src/HOLCF/Tools/domain/domain_theorems.ML
author wenzelm
Thu May 31 14:01:58 2007 +0200 (2007-05-31)
changeset 23152 9497234a2743
child 23894 1a4167d761ac
permissions -rw-r--r--
moved HOLCF tools to canonical place;
wenzelm@23152
     1
(*  Title:      HOLCF/Tools/domain/domain_theorems.ML
wenzelm@23152
     2
    ID:         $Id$
wenzelm@23152
     3
    Author:     David von Oheimb
wenzelm@23152
     4
                New proofs/tactics by Brian Huffman
wenzelm@23152
     5
wenzelm@23152
     6
Proof generator for domain command.
wenzelm@23152
     7
*)
wenzelm@23152
     8
wenzelm@23152
     9
val HOLCF_ss = simpset();
wenzelm@23152
    10
wenzelm@23152
    11
structure Domain_Theorems = struct
wenzelm@23152
    12
wenzelm@23152
    13
local
wenzelm@23152
    14
wenzelm@23152
    15
val adm_impl_admw = thm "adm_impl_admw";
wenzelm@23152
    16
val antisym_less_inverse = thm "antisym_less_inverse";
wenzelm@23152
    17
val beta_cfun = thm "beta_cfun";
wenzelm@23152
    18
val cfun_arg_cong = thm "cfun_arg_cong";
wenzelm@23152
    19
val ch2ch_Rep_CFunL = thm "ch2ch_Rep_CFunL";
wenzelm@23152
    20
val ch2ch_Rep_CFunR = thm "ch2ch_Rep_CFunR";
wenzelm@23152
    21
val chain_iterate = thm "chain_iterate";
wenzelm@23152
    22
val compact_ONE = thm "compact_ONE";
wenzelm@23152
    23
val compact_sinl = thm "compact_sinl";
wenzelm@23152
    24
val compact_sinr = thm "compact_sinr";
wenzelm@23152
    25
val compact_spair = thm "compact_spair";
wenzelm@23152
    26
val compact_up = thm "compact_up";
wenzelm@23152
    27
val contlub_cfun_arg = thm "contlub_cfun_arg";
wenzelm@23152
    28
val contlub_cfun_fun = thm "contlub_cfun_fun";
wenzelm@23152
    29
val fix_def2 = thm "fix_def2";
wenzelm@23152
    30
val injection_eq = thm "injection_eq";
wenzelm@23152
    31
val injection_less = thm "injection_less";
wenzelm@23152
    32
val lub_equal = thm "lub_equal";
wenzelm@23152
    33
val monofun_cfun_arg = thm "monofun_cfun_arg";
wenzelm@23152
    34
val retraction_strict = thm "retraction_strict";
wenzelm@23152
    35
val spair_eq = thm "spair_eq";
wenzelm@23152
    36
val spair_less = thm "spair_less";
wenzelm@23152
    37
val sscase1 = thm "sscase1";
wenzelm@23152
    38
val ssplit1 = thm "ssplit1";
wenzelm@23152
    39
val strictify1 = thm "strictify1";
wenzelm@23152
    40
val wfix_ind = thm "wfix_ind";
wenzelm@23152
    41
wenzelm@23152
    42
open Domain_Library;
wenzelm@23152
    43
infixr 0 ===>;
wenzelm@23152
    44
infixr 0 ==>;
wenzelm@23152
    45
infix 0 == ; 
wenzelm@23152
    46
infix 1 ===;
wenzelm@23152
    47
infix 1 ~= ;
wenzelm@23152
    48
infix 1 <<;
wenzelm@23152
    49
infix 1 ~<<;
wenzelm@23152
    50
infix 9 `   ;
wenzelm@23152
    51
infix 9 `% ;
wenzelm@23152
    52
infix 9 `%%;
wenzelm@23152
    53
infixr 9 oo;
wenzelm@23152
    54
wenzelm@23152
    55
(* ----- general proof facilities ------------------------------------------- *)
wenzelm@23152
    56
wenzelm@23152
    57
fun pg'' thy defs t tacs =
wenzelm@23152
    58
  let
wenzelm@23152
    59
