src/Pure/tactic.ML
author paulson
Fri Jun 14 12:27:11 1996 +0200 (1996-06-14)
changeset 1801 927a31ba4346
parent 1501 bb7f99a0a6f0
child 1951 f2b8005bdc6e
permissions -rw-r--r--
Added delete function for brls
clasohm@1460
     1
(*  Title: 	tactic
clasohm@0
     2
    ID:         $Id$
clasohm@1460
     3
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1991  University of Cambridge
clasohm@0
     5
clasohm@0
     6
Tactics 
clasohm@0
     7
*)
clasohm@0
     8
clasohm@0
     9
signature TACTIC =
paulson@1501
    10
  sig
clasohm@0
    11
  val ares_tac: thm list -> int -> tactic
clasohm@0
    12
  val asm_rewrite_goal_tac:
nipkow@214
    13
        bool*bool -> (meta_simpset -> tactic) -> meta_simpset -> int -> tactic
clasohm@0
    14
  val assume_tac: int -> tactic
clasohm@0
    15
  val atac: int ->tactic
lcp@670
    16
  val bimatch_from_nets_tac: 
paulson@1501
    17
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
clasohm@0
    18
  val bimatch_tac: (bool*thm)list -> int -> tactic
lcp@670
    19
  val biresolve_from_nets_tac: 
paulson@1501
    20
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
clasohm@0
    21
  val biresolve_tac: (bool*thm)list -> int -> tactic
paulson@1501
    22
  val build_net: thm list -> (int*thm) Net.net
paulson@1501
    23
  val build_netpair:    (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net ->
paulson@1501
    24
      (bool*thm)list -> (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net
clasohm@0
    25
  val compose_inst_tac: (string*string)list -> (bool*thm*int) -> int -> tactic
clasohm@0
    26
  val compose_tac: (bool * thm * int) -> int -> tactic 
clasohm@0
    27
  val cut_facts_tac: thm list -> int -> tactic
lcp@270
    28
  val cut_inst_tac: (string*string)list -> thm -> int -> tactic   
clasohm@0
    29
  val dmatch_tac: thm list -> int -> tactic
clasohm@0
    30
  val dresolve_tac: thm list -> int -> tactic
clasohm@0
    31
  val dres_inst_tac: (string*string)list -> thm -> int -> tactic   
clasohm@0
    32
  val dtac: thm -> int ->tactic
clasohm@0
    33
  val etac: thm -> int ->tactic
clasohm@0
    34
  val eq_assume_tac: int -> tactic   
clasohm@0
    35
  val ematch_tac: thm list -> int -> tactic
clasohm@0
    36
  val eresolve_tac: thm list -> int -> tactic
clasohm@0
    37
  val eres_inst_tac: (string*string)list -> thm -> int -> tactic   
clasohm@0
    38
  val filter_thms: (term*term->bool) -> int*term*thm list -> thm list
clasohm@0
    39
  val filt_resolve_tac: thm list -> int -> int -> tactic
clasohm@0
    40
  val flexflex_tac: tactic
clasohm@0
    41
  val fold_goals_tac: thm list -> tactic
clasohm@0
    42
  val fold_tac: thm list -> tactic
clasohm@0
    43
  val forward_tac: thm list -> int -> tactic   
clasohm@0
    44
  val forw_inst_tac: (string*string)list -> thm -> int -> tactic
lcp@947
    45
  val freeze: thm -> thm   
lcp@1077
    46
  val insert_tagged_brl:  ('a*(bool*thm)) * 
paulson@1501
    47
                    (('a*(bool*thm))Net.net * ('a*(bool*thm))Net.net) ->
paulson@1501
    48
                    ('a*(bool*thm))Net.net * ('a*(bool*thm))Net.net
paulson@1801
    49
  val delete_tagged_brl:  (bool*thm) * 
paulson@1801
    50
                    ((int*(bool*thm))Net.net * (int*(bool*thm))Net.net) ->
paulson@1801
