src/HOL/Tools/Meson/meson.ML
author wenzelm
Mon May 02 16:33:21 2011 +0200 (2011-05-02)
changeset 42616 92715b528e78
parent 42455 6702c984bf5a
child 42739 017e5dac8642
permissions -rw-r--r--
added Attrib.setup_config_XXX conveniences, with implicit setup of the background theory;
proper name bindings;
blanchet@39941
     1
(*  Title:      HOL/Tools/Meson/meson.ML
paulson@9840
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
blanchet@39941
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@9840
     4
wenzelm@9869
     5
The MESON resolution proof procedure for HOL.
wenzelm@29267
     6
When making clauses, avoids using the rewriter -- instead uses RS recursively.
paulson@9840
     7
*)
paulson@9840
     8
wenzelm@24300
     9
signature MESON =
paulson@15579
    10
sig
blanchet@39979
    11
  val trace : bool Config.T
blanchet@39979
    12
  val max_clauses : int Config.T
wenzelm@24300
    13
  val term_pair_of: indexname * (typ * 'a) -> term * 'a
wenzelm@24300
    14
  val size_of_subgoals: thm -> int
blanchet@39269
    15
  val has_too_many_clauses: Proof.context -> term -> bool
paulson@24937
    16
  val make_cnf: thm list -> thm -> Proof.context -> thm list * Proof.context
wenzelm@24300
    17
  val finish_cnf: thm list -> thm list
blanchet@38089
    18
  val presimplify: thm -> thm
wenzelm@32262
    19
  val make_nnf: Proof.context -> thm -> thm
blanchet@39950
    20
  val choice_theorems : theory -> thm list
blanchet@39950
    21
  val skolemize_with_choice_theorems : Proof.context -> thm list -> thm -> thm
blanchet@39904
    22
  val skolemize : Proof.context -> thm -> thm
wenzelm@24300
    23
  val is_fol_term: theory -> term -> bool
blanchet@35869
    24
  val make_clauses_unsorted: thm list -> thm list
wenzelm@24300
    25
  val make_clauses: thm list -> thm list
wenzelm@24300
    26
  val make_horns: thm list -> thm list
wenzelm@24300
    27
  val best_prolog_tac: (thm -> int) -> thm list -> tactic
wenzelm@24300
    28
  val depth_prolog_tac: thm list -> tactic
wenzelm@24300
    29
  val gocls: thm list -> thm list
blanchet@39900
    30
  val skolemize_prems_tac : Proof.context -> thm list -> int -> tactic
blanchet@39037
    31
  val MESON:
blanchet@39269
    32
    tactic -> (thm list -> thm list) -> (thm list -> tactic) -> Proof.context
blanchet@39269
    33
    -> int -> tactic
wenzelm@32262
    34
  val best_meson_tac: (thm -> int) -> Proof.context -> int -> tactic
wenzelm@32262
    35
  val safe_best_meson_tac: Proof.context -> int -> tactic
wenzelm@32262
    36
  val depth_meson_tac: Proof.context -> int -> tactic
wenzelm@24300
    37
  val prolog_step_tac': thm list -> int -> tactic
wenzelm@24300
    38
  val iter_deepen_prolog_tac: thm list -> tactic
wenzelm@32262
    39
  val iter_deepen_meson_tac: Proof.context -> thm list -> int -> tactic
wenzelm@24300
    40
  val make_meta_clause: thm -> thm
wenzelm@24300
    41
  val make_meta_clauses: thm list -> thm list
wenzelm@32262
    42
  val meson_tac: Proof.context -> thm list -> int -> tactic
paulson@15579
    43
end
paulson@9840
    44
blanchet@39901
    45
structure Meson : MESON =
paulson@15579
    46
struct
paulson@9840
    47
wenzelm@42616
    48
val trace = Attrib.setup_config_bool @{binding meson_trace} (K false)
blanchet@39979
    49
blanchet@39979
    50
fun trace_msg ctxt msg = if Config.get ctxt trace then tracing (msg ()) else ()
wenzelm@32955
    51
blanchet@39979
    52
val max_clauses_default = 60
wenzelm@42616
    53
val max_clauses = Attrib.setup_config_int @{binding meson_max_clauses} (K max_clauses_default)
paulson@26562
    54
wenzelm@38802
    55
(*No known example (on 1-5-2007) needs even thirty*)
wenzelm@38802
    56
val iter_deepen_limit = 50;
wenzelm@38802
    57
haftmann@31454
    58
val disj_forward = @{thm disj_forward};
haftmann@31454
    59
val disj_forward2 = @{thm disj_forward2};
haftmann@31454
    60
val make_pos_rule = @{thm make_pos_rule};
haftmann@31454
    61
val make_pos_rule' = @{thm make_pos_rule'};
haftmann@31454
    62
val make_pos_goal = @{thm make_pos_goal};
haftmann@31454
    63
val make_neg_rule = @{thm make_neg_rule};
haftmann@31454
    64
val make_neg_rule' = @{thm make_neg_rule'};
haftmann@31454
    65
val make_neg_goal = @{thm make_neg_goal};
haftmann@31454
    66
val conj_forward = @{thm conj_forward};
haftmann@31454
    67
val all_forward = @{thm all_forward};
haftmann@31454
    68
val ex_forward = @{thm ex_forward};
haftmann@31454
    69
blanchet@39953
    70
val not_conjD = @{thm not_conjD};
blanchet@39953
    71
val not_disjD = @{thm not_disjD};
blanchet@39953
    72
val not_notD = @{thm not_notD};
blanchet@39953
    73
val not_allD = @{thm not_allD};
blanchet@39953
    74
val not_exD = @{thm not_exD};
blanchet@39953
    75
val imp_to_disjD = @{thm imp_to_disjD};
blanchet@39953
    76
val not_impD = @{thm not_impD};
blanchet@39953
    77
val iff_to_disjD = @{thm iff_to_disjD};
blanchet@39953
    78
val not_iffD = @{thm not_iffD};
blanchet@39953
    79
val conj_exD1 = @{thm conj_exD1};
blanchet@39953
    80
val conj_exD2 = @{thm conj_exD2};
blanchet@39953
    81
val disj_exD = @{thm disj_exD};
blanchet@39953
    82
val disj_exD1 = @{thm disj_exD1};
blanchet@39953
    83
val disj_exD2 = @{thm disj_exD2};
blanchet@39953
    84
val disj_assoc = @{thm disj_assoc};
blanchet@39953
    85
val disj_comm = @{thm disj_comm};
blanchet@39953
    86
val disj_FalseD1 = @{thm disj_FalseD1};
blanchet@39953
    87
val disj_FalseD2 = @{thm disj_FalseD2};
paulson@9840
    88
paulson@9840
    89
paulson@15579
    90
(**** Operators for forward proof ****)
paulson@15579
    91
paulson@20417
    92
paulson@20417
    93
(** First-order Resolution **)
paulson@20417
    94
paulson@20417
    95
fun term_pair_of (ix, (ty,t)) = (Var (ix,ty), t);
paulson@20417
    96
