src/HOL/Fun.thy
author haftmann
Thu Nov 18 17:01:15 2010 +0100 (2010-11-18)
changeset 40602 91e583511113
parent 39302 d7728f65b353
child 40702 cf26dd7395e4
permissions -rw-r--r--
map_fun combinator in theory Fun
clasohm@1475
     1
(*  Title:      HOL/Fun.thy
clasohm@1475
     2
    Author:     Tobias Nipkow, Cambridge University Computer Laboratory
clasohm@923
     3
    Copyright   1994  University of Cambridge
huffman@18154
     4
*)
clasohm@923
     5
huffman@18154
     6
header {* Notions about functions *}
clasohm@923
     7
paulson@15510
     8
theory Fun
haftmann@32139
     9
imports Complete_Lattice
nipkow@15131
    10
begin
nipkow@2912
    11
haftmann@26147
    12
text{*As a simplification rule, it replaces all function equalities by
haftmann@26147
    13
  first-order equalities.*}
nipkow@39302
    14
lemma fun_eq_iff: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)"
haftmann@26147
    15
apply (rule iffI)
haftmann@26147
    16
apply (simp (no_asm_simp))
haftmann@26147
    17
apply (rule ext)
haftmann@26147
    18
apply (simp (no_asm_simp))
haftmann@26147
    19
done
oheimb@5305
    20
haftmann@26147
    21
lemma apply_inverse:
haftmann@26357
    22
  "f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u"
haftmann@26147
    23
  by auto
nipkow@2912
    24
wenzelm@12258
    25
haftmann@26147
    26
subsection {* The Identity Function @{text id} *}
paulson@6171
    27
haftmann@22744
    28
definition
haftmann@22744
    29
  id :: "'a \<Rightarrow> 'a"
haftmann@22744
    30
where
haftmann@22744
    31
  "id = (\<lambda>x. x)"
nipkow@13910
    32
haftmann@26147
    33
lemma id_apply [simp]: "id x = x"
haftmann@26147
    34
  by (simp add: id_def)
haftmann@26147
    35
haftmann@26147
    36
lemma image_ident [simp]: "(%x. x) ` Y = Y"
haftmann@26147
    37
by blast
haftmann@26147
    38
haftmann@26147
    39
lemma image_id [simp]: "id ` Y = Y"
haftmann@26147
    40
by (simp add: id_def)
haftmann@26147
    41
haftmann@26147
    42
lemma vimage_ident [simp]: "(%x. x) -` Y = Y"
haftmann@26147
    43
by blast
haftmann@26147
    44
haftmann@26147
    45
lemma vimage_id [simp]: "id -` A = A"
haftmann@26147
    46
by (simp add: id_def)
haftmann@26147
    47
haftmann@26147
    48
haftmann@26147
    49
subsection {* The Composition Operator @{text "f \<circ> g"} *}
haftmann@26147
    50
haftmann@22744
    51
definition
haftmann@22744
    52
  comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o" 55)
haftmann@22744
    53
where
haftmann@22744
    54
  "f o g = (\<lambda>x. f (g x))"
oheimb@11123
    55
wenzelm@21210
    56
notation (xsymbols)
wenzelm@19656
    57
  comp  (infixl "\<circ>" 55)
wenzelm@19656
    58
wenzelm@21210
    59
notation (HTML output)
wenzelm@19656
    60
  comp  (infixl "\<circ>" 55)
wenzelm@19656
    61
paulson@13585
    62
text{*compatibility*}
paulson@13585
    63
lemmas o_def = comp_def
nipkow@2912
    64
paulson@13585
    65
lemma o_apply [simp]: "(f o g) x = f (g x)"
paulson@13585
    66
by (simp add: comp_def)
paulson@13585
    67
paulson@13585
    68
lemma o_assoc: "f o (g o h) = f o g o h"
paulson@13585
    69
by (simp add: comp_def)
paulson@13585
    70
paulson@13585
    71
lemma id_o [simp]: "id o g = g"
paulson@13585
    72
by (simp add: comp_def)
paulson@13585
    73
paulson@13585
    74
lemma o_id [simp]: "f o id = f"
paulson@13585
    75
by (simp add: comp_def)
paulson@13585
    76
haftmann@34150
    77
lemma o_eq_dest:
haftmann@34150
    78
  "a o b = c o d \<Longrightarrow> a (b v) = c (d v)"
haftmann@34150
    79
  by (simp only: o_def) (fact fun_cong)
haftmann@34150
    80
haftmann@34150
    81
lemma o_eq_elim:
haftmann@34150
    82
  "a o b = c o d \<Longrightarrow> ((\<And>v. a (b v) = c (d v)) \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@34150
    83
  by (erule meta_mp) (fact o_eq_dest) 
haftmann@34150
    84
paulson@13585
    85
lemma image_compose: "(f o g) ` r = f`(g`r)"
paulson@13585
    86
by (simp add: comp_def, blast)
paulson@13585
    87
paulson@33044
    88
lemma vimage_compose: "(g \<circ> f) -` x = f -` (g -` x)"
paulson@33044
    89
  by auto
paulson@33044
    90
paulson@13585
    91
lemma UN_o: "UNION A (g o f) = UNION (f`A) g"
paulson@13585
    92
by (unfold comp_def, blast)
paulson@13585
    93
paulson@13585
    94
haftmann@26588
    95
subsection {* The Forward Composition Operator @{text fcomp} *}
haftmann@26357
    96
haftmann@26357
    97
definition
haftmann@37751
    98
  fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>>" 60)
haftmann@26357
    99
where
haftmann@37751
   100
