src/HOL/UNITY/UNITY.thy
author paulson
Sat Feb 08 16:05:33 2003 +0100 (2003-02-08)
changeset 13812 91713a1915ee
parent 13805 3786b2fd6808
child 13861 0c18f31d901a
permissions -rw-r--r--
converting HOL/UNITY to use unconditional fairness
paulson@4776
     1
(*  Title:      HOL/UNITY/UNITY
paulson@4776
     2
    ID:         $Id$
paulson@4776
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@4776
     4
    Copyright   1998  University of Cambridge
paulson@4776
     5
paulson@4776
     6
The basic UNITY theory (revised version, based upon the "co" operator)
paulson@4776
     7
paulson@4776
     8
From Misra, "A Logic for Concurrent Programming", 1994
paulson@4776
     9
*)
paulson@4776
    10
paulson@13798
    11
header {*The Basic UNITY Theory*}
paulson@13798
    12
paulson@13797
    13
theory UNITY = Main:
paulson@6535
    14
paulson@6535
    15
typedef (Program)
paulson@10064
    16
  'a program = "{(init:: 'a set, acts :: ('a * 'a)set set,
paulson@13805
    17
		   allowed :: ('a * 'a)set set). Id \<in> acts & Id: allowed}" 
paulson@13797
    18
  by blast
paulson@6536
    19
paulson@4776
    20
constdefs
paulson@13797
    21
  constrains :: "['a set, 'a set] => 'a program set"  (infixl "co"     60)
paulson@13805
    22
    "A co B == {F. \<forall>act \<in> Acts F. act``A \<subseteq> B}"
paulson@13797
    23
paulson@13797
    24
  unless  :: "['a set, 'a set] => 'a program set"  (infixl "unless" 60)
paulson@13805
    25
    "A unless B == (A-B) co (A \<union> B)"
paulson@13797
    26
paulson@13797
    27
  mk_program :: "('a set * ('a * 'a)set set * ('a * 'a)set set)
paulson@10064
    28
		   => 'a program"
paulson@10064
    29
    "mk_program == %(init, acts, allowed).
paulson@10064
    30
                      Abs_Program (init, insert Id acts, insert Id allowed)"
paulson@6535
    31
paulson@6535
    32
  Init :: "'a program => 'a set"
paulson@10064
    33
    "Init F == (%(init, acts, allowed). init) (Rep_Program F)"
paulson@6535
    34
paulson@6535
    35
  Acts :: "'a program => ('a * 'a)set set"
paulson@10064
    36
    "Acts F == (%(init, acts, allowed). acts) (Rep_Program F)"
paulson@10064
    37
paulson@10064
    38
  AllowedActs :: "'a program => ('a * 'a)set set"
paulson@10064
    39
    "AllowedActs F == (%(init, acts, allowed). allowed) (Rep_Program F)"
paulson@10064
    40
paulson@10064
    41
  Allowed :: "'a program => 'a program set"
paulson@13805
    42
    "Allowed F == {G. Acts G \<subseteq> AllowedActs F}"
paulson@4776
    43
paulson@5648
    44
  stable     :: "'a set => 'a program set"
paulson@6536
    45
    "stable A == A co A"
paulson@4776
    46
paulson@5648
    47
  strongest_rhs :: "['a program, 'a set] => 'a set"
paulson@13805
    48
    "strongest_rhs F A == Inter {B. F \<in> A co B}"
paulson@4776
    49
paulson@5648
    50
  invariant :: "'a set => 'a program set"
paulson@13805
    51
    "invariant A == {F. Init F \<subseteq> A} \<inter> stable A"
paulson@4776
    52
paulson@6713
    53
  increasing :: "['a => 'b::{order}] => 'a program set"
paulson@13812
    54
    --{*Polymorphic in both states and the meaning of @{text "\<le>"}*}
paulson@13805
    55
    "increasing f == \<Inter>z. stable {s. z \<le> f s}"
paulson@4776
    56
paulson@6536
    57
paulson@13812
    58
text{*Perhaps equalities.ML shouldn't add this in the first place!*}
paulson@13797
    59
declare image_Collect [simp del]
paulson@13797
    60
paulson@13797
    61
(*** The abstract type of programs ***)
paulson@13797
    62