paulson@20417
    97
(*FIXME: currently does not "rename variables apart"*)
paulson@20417
    98
fun first_order_resolve thA thB =
wenzelm@32262
    99
  (case
wenzelm@32262
   100
    try (fn () =>
wenzelm@32262
   101
      let val thy = theory_of_thm thA
wenzelm@32262
   102
          val tmA = concl_of thA
wenzelm@32262
   103
          val Const("==>",_) $ tmB $ _ = prop_of thB
blanchet@37398
   104
          val tenv =
blanchet@37410
   105
            Pattern.first_order_match thy (tmB, tmA)
blanchet@37410
   106
                                          (Vartab.empty, Vartab.empty) |> snd
wenzelm@32262
   107
          val ct_pairs = map (pairself (cterm_of thy) o term_pair_of) (Vartab.dest tenv)
wenzelm@32262
   108
      in  thA RS (cterm_instantiate ct_pairs thB)  end) () of
wenzelm@32262
   109
    SOME th => th
blanchet@37398
   110
  | NONE => raise THM ("first_order_resolve", 0, [thA, thB]))
paulson@18175
   111
blanchet@40262
   112
(* Hack to make it less likely that we lose our precious bound variable names in
blanchet@40262
   113
   "rename_bound_vars_RS" below, because of a clash. *)
blanchet@40262
   114
val protect_prefix = "Meson_xyzzy"
blanchet@40262
   115
blanchet@40262
   116
fun protect_bound_var_names (t $ u) =
blanchet@40262
   117
    protect_bound_var_names t $ protect_bound_var_names u
blanchet@40262
   118
  | protect_bound_var_names (Abs (s, T, t')) =
blanchet@40262
   119
    Abs (protect_prefix ^ s, T, protect_bound_var_names t')
blanchet@40262
   120
  | protect_bound_var_names t = t
blanchet@39930
   121
blanchet@40262
   122
fun fix_bound_var_names old_t new_t =
blanchet@40262
   123
  let
blanchet@40262
   124
    fun quant_of @{const_name All} = SOME true
blanchet@40262
   125
      | quant_of @{const_name Ball} = SOME true
blanchet@40262
   126
      | quant_of @{const_name Ex} = SOME false
blanchet@40262
   127
      | quant_of @{const_name Bex} = SOME false
blanchet@40262
   128
      | quant_of _ = NONE
blanchet@40262
   129
    val flip_quant = Option.map not
blanchet@40262
   130
    fun some_eq (SOME x) (SOME y) = x = y
blanchet@40262
   131
      | some_eq _ _ = false
blanchet@40262
   132
    fun add_names quant (Const (quant_s, _) $ Abs (s, _, t')) =
blanchet@40262
   133
        add_names quant t' #> some_eq quant (quant_of quant_s) ? cons s
blanchet@40262
   134
      | add_names quant (@{const Not} $ t) = add_names (flip_quant quant) t
blanchet@40262
   135
      | add_names quant (@{const implies} $ t1 $ t2) =
blanchet@40262
   136
        add_names (flip_quant quant) t1 #> add_names quant t2
blanchet@40262
   137
      | add_names quant (t1 $ t2) = fold (add_names quant) [t1, t2]
blanchet@40262
   138
      | add_names _ _ = I
blanchet@40262
   139
    fun lost_names quant =
blanchet@40262
   140
      subtract (op =) (add_names quant new_t []) (add_names quant old_t [])
blanchet@40262
   141
    fun aux ((t1 as Const (quant_s, _)) $ (Abs (s, T, t'))) =
blanchet@40262
   142
      t1 $ Abs (s |> String.isPrefix protect_prefix s
blanchet@40262
   143
                   ? perhaps (try (fn _ => hd (lost_names (quant_of quant_s)))),
blanchet@40262
   144
                T, aux t')
blanchet@40262
   145
      | aux (t1 $ t2) = aux t1 $ aux t2
blanchet@40262
   146
      | aux t = t
blanchet@40262
   147
  in aux new_t end
blanchet@39930
   148
blanchet@40262
   149
(* Forward proof while preserving bound variables names *)
blanchet@40262
   150
fun rename_bound_vars_RS th rl =
blanchet@39904
   151
  let
blanchet@39904
   152
    val t = concl_of th
blanchet@39930
   153
    val r = concl_of rl
blanchet@40262
   154
    val th' = th RS Thm.rename_boundvars r (protect_bound_var_names r) rl
blanchet@39904
   155
    val t' = concl_of th'
blanchet@40262
   156
  in Thm.rename_boundvars t' (fix_bound_var_names t t') th' end
paulson@24937
   157
paulson@24937
   158
(*raises exception if no rules apply*)
wenzelm@24300
   159
fun tryres (th, rls) =
paulson@18141
   160
  let fun tryall [] = raise THM("tryres", 0, th::rls)
blanchet@40262
   161
        | tryall (rl::rls) =
blanchet@40262
   162
          (rename_bound_vars_RS th rl handle THM _ => tryall rls)
paulson@18141
   163
  in  tryall rls  end;
wenzelm@24300
   164
paulson@21050
   165
(*Permits forward proof from rules that discharge assumptions. The supplied proof state st,
paulson@21050
   166
  e.g. from conj_forward, should have the form
paulson@21050
   167
    "[| P' ==> ?P; Q' ==> ?Q |] ==> ?P & ?Q"
paulson@21050
   168
  and the effect should be to instantiate ?P and ?Q with normalized versions of P' and Q'.*)
wenzelm@32262
   169
fun forward_res ctxt nf st =
paulson@21050
   170
  let fun forward_tacf [prem] = rtac (nf prem) 1
wenzelm@24300
   171
        | forward_tacf prems =
wenzelm@32091
   172
            error (cat_lines
wenzelm@32091
   173
              ("Bad proof state in forward_res, please inform lcp@cl.cam.ac.uk:" ::
wenzelm@32262
   174
                Display.string_of_thm ctxt st ::
wenzelm@32262
   175
                "Premises:" :: map (Display.string_of_thm ctxt) prems))
paulson@21050
   176
  in
wenzelm@37781
   177
    case Seq.pull (ALLGOALS (Misc_Legacy.METAHYPS forward_tacf) st)
paulson@21050
   178
    of SOME(th,_) => th
paulson@21050
   179
     | NONE => raise THM("forward_res", 0, [st])
paulson@21050
   180
  end;
paulson@15579
   181
paulson@20134
   182
(*Are any of the logical connectives in "bs" present in the term?*)
paulson@20134
   183
fun has_conns bs =
blanchet@39328
   184
  let fun has (Const _) = false
haftmann@38557
   185
        | has (Const(@{const_name Trueprop},_) $ p) = has p
haftmann@38557
   186
        | has (Const(@{const_name Not},_) $ p) = has p
haftmann@38795
   187
