src/ZF/ind_syntax.ML
author wenzelm
Fri Oct 17 17:42:39 1997 +0200 (1997-10-17)
changeset 3925 90f499226ab9
parent 2266 82aef6857c5b
child 4352 7ac9f3e8a97d
permissions -rw-r--r--
(co) inductive / datatype package adapted to qualified names;
clasohm@1461
     1
(*  Title:      ZF/ind-syntax.ML
clasohm@0
     2
    ID:         $Id$
clasohm@1461
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
clasohm@0
     6
Abstract Syntax functions for Inductive Definitions
clasohm@0
     7
*)
clasohm@0
     8
lcp@516
     9
(*The structure protects these items from redeclaration (somewhat!).  The 
lcp@516
    10
  datatype definitions in theory files refer to these items by name!
lcp@516
    11
*)
lcp@516
    12
structure Ind_Syntax =
lcp@516
    13
struct
clasohm@0
    14
clasohm@0
    15
(** Abstract syntax definitions for FOL and ZF **)
clasohm@0
    16
clasohm@0
    17
val iT = Type("i",[])
clasohm@0
    18
and oT = Type("o",[]);
clasohm@0
    19
paulson@1738
    20
paulson@1738
    21
(** Logical constants **)
clasohm@0
    22
clasohm@0
    23
val conj = Const("op &", [oT,oT]--->oT)
clasohm@0
    24
and disj = Const("op |", [oT,oT]--->oT)
clasohm@0
    25
and imp = Const("op -->", [oT,oT]--->oT);
clasohm@0
    26
clasohm@0
    27
val eq_const = Const("op =", [iT,iT]--->oT);
clasohm@0
    28
clasohm@0
    29
val mem_const = Const("op :", [iT,iT]--->oT);
clasohm@0
    30
clasohm@0
    31
val exists_const = Const("Ex", [iT-->oT]--->oT);
clasohm@0
    32
fun mk_exists (Free(x,T),P) = exists_const $ (absfree (x,T,P));
clasohm@0
    33
clasohm@0
    34
val all_const = Const("All", [iT-->oT]--->oT);
clasohm@0
    35
fun mk_all (Free(x,T),P) = all_const $ (absfree (x,T,P));
clasohm@0
    36
clasohm@0
    37
(*Creates All(%v.v:A --> P(v)) rather than Ball(A,P) *)
clasohm@0
    38
fun mk_all_imp (A,P) = 
clasohm@0
    39
    all_const $ Abs("v", iT, imp $ (mem_const $ Bound 0 $ A) $ (P $ Bound 0));
clasohm@0
    40
clasohm@0
    41
val Part_const = Const("Part", [iT,iT-->iT]--->iT);
clasohm@0
    42
clasohm@0
    43
val Collect_const = Const("Collect", [iT,iT-->oT]--->iT);
clasohm@0
    44
fun mk_Collect (a,D,t) = Collect_const $ D $ absfree(a, iT, t);
clasohm@0
    45
clasohm@0
    46
val Trueprop = Const("Trueprop",oT-->propT);
clasohm@0
    47
fun mk_tprop P = Trueprop $ P;
clasohm@0
    48
lcp@516
    49
(*simple error-checking in the premises of an inductive definition*)
lcp@516
    50
fun chk_prem rec_hd (Const("op &",_) $ _ $ _) =
clasohm@1461
    51
        error"Premises may not be conjuctive"
lcp@516
    52
  | chk_prem rec_hd (Const("op :",_) $ t $ X) = 
clasohm@1461
    53
        deny (Logic.occs(rec_hd,t)) "Recursion term on left of member symbol"
lcp@516
    54
  | chk_prem rec_hd t = 
clasohm@1461
    55
        deny (Logic.occs(rec_hd,t)) "Recursion term in side formula";
lcp@516
    56
lcp@14
    57
(*Return the conclusion of a rule, of the form t:X*)
clasohm@0
    58
fun rule_concl rl = 
lcp@435
    59
    let val Const("Trueprop",_) $ (Const("op :",_) $ t $ X) = 
clasohm@1461
    60
                Logic.strip_imp_concl rl
lcp@435
    61
    in  (t,X)  end;
lcp@435
    62
lcp@435
    63
(*As above, but return error message if bad*)
lcp@435
    64
fun rule_concl_msg sign rl = rule_concl rl
lcp@435
    65
    handle Bind => error ("Ill-formed conclusion of introduction rule: " ^ 
clasohm@1461
    66
                          Sign.string_of_term sign rl);
clasohm@0
    67
clasohm@0
    68
(*For deriving cases rules.  CollectD2 discards the domain, which is redundant;
clasohm@0
    69
  read_instantiate replaces a propositional variable by a formula variable*)
clasohm@0
    70
val equals_CollectD = 
clasohm@0
    71
    read_instantiate [("W","?Q")]
clasohm@0
    72
        (make_elim (equalityD1 RS subsetD RS CollectD2));
clasohm@0
