src/HOL/Complex.thy
author hoelzl
Wed Apr 09 09:37:47 2014 +0200 (2014-04-09)
changeset 56479 91958d4b30f7
parent 56409 36489d77c484
child 56541 0e3abadbef39
permissions -rw-r--r--
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
wenzelm@41959
     1
(*  Title:       HOL/Complex.thy
paulson@13957
     2
    Author:      Jacques D. Fleuriot
paulson@13957
     3
    Copyright:   2001 University of Edinburgh
paulson@14387
     4
    Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4
paulson@13957
     5
*)
paulson@13957
     6
paulson@14377
     7
header {* Complex Numbers: Rectangular and Polar Representations *}
paulson@14373
     8
nipkow@15131
     9
theory Complex
haftmann@28952
    10
imports Transcendental
nipkow@15131
    11
begin
paulson@13957
    12
paulson@14373
    13
datatype complex = Complex real real
paulson@13957
    14
huffman@44724
    15
primrec Re :: "complex \<Rightarrow> real"
huffman@44724
    16
  where Re: "Re (Complex x y) = x"
paulson@14373
    17
huffman@44724
    18
primrec Im :: "complex \<Rightarrow> real"
huffman@44724
    19
  where Im: "Im (Complex x y) = y"
paulson@14373
    20
paulson@14373
    21
lemma complex_surj [simp]: "Complex (Re z) (Im z) = z"
paulson@14373
    22
  by (induct z) simp
paulson@13957
    23
huffman@44065
    24
lemma complex_eqI [intro?]: "\<lbrakk>Re x = Re y; Im x = Im y\<rbrakk> \<Longrightarrow> x = y"
haftmann@25712
    25
  by (induct x, induct y) simp
huffman@23125
    26
huffman@44065
    27
lemma complex_eq_iff: "x = y \<longleftrightarrow> Re x = Re y \<and> Im x = Im y"
haftmann@25712
    28
  by (induct x, induct y) simp
huffman@23125
    29
huffman@23125
    30
huffman@23125
    31
subsection {* Addition and Subtraction *}
huffman@23125
    32
haftmann@25599
    33
instantiation complex :: ab_group_add
haftmann@25571
    34
begin
haftmann@25571
    35
huffman@44724
    36
definition complex_zero_def:
huffman@44724
    37
  "0 = Complex 0 0"
haftmann@25571
    38
huffman@44724
    39
definition complex_add_def:
huffman@44724
    40
  "x + y = Complex (Re x + Re y) (Im x + Im y)"
huffman@23124
    41
huffman@44724
    42
definition complex_minus_def:
huffman@44724
    43
  "- x = Complex (- Re x) (- Im x)"
paulson@14323
    44
huffman@44724
    45
definition complex_diff_def:
huffman@44724
    46
  "x - (y\<Colon>complex) = x + - y"
haftmann@25571
    47
haftmann@25599
    48
lemma Complex_eq_0 [simp]: "Complex a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0"
haftmann@25599
    49
  by (simp add: complex_zero_def)
paulson@14323
    50
paulson@14374
    51
lemma complex_Re_zero [simp]: "Re 0 = 0"
haftmann@25599
    52
  by (simp add: complex_zero_def)
paulson@14374
    53
paulson@14374
    54
lemma complex_Im_zero [simp]: "Im 0 = 0"
haftmann@25599
    55
  by (simp add: complex_zero_def)
haftmann@25599
    56
haftmann@25712
    57
lemma complex_add [simp]:
haftmann@25712
    58
  "Complex a b + Complex c d = Complex (a + c) (b + d)"
haftmann@25712
    59
  by (simp add: complex_add_def)
haftmann@25712
    60
haftmann@25599
    61
lemma complex_Re_add [simp]: "Re (x + y) = Re x + Re y"
haftmann@25599
    62
  by (simp add: complex_add_def)
haftmann@25599
    63
haftmann@25599
    64
lemma complex_Im_add [simp]: "Im (x + y) = Im x + Im y"
haftmann@25599
    65
  by (simp add: complex_add_def)
paulson@14323
    66
haftmann@25712
    67
lemma complex_minus [simp]:
haftmann@25712
    68
  "- (Complex a b) = Complex (- a) (- b)"
haftmann@25599
    69
  by (simp add: complex_minus_def)
huffman@23125
    70
huffman@23125
    71
lemma complex_Re_minus [simp]: "Re (- x) = - Re x"
haftmann@25599
    72
  by (simp add: complex_minus_def)
huffman@23125
    73
huffman@23125
    74
lemma complex_Im_minus [simp]: "Im (- x) = - Im x"
haftmann@25599
    75
  by (simp add: complex_minus_def)
huffman@23125
    76
huffman@23275
    77
lemma complex_diff [simp]:
huffman@23125
    78
  "Complex a b - Complex c d = Complex (a - c) (b - d)"
haftmann@25599
    79
  by (simp add: complex_diff_def)
huffman@23125
    80
huffman@23125
    81
lemma complex_Re_diff [simp]: "Re (x - y) = Re x - Re y"
haftmann@25599
    82
  by (simp add: complex_diff_def)
huffman@23125
    83
huffman@23125
    84
lemma complex_Im_diff [simp]: "Im (x - y) = Im x - Im y"
haftmann@25599
    85
  by (simp add: complex_diff_def)
huffman@23125
    86
haftmann@25712
    87
instance
haftmann@25712
    88
  by intro_classes (simp_all add: complex_add_def complex_diff_def)
haftmann@25712
    89
haftmann@25712
    90
end
haftmann@25712
    91
haftmann@25712
    92
huffman@23125
    93
subsection {* Multiplication and Division *}
huffman@23125
    94
haftmann@36409
    95
instantiation complex :: field_inverse_zero
haftmann@25571
    96
begin
haftmann@25571
    97
huffman@44724
    98
definition complex_one_def:
huffman@44724
    99
  "1 = Complex 1 0"
haftmann@25571
   100
huffman@44724
   101
definition complex_mult_def:
huffman@44724
   102
  "x * y = Complex (Re x * Re y - Im x * Im y) (Re x * Im y + Im x * Re y)"
huffman@23125
   103
huffman@44724
   104
definition complex_inverse_def:
huffman@44724
   105
  "inverse x =
wenzelm@53015
   106
    Complex (Re x / ((Re x)\<^sup>2 + (Im x)\<^sup>2)) (- Im x / ((Re x)\<^sup>2 + (Im x)\<^sup>2))"
huffman@23125
   107
huffman@44724
   108
definition complex_divide_def:
huffman@44724
   109
  "x / (y\<Colon>complex) = x * inverse y"
haftmann@25571
   110
haftmann@54489
   111
lemma Complex_eq_1 [simp]:
haftmann@54489
   112
  "Complex a b = 1 \<longleftrightarrow> a = 1 \<and> b = 0"
haftmann@54489
   113
  by (simp add: complex_one_def)
haftmann@54489
   114
haftmann@54489
   115
lemma Complex_eq_neg_1 [simp]:
haftmann@54489
   116
  "Complex a b = - 1 \<longleftrightarrow> a = - 1 \<and> b = 0"
haftmann@25712
   117
  by (simp add: complex_one_def)
huffman@22861
   118
paulson@14374
   119
lemma complex_Re_one [simp]: "Re 1 = 1"
haftmann@25712
   120
  by (simp add: complex_one_def)
paulson@14323
   121
paulson@14374
   122
lemma complex_Im_one [simp]: "Im 1 = 0"
haftmann@25712
   123
  by (simp add: complex_one_def)
paulson@14323
   124
huffman@23125
   125
lemma complex_mult [simp]:
huffman@23125
   126
  "Complex a b * Complex c d = Complex (a * c - b * d) (a * d + b * c)"
haftmann@25712
   127
  by (simp add: complex_mult_def)
paulson@14323
   128
huffman@23125
   129
lemma complex_Re_mult [simp]: "Re (x * y) = Re x * Re y - Im x * Im y"
haftmann@25712
   130
  by (simp add: complex_mult_def)
paulson@14323
   131
huffman@23125
   132
lemma complex_Im_mult [simp]: "Im (x * y) = Re x * Im y + Im x * Re y"
haftmann@25712