  "f \<circ>> g = (\<lambda>x. g (f x))"
haftmann@26357
   101
haftmann@37751
   102
lemma fcomp_apply [simp]:  "(f \<circ>> g) x = g (f x)"
haftmann@26357
   103
  by (simp add: fcomp_def)
haftmann@26357
   104
haftmann@37751
   105
lemma fcomp_assoc: "(f \<circ>> g) \<circ>> h = f \<circ>> (g \<circ>> h)"
haftmann@26357
   106
  by (simp add: fcomp_def)
haftmann@26357
   107
haftmann@37751
   108
lemma id_fcomp [simp]: "id \<circ>> g = g"
haftmann@26357
   109
  by (simp add: fcomp_def)
haftmann@26357
   110
haftmann@37751
   111
lemma fcomp_id [simp]: "f \<circ>> id = f"
haftmann@26357
   112
  by (simp add: fcomp_def)
haftmann@26357
   113
haftmann@31202
   114
code_const fcomp
haftmann@31202
   115
  (Eval infixl 1 "#>")
haftmann@31202
   116
haftmann@37751
   117
no_notation fcomp (infixl "\<circ>>" 60)
haftmann@26588
   118
haftmann@26357
   119
haftmann@40602
   120
subsection {* Mapping functions *}
haftmann@40602
   121
haftmann@40602
   122
definition map_fun :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow> 'd" where
haftmann@40602
   123
  "map_fun f g h = g \<circ> h \<circ> f"
haftmann@40602
   124
haftmann@40602
   125
lemma map_fun_apply [simp]:
haftmann@40602
   126
  "map_fun f g h x = g (h (f x))"
haftmann@40602
   127
  by (simp add: map_fun_def)
haftmann@40602
   128
haftmann@40602
   129
type_mapper map_fun
haftmann@40602
   130
  by (simp_all add: fun_eq_iff)
haftmann@40602
   131
haftmann@40602
   132
hoelzl@39076
   133
subsection {* Injectivity, Surjectivity and Bijectivity *}
hoelzl@39076
   134
hoelzl@39076
   135
definition inj_on :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool" where -- "injective"
hoelzl@39076
   136
  "inj_on f A \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. f x = f y \<longrightarrow> x = y)"
haftmann@26147
   137
hoelzl@39076
   138
definition surj_on :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> bool" where -- "surjective"
hoelzl@39076
   139
  "surj_on f B \<longleftrightarrow> B \<subseteq> range f"
hoelzl@39076
   140
hoelzl@39076
   141
definition bij_betw :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool" where -- "bijective"
hoelzl@39076
   142
  "bij_betw f A B \<longleftrightarrow> inj_on f A \<and> f ` A = B"
haftmann@26147
   143
haftmann@26147
   144
text{*A common special case: functions injective over the entire domain type.*}
haftmann@26147
   145
haftmann@26147
   146
abbreviation
hoelzl@39076
   147
  "inj f \<equiv> inj_on f UNIV"
haftmann@26147
   148
hoelzl@39076
   149
abbreviation
hoelzl@39076
   150
  "surj f \<equiv> surj_on f UNIV"
paulson@13585
   151
hoelzl@39076
   152
abbreviation
hoelzl@39076
   153
  "bij f \<equiv> bij_betw f UNIV UNIV"
haftmann@26147
   154
haftmann@26147
   155
lemma injI:
haftmann@26147
   156
  assumes "\<And>x y. f x = f y \<Longrightarrow> x = y"
haftmann@26147
   157
  shows "inj f"
haftmann@26147
   158
  using assms unfolding inj_on_def by auto
paulson@13585
   159
haftmann@31775
   160
text{*For Proofs in @{text "Tools/Datatype/datatype_rep_proofs"}*}
paulson@13585
   161
lemma datatype_injI:
paulson@13585
   162
    "(!! x. ALL y. f(x) = f(y) --> x=y) ==> inj(f)"
paulson@13585
   163
by (simp add: inj_on_def)
paulson@13585
   164
berghofe@13637
   165
theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)"
berghofe@13637
   166
  by (unfold inj_on_def, blast)
berghofe@13637
   167
paulson@13585
   168
lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y"
paulson@13585
   169
by (simp add: inj_on_def)
paulson@13585
   170
nipkow@32988
   171
lemma inj_on_eq_iff: "inj_on f A ==> x:A ==> y:A ==> (f(x) = f(y)) = (x=y)"
paulson@13585
   172
by (force simp add: inj_on_def)
paulson@13585
   173
haftmann@38620
   174
lemma inj_comp:
haftmann@38620
   175
  "inj f \<Longrightarrow> inj g \<Longrightarrow> inj (f \<circ> g)"
haftmann@38620
   176
  by (simp add: inj_on_def)
haftmann@38620
   177
haftmann@38620
   178
lemma inj_fun: "inj f \<Longrightarrow> inj (\<lambda>x y. f x)"
nipkow@39302
   179
  by (simp add: inj_on_def fun_eq_iff)
haftmann@38620
   180
nipkow@32988
   181
lemma inj_eq: "inj f ==> (f(x) = f(y)) = (x=y)"
nipkow@32988
   182
by (simp add: inj_on_eq_iff)
nipkow@32988
   183
haftmann@26147
   184
lemma inj_on_id[simp]: "inj_on id A"
hoelzl@39076
   185
  by (simp add: inj_on_def)
paulson@13585
   186
haftmann@26147
   187
lemma inj_on_id2[simp]: "inj_on (%x. x) A"
hoelzl@39076
   188
by (simp add: inj_on_def)
haftmann@26147
   189
hoelzl@39076
   190
lemma surj_id[simp]: "surj_on id A"