    51
                    (int*(bool*thm))Net.net * (int*(bool*thm))Net.net
clasohm@0
    52
  val is_fact: thm -> bool
clasohm@0
    53
  val lessb: (bool * thm) * (bool * thm) -> bool
clasohm@0
    54
  val lift_inst_rule: thm * int * (string*string)list * thm -> thm
clasohm@0
    55
  val make_elim: thm -> thm
paulson@1501
    56
  val match_from_net_tac: (int*thm) Net.net -> int -> tactic
clasohm@0
    57
  val match_tac: thm list -> int -> tactic
clasohm@0
    58
  val metacut_tac: thm -> int -> tactic   
clasohm@0
    59
  val net_bimatch_tac: (bool*thm) list -> int -> tactic
clasohm@0
    60
  val net_biresolve_tac: (bool*thm) list -> int -> tactic
clasohm@0
    61
  val net_match_tac: thm list -> int -> tactic
clasohm@0
    62
  val net_resolve_tac: thm list -> int -> tactic
clasohm@0
    63
  val PRIMITIVE: (thm -> thm) -> tactic  
clasohm@0
    64
  val PRIMSEQ: (thm -> thm Sequence.seq) -> tactic  
clasohm@0
    65
  val prune_params_tac: tactic
clasohm@0
    66
  val rename_tac: string -> int -> tactic
clasohm@0
    67
  val rename_last_tac: string -> string list -> int -> tactic
paulson@1501
    68
  val resolve_from_net_tac: (int*thm) Net.net -> int -> tactic
clasohm@0
    69
  val resolve_tac: thm list -> int -> tactic
clasohm@0
    70
  val res_inst_tac: (string*string)list -> thm -> int -> tactic   
clasohm@0
    71
  val rewrite_goals_tac: thm list -> tactic
clasohm@0
    72
  val rewrite_tac: thm list -> tactic
clasohm@0
    73
  val rewtac: thm -> tactic
nipkow@1209
    74
  val rotate_tac: int -> int -> tactic
clasohm@0
    75
  val rtac: thm -> int -> tactic
clasohm@0
    76
  val rule_by_tactic: tactic -> thm -> thm
lcp@439
    77
  val subgoal_tac: string -> int -> tactic
lcp@439
    78
  val subgoals_tac: string list -> int -> tactic
clasohm@0
    79
  val subgoals_of_brl: bool * thm -> int
clasohm@0
    80
  val trace_goalno_tac: (int -> tactic) -> int -> tactic
paulson@1501
    81
  end;
clasohm@0
    82
clasohm@0
    83
paulson@1501
    84
structure Tactic : TACTIC = 
clasohm@0
    85
struct
clasohm@0
    86
paulson@1501
    87
(*Discover which goal is chosen:  SOMEGOAL(trace_goalno_tac tac) *)
paulson@1501
    88
fun trace_goalno_tac tac i st =  
paulson@1501
    89
    case Sequence.pull(tac i st) of
clasohm@1460
    90
	None    => Sequence.null
clasohm@0
    91
      | seqcell => (prs("Subgoal " ^ string_of_int i ^ " selected\n"); 
paulson@1501
    92
    			 Sequence.seqof(fn()=> seqcell));
clasohm@0
    93
clasohm@0
    94
fun string_of (a,0) = a
clasohm@0
    95
  | string_of (a,i) = a ^ "_" ^ string_of_int i;
clasohm@0
    96
lcp@947
    97
(*convert all Vars in a theorem to Frees*)
clasohm@0
    98
fun freeze th =
clasohm@0
    99
  let val fth = freezeT th
clasohm@0
   100
      val {prop,sign,...} = rep_thm fth
clasohm@0
   101
      fun mk_inst (Var(v,T)) = 
clasohm@1460
   102
	  (cterm_of sign (Var(v,T)),
clasohm@1460
   103
	   cterm_of sign (Free(string_of v, T)))
clasohm@0
   104
      val insts = map mk_inst (term_vars prop)
clasohm@0
   105
  in  instantiate ([],insts) fth  end;
clasohm@0
   106
clasohm@0
   107
(*Makes a rule by applying a tactic to an existing rule*)
paulson@1501
   108
fun rule_by_tactic tac rl =
paulson@1501
   109
    case Sequence.pull(tac (freeze (standard rl))) of