   133
  by (simp add: complex_mult_def)
paulson@14323
   134
paulson@14377
   135
lemma complex_inverse [simp]:
wenzelm@53015
   136
  "inverse (Complex a b) = Complex (a / (a\<^sup>2 + b\<^sup>2)) (- b / (a\<^sup>2 + b\<^sup>2))"
haftmann@25712
   137
  by (simp add: complex_inverse_def)
paulson@14335
   138
huffman@23125
   139
lemma complex_Re_inverse:
wenzelm@53015
   140
  "Re (inverse x) = Re x / ((Re x)\<^sup>2 + (Im x)\<^sup>2)"
haftmann@25712
   141
  by (simp add: complex_inverse_def)
paulson@14323
   142
huffman@23125
   143
lemma complex_Im_inverse:
wenzelm@53015
   144
  "Im (inverse x) = - Im x / ((Re x)\<^sup>2 + (Im x)\<^sup>2)"
haftmann@25712
   145
  by (simp add: complex_inverse_def)
paulson@14335
   146
haftmann@25712
   147
instance
hoelzl@56479
   148
  by intro_classes (simp_all add: complex_mult_def
webertj@49962
   149
    distrib_left distrib_right right_diff_distrib left_diff_distrib
huffman@44724
   150
    complex_inverse_def complex_divide_def
huffman@44724
   151
    power2_eq_square add_divide_distrib [symmetric]
huffman@44724
   152
    complex_eq_iff)
paulson@14335
   153
haftmann@25712
   154
end
huffman@23125
   155
huffman@23125
   156
huffman@23125
   157
subsection {* Numerals and Arithmetic *}
huffman@23125
   158
huffman@23125
   159
lemma complex_Re_of_nat [simp]: "Re (of_nat n) = of_nat n"
huffman@44724
   160
  by (induct n) simp_all
huffman@20556
   161
huffman@23125
   162
lemma complex_Im_of_nat [simp]: "Im (of_nat n) = 0"
huffman@44724
   163
  by (induct n) simp_all
huffman@23125
   164
huffman@23125
   165
lemma complex_Re_of_int [simp]: "Re (of_int z) = of_int z"
huffman@44724
   166
  by (cases z rule: int_diff_cases) simp
huffman@23125
   167
huffman@23125
   168
lemma complex_Im_of_int [simp]: "Im (of_int z) = 0"
huffman@44724
   169
  by (cases z rule: int_diff_cases) simp
huffman@23125
   170
huffman@47108
   171
lemma complex_Re_numeral [simp]: "Re (numeral v) = numeral v"
huffman@47108
   172
  using complex_Re_of_int [of "numeral v"] by simp
huffman@47108
   173
haftmann@54489
   174
lemma complex_Re_neg_numeral [simp]: "Re (- numeral v) = - numeral v"
haftmann@54489
   175
  using complex_Re_of_int [of "- numeral v"] by simp
huffman@47108
   176
huffman@47108
   177
lemma complex_Im_numeral [simp]: "Im (numeral v) = 0"
huffman@47108
   178
  using complex_Im_of_int [of "numeral v"] by simp
huffman@20556
   179
haftmann@54489
   180
lemma complex_Im_neg_numeral [simp]: "Im (- numeral v) = 0"
haftmann@54489
   181
  using complex_Im_of_int [of "- numeral v"] by simp
huffman@23125
   182
huffman@47108
   183
lemma Complex_eq_numeral [simp]:
haftmann@54489
   184
  "Complex a b = numeral w \<longleftrightarrow> a = numeral w \<and> b = 0"
huffman@47108
   185
  by (simp add: complex_eq_iff)
huffman@47108
   186
huffman@47108
   187
lemma Complex_eq_neg_numeral [simp]:
haftmann@54489
   188
  "Complex a b = - numeral w \<longleftrightarrow> a = - numeral w \<and> b = 0"
huffman@44724
   189
  by (simp add: complex_eq_iff)
huffman@23125
   190
huffman@23125
   191
huffman@23125
   192
subsection {* Scalar Multiplication *}
huffman@20556
   193
haftmann@25712
   194
instantiation complex :: real_field
haftmann@25571
   195
begin
haftmann@25571
   196
huffman@44724
   197
definition complex_scaleR_def:
huffman@44724
   198
  "scaleR r x = Complex (r * Re x) (r * Im x)"
haftmann@25571
   199
huffman@23125
   200
lemma complex_scaleR [simp]:
huffman@23125
   201
  "scaleR r (Complex a b) = Complex (r * a) (r * b)"
haftmann@25712
   202
  unfolding complex_scaleR_def by simp
huffman@23125
   203
huffman@23125
   204
lemma complex_Re_scaleR [simp]: "Re (scaleR r x) = r * Re x"
haftmann@25712
   205
  unfolding complex_scaleR_def by simp
huffman@23125
   206
huffman@23125
   207
lemma complex_Im_scaleR [simp]: "Im (scaleR r x) = r * Im x"
haftmann@25712
   208
  unfolding complex_scaleR_def by simp
huffman@22972
   209
haftmann@25712
   210
instance
huffman@20556
   211
proof
huffman@23125
   212
  fix a b :: real and x y :: complex
huffman@23125
   213
  show "scaleR a (x + y) = scaleR a x + scaleR a y"
webertj@49962
   214
    by (simp add: complex_eq_iff distrib_left)
huffman@23125
   215
  show "scaleR (a + b) x = scaleR a x + scaleR b x"
webertj@49962
   216
    by (simp add: complex_eq_iff distrib_right)
huffman@23125
   217
  show "scaleR a (scaleR b x) = scaleR (a * b) x"
huffman@44065
   218
    by (simp add: complex_eq_iff mult_assoc)
huffman@23125
   219
  show "scaleR 1 x = x"
huffman@44065
   220
    by (simp add: complex_eq_iff)
huffman@23125
   221
  show "scaleR a x * y = scaleR a (x * y)"
huffman@44065
   222
    by (simp add: complex_eq_iff algebra_simps)
huffman@23125
   223
  show "x * scaleR a y = scaleR a (x * y)"
huffman@44065
   224
    by (simp add: complex_eq_iff algebra_simps)
huffman@20556
   225
qed
huffman@20556
   226
haftmann@25712
   227
end
haftmann@25712
   228
huffman@20556
   229
huffman@23125
   230
subsection{* Properties of Embedding from Reals *}
paulson@14323
   231
huffman@44724
   232
abbreviation complex_of_real :: "real \<Rightarrow> complex"
huffman@44724
   233
  where "complex_of_real \<equiv> of_real"
huffman@20557
   234
hoelzl@56331
   235
declare [[coercion complex_of_real]]
hoelzl@56331
   236
huffman@20557
   237
lemma complex_of_real_def: "complex_of_real r = Complex r 0"
huffman@44724
   238
  by (simp add: of_real_def complex_scaleR_def)
huffman@20557
   239
huffman@20557
   240
lemma Re_complex_of_real [simp]: "Re (complex_of_real z) = z"
huffman@44724
   241
  by (simp add: complex_of_real_def)
huffman@20557
   242
huffman@20557
   243
lemma Im_complex_of_real [simp]: "Im (complex_of_real z) = 0"
huffman@44724
   244
  by (simp add: complex_of_real_def)
huffman@20557
   245
paulson@14377
   246
lemma Complex_add_complex_of_real [simp]:
huffman@44724
   247
  shows "Complex x y + complex_of_real r = Complex (x+r) y"
huffman@44724
   248
  by (simp add: complex_of_real_def)
paulson@14377
   249
paulson@14377
   250
lemma complex_of_real_add_Complex [simp]:
huffman@44724
   251
  shows "complex_of_real r + Complex x y = Complex (r+x) y"
huffman@44724
   252
  by (simp add: complex_of_real_def)
paulson@14377
   253
paulson@14377
   254
lemma Complex_mult_complex_of_real:
huffman@44724
   255
  shows "Complex x y * complex_of_real r = Complex (x*r) (y*r)"
huffman@44724
   256
  by (simp add: complex_of_real_def)
paulson@14377
   257
paulson@14377
   258
lemma complex_of_real_mult_Complex:
huffman@44724
   259
  shows "complex_of_real r * Complex x y = Complex (r*x) (r*y)"
huffman@44724
   260