    val t' = FixrecPackage.legacy_infer_term thy t;
wenzelm@23152
    60
    val asms = Logic.strip_imp_prems t';
wenzelm@23152
    61
    val prop = Logic.strip_imp_concl t';
wenzelm@23152
    62
    fun tac prems =
wenzelm@23152
    63
      rewrite_goals_tac defs THEN
wenzelm@23152
    64
      EVERY (tacs (map (rewrite_rule defs) prems));
wenzelm@23152
    65
  in Goal.prove_global thy [] asms prop tac end;
wenzelm@23152
    66
wenzelm@23152
    67
fun pg' thy defs t tacsf =
wenzelm@23152
    68
  let
wenzelm@23152
    69
    fun tacs [] = tacsf
wenzelm@23152
    70
      | tacs prems = cut_facts_tac prems 1 :: tacsf;
wenzelm@23152
    71
  in pg'' thy defs t tacs end;
wenzelm@23152
    72
wenzelm@23152
    73
fun case_UU_tac rews i v =
wenzelm@23152
    74
  case_tac (v^"=UU") i THEN
wenzelm@23152
    75
  asm_simp_tac (HOLCF_ss addsimps rews) i;
wenzelm@23152
    76
wenzelm@23152
    77
val chain_tac =
wenzelm@23152
    78
  REPEAT_DETERM o resolve_tac 
wenzelm@23152
    79
    [chain_iterate, ch2ch_Rep_CFunR, ch2ch_Rep_CFunL];
wenzelm@23152
    80
wenzelm@23152
    81
(* ----- general proofs ----------------------------------------------------- *)
wenzelm@23152
    82
wenzelm@23152
    83
val all2E = prove_goal HOL.thy "[| !x y . P x y; P x y ==> R |] ==> R"
wenzelm@23152
    84
  (fn prems =>[
wenzelm@23152
    85
    resolve_tac prems 1,
wenzelm@23152
    86
    cut_facts_tac prems 1,
wenzelm@23152
    87
    fast_tac HOL_cs 1]);
wenzelm@23152
    88
wenzelm@23152
    89
val dist_eqI = prove_goal (the_context ()) "!!x::'a::po. ~ x << y ==> x ~= y" 
wenzelm@23152
    90
  (fn prems =>
wenzelm@23152
    91
    [blast_tac (claset () addDs [antisym_less_inverse]) 1]);
wenzelm@23152
    92
wenzelm@23152
    93
in
wenzelm@23152
    94
wenzelm@23152
    95
fun theorems (((dname, _), cons) : eq, eqs : eq list) thy =
wenzelm@23152
    96
let
wenzelm@23152
    97
wenzelm@23152
    98
val dummy = writeln ("Proving isomorphism properties of domain "^dname^" ...");
wenzelm@23152
    99
val pg = pg' thy;
wenzelm@23152
   100
wenzelm@23152
   101
(* ----- getting the axioms and definitions --------------------------------- *)
wenzelm@23152
   102
wenzelm@23152
   103
local
wenzelm@23152
   104
  fun ga s dn = get_thm thy (Name (dn ^ "." ^ s));
wenzelm@23152
   105
in
wenzelm@23152
   106
  val ax_abs_iso  = ga "abs_iso"  dname;
wenzelm@23152
   107
  val ax_rep_iso  = ga "rep_iso"  dname;
wenzelm@23152
   108
  val ax_when_def = ga "when_def" dname;
wenzelm@23152
   109
  fun get_def mk_name (con,_) = ga (mk_name con^"_def") dname;
wenzelm@23152
   110
  val axs_con_def = map (get_def extern_name) cons;
wenzelm@23152
   111
  val axs_dis_def = map (get_def dis_name) cons;
wenzelm@23152
   112
  val axs_mat_def = map (get_def mat_name) cons;
wenzelm@23152
   113
  val axs_pat_def = map (get_def pat_name) cons;
wenzelm@23152
   114
  val axs_sel_def =
wenzelm@23152
   115
    let
wenzelm@23152
   116
      fun def_of_sel sel = ga (sel^"_def") dname;
wenzelm@23152
   117
      fun def_of_arg arg = Option.map def_of_sel (sel_of arg);