hoelzl@39076
   191
by (simp add: surj_on_def)
haftmann@26147
   192
hoelzl@39101
   193
lemma bij_id[simp]: "bij id"
hoelzl@39076
   194
by (simp add: bij_betw_def)
paulson@13585
   195
paulson@13585
   196
lemma inj_onI:
paulson@13585
   197
    "(!! x y. [|  x:A;  y:A;  f(x) = f(y) |] ==> x=y) ==> inj_on f A"
paulson@13585
   198
by (simp add: inj_on_def)
paulson@13585
   199
paulson@13585
   200
lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A"
paulson@13585
   201
by (auto dest:  arg_cong [of concl: g] simp add: inj_on_def)
paulson@13585
   202
paulson@13585
   203
lemma inj_onD: "[| inj_on f A;  f(x)=f(y);  x:A;  y:A |] ==> x=y"
paulson@13585
   204
by (unfold inj_on_def, blast)
paulson@13585
   205
paulson@13585
   206
lemma inj_on_iff: "[| inj_on f A;  x:A;  y:A |] ==> (f(x)=f(y)) = (x=y)"
paulson@13585
   207
by (blast dest!: inj_onD)
paulson@13585
   208
paulson@13585
   209
lemma comp_inj_on:
paulson@13585
   210
     "[| inj_on f A;  inj_on g (f`A) |] ==> inj_on (g o f) A"
paulson@13585
   211
by (simp add: comp_def inj_on_def)
paulson@13585
   212
nipkow@15303
   213
lemma inj_on_imageI: "inj_on (g o f) A \<Longrightarrow> inj_on g (f ` A)"
nipkow@15303
   214
apply(simp add:inj_on_def image_def)
nipkow@15303
   215
apply blast
nipkow@15303
   216
done
nipkow@15303
   217
nipkow@15439
   218
lemma inj_on_image_iff: "\<lbrakk> ALL x:A. ALL y:A. (g(f x) = g(f y)) = (g x = g y);
nipkow@15439
   219
  inj_on f A \<rbrakk> \<Longrightarrow> inj_on g (f ` A) = inj_on g A"
nipkow@15439
   220
apply(unfold inj_on_def)
nipkow@15439
   221
apply blast
nipkow@15439
   222
done
nipkow@15439
   223
paulson@13585
   224
lemma inj_on_contraD: "[| inj_on f A;  ~x=y;  x:A;  y:A |] ==> ~ f(x)=f(y)"
paulson@13585
   225
by (unfold inj_on_def, blast)
wenzelm@12258
   226
paulson@13585
   227
lemma inj_singleton: "inj (%s. {s})"
paulson@13585
   228
by (simp add: inj_on_def)
paulson@13585
   229
nipkow@15111
   230
lemma inj_on_empty[iff]: "inj_on f {}"
nipkow@15111
   231
by(simp add: inj_on_def)
nipkow@15111
   232
nipkow@15303
   233
lemma subset_inj_on: "[| inj_on f B; A <= B |] ==> inj_on f A"
paulson@13585
   234
by (unfold inj_on_def, blast)
paulson@13585
   235
nipkow@15111
   236
lemma inj_on_Un:
nipkow@15111
   237
 "inj_on f (A Un B) =
nipkow@15111
   238
  (inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})"
nipkow@15111
   239
apply(unfold inj_on_def)
nipkow@15111
   240
apply (blast intro:sym)
nipkow@15111
   241
done
nipkow@15111
   242
nipkow@15111
   243
lemma inj_on_insert[iff]:
nipkow@15111
   244
  "inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))"
nipkow@15111
   245
apply(unfold inj_on_def)
nipkow@15111
   246
apply (blast intro:sym)
nipkow@15111
   247
done
nipkow@15111
   248
nipkow@15111
   249
lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)"
nipkow@15111
   250
apply(unfold inj_on_def)
nipkow@15111
   251
apply (blast)
nipkow@15111
   252
done
nipkow@15111
   253
hoelzl@39076
   254
lemma surj_onI: "(\<And>x. x \<in> B \<Longrightarrow> g (f x) = x) \<Longrightarrow> surj_on g B"
hoelzl@39076
   255
  by (simp add: surj_on_def) (blast intro: sym)
hoelzl@39076
   256
hoelzl@39076
   257
lemma surj_onD: "surj_on f B \<Longrightarrow> y \<in> B \<Longrightarrow> \<exists>x. y = f x"
hoelzl@39076
   258
  by (auto simp: surj_on_def)
hoelzl@39076
   259
hoelzl@39076
   260
lemma surj_on_range_iff: "surj_on f B \<longleftrightarrow> (\<exists>A. f ` A = B)"
hoelzl@39076
   261
  unfolding surj_on_def by (auto intro!: exI[of _ "f -` B"])
paulson@13585
   262
hoelzl@39076
   263
lemma surj_def: "surj f \<longleftrightarrow> (\<forall>y. \<exists>x. y = f x)"
hoelzl@39076
   264
  by (simp add: surj_on_def subset_eq image_iff)
hoelzl@39076
   265
hoelzl@39076
   266
lemma surjI: "(\<And> x. g (f x) = x) \<Longrightarrow> surj g"
hoelzl@39076
   267
  by (blast intro: surj_onI)
paulson@13585
   268
hoelzl@39076
   269
lemma surjD: "surj f \<Longrightarrow> \<exists>x. y = f x"
hoelzl@39076
   270
  by (simp add: surj_def)
paulson@13585
   271
hoelzl@39076
   272
lemma surjE: "surj f \<Longrightarrow> (\<And>x. y = f x \<Longrightarrow> C) \<Longrightarrow> C"
hoelzl@39076
   273
  by (simp add: surj_def, blast)
paulson@13585
   274
paulson@13585
   275
lemma comp_surj: "[| surj f;  surj g |] ==> surj (g o f)"
paulson@13585
   276
apply (simp add: comp_def surj_def, clarify)
paulson@13585
   277
apply (drule_tac x = y in spec, clarify)
paulson@13585
   278
apply (drule_tac x = x in spec, blast)
paulson@13585
   279
done
paulson@13585