  by (simp add: complex_of_real_def)
huffman@20557
   261
huffman@44841
   262
lemma complex_eq_cancel_iff2 [simp]:
huffman@44841
   263
  shows "(Complex x y = complex_of_real xa) = (x = xa & y = 0)"
huffman@44841
   264
  by (simp add: complex_of_real_def)
huffman@44841
   265
huffman@44827
   266
lemma complex_split_polar:
huffman@44827
   267
     "\<exists>r a. z = complex_of_real r * (Complex (cos a) (sin a))"
huffman@44827
   268
  by (simp add: complex_eq_iff polar_Ex)
huffman@44827
   269
paulson@14377
   270
huffman@23125
   271
subsection {* Vector Norm *}
paulson@14323
   272
haftmann@25712
   273
instantiation complex :: real_normed_field
haftmann@25571
   274
begin
haftmann@25571
   275
huffman@31413
   276
definition complex_norm_def:
wenzelm@53015
   277
  "norm z = sqrt ((Re z)\<^sup>2 + (Im z)\<^sup>2)"
haftmann@25571
   278
huffman@44724
   279
abbreviation cmod :: "complex \<Rightarrow> real"
huffman@44724
   280
  where "cmod \<equiv> norm"
haftmann@25571
   281
huffman@31413
   282
definition complex_sgn_def:
huffman@31413
   283
  "sgn x = x /\<^sub>R cmod x"
haftmann@25571
   284
huffman@31413
   285
definition dist_complex_def:
huffman@31413
   286
  "dist x y = cmod (x - y)"
huffman@31413
   287
haftmann@37767
   288
definition open_complex_def:
huffman@31492
   289
  "open (S :: complex set) \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
huffman@31292
   290
huffman@20557
   291
lemmas cmod_def = complex_norm_def
huffman@20557
   292
wenzelm@53015
   293
lemma complex_norm [simp]: "cmod (Complex x y) = sqrt (x\<^sup>2 + y\<^sup>2)"
haftmann@25712
   294
  by (simp add: complex_norm_def)
huffman@22852
   295
huffman@31413
   296
instance proof
huffman@31492
   297
  fix r :: real and x y :: complex and S :: "complex set"
huffman@23125
   298
  show "(norm x = 0) = (x = 0)"
huffman@22861
   299
    by (induct x) simp
huffman@23125
   300
  show "norm (x + y) \<le> norm x + norm y"
huffman@23125
   301
    by (induct x, induct y)
huffman@23125
   302
       (simp add: real_sqrt_sum_squares_triangle_ineq)
huffman@23125
   303
  show "norm (scaleR r x) = \<bar>r\<bar> * norm x"
huffman@23125
   304
    by (induct x)
webertj@49962
   305
       (simp add: power_mult_distrib distrib_left [symmetric] real_sqrt_mult)
huffman@23125
   306
  show "norm (x * y) = norm x * norm y"
huffman@23125
   307
    by (induct x, induct y)
nipkow@29667
   308
       (simp add: real_sqrt_mult [symmetric] power2_eq_square algebra_simps)
huffman@31292
   309
  show "sgn x = x /\<^sub>R cmod x"
huffman@31292
   310
    by (rule complex_sgn_def)
huffman@31292
   311
  show "dist x y = cmod (x - y)"
huffman@31292
   312
    by (rule dist_complex_def)
huffman@31492
   313
  show "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
huffman@31492
   314
    by (rule open_complex_def)
huffman@24520
   315
qed
huffman@20557
   316
haftmann@25712
   317
end
haftmann@25712
   318
huffman@44761
   319
lemma cmod_unit_one: "cmod (Complex (cos a) (sin a)) = 1"
huffman@44724
   320
  by simp
paulson@14323
   321
huffman@44761
   322
lemma cmod_complex_polar:
huffman@44724
   323
  "cmod (complex_of_real r * Complex (cos a) (sin a)) = abs r"
huffman@44724
   324
  by (simp add: norm_mult)
huffman@22861
   325
huffman@22861
   326
lemma complex_Re_le_cmod: "Re x \<le> cmod x"
huffman@44724
   327
  unfolding complex_norm_def
huffman@44724
   328
  by (rule real_sqrt_sum_squares_ge1)
huffman@22861
   329
huffman@44761
   330
lemma complex_mod_minus_le_complex_mod: "- cmod x \<le> cmod x"
huffman@44724
   331
  by (rule order_trans [OF _ norm_ge_zero], simp)
huffman@22861
   332
huffman@44761
   333
lemma complex_mod_triangle_ineq2: "cmod(b + a) - cmod b \<le> cmod a"
huffman@44724
   334
  by (rule ord_le_eq_trans [OF norm_triangle_ineq2], simp)
paulson@14323
   335
chaieb@26117
   336
lemma abs_Re_le_cmod: "\<bar>Re x\<bar> \<le> cmod x"
huffman@44724
   337
  by (cases x) simp
chaieb@26117
   338
chaieb@26117
   339
lemma abs_Im_le_cmod: "\<bar>Im x\<bar> \<le> cmod x"
huffman@44724
   340
  by (cases x) simp
huffman@44724
   341
hoelzl@56369
   342
hoelzl@56369
   343
lemma abs_sqrt_wlog:
hoelzl@56369
   344
  fixes x::"'a::linordered_idom"
hoelzl@56369
   345
  assumes "\<And>x::'a. x \<ge> 0 \<Longrightarrow> P x (x\<^sup>2)" shows "P \<bar>x\<bar> (x\<^sup>2)"
hoelzl@56369
   346
by (metis abs_ge_zero assms power2_abs)
hoelzl@56369
   347
hoelzl@56369
   348
lemma complex_abs_le_norm: "\<bar>Re z\<bar> + \<bar>Im z\<bar> \<le> sqrt 2 * norm z"
hoelzl@56369
   349
  unfolding complex_norm_def
hoelzl@56369
   350
  apply (rule abs_sqrt_wlog [where x="Re z"])
hoelzl@56369
   351
  apply (rule abs_sqrt_wlog [where x="Im z"])
hoelzl@56369
   352
  apply (rule power2_le_imp_le)
hoelzl@56369
   353
  apply (simp_all add: power2_sum add_commute sum_squares_bound real_sqrt_mult [symmetric])
hoelzl@56369
   354
  done
hoelzl@56369
   355
hoelzl@56369
   356
huffman@44843
   357
text {* Properties of complex signum. *}
huffman@44843
   358
huffman@44843
   359
lemma sgn_eq: "sgn z = z / complex_of_real (cmod z)"
huffman@44843
   360
  by (simp add: sgn_div_norm divide_inverse scaleR_conv_of_real mult_commute)
huffman@44843
   361
huffman@44843
   362
lemma Re_sgn [simp]: "Re(sgn z) = Re(z)/cmod z"
huffman@44843
   363
  by (simp add: complex_sgn_def divide_inverse)
huffman@44843
   364
huffman@44843
   365
lemma Im_sgn [simp]: "Im(sgn z) = Im(z)/cmod z"
huffman@44843
   366
  by (simp add: complex_sgn_def divide_inverse)
huffman@44843
   367
paulson@14354
   368
huffman@23123
   369
subsection {* Completeness of the Complexes *}
huffman@23123
   370
huffman@44290
   371
lemma bounded_linear_Re: "bounded_linear Re"
huffman@44290
   372
  by (rule bounded_linear_intro [where K=1], simp_all add: complex_norm_def)
huffman@44290
   373
huffman@44290
   374
lemma bounded_linear_Im: "bounded_linear Im"
huffman@44127
   375
  by (rule bounded_linear_intro [where K=1], simp_all add: complex_norm_def)
huffman@23123
   376
huffman@44290
   377
lemmas Cauchy_Re = bounded_linear.Cauchy [OF bounded_linear_Re]
huffman@44290
   378
lemmas Cauchy_Im = bounded_linear.Cauchy [OF bounded_linear_Im]
hoelzl@56381
   379
lemmas tendsto_Re [tendsto_intros] = bounded_linear.tendsto [OF bounded_linear_Re]
hoelzl@56381
   380
lemmas tendsto_Im [tendsto_intros] = bounded_linear.tendsto [OF bounded_linear_Im]
hoelzl@56381
   381
lemmas isCont_Re [simp] = bounded_linear.isCont [OF bounded_linear_Re]
hoelzl@56381
   382
lemmas isCont_Im [simp] = bounded_linear.isCont [OF bounded_linear_Im]
hoelzl@56381
   383
