnI1) 1, rtac refl 1]);
clasohm@923
   322
clasohm@923
   323
qed_goalw "insertI2" Set.thy [insert_def] "a : B ==> a : insert b B"
clasohm@923
   324
 (fn [prem]=> [ (rtac (prem RS UnI2) 1) ]);
clasohm@923
   325
clasohm@923
   326
qed_goalw "insertE" Set.thy [insert_def]
clasohm@923
   327
    "[| a : insert b A;  a=b ==> P;  a:A ==> P |] ==> P"
clasohm@923
   328
 (fn major::prems=>
clasohm@923
   329
  [ (rtac (major RS UnE) 1),
clasohm@923
   330
    (REPEAT (eresolve_tac (prems @ [CollectE]) 1)) ]);
clasohm@923
   331
clasohm@923
   332
qed_goal "insert_iff" Set.thy "a : insert b A = (a=b | a:A)"
berghofe@1760
   333
 (fn _ => [fast_tac (!claset addIs [insertI1,insertI2] addSEs [insertE]) 1]);
clasohm@923
   334
clasohm@923
   335
(*Classical introduction rule*)
clasohm@923
   336
qed_goal "insertCI" Set.thy "(a~:B ==> a=b) ==> a: insert b B"
clasohm@923
   337
 (fn [prem]=>
clasohm@923
   338
  [ (rtac (disjCI RS (insert_iff RS iffD2)) 1),
clasohm@923
   339
    (etac prem 1) ]);
clasohm@923
   340
nipkow@1548
   341
section "Singletons, using insert";
clasohm@923
   342
clasohm@923
   343
qed_goal "singletonI" Set.thy "a : {a}"
clasohm@923
   344
 (fn _=> [ (rtac insertI1 1) ]);
clasohm@923
   345
clasohm@923
   346
goalw Set.thy [insert_def] "!!a. b : {a} ==> b=a";
berghofe@1760
   347
by (fast_tac (!claset addSEs [emptyE,CollectE,UnE]) 1);
clasohm@923
   348
qed "singletonD";
clasohm@923
   349
oheimb@1776
   350
bind_thm ("singletonE", make_elim singletonD);
oheimb@1776
   351
oheimb@1776
   352
qed_goal "singleton_iff" thy "(b : {a}) = (b=a)" (fn _ => [
oheimb@1776
   353
	rtac iffI 1,
oheimb@1776
   354
	etac singletonD 1,
oheimb@1776
   355
	hyp_subst_tac 1,
oheimb@1776
   356
	rtac singletonI 1]);
clasohm@923
   357
clasohm@923
   358
val [major] = goal Set.thy "{a}={b} ==> a=b";
clasohm@923
   359
by (rtac (major RS equalityD1 RS subsetD RS singletonD) 1);
clasohm@923
   360
by (rtac singletonI 1);
clasohm@923
   361
qed "singleton_inject";
clasohm@923
   362
nipkow@1531
   363
nipkow@1548
   364
section "The universal set -- UNIV";
nipkow@1531
   365
paulson@1882
   366
qed_goal "UNIV_I" Set.thy "x : UNIV"
paulson@1882
   367
  (fn _ => [rtac ComplI 1, etac emptyE 1]);
paulson@1882
   368
nipkow@1531
   369
qed_goal "subset_UNIV" Set.thy "A <= UNIV"
paulson@1882
   370
  (fn _ => [rtac subsetI 1, rtac UNIV_I 1]);
nipkow@1531
   371
nipkow@1531
   372
nipkow@1548
   373
section "Unions of families -- UNION x:A. B(x) is Union(B``A)";
clasohm@923
   374
clasohm@923
   375
(*The order of the premises presupposes that A is rigid; b may be flexible*)
clasohm@923
   376
val prems = goalw Set.thy [UNION_def]
clasohm@923
   377
    "[| a:A;  b: B(a) |] ==> b: (UN x:A. B(x))";
clasohm@923
   378
by (REPEAT (resolve_tac (prems @ [bexI,CollectI]) 1));
clasohm@923
   379
qed "UN_I";
clasohm@923
   380
clasohm@923
   381
val major::prems = goalw Set.thy [UNION_def]
clasohm@923
   382
    "[| b : (UN x:A. B(x));  !!x.[| x:A;  b: B(x) |] ==> R |] ==> R";
clasohm@923
   383
by (rtac (major RS CollectD RS bexE) 1);
clasohm@923
   384
by (REPEAT (ares_tac prems 1));
clasohm@923
   385
qed "UN_E";
clasohm@923
   386
clasohm@923
   387
val prems = goal Set.thy
clasohm@923
   388