paulson@13797
    63
lemmas program_typedef =
paulson@13797
    64
     Rep_Program Rep_Program_inverse Abs_Program_inverse 
paulson@13797
    65
     Program_def Init_def Acts_def AllowedActs_def mk_program_def
paulson@13797
    66
paulson@13805
    67
lemma Id_in_Acts [iff]: "Id \<in> Acts F"
paulson@13797
    68
apply (cut_tac x = F in Rep_Program)
paulson@13797
    69
apply (auto simp add: program_typedef) 
paulson@13797
    70
done
paulson@13797
    71
paulson@13797
    72
lemma insert_Id_Acts [iff]: "insert Id (Acts F) = Acts F"
paulson@13797
    73
by (simp add: insert_absorb Id_in_Acts)
paulson@13797
    74
paulson@13805
    75
lemma Id_in_AllowedActs [iff]: "Id \<in> AllowedActs F"
paulson@13797
    76
apply (cut_tac x = F in Rep_Program)
paulson@13797
    77
apply (auto simp add: program_typedef) 
paulson@13797
    78
done
paulson@13797
    79
paulson@13797
    80
lemma insert_Id_AllowedActs [iff]: "insert Id (AllowedActs F) = AllowedActs F"
paulson@13797
    81
by (simp add: insert_absorb Id_in_AllowedActs)
paulson@13797
    82
paulson@13797
    83
(** Inspectors for type "program" **)
paulson@13797
    84
paulson@13797
    85
lemma Init_eq [simp]: "Init (mk_program (init,acts,allowed)) = init"
paulson@13812
    86
by (simp add: program_typedef)
paulson@13797
    87
paulson@13797
    88
lemma Acts_eq [simp]: "Acts (mk_program (init,acts,allowed)) = insert Id acts"
paulson@13812
    89
by (simp add: program_typedef)
paulson@13797
    90
paulson@13797
    91
lemma AllowedActs_eq [simp]:
paulson@13797
    92
     "AllowedActs (mk_program (init,acts,allowed)) = insert Id allowed"
paulson@13812
    93
by (simp add: program_typedef)
paulson@13797
    94
paulson@13797
    95
(** Equality for UNITY programs **)
paulson@13797
    96
paulson@13797
    97
lemma surjective_mk_program [simp]:
paulson@13797
    98
     "mk_program (Init F, Acts F, AllowedActs F) = F"
paulson@13797
    99
apply (cut_tac x = F in Rep_Program)
paulson@13797
   100
apply (auto simp add: program_typedef)
paulson@13797
   101
apply (drule_tac f = Abs_Program in arg_cong)+
paulson@13797
   102
apply (simp add: program_typedef insert_absorb)
paulson@13797
   103
done
paulson@13797
   104
paulson@13797
   105
lemma program_equalityI:
paulson@13797
   106
     "[| Init F = Init G; Acts F = Acts G; AllowedActs F = AllowedActs G |]  
paulson@13797
   107
      ==> F = G"
paulson@13797
   108
apply (rule_tac t = F in surjective_mk_program [THEN subst])
paulson@13797
   109
apply (rule_tac t = G in surjective_mk_program [THEN subst], simp)
paulson@13797
   110
done
paulson@13797
   111
paulson@13797
   112
lemma program_equalityE:
paulson@13797
   113
     "[| F = G;  
paulson@13797
   114
         [| Init F = Init G; Acts F = Acts G; AllowedActs F = AllowedActs G |] 
paulson@13797
   115
         ==> P |] ==> P"
paulson@13797
   116
by simp 
paulson@13797
   117
paulson@13797
   118
lemma program_equality_iff:
paulson@13797
   119
     "(F=G) =   
paulson@13797
   120
      (Init F = Init G & Acts F = Acts G &AllowedActs F = AllowedActs G)"
paulson@13797
   121
by (blast intro: program_equalityI program_equalityE)
paulson@13797
   122
paulson@13797
   123
paulson@13797
   124
(*** co ***)
paulson@13797
   125
paulson@13797
   126
lemma constrainsI: 
paulson@13805
   127
    "(!!act s s'. [| act: Acts F;  (s,s') \<in> act;  s \<in> A |] ==> s': A')  
paulson@13805
   128
     ==> F \<in> A co A'"
paulson@13797
   129
by (simp add: constrains_def, blast)
paulson@13797