        | has (Const(@{const_name HOL.disj},_) $ p $ q) = member (op =) bs @{const_name HOL.disj} orelse has p orelse has q
haftmann@38795
   188
        | has (Const(@{const_name HOL.conj},_) $ p $ q) = member (op =) bs @{const_name HOL.conj} orelse has p orelse has q
haftmann@38557
   189
        | has (Const(@{const_name All},_) $ Abs(_,_,p)) = member (op =) bs @{const_name All} orelse has p
haftmann@38557
   190
        | has (Const(@{const_name Ex},_) $ Abs(_,_,p)) = member (op =) bs @{const_name Ex} orelse has p
wenzelm@24300
   191
        | has _ = false
paulson@15579
   192
  in  has  end;
wenzelm@24300
   193
paulson@9840
   194
paulson@15579
   195
(**** Clause handling ****)
paulson@9840
   196
haftmann@38557
   197
fun literals (Const(@{const_name Trueprop},_) $ P) = literals P
haftmann@38795
   198
  | literals (Const(@{const_name HOL.disj},_) $ P $ Q) = literals P @ literals Q
haftmann@38557
   199
  | literals (Const(@{const_name Not},_) $ P) = [(false,P)]
paulson@15579
   200
  | literals P = [(true,P)];
paulson@9840
   201
paulson@15579
   202
(*number of literals in a term*)
paulson@15579
   203
val nliterals = length o literals;
paulson@9840
   204
paulson@18389
   205
paulson@18389
   206
(*** Tautology Checking ***)
paulson@18389
   207
haftmann@38795
   208
fun signed_lits_aux (Const (@{const_name HOL.disj}, _) $ P $ Q) (poslits, neglits) =
paulson@18389
   209
      signed_lits_aux Q (signed_lits_aux P (poslits, neglits))
haftmann@38557
   210
  | signed_lits_aux (Const(@{const_name Not},_) $ P) (poslits, neglits) = (poslits, P::neglits)
paulson@18389
   211
  | signed_lits_aux P (poslits, neglits) = (P::poslits, neglits);
wenzelm@24300
   212
paulson@18389
   213
fun signed_lits th = signed_lits_aux (HOLogic.dest_Trueprop (concl_of th)) ([],[]);
paulson@18389
   214
paulson@18389
   215
(*Literals like X=X are tautologous*)
haftmann@38864
   216
fun taut_poslit (Const(@{const_name HOL.eq},_) $ t $ u) = t aconv u
haftmann@38557
   217
  | taut_poslit (Const(@{const_name True},_)) = true
paulson@18389
   218
  | taut_poslit _ = false;
paulson@18389
   219
paulson@18389
   220
fun is_taut th =
paulson@18389
   221
  let val (poslits,neglits) = signed_lits th
paulson@18389
   222
  in  exists taut_poslit poslits
paulson@18389
   223
      orelse
wenzelm@20073
   224
      exists (member (op aconv) neglits) (HOLogic.false_const :: poslits)
paulson@19894
   225
  end
wenzelm@24300
   226
  handle TERM _ => false;       (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   227
paulson@18389
   228
paulson@18389
   229
(*** To remove trivial negated equality literals from clauses ***)
paulson@18389
   230
paulson@18389
   231
(*They are typically functional reflexivity axioms and are the converses of
paulson@18389
   232
  injectivity equivalences*)
wenzelm@24300
   233
blanchet@39953
   234
val not_refl_disj_D = @{thm not_refl_disj_D};
paulson@18389
   235
paulson@20119
   236
(*Is either term a Var that does not properly occur in the other term?*)
paulson@20119
   237
fun eliminable (t as Var _, u) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   238
  | eliminable (u, t as Var _) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   239
  | eliminable _ = false;
paulson@20119
   240
paulson@18389
   241
fun refl_clause_aux 0 th = th
paulson@18389
   242
  | refl_clause_aux n th =
paulson@18389
   243
       case HOLogic.dest_Trueprop (concl_of th) of
haftmann@38795
   244
          (Const (@{const_name HOL.disj}, _) $ (Const (@{const_name HOL.disj}, _) $ _ $ _) $ _) =>
paulson@18389
   245
            refl_clause_aux n (th RS disj_assoc)    (*isolate an atom as first disjunct*)
haftmann@38864
   246
        | (Const (@{const_name HOL.disj}, _) $ (Const(@{const_name Not},_) $ (Const(@{const_name HOL.eq},_) $ t $ u)) $ _) =>
wenzelm@24300
   247
            if eliminable(t,u)
wenzelm@24300
   248
            then refl_clause_aux (n-1) (th RS not_refl_disj_D)  (*Var inequation: delete*)
wenzelm@24300
   249
            else refl_clause_aux (n-1) (th RS disj_comm)  (*not between Vars: ignore*)
haftmann@38795
   250
        | (Const (@{const_name HOL.disj}, _) $ _ $ _) => refl_clause_aux n (th RS disj_comm)
wenzelm@24300
   251
        | _ => (*not a disjunction*) th;
paulson@18389
   252
haftmann@38795
   253
fun notequal_lits_count (Const (@{const_name HOL.disj}, _) $ P $ Q) =
paulson@18389
   254
      notequal_lits_count P + notequal_lits_count Q
haftmann@38864
   255
  | notequal_lits_count (Const(@{const_name Not},_) $ (Const(@{const_name HOL.eq},_) $ _ $ _)) = 1
paulson@18389
   256
  | notequal_lits_count _ = 0;
paulson@18389
   257
paulson@18389
   258
(*Simplify a clause by applying reflexivity to its negated equality literals*)
wenzelm@24300
   259
fun refl_clause th =
paulson@18389
   260
  let val neqs = notequal_lits_count (HOLogic.dest_Trueprop (concl_of th))
paulson@19894
   261
  in  zero_var_indexes (refl_clause_aux neqs th)  end
wenzelm@24300
   262
  handle TERM _ => th;  (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   263
paulson@18389
   264
paulson@24937
   265
(*** Removal of duplicate literals ***)
paulson@24937
   266
paulson@24937
   267
(*Forward proof, passing extra assumptions as theorems to the tactic*)
blanchet@39328
   268
fun forward_res2 nf hyps st =
paulson@24937
   269
  case Seq.pull
paulson@24937
   270
        (REPEAT
wenzelm@37781
   271
         (Misc_Legacy.METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
paulson@24937
   272
         st)
paulson@24937
   273
  of SOME(th,_) => th
paulson@24937
   274
   | NONE => raise THM("forward_res2", 0, [st]);
paulson@24937
   275
paulson@24937
   276
(*Remove duplicates in P|Q by assuming ~P in Q
paulson@24937
   277
  rls (initially []) accumulates assumptions of the form P==>False*)