   280
hoelzl@39076
   281
lemma surj_range: "surj f \<Longrightarrow> range f = UNIV"
hoelzl@39076
   282
  by (auto simp add: surj_on_def)
hoelzl@39076
   283
hoelzl@39074
   284
lemma surj_range_iff: "surj f \<longleftrightarrow> range f = UNIV"
hoelzl@39076
   285
  unfolding surj_on_def by auto
hoelzl@39074
   286
hoelzl@39074
   287
lemma bij_betw_imp_surj: "bij_betw f A UNIV \<Longrightarrow> surj f"
hoelzl@39074
   288
  unfolding bij_betw_def surj_range_iff by auto
hoelzl@39074
   289
hoelzl@39076
   290
lemma bij_def: "bij f \<longleftrightarrow> inj f \<and> surj f"
hoelzl@39076
   291
  unfolding surj_range_iff bij_betw_def ..
hoelzl@39074
   292
paulson@13585
   293
lemma bijI: "[| inj f; surj f |] ==> bij f"
paulson@13585
   294
by (simp add: bij_def)
paulson@13585
   295
paulson@13585
   296
lemma bij_is_inj: "bij f ==> inj f"
paulson@13585
   297
by (simp add: bij_def)
paulson@13585
   298
paulson@13585
   299
lemma bij_is_surj: "bij f ==> surj f"
paulson@13585
   300
by (simp add: bij_def)
paulson@13585
   301
nipkow@26105
   302
lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A"
nipkow@26105
   303
by (simp add: bij_betw_def)
nipkow@26105
   304
hoelzl@39076
   305
lemma bij_betw_imp_surj_on: "bij_betw f A B \<Longrightarrow> surj_on f B"
hoelzl@39076
   306
by (auto simp: bij_betw_def surj_on_range_iff)
hoelzl@39076
   307
nipkow@32337
   308
lemma bij_comp: "bij f \<Longrightarrow> bij g \<Longrightarrow> bij (g o f)"
nipkow@32337
   309
by(fastsimp intro: comp_inj_on comp_surj simp: bij_def surj_range)
nipkow@32337
   310
nipkow@31438
   311
lemma bij_betw_trans:
nipkow@31438
   312
  "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (g o f) A C"
nipkow@31438
   313
by(auto simp add:bij_betw_def comp_inj_on)
nipkow@31438
   314
nipkow@26105
   315
lemma bij_betw_inv: assumes "bij_betw f A B" shows "EX g. bij_betw g B A"
nipkow@26105
   316
proof -
nipkow@26105
   317
  have i: "inj_on f A" and s: "f ` A = B"
nipkow@26105
   318
    using assms by(auto simp:bij_betw_def)
nipkow@26105
   319
  let ?P = "%b a. a:A \<and> f a = b" let ?g = "%b. The (?P b)"
nipkow@26105
   320
  { fix a b assume P: "?P b a"
nipkow@26105
   321
    hence ex1: "\<exists>a. ?P b a" using s unfolding image_def by blast
nipkow@26105
   322
    hence uex1: "\<exists>!a. ?P b a" by(blast dest:inj_onD[OF i])
nipkow@26105
   323
    hence " ?g b = a" using the1_equality[OF uex1, OF P] P by simp
nipkow@26105
   324
  } note g = this
nipkow@26105
   325
  have "inj_on ?g B"
nipkow@26105
   326
  proof(rule inj_onI)
nipkow@26105
   327
    fix x y assume "x:B" "y:B" "?g x = ?g y"
nipkow@26105
   328
    from s `x:B` obtain a1 where a1: "?P x a1" unfolding image_def by blast
nipkow@26105
   329
    from s `y:B` obtain a2 where a2: "?P y a2" unfolding image_def by blast
nipkow@26105
   330
    from g[OF a1] a1 g[OF a2] a2 `?g x = ?g y` show "x=y" by simp
nipkow@26105
   331
  qed
nipkow@26105
   332
  moreover have "?g ` B = A"
nipkow@26105
   333
  proof(auto simp:image_def)
nipkow@26105
   334
    fix b assume "b:B"
nipkow@26105
   335
    with s obtain a where P: "?P b a" unfolding image_def by blast
nipkow@26105
   336
    thus "?g b \<in> A" using g[OF P] by auto
nipkow@26105
   337
  next
nipkow@26105
   338
    fix a assume "a:A"
nipkow@26105
   339
    then obtain b where P: "?P b a" using s unfolding image_def by blast
nipkow@26105
   340
    then have "b:B" using s unfolding image_def by blast
nipkow@26105
   341
    with g[OF P] show "\<exists>b\<in>B. a = ?g b" by blast
nipkow@26105
   342
  qed
nipkow@26105
   343
  ultimately show ?thesis by(auto simp:bij_betw_def)
nipkow@26105
   344
qed
nipkow@26105
   345
hoelzl@39075
   346
lemma bij_betw_combine:
hoelzl@39075
   347
  assumes "bij_betw f A B" "bij_betw f C D" "B \<inter> D = {}"
hoelzl@39075
   348
  shows "bij_betw f (A \<union> C) (B \<union> D)"
hoelzl@39075
   349
  using assms unfolding bij_betw_def inj_on_Un image_Un by auto
hoelzl@39075
   350
paulson@13585
   351
lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A"
paulson@13585
   352
by (simp add: surj_range)
paulson@13585
   353
paulson@13585
   354
lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A"
paulson@13585
   355
by (simp add: inj_on_def, blast)
paulson@13585
   356
paulson@13585
   357
lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A"
paulson@13585
   358
apply (unfold surj_def)
paulson@13585
   359
apply (blast intro: sym)
paulson@13585
   360
done
paulson@13585
   361
paulson@13585
   362
lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A"
paulson@13585
   363
by (unfold inj_on_def, blast)
paulson@13585
   364
paulson@13585
   365
lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)"
paulson@13585
   366
apply (unfold bij_def)
paulson@13585
   367
apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD)
paulson@13585
   368
done
paulson@13585
   369
nipkow@31438
   370
lemma inj_on_Un_image_eq_iff: "inj_on f (A \<union> B) \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B"
nipkow@31438
   371
by(blast dest: inj_onD)
nipkow@31438
   372
paulson@13585
   373
lemma inj_on_image_Int:
paulson@13585
   374
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A Int B) = f`A Int f`B"
paulson@13585
   375
apply (simp add: inj_on_def, blast)
paulson@13585
   376
done
paulson@13585
   377
paulson@13585
   378
lemma inj_on_image_set_diff:
paulson@13585
   379
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A-B) = f`A - f`B"
paulson@13585
   380
apply (simp add: inj_on_def, blast)
paulson@13585
   381
done
paulson@13585
   382
paulson@13585
   383
lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B"
paulson@13585
   384
by (simp add: inj_on_def, blast)
paulson@13585
   385
paulson@13585
   386
lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B"
paulson@13585
   387
by (simp add: inj_on_def, blast)
paulson@13585
   388
paulson@13585
   389
lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)"
paulson@13585
   390
by (blast dest: injD)
paulson@13585
   391
paulson@13585
   392
lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)"
paulson@13585
   393
by (simp add: inj_on_def, blast)
paulson@13585
   394
paulson@13585
   395
lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)"
paulson@13585
   396
by (blast dest: injD)
paulson@13585
   397
paulson@13585
   398
(*injectivity's required.  Left-to-right inclusion holds even if A is empty*)
paulson@13585
   399
lemma image_INT:
paulson@13585
   400
   "[| inj_on f C;  ALL x:A. B x <= C;  j:A |]
paulson@13585
   401
    ==> f ` (INTER A B) = (INT x:A. f ` B x)"
paulson@13585
   402
apply (simp add: inj_on_def, blast)
paulson@13585
   403
done
paulson@13585
   404
paulson@13585
   405
(*Compare with image_INT: no use of inj_on, and if f is surjective then
paulson@13585
   406
  it doesn't matter whether A is empty*)
paulson@13585
   407
lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)"
paulson@13585
   408
apply (simp add: bij_def)
paulson@13585
   409
apply (simp add: inj_on_def surj_def, blast)
paulson@13585
   410
done
paulson@13585
   411
paulson@13585
   412
lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)"
paulson@13585
   413
by (auto simp add: surj_def)
paulson@13585
   414
paulson@13585
   415
lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)"
paulson@13585
   416
by (auto simp add: inj_on_def)
paulson@5852
   417
paulson@13585
   418
lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)"
paulson@13585
   419
apply (simp add: bij_def)
paulson@13585
   420
apply (rule equalityI)
paulson@13585
   421
apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset)
paulson@13585
   422
done
paulson@13585
   423
hoelzl@35584
   424
lemma (in ordered_ab_group_add) inj_uminus[simp, intro]: "inj_on uminus A"
hoelzl@35580
   425
  by (auto intro!: inj_onI)
paulson@13585
   426
hoelzl@35584
   427
lemma (in linorder) strict_mono_imp_inj_on: "strict_mono f \<Longrightarrow> inj_on f A"
hoelzl@35584
   428
  by (auto intro!: inj_onI dest: strict_mono_eq)
hoelzl@35584
   429
paulson@13585
   430
subsection{*Function Updating*}
paulson@13585
   431
haftmann@35416
   432
definition
haftmann@35416
   433
  fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)" where
haftmann@26147
   434
  "fun_upd f a b == % x. if x=a then b else f x"
haftmann@26147
   435
haftmann@26147
   436
nonterminals
haftmann@26147
   437
  updbinds updbind
haftmann@26147
   438
syntax
haftmann@26147
   439
  "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
haftmann@26147
   440
  ""         :: "updbind => updbinds"             ("_")
haftmann@26147
   441
  "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
wenzelm@35115
   442
  "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000, 0] 900)
haftmann@26147
   443
haftmann@26147
   444
translations
wenzelm@35115
   445
  "_Update f (_updbinds b bs)" == "_Update (_Update f b) bs"
wenzelm@35115
   446
  "f(x:=y)" == "CONST fun_upd f x y"
haftmann@26147
   447
haftmann@26147
   448
(* Hint: to define the sum of two functions (or maps), use sum_case.