   130
paulson@13797
   131
lemma constrainsD: 
paulson@13805
   132
    "[| F \<in> A co A'; act: Acts F;  (s,s'): act;  s \<in> A |] ==> s': A'"
paulson@13797
   133
by (unfold constrains_def, blast)
paulson@13797
   134
paulson@13805
   135
lemma constrains_empty [iff]: "F \<in> {} co B"
paulson@13797
   136
by (unfold constrains_def, blast)
paulson@13797
   137
paulson@13805
   138
lemma constrains_empty2 [iff]: "(F \<in> A co {}) = (A={})"
paulson@13797
   139
by (unfold constrains_def, blast)
paulson@13797
   140
paulson@13805
   141
lemma constrains_UNIV [iff]: "(F \<in> UNIV co B) = (B = UNIV)"
paulson@13797
   142
by (unfold constrains_def, blast)
paulson@13797
   143
paulson@13805
   144
lemma constrains_UNIV2 [iff]: "F \<in> A co UNIV"
paulson@13797
   145
by (unfold constrains_def, blast)
paulson@13797
   146
paulson@13812
   147
text{*monotonic in 2nd argument*}
paulson@13797
   148
lemma constrains_weaken_R: 
paulson@13805
   149
    "[| F \<in> A co A'; A'<=B' |] ==> F \<in> A co B'"
paulson@13797
   150
by (unfold constrains_def, blast)
paulson@13797
   151
paulson@13812
   152
text{*anti-monotonic in 1st argument*}
paulson@13797
   153
lemma constrains_weaken_L: 
paulson@13805
   154
    "[| F \<in> A co A'; B \<subseteq> A |] ==> F \<in> B co A'"
paulson@13797
   155
by (unfold constrains_def, blast)
paulson@13797
   156
paulson@13797
   157
lemma constrains_weaken: 
paulson@13805
   158
   "[| F \<in> A co A'; B \<subseteq> A; A'<=B' |] ==> F \<in> B co B'"
paulson@13797
   159
by (unfold constrains_def, blast)
paulson@13797
   160
paulson@13797
   161
(** Union **)
paulson@13797
   162
paulson@13797
   163
lemma constrains_Un: 
paulson@13805
   164
    "[| F \<in> A co A'; F \<in> B co B' |] ==> F \<in> (A \<union> B) co (A' \<union> B')"
paulson@13797
   165
by (unfold constrains_def, blast)
paulson@13797
   166
paulson@13797
   167
lemma constrains_UN: 
paulson@13805
   168
    "(!!i. i \<in> I ==> F \<in> (A i) co (A' i)) 
paulson@13805
   169
     ==> F \<in> (\<Union>i \<in> I. A i) co (\<Union>i \<in> I. A' i)"
paulson@13797
   170
by (unfold constrains_def, blast)
paulson@13797
   171
paulson@13805
   172
lemma constrains_Un_distrib: "(A \<union> B) co C = (A co C) \<inter> (B co C)"
paulson@13797
   173
by (unfold constrains_def, blast)
paulson@13797
   174
paulson@13805
   175
lemma constrains_UN_distrib: "(\<Union>i \<in> I. A i) co B = (\<Inter>i \<in> I. A i co B)"
paulson@13797
   176
by (unfold constrains_def, blast)
paulson@13797
   177
paulson@13805
   178
lemma constrains_Int_distrib: "C co (A \<inter> B) = (C co A) \<inter> (C co B)"
paulson@13797
   179
by (unfold constrains_def, blast)
paulson@13797
   180
paulson@13805
   181
lemma constrains_INT_distrib: "A co (\<Inter>i \<in> I. B i) = (\<Inter>i \<in> I. A co B i)"
paulson@13797
   182
by (unfold constrains_def, blast)
paulson@13797
   183
paulson@13797
   184
(** Intersection **)
paulson@6536
   185
paulson@13797
   186
lemma constrains_Int: 
paulson@13805
   187
    "[| F \<in> A co A'; F \<in> B co B' |] ==> F \<in> (A \<inter> B) co (A' \<inter> B')"
paulson@13797
   188
by (unfold constrains_def, blast)
paulson@13797
   189
paulson@13797
   190
lemma constrains_INT: 
paulson@13805
   191
    "(!!i. i \<in> I ==> F \<in> (A i) co (A' i)) 
paulson@13805
   192
     ==> F \<in> (\<Inter>i \<in> I. A i) co (\<Inter>i \<in> I. A' i)"
paulson@13797
   193
by (unfold constrains_def, blast)
paulson@13797
   194
paulson@13805
   195