wenzelm@32262
   278
fun nodups_aux ctxt rls th = nodups_aux ctxt rls (th RS disj_assoc)
paulson@24937
   279
    handle THM _ => tryres(th,rls)
blanchet@39328
   280
    handle THM _ => tryres(forward_res2 (nodups_aux ctxt) rls (th RS disj_forward2),
paulson@24937
   281
                           [disj_FalseD1, disj_FalseD2, asm_rl])
paulson@24937
   282
    handle THM _ => th;
paulson@24937
   283
paulson@24937
   284
(*Remove duplicate literals, if there are any*)
wenzelm@32262
   285
fun nodups ctxt th =
paulson@24937
   286
  if has_duplicates (op =) (literals (prop_of th))
wenzelm@32262
   287
    then nodups_aux ctxt [] th
paulson@24937
   288
    else th;
paulson@24937
   289
paulson@24937
   290
paulson@18389
   291
(*** The basic CNF transformation ***)
paulson@18389
   292
blanchet@39328
   293
fun estimated_num_clauses bound t =
paulson@26562
   294
 let
blanchet@39269
   295
  fun sum x y = if x < bound andalso y < bound then x+y else bound
blanchet@39269
   296
  fun prod x y = if x < bound andalso y < bound then x*y else bound
paulson@26562
   297
  
paulson@26562
   298
  (*Estimate the number of clauses in order to detect infeasible theorems*)
haftmann@38557
   299
  fun signed_nclauses b (Const(@{const_name Trueprop},_) $ t) = signed_nclauses b t
haftmann@38557
   300
    | signed_nclauses b (Const(@{const_name Not},_) $ t) = signed_nclauses (not b) t
haftmann@38795
   301
    | signed_nclauses b (Const(@{const_name HOL.conj},_) $ t $ u) =
wenzelm@32960
   302
        if b then sum (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32960
   303
             else prod (signed_nclauses b t) (signed_nclauses b u)
haftmann@38795
   304
    | signed_nclauses b (Const(@{const_name HOL.disj},_) $ t $ u) =
wenzelm@32960
   305
        if b then prod (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32960
   306
             else sum (signed_nclauses b t) (signed_nclauses b u)
haftmann@38786
   307
    | signed_nclauses b (Const(@{const_name HOL.implies},_) $ t $ u) =
wenzelm@32960
   308
        if b then prod (signed_nclauses (not b) t) (signed_nclauses b u)
wenzelm@32960
   309
             else sum (signed_nclauses (not b) t) (signed_nclauses b u)
haftmann@38864
   310
    | signed_nclauses b (Const(@{const_name HOL.eq}, Type ("fun", [T, _])) $ t $ u) =
wenzelm@32960
   311
        if T = HOLogic.boolT then (*Boolean equality is if-and-only-if*)
wenzelm@32960
   312
            if b then sum (prod (signed_nclauses (not b) t) (signed_nclauses b u))
wenzelm@32960
   313
                          (prod (signed_nclauses (not b) u) (signed_nclauses b t))
wenzelm@32960
   314
                 else sum (prod (signed_nclauses b t) (signed_nclauses b u))
wenzelm@32960
   315
                          (prod (signed_nclauses (not b) t) (signed_nclauses (not b) u))
wenzelm@32960
   316
        else 1
haftmann@38557
   317
    | signed_nclauses b (Const(@{const_name Ex}, _) $ Abs (_,_,t)) = signed_nclauses b t
haftmann@38557
   318
    | signed_nclauses b (Const(@{const_name All},_) $ Abs (_,_,t)) = signed_nclauses b t
paulson@26562
   319
    | signed_nclauses _ _ = 1; (* literal *)
blanchet@39269
   320
 in signed_nclauses true t end
blanchet@39269
   321
blanchet@39269
   322
fun has_too_many_clauses ctxt t =
blanchet@39269
   323
  let val max_cl = Config.get ctxt max_clauses in
blanchet@39328
   324
    estimated_num_clauses (max_cl + 1) t > max_cl
blanchet@39269
   325
  end
paulson@19894
   326
paulson@15579
   327
(*Replaces universally quantified variables by FREE variables -- because
paulson@24937
   328
  assumptions may not contain scheme variables.  Later, generalize using Variable.export. *)
paulson@24937
   329
local  
paulson@24937
   330
  val spec_var = Thm.dest_arg (Thm.dest_arg (#2 (Thm.dest_implies (Thm.cprop_of spec))));
paulson@24937
   331
  val spec_varT = #T (Thm.rep_cterm spec_var);
haftmann@38557
   332
  fun name_of (Const (@{const_name All}, _) $ Abs(x,_,_)) = x | name_of _ = Name.uu;
paulson@24937
   333
in  
paulson@24937
   334
  fun freeze_spec th ctxt =
paulson@24937
   335
    let
wenzelm@42361
   336
      val cert = Thm.cterm_of (Proof_Context.theory_of ctxt);
paulson@24937
   337
      val ([x], ctxt') = Variable.variant_fixes [name_of (HOLogic.dest_Trueprop (concl_of th))] ctxt;
paulson@24937
   338
      val spec' = Thm.instantiate ([], [(spec_var, cert (Free (x, spec_varT)))]) spec;
paulson@24937
   339
    in (th RS spec', ctxt') end
paulson@24937
   340
end;
paulson@9840
   341
paulson@15998
   342
(*Used with METAHYPS below. There is one assumption, which gets bound to prem
paulson@15998
   343
  and then normalized via function nf. The normal form is given to resolve_tac,
paulson@22515
   344
  instantiate a Boolean variable created by resolution with disj_forward. Since
paulson@22515
   345
  (nf prem) returns a LIST of theorems, we can backtrack to get all combinations.*)
paulson@15579
   346
fun resop nf [prem] = resolve_tac (nf prem) 1;
paulson@9840
   347
blanchet@39037
   348
(* Any need to extend this list with "HOL.type_class", "HOL.eq_class",
blanchet@39037
   349
   and "Pure.term"? *)
haftmann@38557
   350
val has_meta_conn = exists_Const (member (op =) ["==", "==>", "=simp=>", "all", "prop"] o #1);
paulson@20417
   351
blanchet@37410
   352
fun apply_skolem_theorem (th, rls) =
blanchet@37398
   353
  let
blanchet@37410
   354
    fun tryall [] = raise THM ("apply_skolem_theorem", 0, th::rls)
blanchet@37398
   355
      | tryall (rl :: rls) =
blanchet@37398
   356
        first_order_resolve th rl handle THM _ => tryall rls
blanchet@37398
   357
  in tryall rls end
paulson@22515
   358
blanchet@37410
   359
(* Conjunctive normal form, adding clauses from th in front of ths (for foldr).