clasohm@1460
   110
	None        => raise THM("rule_by_tactic", 0, [rl])
clasohm@0
   111
      | Some(rl',_) => standard rl';
clasohm@0
   112
 
clasohm@0
   113
(*** Basic tactics ***)
clasohm@0
   114
clasohm@0
   115
(*Makes a tactic whose effect on a state is given by thmfun: thm->thm seq.*)
paulson@1501
   116
fun PRIMSEQ thmfun st =  thmfun st handle THM _ => Sequence.null;
clasohm@0
   117
clasohm@0
   118
(*Makes a tactic whose effect on a state is given by thmfun: thm->thm.*)
clasohm@0
   119
fun PRIMITIVE thmfun = PRIMSEQ (Sequence.single o thmfun);
clasohm@0
   120
clasohm@0
   121
(*** The following fail if the goal number is out of range:
clasohm@0
   122
     thus (REPEAT (resolve_tac rules i)) stops once subgoal i disappears. *)
clasohm@0
   123
clasohm@0
   124
(*Solve subgoal i by assumption*)
clasohm@0
   125
fun assume_tac i = PRIMSEQ (assumption i);
clasohm@0
   126
clasohm@0
   127
(*Solve subgoal i by assumption, using no unification*)
clasohm@0
   128
fun eq_assume_tac i = PRIMITIVE (eq_assumption i);
clasohm@0
   129
clasohm@0
   130
(** Resolution/matching tactics **)
clasohm@0
   131
clasohm@0
   132
(*The composition rule/state: no lifting or var renaming.
clasohm@0
   133
  The arg = (bires_flg, orule, m) ;  see bicompose for explanation.*)
clasohm@0
   134
fun compose_tac arg i = PRIMSEQ (bicompose false arg i);
clasohm@0
   135
clasohm@0
   136
(*Converts a "destruct" rule like P&Q==>P to an "elimination" rule
clasohm@0
   137
  like [| P&Q; P==>R |] ==> R *)
clasohm@0
   138
fun make_elim rl = zero_var_indexes (rl RS revcut_rl);
clasohm@0
   139
clasohm@0
   140
(*Attack subgoal i by resolution, using flags to indicate elimination rules*)
clasohm@0
   141
fun biresolve_tac brules i = PRIMSEQ (biresolution false brules i);
clasohm@0
   142
clasohm@0
   143
(*Resolution: the simple case, works for introduction rules*)
clasohm@0
   144
fun resolve_tac rules = biresolve_tac (map (pair false) rules);
clasohm@0
   145
clasohm@0
   146
(*Resolution with elimination rules only*)
clasohm@0
   147
fun eresolve_tac rules = biresolve_tac (map (pair true) rules);
clasohm@0
   148
clasohm@0
   149
(*Forward reasoning using destruction rules.*)
clasohm@0
   150
fun forward_tac rls = resolve_tac (map make_elim rls) THEN' assume_tac;
clasohm@0
   151
clasohm@0
   152
(*Like forward_tac, but deletes the assumption after use.*)
clasohm@0
   153
fun dresolve_tac rls = eresolve_tac (map make_elim rls);
clasohm@0
   154
clasohm@0
   155
(*Shorthand versions: for resolution with a single theorem*)
clasohm@1460
   156
fun rtac rl = resolve_tac [rl];
clasohm@1460
   157
fun etac rl = eresolve_tac [rl];
clasohm@1460
   158
fun dtac rl = dresolve_tac [rl];
clasohm@0
   159
val atac = assume_tac;
clasohm@0
   160
clasohm@0
   161
(*Use an assumption or some rules ... A popular combination!*)
clasohm@0
   162
fun ares_tac rules = assume_tac  ORELSE'  resolve_tac rules;
clasohm@0
   163
clasohm@0
   164
(*Matching tactics -- as above, but forbid updating of state*)
clasohm@0
   165
fun bimatch_tac brules i = PRIMSEQ (biresolution true brules i);
clasohm@0
   166
fun match_tac rules  = bimatch_tac (map (pair false) rules);
clasohm@0
   167
fun ematch_tac rules = bimatch_tac (map (pair true) rules);