lemma constrains_imp_subset: "F \<in> A co A' ==> A \<subseteq> A'"
paulson@13797
   196
by (unfold constrains_def, auto)
paulson@13797
   197
paulson@13812
   198
text{*The reasoning is by subsets since "co" refers to single actions
paulson@13812
   199
  only.  So this rule isn't that useful.*}
paulson@13797
   200
lemma constrains_trans: 
paulson@13805
   201
    "[| F \<in> A co B; F \<in> B co C |] ==> F \<in> A co C"
paulson@13797
   202
by (unfold constrains_def, blast)
paulson@13797
   203
paulson@13797
   204
lemma constrains_cancel: 
paulson@13805
   205
   "[| F \<in> A co (A' \<union> B); F \<in> B co B' |] ==> F \<in> A co (A' \<union> B')"
paulson@13797
   206
by (unfold constrains_def, clarify, blast)
paulson@13797
   207
paulson@13797
   208
paulson@13797
   209
(*** unless ***)
paulson@13797
   210
paulson@13805
   211
lemma unlessI: "F \<in> (A-B) co (A \<union> B) ==> F \<in> A unless B"
paulson@13797
   212
by (unfold unless_def, assumption)
paulson@13797
   213
paulson@13805
   214
lemma unlessD: "F \<in> A unless B ==> F \<in> (A-B) co (A \<union> B)"
paulson@13797
   215
by (unfold unless_def, assumption)
paulson@13797
   216
paulson@13797
   217
paulson@13797
   218
(*** stable ***)
paulson@13797
   219
paulson@13805
   220
lemma stableI: "F \<in> A co A ==> F \<in> stable A"
paulson@13797
   221
by (unfold stable_def, assumption)
paulson@13797
   222
paulson@13805
   223
lemma stableD: "F \<in> stable A ==> F \<in> A co A"
paulson@13797
   224
by (unfold stable_def, assumption)
paulson@13797
   225
paulson@13797
   226
lemma stable_UNIV [simp]: "stable UNIV = UNIV"
paulson@13797
   227
by (unfold stable_def constrains_def, auto)
paulson@13797
   228
paulson@13797
   229
(** Union **)
paulson@13797
   230
paulson@13797
   231
lemma stable_Un: 
paulson@13805
   232
    "[| F \<in> stable A; F \<in> stable A' |] ==> F \<in> stable (A \<union> A')"
paulson@13797
   233
paulson@13797
   234
apply (unfold stable_def)
paulson@13797
   235
apply (blast intro: constrains_Un)
paulson@13797
   236
done
paulson@13797
   237
paulson@13797
   238
lemma stable_UN: 
paulson@13805
   239
    "(!!i. i \<in> I ==> F \<in> stable (A i)) ==> F \<in> stable (\<Union>i \<in> I. A i)"
paulson@13797
   240
apply (unfold stable_def)
paulson@13797
   241
apply (blast intro: constrains_UN)
paulson@13797
   242
done
paulson@13797
   243
paulson@13797
   244
(** Intersection **)
paulson@13797
   245
paulson@13797
   246
lemma stable_Int: 
paulson@13805
   247
    "[| F \<in> stable A;  F \<in> stable A' |] ==> F \<in> stable (A \<inter> A')"
paulson@13797
   248
apply (unfold stable_def)
paulson@13797
   249
apply (blast intro: constrains_Int)
paulson@13797
   250
done
paulson@13797
   251
paulson@13797
   252
lemma stable_INT: 
paulson@13805
   253
    "(!!i. i \<in> I ==> F \<in> stable (A i)) ==> F \<in> stable (\<Inter>i \<in> I. A i)"
paulson@13797
   254
apply (unfold stable_def)
paulson@13797
   255
apply (blast intro: constrains_INT)
paulson@13797
   256
done
paulson@13797
   257
paulson@13797
   258
lemma stable_constrains_Un: 
paulson@13805
   259
    "[| F \<in> stable C; F \<in> A co (C \<union> A') |] ==> F \<in> (C \<union> A) co (C \<union> A')"
paulson@13797
   260
by (unfold stable_def constrains_def, blast)
paulson@13797
   261
paulson@13797
   262
lemma stable_constrains_Int: 
paulson@13805
   263
  "[| F \<in> stable C; F \<in>  (C \<inter> A) co A' |] ==> F \<in> (C \<inter> A) co (C \<inter> A')"
paulson@13797
   264