lemmas continuous_Re [simp] = bounded_linear.continuous [OF bounded_linear_Re]
hoelzl@56381
   384
lemmas continuous_Im [simp] = bounded_linear.continuous [OF bounded_linear_Im]
hoelzl@56381
   385
lemmas continuous_on_Re [continuous_intros] = bounded_linear.continuous_on[OF bounded_linear_Re]
hoelzl@56381
   386
lemmas continuous_on_Im [continuous_intros] = bounded_linear.continuous_on[OF bounded_linear_Im]
hoelzl@56381
   387
lemmas has_derivative_Re [derivative_intros] = bounded_linear.has_derivative[OF bounded_linear_Re]
hoelzl@56381
   388
lemmas has_derivative_Im [derivative_intros] = bounded_linear.has_derivative[OF bounded_linear_Im]
hoelzl@56381
   389
lemmas sums_Re = bounded_linear.sums [OF bounded_linear_Re]
hoelzl@56381
   390
lemmas sums_Im = bounded_linear.sums [OF bounded_linear_Im]
hoelzl@56369
   391
huffman@36825
   392
lemma tendsto_Complex [tendsto_intros]:
huffman@44724
   393
  assumes "(f ---> a) F" and "(g ---> b) F"
huffman@44724
   394
  shows "((\<lambda>x. Complex (f x) (g x)) ---> Complex a b) F"
huffman@36825
   395
proof (rule tendstoI)
huffman@36825
   396
  fix r :: real assume "0 < r"
huffman@36825
   397
  hence "0 < r / sqrt 2" by (simp add: divide_pos_pos)
huffman@44724
   398
  have "eventually (\<lambda>x. dist (f x) a < r / sqrt 2) F"
huffman@44724
   399
    using `(f ---> a) F` and `0 < r / sqrt 2` by (rule tendstoD)
huffman@36825
   400
  moreover
huffman@44724
   401
  have "eventually (\<lambda>x. dist (g x) b < r / sqrt 2) F"
huffman@44724
   402
    using `(g ---> b) F` and `0 < r / sqrt 2` by (rule tendstoD)
huffman@36825
   403
  ultimately
huffman@44724
   404
  show "eventually (\<lambda>x. dist (Complex (f x) (g x)) (Complex a b) < r) F"
huffman@36825
   405
    by (rule eventually_elim2)
huffman@36825
   406
       (simp add: dist_norm real_sqrt_sum_squares_less)
huffman@36825
   407
qed
huffman@36825
   408
hoelzl@56369
   409
hoelzl@56369
   410
lemma tendsto_complex_iff:
hoelzl@56369
   411
  "(f ---> x) F \<longleftrightarrow> (((\<lambda>x. Re (f x)) ---> Re x) F \<and> ((\<lambda>x. Im (f x)) ---> Im x) F)"
hoelzl@56369
   412
proof -
hoelzl@56369
   413
  have f: "f = (\<lambda>x. Complex (Re (f x)) (Im (f x)))" and x: "x = Complex (Re x) (Im x)"
hoelzl@56369
   414
    by simp_all
hoelzl@56369
   415
  show ?thesis
hoelzl@56369
   416
    apply (subst f)
hoelzl@56369
   417
    apply (subst x)
hoelzl@56369
   418
    apply (intro iffI tendsto_Complex conjI)
hoelzl@56369
   419
    apply (simp_all add: tendsto_Re tendsto_Im)
hoelzl@56369
   420
    done
hoelzl@56369
   421
qed
hoelzl@56369
   422
huffman@23123
   423
instance complex :: banach
huffman@23123
   424
proof
huffman@23123
   425
  fix X :: "nat \<Rightarrow> complex"
huffman@23123
   426
  assume X: "Cauchy X"
huffman@44290
   427
  from Cauchy_Re [OF X] have 1: "(\<lambda>n. Re (X n)) ----> lim (\<lambda>n. Re (X n))"
huffman@23123
   428
    by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
huffman@44290
   429
  from Cauchy_Im [OF X] have 2: "(\<lambda>n. Im (X n)) ----> lim (\<lambda>n. Im (X n))"
huffman@23123
   430
    by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
huffman@23123
   431
  have "X ----> Complex (lim (\<lambda>n. Re (X n))) (lim (\<lambda>n. Im (X n)))"
huffman@44748
   432
    using tendsto_Complex [OF 1 2] by simp
huffman@23123
   433
  thus "convergent X"
huffman@23123
   434
    by (rule convergentI)
huffman@23123
   435
qed
huffman@23123
   436
lp15@56238
   437
declare
hoelzl@56381
   438
  DERIV_power[where 'a=complex, unfolded of_nat_def[symmetric], derivative_intros]
lp15@56238
   439
huffman@23123
   440
huffman@44827
   441
subsection {* The Complex Number $i$ *}
huffman@23125
   442
huffman@44724
   443
definition "ii" :: complex  ("\<i>")
huffman@44724
   444
  where i_def: "ii \<equiv> Complex 0 1"
huffman@23125
   445
huffman@23125
   446
lemma complex_Re_i [simp]: "Re ii = 0"
huffman@44724
   447
  by (simp add: i_def)
paulson@14354
   448
huffman@23125
   449
lemma complex_Im_i [simp]: "Im ii = 1"
huffman@44724
   450
  by (simp add: i_def)
huffman@23125
   451
huffman@23125
   452
lemma Complex_eq_i [simp]: "(Complex x y = ii) = (x = 0 \<and> y = 1)"
huffman@44724
   453
  by (simp add: i_def)
huffman@23125
   454
huffman@44902
   455
lemma norm_ii [simp]: "norm ii = 1"
huffman@44902
   456
  by (simp add: i_def)
huffman@44902
   457
huffman@23125
   458
lemma complex_i_not_zero [simp]: "ii \<noteq> 0"
huffman@44724
   459
  by (simp add: complex_eq_iff)
huffman@23125
   460
huffman@23125
   461
lemma complex_i_not_one [simp]: "ii \<noteq> 1"
huffman@44724
   462
  by (simp add: complex_eq_iff)
huffman@23124
   463
huffman@47108
   464
lemma complex_i_not_numeral [simp]: "ii \<noteq> numeral w"
huffman@47108
   465
  by (simp add: complex_eq_iff)
huffman@47108
   466
haftmann@54489
   467
lemma complex_i_not_neg_numeral [simp]: "ii \<noteq> - numeral w"
huffman@44724
   468
  by (simp add: complex_eq_iff)
huffman@23125
   469
huffman@23125
   470
lemma i_mult_Complex [simp]: "ii * Complex a b = Complex (- b) a"
huffman@44724
   471
  by (simp add: complex_eq_iff)
huffman@23125
   472
huffman@23125
   473
lemma Complex_mult_i [simp]: "Complex a b * ii = Complex (- b) a"
huffman@44724
   474
  by (simp add: complex_eq_iff)
huffman@23125
   475
huffman@23125
   476
lemma i_complex_of_real [simp]: "ii * complex_of_real r = Complex 0 r"
huffman@44724
   477
  by (simp add: i_def complex_of_real_def)
huffman@23125
   478
huffman@23125
   479
lemma complex_of_real_i [simp]: "complex_of_real r * ii = Complex 0 r"
huffman@44724
   480
  by (simp add: i_def complex_of_real_def)
huffman@23125
   481
huffman@23125
   482
lemma i_squared [simp]: "ii * ii = -1"
huffman@44724
   483
  by (simp add: i_def)
huffman@23125
   484
wenzelm@53015
   485
lemma power2_i [simp]: "ii\<^sup>2 = -1"
huffman@44724
   486
  by (simp add: power2_eq_square)
huffman@23125
   487
huffman@23125
   488
lemma inverse_i [simp]: "inverse ii = - ii"
huffman@44724
   489
  by (rule inverse_unique, simp)
paulson@14354
   490
huffman@44827
   491
lemma complex_i_mult_minus [simp]: "ii * (ii * x) = - x"
huffman@44827
   492
  by (simp add: mult_assoc [symmetric])
huffman@44827
   493
paulson@14354
   494
huffman@23125
   495
subsection {* Complex Conjugation *}
huffman@23125
   496
huffman@44724
   497
definition cnj :: "complex \<Rightarrow> complex" where
huffman@23125
   498
  "cnj z = Complex (Re z) (- Im z)"
huffman@23125
   499
huffman@23125
   500
lemma complex_cnj [simp]: "cnj (Complex a b) = Complex a (- b)"
huffman@44724
   501
  by (simp add: cnj_def)
huffman@23125
   502