clasohm@0
   168
fun dmatch_tac rls   = ematch_tac (map make_elim rls);
clasohm@0
   169
clasohm@0
   170
(*Smash all flex-flex disagreement pairs in the proof state.*)
clasohm@0
   171
val flexflex_tac = PRIMSEQ flexflex_rule;
clasohm@0
   172
clasohm@0
   173
(*Lift and instantiate a rule wrt the given state and subgoal number *)
paulson@1501
   174
fun lift_inst_rule (st, i, sinsts, rule) =
paulson@1501
   175
let val {maxidx,sign,...} = rep_thm st
paulson@1501
   176
    val (_, _, Bi, _) = dest_state(st,i)
clasohm@1460
   177
    val params = Logic.strip_params Bi	        (*params of subgoal i*)
clasohm@0
   178
    val params = rev(rename_wrt_term Bi params) (*as they are printed*)
clasohm@0
   179
    val paramTs = map #2 params
clasohm@0
   180
    and inc = maxidx+1
clasohm@0
   181
    fun liftvar (Var ((a,j), T)) = Var((a, j+inc), paramTs---> incr_tvar inc T)
clasohm@0
   182
      | liftvar t = raise TERM("Variable expected", [t]);
clasohm@0
   183
    fun liftterm t = list_abs_free (params, 
clasohm@1460
   184
				    Logic.incr_indexes(paramTs,inc) t)
clasohm@0
   185
    (*Lifts instantiation pair over params*)
lcp@230
   186
    fun liftpair (cv,ct) = (cterm_fun liftvar cv, cterm_fun liftterm ct)
clasohm@0
   187
    fun lifttvar((a,i),ctyp) =
clasohm@1460
   188
	let val {T,sign} = rep_ctyp ctyp
clasohm@1460
   189
	in  ((a,i+inc), ctyp_of sign (incr_tvar inc T)) end
paulson@1501
   190
    val rts = types_sorts rule and (types,sorts) = types_sorts st
clasohm@0
   191
    fun types'(a,~1) = (case assoc(params,a) of None => types(a,~1) | sm => sm)
clasohm@0
   192
      | types'(ixn) = types ixn;
nipkow@949
   193
    val used = add_term_tvarnames
paulson@1501
   194
                  (#prop(rep_thm st) $ #prop(rep_thm rule),[])
nipkow@949
   195
    val (Tinsts,insts) = read_insts sign rts (types',sorts) used sinsts
clasohm@0
   196
in instantiate (map lifttvar Tinsts, map liftpair insts)
paulson@1501
   197
               (lift_rule (st,i) rule)
clasohm@0
   198
end;
clasohm@0
   199
clasohm@0
   200
clasohm@0
   201
(*** Resolve after lifting and instantation; may refer to parameters of the
clasohm@0
   202
     subgoal.  Fails if "i" is out of range.  ***)
clasohm@0
   203
clasohm@0
   204
(*compose version: arguments are as for bicompose.*)
clasohm@0
   205
fun compose_inst_tac sinsts (bires_flg, rule, nsubgoal) i =
paulson@1501
   206
  STATE ( fn st => 
paulson@1501
   207
	   compose_tac (bires_flg, lift_inst_rule (st, i, sinsts, rule),
clasohm@1460
   208
			nsubgoal) i
clasohm@1460
   209
	   handle TERM (msg,_) => (writeln msg;  no_tac)
clasohm@1460
   210
		| THM  (msg,_,_) => (writeln msg;  no_tac) );
clasohm@0
   211
lcp@761
   212
(*"Resolve" version.  Note: res_inst_tac cannot behave sensibly if the
lcp@761
   213
  terms that are substituted contain (term or type) unknowns from the
lcp@761
   214
  goal, because it is unable to instantiate goal unknowns at the same time.
lcp@761
   215
nipkow@952
   216
  The type checker is instructed not to freezes flexible type vars that
nipkow@952
   217
  were introduced during type inference and still remain in the term at the
nipkow@952
   218
  end.  This increases flexibility but can introduce schematic type vars in
nipkow@952
   219
  goals.