by (unfold stable_def constrains_def, blast)
paulson@13797
   265
paulson@13805
   266
(*[| F \<in> stable C; F \<in>  (C \<inter> A) co A |] ==> F \<in> stable (C \<inter> A) *)
paulson@13797
   267
lemmas stable_constrains_stable = stable_constrains_Int [THEN stableI, standard]
paulson@13797
   268
paulson@13797
   269
paulson@13797
   270
(*** invariant ***)
paulson@13797
   271
paulson@13805
   272
lemma invariantI: "[| Init F \<subseteq> A;  F \<in> stable A |] ==> F \<in> invariant A"
paulson@13797
   273
by (simp add: invariant_def)
paulson@13797
   274
paulson@13812
   275
text{*Could also say "invariant A \<inter> invariant B \<subseteq> invariant (A \<inter> B)"*}
paulson@13797
   276
lemma invariant_Int:
paulson@13805
   277
     "[| F \<in> invariant A;  F \<in> invariant B |] ==> F \<in> invariant (A \<inter> B)"
paulson@13797
   278
by (auto simp add: invariant_def stable_Int)
paulson@13797
   279
paulson@13797
   280
paulson@13797
   281
(*** increasing ***)
paulson@13797
   282
paulson@13797
   283
lemma increasingD: 
paulson@13805
   284
     "F \<in> increasing f ==> F \<in> stable {s. z \<subseteq> f s}"
paulson@13797
   285
by (unfold increasing_def, blast)
paulson@13797
   286
paulson@13805
   287
lemma increasing_constant [iff]: "F \<in> increasing (%s. c)"
paulson@13797
   288
by (unfold increasing_def stable_def, auto)
paulson@13797
   289
paulson@13797
   290
lemma mono_increasing_o: 
paulson@13805
   291
     "mono g ==> increasing f \<subseteq> increasing (g o f)"
paulson@13797
   292
apply (unfold increasing_def stable_def constrains_def, auto)
paulson@13797
   293
apply (blast intro: monoD order_trans)
paulson@13797
   294
done
paulson@13797
   295
paulson@13805
   296
(*Holds by the theorem (Suc m \<subseteq> n) = (m < n) *)
paulson@13797
   297
lemma strict_increasingD: 
paulson@13805
   298
     "!!z::nat. F \<in> increasing f ==> F \<in> stable {s. z < f s}"
paulson@13797
   299
by (simp add: increasing_def Suc_le_eq [symmetric])
paulson@13797
   300
paulson@13797
   301
paulson@13797
   302
(** The Elimination Theorem.  The "free" m has become universally quantified!
paulson@13805
   303
    Should the premise be !!m instead of \<forall>m ?  Would make it harder to use
paulson@13797
   304
    in forward proof. **)
paulson@13797
   305
paulson@13797
   306
lemma elimination: 
paulson@13805
   307
    "[| \<forall>m \<in> M. F \<in> {s. s x = m} co (B m) |]  
paulson@13805
   308
     ==> F \<in> {s. s x \<in> M} co (\<Union>m \<in> M. B m)"
paulson@13797
   309
by (unfold constrains_def, blast)
paulson@13797
   310
paulson@13812
   311
text{*As above, but for the trivial case of a one-variable state, in which the
paulson@13812
   312
  state is identified with its one variable.*}
paulson@13797
   313
lemma elimination_sing: 
paulson@13805
   314
    "(\<forall>m \<in> M. F \<in> {m} co (B m)) ==> F \<in> M co (\<Union>m \<in> M. B m)"
paulson@13797
   315
by (unfold constrains_def, blast)
paulson@13797
   316
paulson@13797
   317
paulson@13797
   318
paulson@13797
   319
(*** Theoretical Results from Section 6 ***)
paulson@13797
   320
paulson@13797
   321
lemma constrains_strongest_rhs: 
paulson@13805
   322
    "F \<in> A co (strongest_rhs F A )"
paulson@13797
   323
by (unfold constrains_def strongest_rhs_def, blast)
paulson@13797
   324
paulson@13797
   325
lemma strongest_rhs_is_strongest: 
paulson@13805
   326
    "F \<in> A co B ==> strongest_rhs F A \<subseteq> B"
paulson@13797
   327