huffman@23125
   503
lemma complex_Re_cnj [simp]: "Re (cnj x) = Re x"
huffman@44724
   504
  by (simp add: cnj_def)
huffman@23125
   505
huffman@23125
   506
lemma complex_Im_cnj [simp]: "Im (cnj x) = - Im x"
huffman@44724
   507
  by (simp add: cnj_def)
huffman@23125
   508
huffman@23125
   509
lemma complex_cnj_cancel_iff [simp]: "(cnj x = cnj y) = (x = y)"
huffman@44724
   510
  by (simp add: complex_eq_iff)
huffman@23125
   511
huffman@23125
   512
lemma complex_cnj_cnj [simp]: "cnj (cnj z) = z"
huffman@44724
   513
  by (simp add: cnj_def)
huffman@23125
   514
huffman@23125
   515
lemma complex_cnj_zero [simp]: "cnj 0 = 0"
huffman@44724
   516
  by (simp add: complex_eq_iff)
huffman@23125
   517
huffman@23125
   518
lemma complex_cnj_zero_iff [iff]: "(cnj z = 0) = (z = 0)"
huffman@44724
   519
  by (simp add: complex_eq_iff)
huffman@23125
   520
huffman@23125
   521
lemma complex_cnj_add: "cnj (x + y) = cnj x + cnj y"
huffman@44724
   522
  by (simp add: complex_eq_iff)
huffman@23125
   523
hoelzl@56369
   524
lemma cnj_setsum: "cnj (setsum f s) = (\<Sum>x\<in>s. cnj (f x))"
hoelzl@56369
   525
  by (induct s rule: infinite_finite_induct) (auto simp: complex_cnj_add)
hoelzl@56369
   526
huffman@23125
   527
lemma complex_cnj_diff: "cnj (x - y) = cnj x - cnj y"
huffman@44724
   528
  by (simp add: complex_eq_iff)
huffman@23125
   529
huffman@23125
   530
lemma complex_cnj_minus: "cnj (- x) = - cnj x"
huffman@44724
   531
  by (simp add: complex_eq_iff)
huffman@23125
   532
huffman@23125
   533
lemma complex_cnj_one [simp]: "cnj 1 = 1"
huffman@44724
   534
  by (simp add: complex_eq_iff)
huffman@23125
   535
huffman@23125
   536
lemma complex_cnj_mult: "cnj (x * y) = cnj x * cnj y"
huffman@44724
   537
  by (simp add: complex_eq_iff)
huffman@23125
   538
hoelzl@56369
   539
lemma cnj_setprod: "cnj (setprod f s) = (\<Prod>x\<in>s. cnj (f x))"
hoelzl@56369
   540
  by (induct s rule: infinite_finite_induct) (auto simp: complex_cnj_mult)
hoelzl@56369
   541
huffman@23125
   542
lemma complex_cnj_inverse: "cnj (inverse x) = inverse (cnj x)"
huffman@44724
   543
  by (simp add: complex_inverse_def)
paulson@14323
   544
huffman@23125
   545
lemma complex_cnj_divide: "cnj (x / y) = cnj x / cnj y"
huffman@44724
   546
  by (simp add: complex_divide_def complex_cnj_mult complex_cnj_inverse)
huffman@23125
   547
huffman@23125
   548
lemma complex_cnj_power: "cnj (x ^ n) = cnj x ^ n"
huffman@44724
   549
  by (induct n, simp_all add: complex_cnj_mult)
huffman@23125
   550
huffman@23125
   551
lemma complex_cnj_of_nat [simp]: "cnj (of_nat n) = of_nat n"
huffman@44724
   552
  by (simp add: complex_eq_iff)
huffman@23125
   553
huffman@23125
   554
lemma complex_cnj_of_int [simp]: "cnj (of_int z) = of_int z"
huffman@44724
   555
  by (simp add: complex_eq_iff)
huffman@23125
   556
huffman@47108
   557
lemma complex_cnj_numeral [simp]: "cnj (numeral w) = numeral w"
huffman@47108
   558
  by (simp add: complex_eq_iff)
huffman@47108
   559
haftmann@54489
   560
lemma complex_cnj_neg_numeral [simp]: "cnj (- numeral w) = - numeral w"
huffman@44724
   561
  by (simp add: complex_eq_iff)
huffman@23125
   562
huffman@23125
   563
lemma complex_cnj_scaleR: "cnj (scaleR r x) = scaleR r (cnj x)"
huffman@44724
   564
  by (simp add: complex_eq_iff)
huffman@23125
   565
huffman@23125
   566
lemma complex_mod_cnj [simp]: "cmod (cnj z) = cmod z"
huffman@44724
   567
  by (simp add: complex_norm_def)
paulson@14323
   568
huffman@23125
   569
lemma complex_cnj_complex_of_real [simp]: "cnj (of_real x) = of_real x"
huffman@44724
   570
  by (simp add: complex_eq_iff)
huffman@23125
   571
huffman@23125
   572
lemma complex_cnj_i [simp]: "cnj ii = - ii"
huffman@44724
   573
  by (simp add: complex_eq_iff)
huffman@23125
   574
huffman@23125
   575
lemma complex_add_cnj: "z + cnj z = complex_of_real (2 * Re z)"
huffman@44724
   576
  by (simp add: complex_eq_iff)
huffman@23125
   577
huffman@23125
   578
lemma complex_diff_cnj: "z - cnj z = complex_of_real (2 * Im z) * ii"
huffman@44724
   579
  by (simp add: complex_eq_iff)
paulson@14354
   580
wenzelm@53015
   581
lemma complex_mult_cnj: "z * cnj z = complex_of_real ((Re z)\<^sup>2 + (Im z)\<^sup>2)"
huffman@44724
   582
  by (simp add: complex_eq_iff power2_eq_square)
huffman@23125
   583
wenzelm@53015
   584
lemma complex_mod_mult_cnj: "cmod (z * cnj z) = (cmod z)\<^sup>2"
huffman@44724
   585
  by (simp add: norm_mult power2_eq_square)
huffman@23125
   586
huffman@44827
   587
lemma complex_mod_sqrt_Re_mult_cnj: "cmod z = sqrt (Re (z * cnj z))"
huffman@44827
   588
  by (simp add: cmod_def power2_eq_square)
huffman@44827
   589
huffman@44827
   590
lemma complex_In_mult_cnj_zero [simp]: "Im (z * cnj z) = 0"
huffman@44827
   591
  by simp
huffman@44827
   592
huffman@44290
   593
lemma bounded_linear_cnj: "bounded_linear cnj"
huffman@44127
   594
  using complex_cnj_add complex_cnj_scaleR
huffman@44127
   595
  by (rule bounded_linear_intro [where K=1], simp)
paulson@14354
   596
hoelzl@56381
   597
lemmas tendsto_cnj [tendsto_intros] = bounded_linear.tendsto [OF bounded_linear_cnj]
hoelzl@56381
   598
lemmas isCont_cnj [simp] = bounded_linear.isCont [OF bounded_linear_cnj]
hoelzl@56381
   599
lemmas continuous_cnj [simp, continuous_intros] = bounded_linear.continuous [OF bounded_linear_cnj]
hoelzl@56381
   600
lemmas continuous_on_cnj [simp, continuous_intros] = bounded_linear.continuous_on [OF bounded_linear_cnj]
hoelzl@56381
   601
lemmas has_derivative_cnj [simp, derivative_intros] = bounded_linear.has_derivative [OF bounded_linear_cnj]
huffman@44290
   602
hoelzl@56369
   603
lemma lim_cnj: "((\<lambda>x. cnj(f x)) ---> cnj l) F \<longleftrightarrow> (f ---> l) F"
hoelzl@56369
   604
  by (simp add: tendsto_iff dist_complex_def Complex.complex_cnj_diff [symmetric])
hoelzl@56369
   605
hoelzl@56369
   606
lemma sums_cnj: "((\<lambda>x. cnj(f x)) sums cnj l) \<longleftrightarrow> (f sums l)"
hoelzl@56369
   607
  by (simp add: sums_def lim_cnj cnj_setsum [symmetric])
hoelzl@56369
   608
paulson@14354
   609
lp15@55734
   610
subsection{*Basic Lemmas*}
lp15@55734
   611
lp15@55734
   612
lemma complex_eq_0: "z=0 \<longleftrightarrow> (Re z)\<^sup>2 + (Im z)\<^sup>2 = 0"
lp15@55734
   613
  by (metis complex_Im_zero complex_Re_zero complex_eqI sum_power2_eq_zero_iff)
lp15@55734
   614
lp15@55734
   615
lemma complex_neq_0: "z\<noteq>0 \<longleftrightarrow> (Re z)\<^sup>2 + (Im z)\<^sup>2 > 0"
lp15@55734
   616
by (metis complex_eq_0 less_numeral_extra(3) sum_power2_gt_zero_iff)
lp15@55734
   617
lp15@55734
   618
lemma complex_norm_square: "of_real ((norm z)\<^sup>2) = z * cnj z"
