src/ZF/Order.thy
author clasohm
Thu Jun 22 17:13:05 1995 +0200 (1995-06-22)
changeset 1155 928a16e02f9f
parent 786 2a871417e7fc
child 1401 0c439768f45c
permissions -rw-r--r--
removed \...\ inside strings
lcp@435
     1
(*  Title: 	ZF/Order.thy
lcp@435
     2
    ID:         $Id$
lcp@435
     3
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
lcp@435
     4
    Copyright   1994  University of Cambridge
lcp@435
     5
lcp@435
     6
Orders in Zermelo-Fraenkel Set Theory 
lcp@435
     7
*)
lcp@435
     8
lcp@435
     9
Order = WF + Perm + 
lcp@435
    10
consts
lcp@435
    11
  part_ord        :: "[i,i]=>o"		(*Strict partial ordering*)
lcp@435
    12
  linear, tot_ord :: "[i,i]=>o"		(*Strict total ordering*)
lcp@435
    13
  well_ord        :: "[i,i]=>o"		(*Well-ordering*)
lcp@786
    14
  mono_map        :: "[i,i,i,i]=>i"	(*Order-preserving maps*)
lcp@435
    15
  ord_iso         :: "[i,i,i,i]=>i"	(*Order isomorphisms*)
lcp@435
    16
  pred            :: "[i,i,i]=>i"	(*Set of predecessors*)
lcp@786
    17
  ord_iso_map     :: "[i,i,i,i]=>i"	(*Construction for linearity theorem*)
lcp@435
    18
lcp@578
    19
defs
lcp@435
    20
  part_ord_def "part_ord(A,r) == irrefl(A,r) & trans[A](r)"
lcp@435
    21
lcp@435
    22
  linear_def   "linear(A,r) == (ALL x:A. ALL y:A. <x,y>:r | x=y | <y,x>:r)"
lcp@435
    23
lcp@435
    24
  tot_ord_def  "tot_ord(A,r) == part_ord(A,r) & linear(A,r)"
lcp@435
    25
lcp@435
    26
  well_ord_def "well_ord(A,r) == tot_ord(A,r) & wf[A](r)"
lcp@435
    27
clasohm@1155
    28
  mono_map_def "mono_map(A,r,B,s) == 
clasohm@1155
    29
                   {f: A->B. ALL x:A. ALL y:A. <x,y>:r --> <f`x,f`y>:s}"
lcp@786
    30
clasohm@1155
    31
  ord_iso_def  "ord_iso(A,r,B,s) == 
clasohm@1155
    32
                   {f: bij(A,B). ALL x:A. ALL y:A. <x,y>:r <-> <f`x,f`y>:s}"
lcp@435
    33
lcp@435
    34
  pred_def     "pred(A,x,r) == {y:A. <y,x>:r}"
lcp@435
    35
lcp@786
    36
  ord_iso_map_def
clasohm@1155
    37
     "ord_iso_map(A,r,B,s) == 
clasohm@1155
    38
       UN x:A. UN y:B. UN f: ord_iso(pred(A,x,r), r, pred(B,y,s), s).   
clasohm@1155
    39
            {<x,y>}"
lcp@786
    40
lcp@435
    41
end