blanchet@37410
   360
   Strips universal quantifiers and breaks up conjunctions.
blanchet@37410
   361
   Eliminates existential quantifiers using Skolemization theorems. *)
blanchet@39886
   362
fun cnf old_skolem_ths ctxt (th, ths) =
wenzelm@33222
   363
  let val ctxtr = Unsynchronized.ref ctxt   (* FIXME ??? *)
paulson@24937
   364
      fun cnf_aux (th,ths) =
wenzelm@24300
   365
        if not (can HOLogic.dest_Trueprop (prop_of th)) then ths (*meta-level: ignore*)
haftmann@38795
   366
        else if not (has_conns [@{const_name All}, @{const_name Ex}, @{const_name HOL.conj}] (prop_of th))
wenzelm@32262
   367
        then nodups ctxt th :: ths (*no work to do, terminate*)
wenzelm@24300
   368
        else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
haftmann@38795
   369
            Const (@{const_name HOL.conj}, _) => (*conjunction*)
wenzelm@24300
   370
                cnf_aux (th RS conjunct1, cnf_aux (th RS conjunct2, ths))
haftmann@38557
   371
          | Const (@{const_name All}, _) => (*universal quantifier*)
paulson@24937
   372
                let val (th',ctxt') = freeze_spec th (!ctxtr)
paulson@24937
   373
                in  ctxtr := ctxt'; cnf_aux (th', ths) end
haftmann@38557
   374
          | Const (@{const_name Ex}, _) =>
wenzelm@24300
   375
              (*existential quantifier: Insert Skolem functions*)
blanchet@39886
   376
              cnf_aux (apply_skolem_theorem (th, old_skolem_ths), ths)
haftmann@38795
   377
          | Const (@{const_name HOL.disj}, _) =>
wenzelm@24300
   378
              (*Disjunction of P, Q: Create new goal of proving ?P | ?Q and solve it using
wenzelm@24300
   379
                all combinations of converting P, Q to CNF.*)
wenzelm@24300
   380
              let val tac =
wenzelm@37781
   381
                  Misc_Legacy.METAHYPS (resop cnf_nil) 1 THEN
wenzelm@37781
   382
                   (fn st' => st' |> Misc_Legacy.METAHYPS (resop cnf_nil) 1)
wenzelm@24300
   383
              in  Seq.list_of (tac (th RS disj_forward)) @ ths  end
wenzelm@32262
   384
          | _ => nodups ctxt th :: ths  (*no work to do*)
paulson@19154
   385
      and cnf_nil th = cnf_aux (th,[])
blanchet@39269
   386
      val cls =
blanchet@39269
   387
            if has_too_many_clauses ctxt (concl_of th)
blanchet@39979
   388
            then (trace_msg ctxt (fn () => "cnf is ignoring: " ^ Display.string_of_thm ctxt th); ths)
wenzelm@32960
   389
            else cnf_aux (th,ths)
paulson@24937
   390
  in  (cls, !ctxtr)  end;
paulson@22515
   391
blanchet@39886
   392
fun make_cnf old_skolem_ths th ctxt = cnf old_skolem_ths ctxt (th, [])
paulson@20417
   393
paulson@20417
   394
(*Generalization, removal of redundant equalities, removal of tautologies.*)
paulson@24937
   395
fun finish_cnf ths = filter (not o is_taut) (map refl_clause ths);
paulson@9840
   396
paulson@9840
   397
paulson@15579
   398
(**** Generation of contrapositives ****)
paulson@9840
   399
haftmann@38557
   400
fun is_left (Const (@{const_name Trueprop}, _) $
haftmann@38795
   401
               (Const (@{const_name HOL.disj}, _) $ (Const (@{const_name HOL.disj}, _) $ _ $ _) $ _)) = true
paulson@21102
   402
  | is_left _ = false;
wenzelm@24300
   403
paulson@15579
   404
(*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
wenzelm@24300
   405
fun assoc_right th =
paulson@21102
   406
  if is_left (prop_of th) then assoc_right (th RS disj_assoc)
paulson@21102
   407
  else th;
paulson@9840
   408
paulson@15579
   409
(*Must check for negative literal first!*)
paulson@15579
   410
val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
paulson@9840
   411
paulson@15579
   412
(*For ordinary resolution. *)
paulson@15579
   413
val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
paulson@9840
   414
paulson@15579
   415
(*Create a goal or support clause, conclusing False*)
paulson@15579
   416
fun make_goal th =   (*Must check for negative literal first!*)
paulson@15579
   417
    make_goal (tryres(th, clause_rules))
paulson@15579
   418
  handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
paulson@9840
   419
paulson@15579
   420
(*Sort clauses by number of literals*)
paulson@15579
   421
fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
paulson@9840
   422
paulson@18389
   423
fun sort_clauses ths = sort (make_ord fewerlits) ths;
paulson@9840
   424
blanchet@38099
   425
fun has_bool @{typ bool} = true
blanchet@38099
   426
  | has_bool (Type (_, Ts)) = exists has_bool Ts
blanchet@38099
   427
  | has_bool _ = false
blanchet@38099
   428
blanchet@38099
   429
fun has_fun (Type (@{type_name fun}, _)) = true
blanchet@38099
   430
  | has_fun (Type (_, Ts)) = exists has_fun Ts
blanchet@38099
   431
  | has_fun _ = false
wenzelm@24300
   432
wenzelm@24300
   433
(*Is the string the name of a connective? Really only | and Not can remain,
wenzelm@24300
   434
  since this code expects to be called on a clause form.*)
wenzelm@19875
   435
val is_conn = member (op =)
haftmann@38795
   436
    [@{const_name Trueprop}, @{const_name HOL.conj}, @{const_name HOL.disj},
haftmann@38786
   437
     @{const_name HOL.implies}, @{const_name Not},
haftmann@38557
   438
     @{const_name All}, @{const_name Ex}, @{const_name Ball}, @{const_name Bex}];
paulson@15613
   439
wenzelm@24300
   440
(*True if the term contains a function--not a logical connective--where the type
paulson@20524
   441
  of any argument contains bool.*)
wenzelm@24300
   442
val has_bool_arg_const =
paulson@15613
   443
    exists_Const
blanchet@38099
   444
      (fn (c,T) => not(is_conn c) andalso exists has_bool (binder_types T));
paulson@22381
   445
wenzelm@24300
   446
(*A higher-order instance of a first-order constant? Example is the definition of
haftmann@38622
   447
  one, 1, at a function type in theory Function_Algebras.*)
wenzelm@24300
   448
fun higher_inst_const thy (c,T) =
paulson@22381
   449
  case binder_types T of
paulson@22381
   450
      [] => false (*not a function type, OK*)
paulson@22381
   451
    | Ts => length (binder_types (Sign.the_const_type thy c)) <> length Ts;
paulson@22381
   452
paulson@24742
   453
(*Returns false if any Vars in the theorem mention type bool.