lp15@55734
   619
apply (cases z, auto)
lp15@55734
   620
by (metis complex_of_real_def of_real_add of_real_power power2_eq_square)
lp15@55734
   621
lp15@55734
   622
lemma complex_div_eq_0: 
lp15@55734
   623
    "(Re(a / b) = 0 \<longleftrightarrow> Re(a * cnj b) = 0) & (Im(a / b) = 0 \<longleftrightarrow> Im(a * cnj b) = 0)"
lp15@55734
   624
proof (cases "b=0")
lp15@55734
   625
  case True then show ?thesis by auto
lp15@55734
   626
next
lp15@55734
   627
  case False
lp15@55734
   628
  show ?thesis
lp15@55734
   629
  proof (cases b)
lp15@55734
   630
    case (Complex x y)
lp15@55734
   631
    then have "x\<^sup>2 + y\<^sup>2 > 0"
lp15@55734
   632
      by (metis Complex_eq_0 False sum_power2_gt_zero_iff)
lp15@55734
   633
    then have "!!u v. u / (x\<^sup>2 + y\<^sup>2) + v / (x\<^sup>2 + y\<^sup>2) = (u + v) / (x\<^sup>2 + y\<^sup>2)"
lp15@55734
   634
      by (metis add_divide_distrib)
lp15@55734
   635
    with Complex False show ?thesis
lp15@55734
   636
      by (auto simp: complex_divide_def)
lp15@55734
   637
  qed
lp15@55734
   638
qed
lp15@55734
   639
lp15@55734
   640
lemma re_complex_div_eq_0: "Re(a / b) = 0 \<longleftrightarrow> Re(a * cnj b) = 0"
lp15@55734
   641
  and im_complex_div_eq_0: "Im(a / b) = 0 \<longleftrightarrow> Im(a * cnj b) = 0"
lp15@55734
   642
using complex_div_eq_0 by auto
lp15@55734
   643
lp15@55734
   644
lp15@55734
   645
lemma complex_div_gt_0: 
lp15@55734
   646
    "(Re(a / b) > 0 \<longleftrightarrow> Re(a * cnj b) > 0) & (Im(a / b) > 0 \<longleftrightarrow> Im(a * cnj b) > 0)"
lp15@55734
   647
proof (cases "b=0")
lp15@55734
   648
  case True then show ?thesis by auto
lp15@55734
   649
next
lp15@55734
   650
  case False
lp15@55734
   651
  show ?thesis
lp15@55734
   652
  proof (cases b)
lp15@55734
   653
    case (Complex x y)
lp15@55734
   654
    then have "x\<^sup>2 + y\<^sup>2 > 0"
lp15@55734
   655
      by (metis Complex_eq_0 False sum_power2_gt_zero_iff)
lp15@55734
   656
    moreover have "!!u v. u / (x\<^sup>2 + y\<^sup>2) + v / (x\<^sup>2 + y\<^sup>2) = (u + v) / (x\<^sup>2 + y\<^sup>2)"
lp15@55734
   657
      by (metis add_divide_distrib)
lp15@55734
   658
    ultimately show ?thesis using Complex False `0 < x\<^sup>2 + y\<^sup>2`
hoelzl@56479
   659
      apply (simp add: complex_divide_def  zero_less_divide_iff less_divide_eq)
lp15@55734
   660
      apply (metis less_divide_eq mult_zero_left diff_conv_add_uminus minus_divide_left)
lp15@55734
   661
      done
lp15@55734
   662
  qed
lp15@55734
   663
qed
lp15@55734
   664
lp15@55734
   665
lemma re_complex_div_gt_0: "Re(a / b) > 0 \<longleftrightarrow> Re(a * cnj b) > 0"
lp15@55734
   666
  and im_complex_div_gt_0: "Im(a / b) > 0 \<longleftrightarrow> Im(a * cnj b) > 0"
lp15@55734
   667
using complex_div_gt_0 by auto
lp15@55734
   668
lp15@55734
   669
lemma re_complex_div_ge_0: "Re(a / b) \<ge> 0 \<longleftrightarrow> Re(a * cnj b) \<ge> 0"
lp15@55734
   670
  by (metis le_less re_complex_div_eq_0 re_complex_div_gt_0)
lp15@55734
   671
lp15@55734
   672
lemma im_complex_div_ge_0: "Im(a / b) \<ge> 0 \<longleftrightarrow> Im(a * cnj b) \<ge> 0"
lp15@55734
   673
  by (metis im_complex_div_eq_0 im_complex_div_gt_0 le_less)
lp15@55734
   674
lp15@55734
   675
lemma re_complex_div_lt_0: "Re(a / b) < 0 \<longleftrightarrow> Re(a * cnj b) < 0"
boehmes@55759
   676
  by (metis less_asym neq_iff re_complex_div_eq_0 re_complex_div_gt_0)
lp15@55734
   677
lp15@55734
   678
lemma im_complex_div_lt_0: "Im(a / b) < 0 \<longleftrightarrow> Im(a * cnj b) < 0"
lp15@55734
   679
  by (metis im_complex_div_eq_0 im_complex_div_gt_0 less_asym neq_iff)
lp15@55734
   680
lp15@55734
   681
lemma re_complex_div_le_0: "Re(a / b) \<le> 0 \<longleftrightarrow> Re(a * cnj b) \<le> 0"
lp15@55734
   682
  by (metis not_le re_complex_div_gt_0)
lp15@55734
   683
lp15@55734
   684
lemma im_complex_div_le_0: "Im(a / b) \<le> 0 \<longleftrightarrow> Im(a * cnj b) \<le> 0"
lp15@55734
   685
  by (metis im_complex_div_gt_0 not_le)
lp15@55734
   686
lp15@56217
   687
lemma Re_setsum: "Re(setsum f s) = setsum (%x. Re(f x)) s"
hoelzl@56369
   688
  by (induct s rule: infinite_finite_induct) auto
lp15@55734
   689
lp15@56217
   690
lemma Im_setsum: "Im(setsum f s) = setsum (%x. Im(f x)) s"
hoelzl@56369
   691
  by (induct s rule: infinite_finite_induct) auto
hoelzl@56369
   692
hoelzl@56369
   693
lemma sums_complex_iff: "f sums x \<longleftrightarrow> ((\<lambda>x. Re (f x)) sums Re x) \<and> ((\<lambda>x. Im (f x)) sums Im x)"
hoelzl@56369
   694
  unfolding sums_def tendsto_complex_iff Im_setsum Re_setsum ..
hoelzl@56369
   695
  
hoelzl@56369
   696
lemma summable_complex_iff: "summable f \<longleftrightarrow> summable (\<lambda>x. Re (f x)) \<and>  summable (\<lambda>x. Im (f x))"
hoelzl@56369
   697
  unfolding summable_def sums_complex_iff[abs_def] by (metis Im.simps Re.simps)
hoelzl@56369
   698
hoelzl@56369
   699
lemma summable_complex_of_real [simp]: "summable (\<lambda>n. complex_of_real (f n)) \<longleftrightarrow> summable f"
hoelzl@56369
   700
  unfolding summable_complex_iff by simp
hoelzl@56369
   701
hoelzl@56369
   702
lemma summable_Re: "summable f \<Longrightarrow> summable (\<lambda>x. Re (f x))"
hoelzl@56369
   703
  unfolding summable_complex_iff by blast
hoelzl@56369
   704
hoelzl@56369
   705
lemma summable_Im: "summable f \<Longrightarrow> summable (\<lambda>x. Im (f x))"
hoelzl@56369
   706
  unfolding summable_complex_iff by blast
lp15@56217
   707
lp15@56217
   708
lemma Complex_setsum': "setsum (%x. Complex (f x) 0) s = Complex (setsum f s) 0"
hoelzl@56369
   709
  by (induct s rule: infinite_finite_induct) auto
lp15@55734
   710
lp15@56217
   711
lemma Complex_setsum: "Complex (setsum f s) 0 = setsum (%x. Complex (f x) 0) s"
lp15@56217
   712
  by (metis Complex_setsum')
lp15@56217
   713
lp15@56217
   714
lemma of_real_setsum: "of_real (setsum f s) = setsum (%x. of_real(f x)) s"
hoelzl@56369
   715
  by (induct s rule: infinite_finite_induct) auto
lp15@55734
   716
lp15@56217
   717
lemma of_real_setprod: "of_real (setprod f s) = setprod (%x. of_real(f x)) s"
hoelzl@56369
   718
  by (induct s rule: infinite_finite_induct) auto
lp15@55734
   719
lp15@55734
   720
lemma Reals_cnj_iff: "z \<in> \<real> \<longleftrightarrow> cnj z = z"
lp15@55734
   721
by (metis Reals_cases Reals_of_real complex.exhaust complex.inject complex_cnj 
lp15@55734
   722
          complex_of_real_def equal_neg_zero)
lp15@55734
   723
lp15@55734
   724
lemma Complex_in_Reals: "Complex x 0 \<in> \<real>"
lp15@55734
   725
  by (metis Reals_of_real complex_of_real_def)
lp15@55734
   726
lp15@55734