lcp@761
   220
*)
clasohm@0
   221
fun res_inst_tac sinsts rule i =
clasohm@0
   222
    compose_inst_tac sinsts (false, rule, nprems_of rule) i;
clasohm@0
   223
paulson@1501
   224
(*eresolve elimination version*)
clasohm@0
   225
fun eres_inst_tac sinsts rule i =
clasohm@0
   226
    compose_inst_tac sinsts (true, rule, nprems_of rule) i;
clasohm@0
   227
lcp@270
   228
(*For forw_inst_tac and dres_inst_tac.  Preserve Var indexes of rl;
lcp@270
   229
  increment revcut_rl instead.*)
clasohm@0
   230
fun make_elim_preserve rl = 
lcp@270
   231
  let val {maxidx,...} = rep_thm rl
clasohm@922
   232
      fun cvar ixn = cterm_of Sign.proto_pure (Var(ixn,propT));
lcp@270
   233
      val revcut_rl' = 
clasohm@1460
   234
	  instantiate ([],  [(cvar("V",0), cvar("V",maxidx+1)),
clasohm@1460
   235
			     (cvar("W",0), cvar("W",maxidx+1))]) revcut_rl
clasohm@0
   236
      val arg = (false, rl, nprems_of rl)
clasohm@0
   237
      val [th] = Sequence.list_of_s (bicompose false arg 1 revcut_rl')
clasohm@0
   238
  in  th  end
clasohm@0
   239
  handle Bind => raise THM("make_elim_preserve", 1, [rl]);
clasohm@0
   240
lcp@270
   241
(*instantiate and cut -- for a FACT, anyway...*)
lcp@270
   242
fun cut_inst_tac sinsts rule = res_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   243
lcp@270
   244
(*forward tactic applies a RULE to an assumption without deleting it*)
lcp@270
   245
fun forw_inst_tac sinsts rule = cut_inst_tac sinsts rule THEN' assume_tac;
lcp@270
   246
lcp@270
   247
(*dresolve tactic applies a RULE to replace an assumption*)
clasohm@0
   248
fun dres_inst_tac sinsts rule = eres_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   249
lcp@270
   250
(*** Applications of cut_rl ***)
clasohm@0
   251
clasohm@0
   252
(*Used by metacut_tac*)
clasohm@0
   253
fun bires_cut_tac arg i =
clasohm@1460
   254
    resolve_tac [cut_rl] i  THEN  biresolve_tac arg (i+1) ;
clasohm@0
   255
clasohm@0
   256
(*The conclusion of the rule gets assumed in subgoal i,
clasohm@0
   257
  while subgoal i+1,... are the premises of the rule.*)
clasohm@0
   258
fun metacut_tac rule = bires_cut_tac [(false,rule)];
clasohm@0
   259
clasohm@0
   260
(*Recognizes theorems that are not rules, but simple propositions*)
clasohm@0
   261
fun is_fact rl =
clasohm@0
   262
    case prems_of rl of
clasohm@1460
   263
	[] => true  |  _::_ => false;
clasohm@0
   264
clasohm@0
   265
(*"Cut" all facts from theorem list into the goal as assumptions. *)
clasohm@0
   266
fun cut_facts_tac ths i =
clasohm@0
   267
    EVERY (map (fn th => metacut_tac th i) (filter is_fact ths));
clasohm@0
   268
clasohm@0
   269
(*Introduce the given proposition as a lemma and subgoal*)
clasohm@0
   270
fun subgoal_tac sprop = res_inst_tac [("psi", sprop)] cut_rl;
clasohm@0
   271
lcp@439
   272
(*Introduce a list of lemmas and subgoals*)
lcp@439
   273
fun subgoals_tac sprops = EVERY' (map subgoal_tac sprops);
lcp@439
   274
clasohm@0
   275
clasohm@0
   276
(**** Indexing and filtering of theorems ****)
clasohm@0
   277
clasohm@0
   278
(*Returns the list of potentially resolvable theorems for the goal "prem",
clasohm@1460
   279
	using the predicate  could(subgoal,concl).