paulson@21102
   454
  Also rejects functions whose arguments are Booleans or other functions.*)
paulson@22381
   455
fun is_fol_term thy t =
haftmann@38557
   456
    Term.is_first_order ["all", @{const_name All}, @{const_name Ex}] t andalso
blanchet@38099
   457
    not (exists_subterm (fn Var (_, T) => has_bool T orelse has_fun T
blanchet@38099
   458
                           | _ => false) t orelse
blanchet@38099
   459
         has_bool_arg_const t orelse
wenzelm@24300
   460
         exists_Const (higher_inst_const thy) t orelse
wenzelm@24300
   461
         has_meta_conn t);
paulson@19204
   462
paulson@21102
   463
fun rigid t = not (is_Var (head_of t));
paulson@21102
   464
haftmann@38795
   465
fun ok4horn (Const (@{const_name Trueprop},_) $ (Const (@{const_name HOL.disj}, _) $ t $ _)) = rigid t
haftmann@38557
   466
  | ok4horn (Const (@{const_name Trueprop},_) $ t) = rigid t
paulson@21102
   467
  | ok4horn _ = false;
paulson@21102
   468
paulson@15579
   469
(*Create a meta-level Horn clause*)
wenzelm@24300
   470
fun make_horn crules th =
wenzelm@24300
   471
  if ok4horn (concl_of th)
paulson@21102
   472
  then make_horn crules (tryres(th,crules)) handle THM _ => th
paulson@21102
   473
  else th;
paulson@9840
   474
paulson@16563
   475
(*Generate Horn clauses for all contrapositives of a clause. The input, th,
paulson@16563
   476
  is a HOL disjunction.*)
wenzelm@33339
   477
fun add_contras crules th hcs =
blanchet@39328
   478
  let fun rots (0,_) = hcs
wenzelm@24300
   479
        | rots (k,th) = zero_var_indexes (make_horn crules th) ::
wenzelm@24300
   480
                        rots(k-1, assoc_right (th RS disj_comm))
paulson@15862
   481
  in case nliterals(prop_of th) of
wenzelm@24300
   482
        1 => th::hcs
paulson@15579
   483
      | n => rots(n, assoc_right th)
paulson@15579
   484
  end;
paulson@9840
   485
paulson@15579
   486
(*Use "theorem naming" to label the clauses*)
paulson@15579
   487
fun name_thms label =
wenzelm@33339
   488
    let fun name1 th (k, ths) =
wenzelm@27865
   489
          (k-1, Thm.put_name_hint (label ^ string_of_int k) th :: ths)
wenzelm@33339
   490
    in  fn ths => #2 (fold_rev name1 ths (length ths, []))  end;
paulson@9840
   491
paulson@16563
   492
(*Is the given disjunction an all-negative support clause?*)
paulson@15579
   493
fun is_negative th = forall (not o #1) (literals (prop_of th));
paulson@9840
   494
wenzelm@33317
   495
val neg_clauses = filter is_negative;
paulson@9840
   496
paulson@9840
   497
paulson@15579
   498
(***** MESON PROOF PROCEDURE *****)
paulson@9840
   499
haftmann@38557
   500
fun rhyps (Const("==>",_) $ (Const(@{const_name Trueprop},_) $ A) $ phi,
wenzelm@24300
   501
           As) = rhyps(phi, A::As)
paulson@15579
   502
  | rhyps (_, As) = As;
paulson@9840
   503
paulson@15579
   504
(** Detecting repeated assumptions in a subgoal **)
paulson@9840
   505
paulson@15579
   506
(*The stringtree detects repeated assumptions.*)
wenzelm@33245
   507
fun ins_term t net = Net.insert_term (op aconv) (t, t) net;
paulson@9840
   508
paulson@15579
   509
(*detects repetitions in a list of terms*)
paulson@15579
   510
fun has_reps [] = false
paulson@15579
   511
  | has_reps [_] = false
paulson@15579
   512
  | has_reps [t,u] = (t aconv u)
wenzelm@33245
   513
  | has_reps ts = (fold ins_term ts Net.empty; false) handle Net.INSERT => true;
paulson@9840
   514
paulson@15579
   515
(*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
paulson@18508
   516
fun TRYING_eq_assume_tac 0 st = Seq.single st
paulson@18508
   517
  | TRYING_eq_assume_tac i st =
wenzelm@31945
   518
       TRYING_eq_assume_tac (i-1) (Thm.eq_assumption i st)
paulson@18508
   519
       handle THM _ => TRYING_eq_assume_tac (i-1) st;
paulson@18508
   520
paulson@18508
   521
fun TRYALL_eq_assume_tac st = TRYING_eq_assume_tac (nprems_of st) st;
paulson@9840
   522
paulson@15579
   523
(*Loop checking: FAIL if trying to prove the same thing twice
paulson@15579
   524
  -- if *ANY* subgoal has repeated literals*)
paulson@15579
   525
fun check_tac st =
paulson@15579
   526
  if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
paulson@15579
   527
  then  Seq.empty  else  Seq.single st;
paulson@9840
   528
paulson@9840
   529
paulson@15579
   530
(* net_resolve_tac actually made it slower... *)
paulson@15579
   531
fun prolog_step_tac horns i =
paulson@15579
   532
    (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
paulson@18508
   533
    TRYALL_eq_assume_tac;
paulson@9840
   534
paulson@9840
   535
(*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
wenzelm@33339
   536
fun addconcl prem sz = size_of_term (Logic.strip_assums_concl prem) + sz;
paulson@15579
   537
wenzelm@33339
   538
fun size_of_subgoals st = fold_rev addconcl (prems_of st) 0;
paulson@15579
   539
paulson@9840
   540
paulson@9840
   541
(*Negation Normal Form*)
paulson@9840
   542
val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
wenzelm@9869
   543
               not_impD, not_iffD, not_allD, not_exD, not_notD];
paulson@15581
   544
haftmann@38557
   545
fun ok4nnf (Const (@{const_name Trueprop},_) $ (Const (@{const_name Not}, _) $ t)) = rigid t
haftmann@38557
   546
  | ok4nnf (Const (@{const_name Trueprop},_) $ t) = rigid t
paulson@21102
   547
  | ok4nnf _ = false;
paulson@21102
   548
wenzelm@32262
   549
fun make_nnf1 ctxt th =
wenzelm@24300
   550
  if ok4nnf (concl_of th)
wenzelm@32262
   551
  then make_nnf1 ctxt (tryres(th, nnf_rls))
paulson@28174
   552
    handle THM ("tryres", _, _) =>
wenzelm@32262
   553
        forward_res ctxt (make_nnf1 ctxt)
wenzelm@9869
   554
           (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
paulson@28174
   555
    handle THM ("tryres", _, _) => th
blanchet@38608
   556
  else th
paulson@9840
   557
wenzelm@24300
   558
(*The simplification removes defined quantifiers and occurrences of True and False.