   727
lemma in_Reals_norm: "z \<in> \<real> \<Longrightarrow> norm(z) = abs(Re z)"
lp15@55734
   728
  by (metis Re_complex_of_real Reals_cases norm_of_real)
lp15@55734
   729
hoelzl@56369
   730
lemma complex_is_Real_iff: "z \<in> \<real> \<longleftrightarrow> Im z = 0"
hoelzl@56369
   731
  by (metis Complex_in_Reals Im_complex_of_real Reals_cases complex_surj)
hoelzl@56369
   732
hoelzl@56369
   733
lemma series_comparison_complex:
hoelzl@56369
   734
  fixes f:: "nat \<Rightarrow> 'a::banach"
hoelzl@56369
   735
  assumes sg: "summable g"
hoelzl@56369
   736
     and "\<And>n. g n \<in> \<real>" "\<And>n. Re (g n) \<ge> 0"
hoelzl@56369
   737
     and fg: "\<And>n. n \<ge> N \<Longrightarrow> norm(f n) \<le> norm(g n)"
hoelzl@56369
   738
  shows "summable f"
hoelzl@56369
   739
proof -
hoelzl@56369
   740
  have g: "\<And>n. cmod (g n) = Re (g n)" using assms
hoelzl@56369
   741
    by (metis abs_of_nonneg in_Reals_norm)
hoelzl@56369
   742
  show ?thesis
hoelzl@56369
   743
    apply (rule summable_comparison_test' [where g = "\<lambda>n. norm (g n)" and N=N])
hoelzl@56369
   744
    using sg
hoelzl@56369
   745
    apply (auto simp: summable_def)
hoelzl@56369
   746
    apply (rule_tac x="Re s" in exI)
hoelzl@56369
   747
    apply (auto simp: g sums_Re)
hoelzl@56369
   748
    apply (metis fg g)
hoelzl@56369
   749
    done
hoelzl@56369
   750
qed
lp15@55734
   751
paulson@14323
   752
subsection{*Finally! Polar Form for Complex Numbers*}
paulson@14323
   753
huffman@44827
   754
subsubsection {* $\cos \theta + i \sin \theta$ *}
huffman@20557
   755
huffman@44715
   756
definition cis :: "real \<Rightarrow> complex" where
huffman@20557
   757
  "cis a = Complex (cos a) (sin a)"
huffman@20557
   758
huffman@44827
   759
lemma Re_cis [simp]: "Re (cis a) = cos a"
huffman@44827
   760
  by (simp add: cis_def)
huffman@44827
   761
huffman@44827
   762
lemma Im_cis [simp]: "Im (cis a) = sin a"
huffman@44827
   763
  by (simp add: cis_def)
huffman@44827
   764
huffman@44827
   765
lemma cis_zero [simp]: "cis 0 = 1"
huffman@44827
   766
  by (simp add: cis_def)
huffman@44827
   767
huffman@44828
   768
lemma norm_cis [simp]: "norm (cis a) = 1"
huffman@44828
   769
  by (simp add: cis_def)
huffman@44828
   770
huffman@44828
   771
lemma sgn_cis [simp]: "sgn (cis a) = cis a"
huffman@44828
   772
  by (simp add: sgn_div_norm)
huffman@44828
   773
huffman@44828
   774
lemma cis_neq_zero [simp]: "cis a \<noteq> 0"
huffman@44828
   775
  by (metis norm_cis norm_zero zero_neq_one)
huffman@44828
   776
huffman@44827
   777
lemma cis_mult: "cis a * cis b = cis (a + b)"
huffman@44827
   778
  by (simp add: cis_def cos_add sin_add)
huffman@44827
   779
huffman@44827
   780
lemma DeMoivre: "(cis a) ^ n = cis (real n * a)"
huffman@44827
   781
  by (induct n, simp_all add: real_of_nat_Suc algebra_simps cis_mult)
huffman@44827
   782
huffman@44827
   783
lemma cis_inverse [simp]: "inverse(cis a) = cis (-a)"
huffman@44827
   784
  by (simp add: cis_def)
huffman@44827
   785
huffman@44827
   786
lemma cis_divide: "cis a / cis b = cis (a - b)"
haftmann@54230
   787
  by (simp add: complex_divide_def cis_mult)
huffman@44827
   788
huffman@44827
   789
lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re(cis a ^ n)"
huffman@44827
   790
  by (auto simp add: DeMoivre)
huffman@44827
   791
huffman@44827
   792
lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im(cis a ^ n)"
huffman@44827
   793
  by (auto simp add: DeMoivre)
huffman@44827
   794
huffman@44827
   795
subsubsection {* $r(\cos \theta + i \sin \theta)$ *}
huffman@44715
   796
huffman@44715
   797
definition rcis :: "[real, real] \<Rightarrow> complex" where
huffman@20557
   798
  "rcis r a = complex_of_real r * cis a"
huffman@20557
   799
huffman@44827
   800
lemma Re_rcis [simp]: "Re(rcis r a) = r * cos a"
huffman@44828
   801
  by (simp add: rcis_def)
huffman@44827
   802
huffman@44827
   803
lemma Im_rcis [simp]: "Im(rcis r a) = r * sin a"
huffman@44828
   804
  by (simp add: rcis_def)
huffman@44827
   805
huffman@44827
   806
lemma rcis_Ex: "\<exists>r a. z = rcis r a"
huffman@44828
   807
  by (simp add: complex_eq_iff polar_Ex)
huffman@44827
   808
huffman@44827
   809
lemma complex_mod_rcis [simp]: "cmod(rcis r a) = abs r"
huffman@44828
   810
  by (simp add: rcis_def norm_mult)
huffman@44827
   811
huffman@44827
   812
lemma cis_rcis_eq: "cis a = rcis 1 a"
huffman@44827
   813
  by (simp add: rcis_def)
huffman@44827
   814
huffman@44827
   815
lemma rcis_mult: "rcis r1 a * rcis r2 b = rcis (r1*r2) (a + b)"
huffman@44828
   816
  by (simp add: rcis_def cis_mult)
huffman@44827
   817
huffman@44827
   818
lemma rcis_zero_mod [simp]: "rcis 0 a = 0"
huffman@44827
   819
  by (simp add: rcis_def)
huffman@44827
   820
huffman@44827
   821
lemma rcis_zero_arg [simp]: "rcis r 0 = complex_of_real r"
huffman@44827
   822
  by (simp add: rcis_def)
huffman@44827
   823
huffman@44828
   824
lemma rcis_eq_zero_iff [simp]: "rcis r a = 0 \<longleftrightarrow> r = 0"
huffman@44828
   825
  by (simp add: rcis_def)
huffman@44828
   826
huffman@44827
   827
lemma DeMoivre2: "(rcis r a) ^ n = rcis (r ^ n) (real n * a)"
huffman@44827
   828
  by (simp add: rcis_def power_mult_distrib DeMoivre)
huffman@44827
   829
huffman@44827
   830
lemma rcis_inverse: "inverse(rcis r a) = rcis (1/r) (-a)"
huffman@44827
   831
  by (simp add: divide_inverse rcis_def)
huffman@44827
   832
huffman@44827
   833
lemma rcis_divide: "rcis r1 a / rcis r2 b = rcis (r1/r2) (a - b)"
huffman@44828
   834
  by (simp add: rcis_def cis_divide [symmetric])
huffman@44827
   835
huffman@44827
   836
subsubsection {* Complex exponential *}
huffman@44827
   837
huffman@44291
   838
abbreviation expi :: "complex \<Rightarrow> complex"
huffman@44291
   839
  where "expi \<equiv> exp"
huffman@44291
   840
huffman@44712
   841
lemma cis_conv_exp: "cis b = exp (Complex 0 b)"
huffman@44291
   842
proof (rule complex_eqI)
huffman@44291
   843
  { fix n have "Complex 0 b ^ n =
huffman@44291
   844
    real (fact n) *\<^sub>R Complex (cos_coeff n * b ^ n) (sin_coeff n * b ^ n)"
huffman@44291
   845
      apply (induct n)
huffman@44291
   846
      apply (simp add: cos_coeff_def sin_coeff_def)
hoelzl@56479
   847
      apply (simp add: sin_coeff_Suc cos_coeff_Suc del: mult_Suc)
huffman@44291
   848
      done } note * = this
huffman@44712
   849
  show "Re (cis b) = Re (exp (Complex 0 b))"
huffman@44291
   850
    unfolding exp_def cis_def cos_def
huffman@44291
   851
    by (subst bounded_linear.suminf[OF bounded_linear_Re summable_exp_generic],
huffman@44291
   852
      simp add: * mult_assoc [symmetric])