haftmann@26147
   449
         A nice infix syntax could be defined (in Datatype.thy or below) by
wenzelm@35115
   450
notation
wenzelm@35115
   451
  sum_case  (infixr "'(+')"80)
haftmann@26147
   452
*)
haftmann@26147
   453
paulson@13585
   454
lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)"
paulson@13585
   455
apply (simp add: fun_upd_def, safe)
paulson@13585
   456
apply (erule subst)
paulson@13585
   457
apply (rule_tac [2] ext, auto)
paulson@13585
   458
done
paulson@13585
   459
paulson@13585
   460
(* f x = y ==> f(x:=y) = f *)
paulson@13585
   461
lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard]
paulson@13585
   462
paulson@13585
   463
(* f(x := f x) = f *)
paulson@17084
   464
lemmas fun_upd_triv = refl [THEN fun_upd_idem]
paulson@17084
   465
declare fun_upd_triv [iff]
paulson@13585
   466
paulson@13585
   467
lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)"
paulson@17084
   468
by (simp add: fun_upd_def)
paulson@13585
   469
paulson@13585
   470
(* fun_upd_apply supersedes these two,   but they are useful
paulson@13585
   471
   if fun_upd_apply is intentionally removed from the simpset *)
paulson@13585
   472
lemma fun_upd_same: "(f(x:=y)) x = y"
paulson@13585
   473
by simp
paulson@13585
   474
paulson@13585
   475
lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z"
paulson@13585
   476
by simp
paulson@13585
   477
paulson@13585
   478
lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)"
nipkow@39302
   479
by (simp add: fun_eq_iff)
paulson@13585
   480
paulson@13585
   481
lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)"
paulson@13585
   482
by (rule ext, auto)
paulson@13585
   483
nipkow@15303
   484
lemma inj_on_fun_updI: "\<lbrakk> inj_on f A; y \<notin> f`A \<rbrakk> \<Longrightarrow> inj_on (f(x:=y)) A"
krauss@34209
   485
by (fastsimp simp:inj_on_def image_def)
nipkow@15303
   486
paulson@15510
   487
lemma fun_upd_image:
paulson@15510
   488
     "f(x:=y) ` A = (if x \<in> A then insert y (f ` (A-{x})) else f ` A)"
paulson@15510
   489
by auto
paulson@15510
   490
nipkow@31080
   491
lemma fun_upd_comp: "f \<circ> (g(x := y)) = (f \<circ> g)(x := f y)"
krauss@34209
   492
by (auto intro: ext)
nipkow@31080
   493
haftmann@26147
   494
haftmann@26147
   495
subsection {* @{text override_on} *}
haftmann@26147
   496
haftmann@26147
   497
definition
haftmann@26147
   498
  override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
haftmann@26147
   499
where
haftmann@26147
   500
  "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)"
nipkow@13910
   501
nipkow@15691
   502
lemma override_on_emptyset[simp]: "override_on f g {} = f"
nipkow@15691
   503
by(simp add:override_on_def)
nipkow@13910
   504
nipkow@15691
   505
lemma override_on_apply_notin[simp]: "a ~: A ==> (override_on f g A) a = f a"
nipkow@15691
   506
by(simp add:override_on_def)
nipkow@13910
   507
nipkow@15691
   508
lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a"
nipkow@15691
   509
by(simp add:override_on_def)
nipkow@13910
   510
haftmann@26147
   511
haftmann@26147
   512
subsection {* @{text swap} *}
paulson@15510
   513
haftmann@22744
   514
definition
haftmann@22744
   515
  swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
haftmann@22744
   516
where
haftmann@22744
   517
  "swap a b f = f (a := f b, b:= f a)"
paulson@15510
   518
huffman@34101
   519
lemma swap_self [simp]: "swap a a f = f"
nipkow@15691
   520
by (simp add: swap_def)
paulson@15510
   521
paulson@15510
   522
lemma swap_commute: "swap a b f = swap b a f"
paulson@15510
   523
by (rule ext, simp add: fun_upd_def swap_def)
paulson@15510
   524
paulson@15510
   525
lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f"
paulson@15510
   526
by (rule ext, simp add: fun_upd_def swap_def)
paulson@15510
   527
huffman@34145
   528
lemma swap_triple:
huffman@34145
   529
  assumes "a \<noteq> c" and "b \<noteq> c"
huffman@34145
   530
  shows "swap a b (swap b c (swap a b f)) = swap a c f"
nipkow@39302
   531
  using assms by (simp add: fun_eq_iff swap_def)
huffman@34145
   532
huffman@34101
   533
lemma comp_swap: "f \<circ> swap a b g = swap a b (f \<circ> g)"
huffman@34101
   534
by (rule ext, simp add: fun_upd_def swap_def)
huffman@34101
   535
hoelzl@39076
   536
lemma swap_image_eq [simp]:
hoelzl@39076
   537
  assumes "a \<in> A" "b \<in> A" shows "swap a b f ` A = f ` A"
hoelzl@39076
   538
proof -
hoelzl@39076
   539
  have subset: "\<And>f. swap a b f ` A \<subseteq> f ` A"
hoelzl@39076
   540
    using assms by (auto simp: image_iff swap_def)
hoelzl@39076
   541
  then have "swap a b (swap a b f) ` A \<subseteq> (swap a b f) ` A" .