paulson@20018
   559
  nnf_ss also includes the one-point simprocs,
paulson@18405
   560
  which are needed to avoid the various one-point theorems from generating junk clauses.*)
paulson@19894
   561
val nnf_simps =
blanchet@37539
   562
  @{thms simp_implies_def Ex1_def Ball_def Bex_def if_True if_False if_cancel
blanchet@37539
   563
         if_eq_cancel cases_simp}
blanchet@37539
   564
val nnf_extra_simps = @{thms split_ifs ex_simps all_simps simp_thms}
paulson@18405
   565
paulson@18405
   566
val nnf_ss =
wenzelm@24300
   567
  HOL_basic_ss addsimps nnf_extra_simps
wenzelm@42455
   568
    addsimprocs [@{simproc defined_All}, @{simproc defined_Ex}, @{simproc neq}, @{simproc let_simp}];
paulson@15872
   569
blanchet@38089
   570
val presimplify =
blanchet@39900
   571
  rewrite_rule (map safe_mk_meta_eq nnf_simps) #> simplify nnf_ss
blanchet@38089
   572
wenzelm@32262
   573
fun make_nnf ctxt th = case prems_of th of
blanchet@38606
   574
    [] => th |> presimplify |> make_nnf1 ctxt
paulson@21050
   575
  | _ => raise THM ("make_nnf: premises in argument", 0, [th]);
paulson@15581
   576
blanchet@39950
   577
fun choice_theorems thy =
blanchet@39950
   578
  try (Global_Theory.get_thm thy) "Hilbert_Choice.choice" |> the_list
blanchet@39950
   579
blanchet@39900
   580
(* Pull existential quantifiers to front. This accomplishes Skolemization for
blanchet@39900
   581
   clauses that arise from a subgoal. *)
blanchet@39950
   582
fun skolemize_with_choice_theorems ctxt choice_ths =
blanchet@39900
   583
  let
blanchet@39900
   584
    fun aux th =
blanchet@39900
   585
      if not (has_conns [@{const_name Ex}] (prop_of th)) then
blanchet@39900
   586
        th
blanchet@39900
   587
      else
blanchet@39901
   588
        tryres (th, choice_ths @
blanchet@39900
   589
                    [conj_exD1, conj_exD2, disj_exD, disj_exD1, disj_exD2])
blanchet@39900
   590
        |> aux
blanchet@39900
   591
        handle THM ("tryres", _, _) =>
blanchet@39900
   592
               tryres (th, [conj_forward, disj_forward, all_forward])
blanchet@39900
   593
               |> forward_res ctxt aux
blanchet@39900
   594
               |> aux
blanchet@39900
   595
               handle THM ("tryres", _, _) =>
blanchet@40262
   596
                      rename_bound_vars_RS th ex_forward
blanchet@39900
   597
                      |> forward_res ctxt aux
blanchet@39900
   598
  in aux o make_nnf ctxt end
paulson@29684
   599
blanchet@39950
   600
fun skolemize ctxt =
wenzelm@42361
   601
  let val thy = Proof_Context.theory_of ctxt in
blanchet@39950
   602
    skolemize_with_choice_theorems ctxt (choice_theorems thy)
blanchet@39950
   603
  end
blanchet@39904
   604
blanchet@39900
   605
(* "RS" can fail if "unify_search_bound" is too small. *)
blanchet@39900
   606
fun try_skolemize ctxt th =
blanchet@39904
   607
  try (skolemize ctxt) th
blanchet@39979
   608
  |> tap (fn NONE => trace_msg ctxt (fn () => "Failed to skolemize " ^
blanchet@39979
   609
                                              Display.string_of_thm ctxt th)
blanchet@39900
   610
           | _ => ())
paulson@25694
   611
wenzelm@33339
   612
fun add_clauses th cls =
wenzelm@36603
   613
  let val ctxt0 = Variable.global_thm_context th
wenzelm@33339
   614
      val (cnfs, ctxt) = make_cnf [] th ctxt0
paulson@24937
   615
  in Variable.export ctxt ctxt0 cnfs @ cls end;
paulson@9840
   616
paulson@9840
   617
(*Make clauses from a list of theorems, previously Skolemized and put into nnf.
paulson@9840
   618
  The resulting clauses are HOL disjunctions.*)
wenzelm@39235
   619
fun make_clauses_unsorted ths = fold_rev add_clauses ths [];
blanchet@35869
   620
val make_clauses = sort_clauses o make_clauses_unsorted;
quigley@15773
   621
paulson@16563
   622
(*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
wenzelm@9869
   623
fun make_horns ths =
paulson@9840
   624
    name_thms "Horn#"
wenzelm@33339
   625
      (distinct Thm.eq_thm_prop (fold_rev (add_contras clause_rules) ths []));
paulson@9840
   626
paulson@9840
   627
(*Could simply use nprems_of, which would count remaining subgoals -- no
paulson@9840
   628
  discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
paulson@9840
   629
wenzelm@9869
   630
fun best_prolog_tac sizef horns =
paulson@9840
   631
    BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
paulson@9840
   632
wenzelm@9869
   633
fun depth_prolog_tac horns =
paulson@9840
   634
    DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
paulson@9840
   635
paulson@9840
   636
(*Return all negative clauses, as possible goal clauses*)
paulson@9840
   637
fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
paulson@9840
   638
wenzelm@32262
   639
fun skolemize_prems_tac ctxt prems =
blanchet@39900
   640
  cut_facts_tac (map_filter (try_skolemize ctxt) prems) THEN' REPEAT o etac exE
paulson@9840
   641
paulson@22546
   642
(*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions.