clasohm@0
   280
  Resulting list is no longer than "limit"*)
clasohm@0
   281
fun filter_thms could (limit, prem, ths) =
clasohm@0
   282
  let val pb = Logic.strip_assums_concl prem;   (*delete assumptions*)
clasohm@0
   283
      fun filtr (limit, []) = []
clasohm@1460
   284
	| filtr (limit, th::ths) =
clasohm@1460
   285
	    if limit=0 then  []
clasohm@1460
   286
	    else if could(pb, concl_of th)  then th :: filtr(limit-1, ths)
clasohm@1460
   287
	    else filtr(limit,ths)
clasohm@0
   288
  in  filtr(limit,ths)  end;
clasohm@0
   289
clasohm@0
   290
clasohm@0
   291
(*** biresolution and resolution using nets ***)
clasohm@0
   292
clasohm@0
   293
(** To preserve the order of the rules, tag them with increasing integers **)
clasohm@0
   294
clasohm@0
   295
(*insert tags*)
clasohm@0
   296
fun taglist k [] = []
clasohm@0
   297
  | taglist k (x::xs) = (k,x) :: taglist (k+1) xs;
clasohm@0
   298
clasohm@0
   299
(*remove tags and suppress duplicates -- list is assumed sorted!*)
clasohm@0
   300
fun untaglist [] = []
clasohm@0
   301
  | untaglist [(k:int,x)] = [x]
clasohm@0
   302
  | untaglist ((k,x) :: (rest as (k',x')::_)) =
clasohm@0
   303
      if k=k' then untaglist rest
clasohm@0
   304
      else    x :: untaglist rest;
clasohm@0
   305
clasohm@0
   306
(*return list elements in original order*)
clasohm@0
   307
val orderlist = untaglist o sort (fn(x,y)=> #1 x < #1 y); 
clasohm@0
   308
clasohm@0
   309
(*insert one tagged brl into the pair of nets*)
lcp@1077
   310
fun insert_tagged_brl (kbrl as (k,(eres,th)), (inet,enet)) =
clasohm@0
   311
    if eres then 
clasohm@1460
   312
	case prems_of th of
clasohm@1460
   313
	    prem::_ => (inet, Net.insert_term ((prem,kbrl), enet, K false))
clasohm@1460
   314
	  | [] => error"insert_tagged_brl: elimination rule with no premises"
clasohm@0
   315
    else (Net.insert_term ((concl_of th, kbrl), inet, K false), enet);
clasohm@0
   316
clasohm@0
   317
(*build a pair of nets for biresolution*)
lcp@670
   318
fun build_netpair netpair brls = 
lcp@1077
   319
    foldr insert_tagged_brl (taglist 1 brls, netpair);
clasohm@0
   320
paulson@1801
   321
(*delete one kbrl from the pair of nets;
paulson@1801
   322
  we don't know the value of k, so we use 0 and ignore it in the comparison*)
paulson@1801
   323
local
paulson@1801
   324
  fun eq_kbrl ((k,(eres,th)), (k',(eres',th'))) = eq_thm (th,th')
paulson@1801
   325
in
paulson@1801
   326
fun delete_tagged_brl (brl as (eres,th), (inet,enet)) =
paulson@1801
   327
    if eres then 
paulson@1801
   328
	case prems_of th of
paulson@1801
   329
	    prem::_ => (inet, Net.delete_term ((prem, (0,brl)), enet, eq_kbrl))
paulson@1801
   330
	  | [] => error"delete_brl: elimination rule with no premises"
paulson@1801
   331
    else (Net.delete_term ((concl_of th, (0,brl)), inet, eq_kbrl), enet);
paulson@1801
   332
end;
paulson@1801
   333
paulson@1801
   334
clasohm@0
   335
(*biresolution using a pair of nets rather than rules*)
clasohm@0
   336
fun biresolution_from_nets_tac match (inet,enet) =
clasohm@0
   337
  SUBGOAL
clasohm@0
   338
    (fn (prem,i) =>
clasohm@0
   339
      let val hyps = Logic.strip_assums_hyp prem
clasohm@0
   340
          and concl = Logic.strip_assums_concl prem 
clasohm@0
   341
          val kbrls = Net.unify_term inet concl @
clasohm@0
   342
                      flat (map (Net.unify_term enet) hyps)
clasohm@0
   343
      in PRIMSEQ (biresolution match (orderlist kbrls) i) end);
clasohm@0
   344
clasohm@0
   345
(*versions taking pre-built nets*)