huffman@44712
   853
  show "Im (cis b) = Im (exp (Complex 0 b))"
huffman@44291
   854
    unfolding exp_def cis_def sin_def
huffman@44291
   855
    by (subst bounded_linear.suminf[OF bounded_linear_Im summable_exp_generic],
huffman@44291
   856
      simp add: * mult_assoc [symmetric])
huffman@44291
   857
qed
huffman@44291
   858
huffman@44291
   859
lemma expi_def: "expi z = complex_of_real (exp (Re z)) * cis (Im z)"
huffman@44712
   860
  unfolding cis_conv_exp exp_of_real [symmetric] mult_exp_exp by simp
huffman@20557
   861
huffman@44828
   862
lemma Re_exp: "Re (exp z) = exp (Re z) * cos (Im z)"
huffman@44828
   863
  unfolding expi_def by simp
huffman@44828
   864
huffman@44828
   865
lemma Im_exp: "Im (exp z) = exp (Re z) * sin (Im z)"
huffman@44828
   866
  unfolding expi_def by simp
huffman@44828
   867
paulson@14374
   868
lemma complex_expi_Ex: "\<exists>a r. z = complex_of_real r * expi a"
paulson@14373
   869
apply (insert rcis_Ex [of z])
huffman@23125
   870
apply (auto simp add: expi_def rcis_def mult_assoc [symmetric])
paulson@14334
   871
apply (rule_tac x = "ii * complex_of_real a" in exI, auto)
paulson@14323
   872
done
paulson@14323
   873
paulson@14387
   874
lemma expi_two_pi_i [simp]: "expi((2::complex) * complex_of_real pi * ii) = 1"
huffman@44724
   875
  by (simp add: expi_def cis_def)
paulson@14387
   876
huffman@44844
   877
subsubsection {* Complex argument *}
huffman@44844
   878
huffman@44844
   879
definition arg :: "complex \<Rightarrow> real" where
huffman@44844
   880
  "arg z = (if z = 0 then 0 else (SOME a. sgn z = cis a \<and> -pi < a \<and> a \<le> pi))"
huffman@44844
   881
huffman@44844
   882
lemma arg_zero: "arg 0 = 0"
huffman@44844
   883
  by (simp add: arg_def)
huffman@44844
   884
huffman@44844
   885
lemma of_nat_less_of_int_iff: (* TODO: move *)
huffman@44844
   886
  "(of_nat n :: 'a::linordered_idom) < of_int x \<longleftrightarrow> int n < x"
huffman@44844
   887
  by (metis of_int_of_nat_eq of_int_less_iff)
huffman@44844
   888
huffman@47108
   889
lemma real_of_nat_less_numeral_iff [simp]: (* TODO: move *)
huffman@47108
   890
  "real (n::nat) < numeral w \<longleftrightarrow> n < numeral w"
huffman@47108
   891
  using of_nat_less_of_int_iff [of n "numeral w", where 'a=real]
huffman@47108
   892
  by (simp add: real_of_nat_def zless_nat_eq_int_zless [symmetric])
huffman@44844
   893
huffman@44844
   894
lemma arg_unique:
huffman@44844
   895
  assumes "sgn z = cis x" and "-pi < x" and "x \<le> pi"
huffman@44844
   896
  shows "arg z = x"
huffman@44844
   897
proof -
huffman@44844
   898
  from assms have "z \<noteq> 0" by auto
huffman@44844
   899
  have "(SOME a. sgn z = cis a \<and> -pi < a \<and> a \<le> pi) = x"
huffman@44844
   900
  proof
huffman@44844
   901
    fix a def d \<equiv> "a - x"
huffman@44844
   902
    assume a: "sgn z = cis a \<and> - pi < a \<and> a \<le> pi"
huffman@44844
   903
    from a assms have "- (2*pi) < d \<and> d < 2*pi"
huffman@44844
   904
      unfolding d_def by simp
huffman@44844
   905
    moreover from a assms have "cos a = cos x" and "sin a = sin x"
huffman@44844
   906
      by (simp_all add: complex_eq_iff)
wenzelm@53374
   907
    hence cos: "cos d = 1" unfolding d_def cos_diff by simp
wenzelm@53374
   908
    moreover from cos have "sin d = 0" by (rule cos_one_sin_zero)
huffman@44844
   909
    ultimately have "d = 0"
huffman@44844
   910
      unfolding sin_zero_iff even_mult_two_ex
wenzelm@53374
   911
      by (auto simp add: numeral_2_eq_2 less_Suc_eq)
huffman@44844
   912
    thus "a = x" unfolding d_def by simp
huffman@44844
   913
  qed (simp add: assms del: Re_sgn Im_sgn)
huffman@44844
   914
  with `z \<noteq> 0` show "arg z = x"
huffman@44844
   915
    unfolding arg_def by simp
huffman@44844
   916
qed
huffman@44844
   917
huffman@44844
   918
lemma arg_correct:
huffman@44844
   919
  assumes "z \<noteq> 0" shows "sgn z = cis (arg z) \<and> -pi < arg z \<and> arg z \<le> pi"
huffman@44844
   920
proof (simp add: arg_def assms, rule someI_ex)
huffman@44844
   921
  obtain r a where z: "z = rcis r a" using rcis_Ex by fast
huffman@44844
   922
  with assms have "r \<noteq> 0" by auto
huffman@44844
   923
  def b \<equiv> "if 0 < r then a else a + pi"
huffman@44844
   924
  have b: "sgn z = cis b"
huffman@44844
   925
    unfolding z b_def rcis_def using `r \<noteq> 0`
huffman@44844
   926
    by (simp add: of_real_def sgn_scaleR sgn_if, simp add: cis_def)
huffman@44844
   927
  have cis_2pi_nat: "\<And>n. cis (2 * pi * real_of_nat n) = 1"
webertj@49962
   928
    by (induct_tac n, simp_all add: distrib_left cis_mult [symmetric],
huffman@44844
   929
      simp add: cis_def)
huffman@44844
   930
  have cis_2pi_int: "\<And>x. cis (2 * pi * real_of_int x) = 1"
huffman@44844
   931
    by (case_tac x rule: int_diff_cases,
huffman@44844
   932
      simp add: right_diff_distrib cis_divide [symmetric] cis_2pi_nat)
huffman@44844
   933
  def c \<equiv> "b - 2*pi * of_int \<lceil>(b - pi) / (2*pi)\<rceil>"
huffman@44844
   934
  have "sgn z = cis c"
huffman@44844
   935
    unfolding b c_def
huffman@44844
   936
    by (simp add: cis_divide [symmetric] cis_2pi_int)
huffman@44844
   937
  moreover have "- pi < c \<and> c \<le> pi"
huffman@44844
   938
    using ceiling_correct [of "(b - pi) / (2*pi)"]
huffman@44844
   939
    by (simp add: c_def less_divide_eq divide_le_eq algebra_simps)
huffman@44844
   940
  ultimately show "\<exists>a. sgn z = cis a \<and> -pi < a \<and> a \<le> pi" by fast
huffman@44844
   941
qed
huffman@44844
   942
huffman@44844
   943
lemma arg_bounded: "- pi < arg z \<and> arg z \<le> pi"
huffman@44844
   944
  by (cases "z = 0", simp_all add: arg_zero arg_correct)
huffman@44844
   945
huffman@44844
   946
lemma cis_arg: "z \<noteq> 0 \<Longrightarrow> cis (arg z) = sgn z"
huffman@44844
   947
  by (simp add: arg_correct)
huffman@44844
   948
huffman@44844
   949
lemma rcis_cmod_arg: "rcis (cmod z) (arg z) = z"
huffman@44844
   950
  by (cases "z = 0", simp_all add: rcis_def cis_arg sgn_div_norm of_real_def)
huffman@44844
   951
huffman@44844
   952
lemma cos_arg_i_mult_zero [simp]:
huffman@44844
   953
     "y \<noteq> 0 ==> cos (arg(Complex 0 y)) = 0"
huffman@44844
   954
  using cis_arg [of "Complex 0 y"] by (simp add: complex_eq_iff)
huffman@44844
   955
huffman@44065
   956
text {* Legacy theorem names *}
huffman@44065
   957
huffman@44065
   958
lemmas expand_complex_eq = complex_eq_iff
huffman@44065
   959
lemmas complex_Re_Im_cancel_iff = complex_eq_iff
huffman@44065
   960
lemmas complex_equality = complex_eqI
huffman@44065
   961
paulson@13957
   962
end