hoelzl@39076
   542
  with subset[of f] show ?thesis by auto
hoelzl@39076
   543
qed
hoelzl@39076
   544
paulson@15510
   545
lemma inj_on_imp_inj_on_swap:
hoelzl@39076
   546
  "\<lbrakk>inj_on f A; a \<in> A; b \<in> A\<rbrakk> \<Longrightarrow> inj_on (swap a b f) A"
hoelzl@39076
   547
  by (simp add: inj_on_def swap_def, blast)
paulson@15510
   548
paulson@15510
   549
lemma inj_on_swap_iff [simp]:
hoelzl@39076
   550
  assumes A: "a \<in> A" "b \<in> A" shows "inj_on (swap a b f) A \<longleftrightarrow> inj_on f A"
hoelzl@39075
   551
proof
paulson@15510
   552
  assume "inj_on (swap a b f) A"
hoelzl@39075
   553
  with A have "inj_on (swap a b (swap a b f)) A"
hoelzl@39075
   554
    by (iprover intro: inj_on_imp_inj_on_swap)
hoelzl@39075
   555
  thus "inj_on f A" by simp
paulson@15510
   556
next
paulson@15510
   557
  assume "inj_on f A"
krauss@34209
   558
  with A show "inj_on (swap a b f) A" by (iprover intro: inj_on_imp_inj_on_swap)
paulson@15510
   559
qed
paulson@15510
   560
hoelzl@39076
   561
lemma surj_imp_surj_swap: "surj f \<Longrightarrow> surj (swap a b f)"
hoelzl@39076
   562
  unfolding surj_range_iff by simp
paulson@15510
   563
hoelzl@39076
   564
lemma surj_swap_iff [simp]: "surj (swap a b f) \<longleftrightarrow> surj f"
hoelzl@39076
   565
  unfolding surj_range_iff by simp
haftmann@21547
   566
hoelzl@39076
   567
lemma bij_betw_swap_iff [simp]:
hoelzl@39076
   568
  "\<lbrakk> x \<in> A; y \<in> A \<rbrakk> \<Longrightarrow> bij_betw (swap x y f) A B \<longleftrightarrow> bij_betw f A B"
hoelzl@39076
   569
  by (auto simp: bij_betw_def)
hoelzl@39076
   570
hoelzl@39076
   571
lemma bij_swap_iff [simp]: "bij (swap a b f) \<longleftrightarrow> bij f"
hoelzl@39076
   572
  by simp
hoelzl@39075
   573
wenzelm@36176
   574
hide_const (open) swap
haftmann@21547
   575
haftmann@31949
   576
subsection {* Inversion of injective functions *}
haftmann@31949
   577
nipkow@33057
   578
definition the_inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
nipkow@33057
   579
"the_inv_into A f == %x. THE y. y : A & f y = x"
nipkow@32961
   580
nipkow@33057
   581
lemma the_inv_into_f_f:
nipkow@33057
   582
  "[| inj_on f A;  x : A |] ==> the_inv_into A f (f x) = x"
nipkow@33057
   583
apply (simp add: the_inv_into_def inj_on_def)
krauss@34209
   584
apply blast
nipkow@32961
   585
done
nipkow@32961
   586
nipkow@33057
   587
lemma f_the_inv_into_f:
nipkow@33057
   588
  "inj_on f A ==> y : f`A  ==> f (the_inv_into A f y) = y"
nipkow@33057
   589
apply (simp add: the_inv_into_def)
nipkow@32961
   590
apply (rule the1I2)
nipkow@32961
   591
 apply(blast dest: inj_onD)
nipkow@32961
   592
apply blast
nipkow@32961
   593
done
nipkow@32961
   594
nipkow@33057
   595
lemma the_inv_into_into:
nipkow@33057
   596
  "[| inj_on f A; x : f ` A; A <= B |] ==> the_inv_into A f x : B"
nipkow@33057
   597
apply (simp add: the_inv_into_def)
nipkow@32961
   598
apply (rule the1I2)
nipkow@32961
   599
 apply(blast dest: inj_onD)
nipkow@32961
   600
apply blast
nipkow@32961
   601
done
nipkow@32961
   602
nipkow@33057
   603
lemma the_inv_into_onto[simp]:
nipkow@33057
   604
  "inj_on f A ==> the_inv_into A f ` (f ` A) = A"
nipkow@33057
   605
by (fast intro:the_inv_into_into the_inv_into_f_f[symmetric])
nipkow@32961
   606
nipkow@33057
   607
lemma the_inv_into_f_eq:
nipkow@33057
   608
  "[| inj_on f A; f x = y; x : A |] ==> the_inv_into A f y = x"
nipkow@32961
   609
  apply (erule subst)
nipkow@33057
   610
  apply (erule the_inv_into_f_f, assumption)
nipkow@32961
   611
  done
nipkow@32961
   612
nipkow@33057
   613
lemma the_inv_into_comp:
nipkow@32961
   614
  "[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==>
nipkow@33057
   615
  the_inv_into A (f o g) x = (the_inv_into A g o the_inv_into (g ` A) f) x"
nipkow@33057
   616
apply (rule the_inv_into_f_eq)
nipkow@32961
   617
  apply (fast intro: comp_inj_on)
nipkow@33057
   618
 apply (simp add: f_the_inv_into_f the_inv_into_into)
nipkow@33057
   619
apply (simp add: the_inv_into_into)
nipkow@32961
   620
done
nipkow@32961
   621
nipkow@33057
   622
lemma inj_on_the_inv_into:
nipkow@33057
   623