by (unfold constrains_def strongest_rhs_def, blast)
paulson@13797
   328
paulson@13797
   329
paulson@13797
   330
(** Ad-hoc set-theory rules **)
paulson@13797
   331
paulson@13805
   332
lemma Un_Diff_Diff [simp]: "A \<union> B - (A - B) = B"
paulson@13797
   333
by blast
paulson@13797
   334
paulson@13805
   335
lemma Int_Union_Union: "Union(B) \<inter> A = Union((%C. C \<inter> A)`B)"
paulson@13797
   336
by blast
paulson@13797
   337
paulson@13797
   338
(** Needed for WF reasoning in WFair.ML **)
paulson@13797
   339
paulson@13797
   340
lemma Image_less_than [simp]: "less_than `` {k} = greaterThan k"
paulson@13797
   341
by blast
paulson@13797
   342
paulson@13797
   343
lemma Image_inverse_less_than [simp]: "less_than^-1 `` {k} = lessThan k"
paulson@13797
   344
by blast
paulson@6536
   345
paulson@13812
   346
paulson@13812
   347
subsection{*Partial versus Total Transitions*}
paulson@13812
   348
paulson@13812
   349
constdefs
paulson@13812
   350
  totalize_act :: "('a * 'a)set => ('a * 'a)set"
paulson@13812
   351
    "totalize_act act == act \<union> diag (-(Domain act))"
paulson@13812
   352
paulson@13812
   353
  totalize :: "'a program => 'a program"
paulson@13812
   354
    "totalize F == mk_program (Init F,
paulson@13812
   355
			       totalize_act ` Acts F,
paulson@13812
   356
			       AllowedActs F)"
paulson@13812
   357
paulson@13812
   358
  mk_total_program :: "('a set * ('a * 'a)set set * ('a * 'a)set set)
paulson@13812
   359
		   => 'a program"
paulson@13812
   360
    "mk_total_program args == totalize (mk_program args)"
paulson@13812
   361
paulson@13812
   362
  all_total :: "'a program => bool"
paulson@13812
   363
    "all_total F == \<forall>act \<in> Acts F. Domain act = UNIV"
paulson@13812
   364
  
paulson@13812
   365
lemma insert_Id_image_Acts: "f Id = Id ==> insert Id (f`Acts F) = f ` Acts F"
paulson@13812
   366
by (blast intro: sym [THEN image_eqI])
paulson@13812
   367
paulson@13812
   368
paulson@13812
   369
text{*Basic properties*}
paulson@13812
   370
paulson@13812
   371
lemma totalize_act_Id [simp]: "totalize_act Id = Id"
paulson@13812
   372
by (simp add: totalize_act_def) 
paulson@13812
   373
paulson@13812
   374
lemma Domain_totalize_act [simp]: "Domain (totalize_act act) = UNIV"
paulson@13812
   375
by (auto simp add: totalize_act_def)
paulson@13812
   376
paulson@13812
   377
lemma Init_totalize [simp]: "Init (totalize F) = Init F"
paulson@13812
   378
by (unfold totalize_def, auto)
paulson@13812
   379
paulson@13812
   380
lemma Acts_totalize [simp]: "Acts (totalize F) = (totalize_act ` Acts F)"
paulson@13812
   381
by (simp add: totalize_def insert_Id_image_Acts) 
paulson@13812
   382
paulson@13812
   383
lemma AllowedActs_totalize [simp]: "AllowedActs (totalize F) = AllowedActs F"
paulson@13812
   384
by (simp add: totalize_def)
paulson@13812
   385
paulson@13812
   386
lemma totalize_constrains_iff [simp]: "(totalize F \<in> A co B) = (F \<in> A co B)"
paulson@13812
   387
by (simp add: totalize_def totalize_act_def constrains_def, blast)
paulson@13812
   388
paulson@13812
   389
lemma totalize_stable_iff [simp]: "(totalize F \<in> stable A) = (F \<in> stable A)"
paulson@13812
   390
by (simp add: stable_def)
paulson@13812
   391
paulson@13812
   392
lemma totalize_invariant_iff [simp]:
paulson@13812
   393
     "(totalize F \<in> invariant A) = (F \<in> invariant A)"
paulson@13812
   394
by (simp add: invariant_def)
paulson@13812
   395
paulson@13812
   396