    "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==> \
clasohm@923
   389
\    (UN x:A. C(x)) = (UN x:B. D(x))";
clasohm@923
   390
by (REPEAT (etac UN_E 1
clasohm@923
   391
     ORELSE ares_tac ([UN_I,equalityI,subsetI] @ 
clasohm@1465
   392
                      (prems RL [equalityD1,equalityD2] RL [subsetD])) 1));
clasohm@923
   393
qed "UN_cong";
clasohm@923
   394
clasohm@923
   395
nipkow@1548
   396
section "Intersections of families -- INTER x:A. B(x) is Inter(B``A)";
clasohm@923
   397
clasohm@923
   398
val prems = goalw Set.thy [INTER_def]
clasohm@923
   399
    "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))";
clasohm@923
   400
by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1));
clasohm@923
   401
qed "INT_I";
clasohm@923
   402
clasohm@923
   403
val major::prems = goalw Set.thy [INTER_def]
clasohm@923
   404
    "[| b : (INT x:A. B(x));  a:A |] ==> b: B(a)";
clasohm@923
   405
by (rtac (major RS CollectD RS bspec) 1);
clasohm@923
   406
by (resolve_tac prems 1);
clasohm@923
   407
qed "INT_D";
clasohm@923
   408
clasohm@923
   409
(*"Classical" elimination -- by the Excluded Middle on a:A *)
clasohm@923
   410
val major::prems = goalw Set.thy [INTER_def]
clasohm@923
   411
    "[| b : (INT x:A. B(x));  b: B(a) ==> R;  a~:A ==> R |] ==> R";
clasohm@923
   412
by (rtac (major RS CollectD RS ballE) 1);
clasohm@923
   413
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   414
qed "INT_E";
clasohm@923
   415
clasohm@923
   416
val prems = goal Set.thy
clasohm@923
   417
    "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==> \
clasohm@923
   418
\    (INT x:A. C(x)) = (INT x:B. D(x))";
clasohm@923
   419
by (REPEAT_FIRST (resolve_tac [INT_I,equalityI,subsetI]));
clasohm@923
   420
by (REPEAT (dtac INT_D 1
clasohm@923
   421
     ORELSE ares_tac (prems RL [equalityD1,equalityD2] RL [subsetD]) 1));
clasohm@923
   422
qed "INT_cong";
clasohm@923
   423
clasohm@923
   424
nipkow@1548
   425
section "Unions over a type; UNION1(B) = Union(range(B))";
clasohm@923
   426
clasohm@923
   427
(*The order of the premises presupposes that A is rigid; b may be flexible*)
clasohm@923
   428
val prems = goalw Set.thy [UNION1_def]
clasohm@923
   429
    "b: B(x) ==> b: (UN x. B(x))";
clasohm@923
   430
by (REPEAT (resolve_tac (prems @ [TrueI, CollectI RS UN_I]) 1));
clasohm@923
   431
qed "UN1_I";
clasohm@923
   432
clasohm@923
   433
val major::prems = goalw Set.thy [UNION1_def]
clasohm@923
   434
    "[| b : (UN x. B(x));  !!x. b: B(x) ==> R |] ==> R";
clasohm@923
   435
by (rtac (major RS UN_E) 1);
clasohm@923
   436
by (REPEAT (ares_tac prems 1));
clasohm@923
   437
qed "UN1_E";
clasohm@923
   438
clasohm@923
   439
nipkow@1548
   440
section "Intersections over a type; INTER1(B) = Inter(range(B))";
clasohm@923
   441
clasohm@923
   442
val prems = goalw Set.thy [INTER1_def]
clasohm@923
   443
    "(!!x. b: B(x)) ==> b : (INT x. B(x))";
clasohm@923
   444
by (REPEAT (ares_tac (INT_I::prems) 1));
clasohm@923
   445
qed "INT1_I";
clasohm@923
   446
clasohm@923
   447
val [major] = goalw Set.thy [INTER1_def]
clasohm@923
   448
    "b : (INT x. B(x)) ==> b: B(a)";
clasohm@923
   449
by (rtac (TrueI RS (CollectI RS (major RS INT_D))) 1);
clasohm@923
   450
qed "INT1_D";
clasohm@923
   451