paulson@22546
   643
  Function mkcl converts theorems to clauses.*)
blanchet@39037
   644
fun MESON preskolem_tac mkcl cltac ctxt i st =
paulson@16588
   645
  SELECT_GOAL
wenzelm@35625
   646
    (EVERY [Object_Logic.atomize_prems_tac 1,
paulson@23552
   647
            rtac ccontr 1,
blanchet@39269
   648
            preskolem_tac,
wenzelm@32283
   649
            Subgoal.FOCUS (fn {context = ctxt', prems = negs, ...} =>
blanchet@39269
   650
                      EVERY1 [skolemize_prems_tac ctxt negs,
wenzelm@32283
   651
                              Subgoal.FOCUS (cltac o mkcl o #prems) ctxt']) ctxt 1]) i st
wenzelm@24300
   652
  handle THM _ => no_tac st;    (*probably from make_meta_clause, not first-order*)
paulson@9840
   653
blanchet@39037
   654
paulson@9840
   655
(** Best-first search versions **)
paulson@9840
   656
paulson@16563
   657
(*ths is a list of additional clauses (HOL disjunctions) to use.*)
wenzelm@9869
   658
fun best_meson_tac sizef =
blanchet@39269
   659
  MESON all_tac make_clauses
paulson@22546
   660
    (fn cls =>
paulson@9840
   661
         THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
paulson@9840
   662
                         (has_fewer_prems 1, sizef)
paulson@9840
   663
                         (prolog_step_tac (make_horns cls) 1));
paulson@9840
   664
paulson@9840
   665
(*First, breaks the goal into independent units*)
wenzelm@32262
   666
fun safe_best_meson_tac ctxt =
wenzelm@32262
   667
     SELECT_GOAL (TRY (safe_tac (claset_of ctxt)) THEN
wenzelm@32262
   668
                  TRYALL (best_meson_tac size_of_subgoals ctxt));
paulson@9840
   669
paulson@9840
   670
(** Depth-first search version **)
paulson@9840
   671
paulson@9840
   672
val depth_meson_tac =
blanchet@39269
   673
  MESON all_tac make_clauses
paulson@22546
   674
    (fn cls => EVERY [resolve_tac (gocls cls) 1, depth_prolog_tac (make_horns cls)]);
paulson@9840
   675
paulson@9840
   676
paulson@9840
   677
(** Iterative deepening version **)
paulson@9840
   678
paulson@9840
   679
(*This version does only one inference per call;
paulson@9840
   680
  having only one eq_assume_tac speeds it up!*)
wenzelm@9869
   681
fun prolog_step_tac' horns =
blanchet@39328
   682
    let val (horn0s, _) = (*0 subgoals vs 1 or more*)
paulson@9840
   683
            take_prefix Thm.no_prems horns
paulson@9840
   684
        val nrtac = net_resolve_tac horns
paulson@9840
   685
    in  fn i => eq_assume_tac i ORELSE
paulson@9840
   686
                match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
paulson@9840
   687
                ((assume_tac i APPEND nrtac i) THEN check_tac)
paulson@9840
   688
    end;
paulson@9840
   689
wenzelm@9869
   690
fun iter_deepen_prolog_tac horns =
wenzelm@38802
   691
    ITER_DEEPEN iter_deepen_limit (has_fewer_prems 1) (prolog_step_tac' horns);
paulson@9840
   692
blanchet@39269
   693
fun iter_deepen_meson_tac ctxt ths = ctxt |> MESON all_tac make_clauses
wenzelm@32091
   694
  (fn cls =>
wenzelm@32091
   695
    (case (gocls (cls @ ths)) of
wenzelm@32091
   696
      [] => no_tac  (*no goal clauses*)
wenzelm@32091
   697
    | goes =>
wenzelm@32091
   698
        let
wenzelm@32091
   699
          val horns = make_horns (cls @ ths)
blanchet@39979
   700
          val _ = trace_msg ctxt (fn () =>
wenzelm@32091
   701
            cat_lines ("meson method called:" ::
wenzelm@32262
   702
              map (Display.string_of_thm ctxt) (cls @ ths) @
wenzelm@32262
   703
              ["clauses:"] @ map (Display.string_of_thm ctxt) horns))
wenzelm@38802
   704
        in
wenzelm@38802
   705
          THEN_ITER_DEEPEN iter_deepen_limit
wenzelm@38802
   706
            (resolve_tac goes 1) (has_fewer_prems 1) (prolog_step_tac' horns)
wenzelm@38802
   707
        end));
paulson@9840
   708
wenzelm@32262
   709
fun meson_tac ctxt ths =
wenzelm@32262
   710
  SELECT_GOAL (TRY (safe_tac (claset_of ctxt)) THEN TRYALL (iter_deepen_meson_tac ctxt ths));
wenzelm@9869
   711
wenzelm@9869
   712
paulson@14813
   713
(**** Code to support ordinary resolution, rather than Model Elimination ****)
paulson@14744
   714
wenzelm@24300
   715
(*Convert a list of clauses (disjunctions) to meta-level clauses (==>),
paulson@15008
   716
  with no contrapositives, for ordinary resolution.*)
paulson@14744
   717
paulson@14744
   718
(*Rules to convert the head literal into a negated assumption. If the head
paulson@14744
   719
  literal is already negated, then using notEfalse instead of notEfalse'
paulson@14744
   720
  prevents a double negation.*)
wenzelm@27239
   721
val notEfalse = read_instantiate @{context} [(("R", 0), "False")] notE;
paulson@14744
   722
val notEfalse' = rotate_prems 1 notEfalse;
paulson@14744
   723
wenzelm@24300
   724
fun negated_asm_of_head th =
paulson@14744
   725
    th RS notEfalse handle THM _ => th RS notEfalse';
paulson@14744
   726
paulson@26066
   727
(*Converting one theorem from a disjunction to a meta-level clause*)
paulson@26066
   728
fun make_meta_clause th =
wenzelm@33832
   729
  let val (fth,thaw) = Drule.legacy_freeze_thaw_robust th
paulson@26066
   730
  in  
wenzelm@35845
   731
      (zero_var_indexes o Thm.varifyT_global o thaw 0 o 
paulson@26066
   732
       negated_asm_of_head o make_horn resolution_clause_rules) fth
paulson@26066
   733
  end;
wenzelm@24300
   734
paulson@14744
   735
fun make_meta_clauses ths =
paulson@14744
   736
    name_thms "MClause#"
wenzelm@22360
   737
      (distinct Thm.eq_thm_prop (map make_meta_clause ths));
paulson@14744
   738
paulson@9840
   739
end;