lemma all_total_totalize: "all_total (totalize F)"
paulson@13812
   397
by (simp add: totalize_def all_total_def)
paulson@13812
   398
paulson@13812
   399
lemma Domain_iff_totalize_act: "(Domain act = UNIV) = (totalize_act act = act)"
paulson@13812
   400
by (force simp add: totalize_act_def)
paulson@13812
   401
paulson@13812
   402
lemma all_total_imp_totalize: "all_total F ==> (totalize F = F)"
paulson@13812
   403
apply (simp add: all_total_def totalize_def) 
paulson@13812
   404
apply (rule program_equalityI)
paulson@13812
   405
  apply (simp_all add: Domain_iff_totalize_act image_def)
paulson@13812
   406
done
paulson@13812
   407
paulson@13812
   408
lemma all_total_iff_totalize: "all_total F = (totalize F = F)"
paulson@13812
   409
apply (rule iffI) 
paulson@13812
   410
 apply (erule all_total_imp_totalize) 
paulson@13812
   411
apply (erule subst) 
paulson@13812
   412
apply (rule all_total_totalize) 
paulson@13812
   413
done
paulson@13812
   414
paulson@13812
   415
lemma mk_total_program_constrains_iff [simp]:
paulson@13812
   416
     "(mk_total_program args \<in> A co B) = (mk_program args \<in> A co B)"
paulson@13812
   417
by (simp add: mk_total_program_def)
paulson@13812
   418
paulson@13812
   419
paulson@13812
   420
subsection{*Rules for Lazy Definition Expansion*}
paulson@13812
   421
paulson@13812
   422
text{*They avoid expanding the full program, which is a large expression*}
paulson@13812
   423
paulson@13812
   424
lemma def_prg_Init:
paulson@13812
   425
     "F == mk_total_program (init,acts,allowed) ==> Init F = init"
paulson@13812
   426
by (simp add: mk_total_program_def)
paulson@13812
   427
paulson@13812
   428
lemma def_prg_Acts:
paulson@13812
   429
     "F == mk_total_program (init,acts,allowed) 
paulson@13812
   430
      ==> Acts F = insert Id (totalize_act ` acts)"
paulson@13812
   431
by (simp add: mk_total_program_def)
paulson@13812
   432
paulson@13812
   433
lemma def_prg_AllowedActs:
paulson@13812
   434
     "F == mk_total_program (init,acts,allowed)  
paulson@13812
   435
      ==> AllowedActs F = insert Id allowed"
paulson@13812
   436
by (simp add: mk_total_program_def)
paulson@13812
   437
paulson@13812
   438
text{*An action is expanded if a pair of states is being tested against it*}
paulson@13812
   439
lemma def_act_simp:
paulson@13812
   440
     "act == {(s,s'). P s s'} ==> ((s,s') \<in> act) = P s s'"
paulson@13812
   441
by (simp add: mk_total_program_def)
paulson@13812
   442
paulson@13812
   443
text{*A set is expanded only if an element is being tested against it*}
paulson@13812
   444
lemma def_set_simp: "A == B ==> (x \<in> A) = (x \<in> B)"
paulson@13812
   445
by (simp add: mk_total_program_def)
paulson@13812
   446
paulson@13812
   447
(** Inspectors for type "program" **)
paulson@13812
   448
paulson@13812
   449
lemma Init_total_eq [simp]:
paulson@13812
   450
     "Init (mk_total_program (init,acts,allowed)) = init"
paulson@13812
   451
by (simp add: mk_total_program_def)
paulson@13812
   452
paulson@13812
   453
lemma Acts_total_eq [simp]:
paulson@13812
   454
    "Acts(mk_total_program(init,acts,allowed)) = insert Id (totalize_act`acts)"
paulson@13812
   455
by (simp add: mk_total_program_def)
paulson@13812
   456
paulson@13812
   457
lemma AllowedActs_total_eq [simp]:
paulson@13812
   458
     "AllowedActs (mk_total_program (init,acts,allowed)) = insert Id allowed"
paulson@13812
   459
by (auto simp add: mk_total_program_def)
paulson@13812
   460
paulson@4776
   461
end