clasohm@0
   346
val biresolve_from_nets_tac = biresolution_from_nets_tac false;
clasohm@0
   347
val bimatch_from_nets_tac = biresolution_from_nets_tac true;
clasohm@0
   348
clasohm@0
   349
(*fast versions using nets internally*)
lcp@670
   350
val net_biresolve_tac =
lcp@670
   351
    biresolve_from_nets_tac o build_netpair(Net.empty,Net.empty);
lcp@670
   352
lcp@670
   353
val net_bimatch_tac =
lcp@670
   354
    bimatch_from_nets_tac o build_netpair(Net.empty,Net.empty);
clasohm@0
   355
clasohm@0
   356
(*** Simpler version for resolve_tac -- only one net, and no hyps ***)
clasohm@0
   357
clasohm@0
   358
(*insert one tagged rl into the net*)
clasohm@0
   359
fun insert_krl (krl as (k,th), net) =
clasohm@0
   360
    Net.insert_term ((concl_of th, krl), net, K false);
clasohm@0
   361
clasohm@0
   362
(*build a net of rules for resolution*)
clasohm@0
   363
fun build_net rls = 
clasohm@0
   364
    foldr insert_krl (taglist 1 rls, Net.empty);
clasohm@0
   365
clasohm@0
   366
(*resolution using a net rather than rules; pred supports filt_resolve_tac*)
clasohm@0
   367
fun filt_resolution_from_net_tac match pred net =
clasohm@0
   368
  SUBGOAL
clasohm@0
   369
    (fn (prem,i) =>
clasohm@0
   370
      let val krls = Net.unify_term net (Logic.strip_assums_concl prem)
clasohm@0
   371
      in 
clasohm@1460
   372
	 if pred krls  
clasohm@0
   373
         then PRIMSEQ
clasohm@1460
   374
		(biresolution match (map (pair false) (orderlist krls)) i)
clasohm@0
   375
         else no_tac
clasohm@0
   376
      end);
clasohm@0
   377
clasohm@0
   378
(*Resolve the subgoal using the rules (making a net) unless too flexible,
clasohm@0
   379
   which means more than maxr rules are unifiable.      *)
clasohm@0
   380
fun filt_resolve_tac rules maxr = 
clasohm@0
   381
    let fun pred krls = length krls <= maxr
clasohm@0
   382
    in  filt_resolution_from_net_tac false pred (build_net rules)  end;
clasohm@0
   383
clasohm@0
   384
(*versions taking pre-built nets*)
clasohm@0
   385
val resolve_from_net_tac = filt_resolution_from_net_tac false (K true);
clasohm@0
   386
val match_from_net_tac = filt_resolution_from_net_tac true (K true);
clasohm@0
   387
clasohm@0
   388
(*fast versions using nets internally*)
clasohm@0
   389
val net_resolve_tac = resolve_from_net_tac o build_net;
clasohm@0
   390
val net_match_tac = match_from_net_tac o build_net;
clasohm@0
   391
clasohm@0
   392
clasohm@0
   393
(*** For Natural Deduction using (bires_flg, rule) pairs ***)
clasohm@0
   394
clasohm@0
   395
(*The number of new subgoals produced by the brule*)
lcp@1077
   396
fun subgoals_of_brl (true,rule)  = nprems_of rule - 1
lcp@1077
   397
  | subgoals_of_brl (false,rule) = nprems_of rule;
clasohm@0
   398
clasohm@0
   399
(*Less-than test: for sorting to minimize number of new subgoals*)
clasohm@0
   400
fun lessb (brl1,brl2) = subgoals_of_brl brl1 < subgoals_of_brl brl2;
clasohm@0
   401
clasohm@0
   402
clasohm@0
   403
(*** Meta-Rewriting Tactics ***)
clasohm@0
   404
clasohm@0
   405
fun result1 tacf mss thm =
paulson@1501
   406
  case Sequence.pull(tacf mss thm) of
clasohm@0
   407
    None => None
clasohm@0
   408
  | Some(thm,_) => Some(thm);
clasohm@0
   409
clasohm@0
   410
(*Rewrite subgoal i only *)
nipkow@214
   411
fun asm_rewrite_goal_tac mode prover_tac mss i =
nipkow@214
   412
      PRIMITIVE(rewrite_goal_rule mode (result1 prover_tac) mss i);
clasohm@0
   413
lcp@69
   414
(*Rewrite throughout proof state. *)
lcp@69
   415
fun rewrite_tac defs = PRIMITIVE(rewrite_rule defs);