    73
clasohm@0
    74
lcp@516
    75
(** For datatype definitions **)
lcp@516
    76
lcp@516
    77
fun dest_mem (Const("op :",_) $ x $ A) = (x,A)
lcp@516
    78
  | dest_mem _ = error "Constructor specifications must have the form x:A";
lcp@516
    79
lcp@516
    80
(*read a constructor specification*)
lcp@516
    81
fun read_construct sign (id, sprems, syn) =
lcp@516
    82
    let val prems = map (readtm sign oT) sprems
clasohm@1461
    83
        val args = map (#1 o dest_mem) prems
clasohm@1461
    84
        val T = (map (#2 o dest_Free) args) ---> iT
clasohm@1461
    85
                handle TERM _ => error 
clasohm@1461
    86
                    "Bad variable in constructor specification"
wenzelm@568
    87
        val name = Syntax.const_name id syn  (*handle infix constructors*)
lcp@516
    88
    in ((id,T,syn), name, args, prems) end;
lcp@516
    89
lcp@516
    90
val read_constructs = map o map o read_construct;
clasohm@0
    91
lcp@516
    92
(*convert constructor specifications into introduction rules*)
wenzelm@3925
    93
fun mk_intr_tms sg (rec_tm, constructs) =
wenzelm@3925
    94
  let
wenzelm@3925
    95
    fun mk_intr ((id,T,syn), name, args, prems) =
wenzelm@3925
    96
      Logic.list_implies
wenzelm@3925
    97
        (map mk_tprop prems,
wenzelm@3925
    98
          mk_tprop (mem_const $ list_comb (Const (Sign.full_name sg name, T), args) $ rec_tm))
lcp@516
    99
  in  map mk_intr constructs  end;
lcp@516
   100
wenzelm@3925
   101
fun mk_all_intr_tms sg arg = List.concat (ListPair.map (mk_intr_tms sg) arg);
clasohm@0
   102
clasohm@1461
   103
val Un          = Const("op Un", [iT,iT]--->iT)
clasohm@1461
   104
and empty       = Const("0", iT)
clasohm@1461
   105
and univ        = Const("univ", iT-->iT)
clasohm@1461
   106
and quniv       = Const("quniv", iT-->iT);
clasohm@0
   107
lcp@516
   108
(*Make a datatype's domain: form the union of its set parameters*)
lcp@516
   109
fun union_params rec_tm =
lcp@516
   110
  let val (_,args) = strip_comb rec_tm
lcp@516
   111
  in  case (filter (fn arg => type_of arg = iT) args) of
lcp@516
   112
         []    => empty
lcp@516
   113
       | iargs => fold_bal (app Un) iargs
lcp@516
   114
  end;
lcp@516
   115
lcp@742
   116
(*Previously these both did    replicate (length rec_tms);  however now
lcp@742
   117
  [q]univ itself constitutes the sum domain for mutual recursion!*)
lcp@742
   118
fun data_domain rec_tms = univ $ union_params (hd rec_tms);
lcp@742
   119
fun Codata_domain rec_tms = quniv $ union_params (hd rec_tms);
clasohm@0
   120
clasohm@0
   121
(*Could go to FOL, but it's hardly general*)
lcp@516
   122
val def_swap_iff = prove_goal IFOL.thy "a==b ==> a=c <-> c=b"
lcp@516
   123
 (fn [def] => [(rewtac def), (rtac iffI 1), (REPEAT (etac sym 1))]);
clasohm@0
   124
clasohm@0
   125
val def_trans = prove_goal IFOL.thy "[| f==g;  g(a)=b |] ==> f(a)=b"
clasohm@0
   126
  (fn [rew,prem] => [ rewtac rew, rtac prem 1 ]);
clasohm@0
   127
lcp@55
   128
(*Delete needless equality assumptions*)
lcp@55
   129
val refl_thin = prove_goal IFOL.thy "!!P. [| a=a;  P |] ==> P"
lcp@55
   130
     (fn _ => [assume_tac 1]);
clasohm@0
   131
paulson@1418
   132
(*Includes rules for succ and Pair since they are common constructions*)
paulson@1418
   133
val elim_rls = [asm_rl, FalseE, succ_neq_0, sym RS succ_neq_0, 
clasohm@1461
   134
                Pair_neq_0, sym RS Pair_neq_0, Pair_inject,
clasohm@1461
   135
                make_elim succ_inject, 
clasohm@1461
   136
                refl_thin, conjE, exE, disjE];
paulson@1418
   137
paulson@1418
   138
(*Turns iff rules into safe elimination rules*)
paulson@1418
   139
fun mk_free_SEs iffs = map (gen_make_elim [conjE,FalseE]) (iffs RL [iffD1]);
paulson@1418
   140
lcp@516
   141
end;
lcp@516
   142