  "inj_on f A \<Longrightarrow> inj_on (the_inv_into A f) (f ` A)"
nipkow@33057
   624
by (auto intro: inj_onI simp: image_def the_inv_into_f_f)
nipkow@32961
   625
nipkow@33057
   626
lemma bij_betw_the_inv_into:
nipkow@33057
   627
  "bij_betw f A B \<Longrightarrow> bij_betw (the_inv_into A f) B A"
nipkow@33057
   628
by (auto simp add: bij_betw_def inj_on_the_inv_into the_inv_into_into)
nipkow@32961
   629
berghofe@32998
   630
abbreviation the_inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
nipkow@33057
   631
  "the_inv f \<equiv> the_inv_into UNIV f"
berghofe@32998
   632
berghofe@32998
   633
lemma the_inv_f_f:
berghofe@32998
   634
  assumes "inj f"
berghofe@32998
   635
  shows "the_inv f (f x) = x" using assms UNIV_I
nipkow@33057
   636
  by (rule the_inv_into_f_f)
berghofe@32998
   637
haftmann@31949
   638
haftmann@22845
   639
subsection {* Proof tool setup *} 
haftmann@22845
   640
haftmann@22845
   641
text {* simplifies terms of the form
haftmann@22845
   642
  f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *}
haftmann@22845
   643
wenzelm@24017
   644
simproc_setup fun_upd2 ("f(v := w, x := y)") = {* fn _ =>
haftmann@22845
   645
let
haftmann@22845
   646
  fun gen_fun_upd NONE T _ _ = NONE
wenzelm@24017
   647
    | gen_fun_upd (SOME f) T x y = SOME (Const (@{const_name fun_upd}, T) $ f $ x $ y)
haftmann@22845
   648
  fun dest_fun_T1 (Type (_, T :: Ts)) = T
haftmann@22845
   649
  fun find_double (t as Const (@{const_name fun_upd},T) $ f $ x $ y) =
haftmann@22845
   650
    let
haftmann@22845
   651
      fun find (Const (@{const_name fun_upd},T) $ g $ v $ w) =
haftmann@22845
   652
            if v aconv x then SOME g else gen_fun_upd (find g) T v w
haftmann@22845
   653
        | find t = NONE
haftmann@22845
   654
    in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end
wenzelm@24017
   655
wenzelm@24017
   656
  fun proc ss ct =
wenzelm@24017
   657
    let
wenzelm@24017
   658
      val ctxt = Simplifier.the_context ss
wenzelm@24017
   659
      val t = Thm.term_of ct
wenzelm@24017
   660
    in
wenzelm@24017
   661
      case find_double t of
wenzelm@24017
   662
        (T, NONE) => NONE
wenzelm@24017
   663
      | (T, SOME rhs) =>
wenzelm@27330
   664
          SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs))
wenzelm@24017
   665
            (fn _ =>
wenzelm@24017
   666
              rtac eq_reflection 1 THEN
wenzelm@24017
   667
              rtac ext 1 THEN
wenzelm@24017
   668
              simp_tac (Simplifier.inherit_context ss @{simpset}) 1))
wenzelm@24017
   669
    end
wenzelm@24017
   670
in proc end
haftmann@22845
   671
*}
haftmann@22845
   672
haftmann@22845
   673
haftmann@21870
   674
subsection {* Code generator setup *}
haftmann@21870
   675
berghofe@25886
   676
types_code
berghofe@25886
   677
  "fun"  ("(_ ->/ _)")
berghofe@25886
   678
attach (term_of) {*
berghofe@25886
   679
fun term_of_fun_type _ aT _ bT _ = Free ("<function>", aT --> bT);
berghofe@25886
   680
*}
berghofe@25886
   681
attach (test) {*
berghofe@25886
   682
fun gen_fun_type aF aT bG bT i =
berghofe@25886
   683
  let
wenzelm@32740
   684
    val tab = Unsynchronized.ref [];
berghofe@25886
   685
    fun mk_upd (x, (_, y)) t = Const ("Fun.fun_upd",
berghofe@25886
   686
      (aT --> bT) --> aT --> bT --> aT --> bT) $ t $ aF x $ y ()
berghofe@25886
   687
  in
berghofe@25886
   688
    (fn x =>
berghofe@25886
   689
       case AList.lookup op = (!tab) x of
berghofe@25886
   690
         NONE =>
berghofe@25886
   691
           let val p as (y, _) = bG i
berghofe@25886
   692
           in (tab := (x, p) :: !tab; y) end
berghofe@25886
   693
       | SOME (y, _) => y,
berghofe@28711
   694
     fn () => Basics.fold mk_upd (!tab) (Const ("HOL.undefined", aT --> bT)))
berghofe@25886
   695
  end;
berghofe@25886
   696
*}
berghofe@25886
   697
haftmann@21870
   698
code_const "op \<circ>"
haftmann@21870
   699
  (SML infixl 5 "o")
haftmann@21870
   700
  (Haskell infixr 9 ".")
haftmann@21870
   701
haftmann@21906
   702
code_const "id"
haftmann@21906
   703
  (Haskell "id")
haftmann@21906
   704
nipkow@2912
   705
end