clasohm@0
   416
clasohm@0
   417
(*Rewrite subgoals only, not main goal. *)
lcp@69
   418
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
clasohm@0
   419
clasohm@1460
   420
fun rewtac def = rewrite_goals_tac [def];
clasohm@0
   421
clasohm@0
   422
paulson@1501
   423
(*** for folding definitions, handling critical pairs ***)
lcp@69
   424
lcp@69
   425
(*The depth of nesting in a term*)
lcp@69
   426
fun term_depth (Abs(a,T,t)) = 1 + term_depth t
lcp@69
   427
  | term_depth (f$t) = 1 + max [term_depth f, term_depth t]
lcp@69
   428
  | term_depth _ = 0;
lcp@69
   429
lcp@69
   430
val lhs_of_thm = #1 o Logic.dest_equals o #prop o rep_thm;
lcp@69
   431
lcp@69
   432
(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
lcp@69
   433
  Returns longest lhs first to avoid folding its subexpressions.*)
lcp@69
   434
fun sort_lhs_depths defs =
lcp@69
   435
  let val keylist = make_keylist (term_depth o lhs_of_thm) defs
lcp@69
   436
      val keys = distinct (sort op> (map #2 keylist))
lcp@69
   437
  in  map (keyfilter keylist) keys  end;
lcp@69
   438
lcp@69
   439
fun fold_tac defs = EVERY 
lcp@69
   440
    (map rewrite_tac (sort_lhs_depths (map symmetric defs)));
lcp@69
   441
lcp@69
   442
fun fold_goals_tac defs = EVERY 
lcp@69
   443
    (map rewrite_goals_tac (sort_lhs_depths (map symmetric defs)));
lcp@69
   444
lcp@69
   445
lcp@69
   446
(*** Renaming of parameters in a subgoal
lcp@69
   447
     Names may contain letters, digits or primes and must be
lcp@69
   448
     separated by blanks ***)
clasohm@0
   449
clasohm@0
   450
(*Calling this will generate the warning "Same as previous level" since
clasohm@0
   451
  it affects nothing but the names of bound variables!*)
clasohm@0
   452
fun rename_tac str i = 
clasohm@0
   453
  let val cs = explode str 
clasohm@0
   454
  in  
clasohm@0
   455
  if !Logic.auto_rename 
clasohm@0
   456
  then (writeln"Note: setting Logic.auto_rename := false"; 
clasohm@1460
   457
	Logic.auto_rename := false)
clasohm@0
   458
  else ();
clasohm@0
   459
  case #2 (take_prefix (is_letdig orf is_blank) cs) of
clasohm@0
   460
      [] => PRIMITIVE (rename_params_rule (scanwords is_letdig cs, i))
clasohm@0
   461
    | c::_ => error ("Illegal character: " ^ c)
clasohm@0
   462
  end;
clasohm@0
   463
paulson@1501
   464
(*Rename recent parameters using names generated from a and the suffixes,
paulson@1501
   465
  provided the string a, which represents a term, is an identifier. *)
clasohm@0
   466
fun rename_last_tac a sufs i = 
clasohm@0
   467
  let val names = map (curry op^ a) sufs
clasohm@0
   468
  in  if Syntax.is_identifier a
clasohm@0
   469
      then PRIMITIVE (rename_params_rule (names,i))
clasohm@0
   470
      else all_tac
clasohm@0
   471
  end;
clasohm@0
   472
clasohm@0
   473
(*Prunes all redundant parameters from the proof state by rewriting*)
clasohm@0
   474
val prune_params_tac = rewrite_tac [triv_forall_equality];
clasohm@0
   475
paulson@1501
   476
(*rotate_tac n i: rotate the assumptions of subgoal i by n positions, from
paulson@1501
   477
  right to left if n is positive, and from left to right if n is negative.*)
nipkow@1209
   478
fun rotate_tac n =
nipkow@1209
   479
  let fun rot(n) = EVERY'(replicate n (dtac asm_rl));
nipkow@1209
   480
  in if n >= 0 then rot n
nipkow@1209
   481
     else SUBGOAL (fn (t,i) => rot(length(Logic.strip_assums_hyp t)+n) i)
nipkow@1209
   482
  end;
nipkow@1209
   483
clasohm@0
   484
end;
paulson@1501
   485
paulson@1501
   486
open Tactic;