nipkow@1548
   452
section "Union";
clasohm@923
   453
clasohm@923
   454
(*The order of the premises presupposes that C is rigid; A may be flexible*)
clasohm@923
   455
val prems = goalw Set.thy [Union_def]
clasohm@923
   456
    "[| X:C;  A:X |] ==> A : Union(C)";
clasohm@923
   457
by (REPEAT (resolve_tac (prems @ [UN_I]) 1));
clasohm@923
   458
qed "UnionI";
clasohm@923
   459
clasohm@923
   460
val major::prems = goalw Set.thy [Union_def]
clasohm@923
   461
    "[| A : Union(C);  !!X.[| A:X;  X:C |] ==> R |] ==> R";
clasohm@923
   462
by (rtac (major RS UN_E) 1);
clasohm@923
   463
by (REPEAT (ares_tac prems 1));
clasohm@923
   464
qed "UnionE";
clasohm@923
   465
nipkow@1548
   466
section "Inter";
clasohm@923
   467
clasohm@923
   468
val prems = goalw Set.thy [Inter_def]
clasohm@923
   469
    "[| !!X. X:C ==> A:X |] ==> A : Inter(C)";
clasohm@923
   470
by (REPEAT (ares_tac ([INT_I] @ prems) 1));
clasohm@923
   471
qed "InterI";
clasohm@923
   472
clasohm@923
   473
(*A "destruct" rule -- every X in C contains A as an element, but
clasohm@923
   474
  A:X can hold when X:C does not!  This rule is analogous to "spec". *)
clasohm@923
   475
val major::prems = goalw Set.thy [Inter_def]
clasohm@923
   476
    "[| A : Inter(C);  X:C |] ==> A:X";
clasohm@923
   477
by (rtac (major RS INT_D) 1);
clasohm@923
   478
by (resolve_tac prems 1);
clasohm@923
   479
qed "InterD";
clasohm@923
   480
clasohm@923
   481
(*"Classical" elimination rule -- does not require proving X:C *)
clasohm@923
   482
val major::prems = goalw Set.thy [Inter_def]
clasohm@923
   483
    "[| A : Inter(C);  A:X ==> R;  X~:C ==> R |] ==> R";
clasohm@923
   484
by (rtac (major RS INT_E) 1);
clasohm@923
   485
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   486
qed "InterE";
clasohm@923
   487
nipkow@1548
   488
section "The Powerset operator -- Pow";
clasohm@923
   489
clasohm@923
   490
qed_goalw "PowI" Set.thy [Pow_def] "!!A B. A <= B ==> A : Pow(B)"
clasohm@923
   491
 (fn _ => [ (etac CollectI 1) ]);
clasohm@923
   492
clasohm@923
   493
qed_goalw "PowD" Set.thy [Pow_def] "!!A B. A : Pow(B)  ==>  A<=B"
clasohm@923
   494
 (fn _=> [ (etac CollectD 1) ]);
clasohm@923
   495
clasohm@923
   496
val Pow_bottom = empty_subsetI RS PowI;        (* {}: Pow(B) *)
clasohm@923
   497
val Pow_top = subset_refl RS PowI;             (* A : Pow(A) *)
oheimb@1776
   498
oheimb@1776
   499
oheimb@1776
   500
oheimb@1776
   501
(*** Set reasoning tools ***)
oheimb@1776
   502
oheimb@1776
   503
paulson@2024
   504
val mem_simps = [insert_iff, empty_iff, Un_iff, Int_iff, Compl_iff, Diff_iff, 
paulson@2024
   505
		 mem_Collect_eq];
oheimb@1776
   506
paulson@1937
   507
(*Not for Addsimps -- it can cause goals to blow up!*)
paulson@1937
   508
goal Set.thy "(a : (if Q then x else y)) = ((Q --> a:x) & (~Q --> a : y))";
paulson@1937
   509
by (simp_tac (!simpset setloop split_tac [expand_if]) 1);
paulson@1937
   510
qed "mem_if";
paulson@1937
   511
oheimb@1776
   512
val mksimps_pairs = ("Ball",[bspec]) :: mksimps_pairs;
oheimb@1776
   513
oheimb@1776
   514
simpset := !simpset addsimps mem_simps
oheimb@1776
   515
                    addcongs [ball_cong,bex_cong]
oheimb@1776
   516
                    setmksimps (mksimps mksimps_pairs);