wenzelm@23152
   118
      fun defs_of_con (_, args) = List.mapPartial def_of_arg args;
wenzelm@23152
   119
    in
wenzelm@23152
   120
      List.concat (map defs_of_con cons)
wenzelm@23152
   121
    end;
wenzelm@23152
   122
  val ax_copy_def = ga "copy_def" dname;
wenzelm@23152
   123
end; (* local *)
wenzelm@23152
   124
wenzelm@23152
   125
(* ----- theorems concerning the isomorphism -------------------------------- *)
wenzelm@23152
   126
wenzelm@23152
   127
val dc_abs  = %%:(dname^"_abs");
wenzelm@23152
   128
val dc_rep  = %%:(dname^"_rep");
wenzelm@23152
   129
val dc_copy = %%:(dname^"_copy");
wenzelm@23152
   130
val x_name = "x";
wenzelm@23152
   131
wenzelm@23152
   132
val iso_locale = iso_intro OF [ax_abs_iso, ax_rep_iso];
wenzelm@23152
   133
val abs_strict = ax_rep_iso RS (allI RS retraction_strict);
wenzelm@23152
   134
val rep_strict = ax_abs_iso RS (allI RS retraction_strict);
wenzelm@23152
   135
val abs_defin' = iso_locale RS iso_abs_defin';
wenzelm@23152
   136
val rep_defin' = iso_locale RS iso_rep_defin';
wenzelm@23152
   137
val iso_rews = map standard [ax_abs_iso,ax_rep_iso,abs_strict,rep_strict];
wenzelm@23152
   138
wenzelm@23152
   139
(* ----- generating beta reduction rules from definitions-------------------- *)
wenzelm@23152
   140
wenzelm@23152
   141
local
wenzelm@23152
   142
  fun arglist (Const _ $ Abs (s, _, t)) =
wenzelm@23152
   143
    let
wenzelm@23152
   144
      val (vars,body) = arglist t;
wenzelm@23152
   145
    in (s :: vars, body) end
wenzelm@23152
   146
    | arglist t = ([], t);
wenzelm@23152
   147
  fun bind_fun vars t = Library.foldr mk_All (vars, t);
wenzelm@23152
   148
  fun bound_vars 0 = []
wenzelm@23152
   149
    | bound_vars i = Bound (i-1) :: bound_vars (i - 1);
wenzelm@23152
   150
in
wenzelm@23152
   151
  fun appl_of_def def =
wenzelm@23152
   152
    let
wenzelm@23152
   153
      val (_ $ con $ lam) = concl_of def;
wenzelm@23152
   154
      val (vars, rhs) = arglist lam;
wenzelm@23152
   155
      val lhs = list_ccomb (con, bound_vars (length vars));
wenzelm@23152
   156
      val appl = bind_fun vars (lhs == rhs);
wenzelm@23152
   157
      val cs = ContProc.cont_thms lam;
wenzelm@23152
   158
      val betas = map (fn c => mk_meta_eq (c RS beta_cfun)) cs;
wenzelm@23152
   159
    in pg (def::betas) appl [rtac reflexive_thm 1] end;
wenzelm@23152
   160
end;
wenzelm@23152
   161
wenzelm@23152
   162
val when_appl = appl_of_def ax_when_def;
wenzelm@23152
   163
val con_appls = map appl_of_def axs_con_def;
wenzelm@23152
   164
wenzelm@23152
   165
local
wenzelm@23152
   166
  fun arg2typ n arg =
wenzelm@23152
   167
    let val t = TVar (("'a", n), pcpoS)
wenzelm@23152
   168
    in (n + 1, if is_lazy arg then mk_uT t else t) end;
wenzelm@23152
   169
wenzelm@23152
   170
  fun args2typ n [] = (n, oneT)
wenzelm@23152
   171
    | args2typ n [arg] = arg2typ n arg
wenzelm@23152
   172
    | args2typ n (arg::args) =
wenzelm@23152
   173
    let
wenzelm@23152
   174
      val (n1, t1) = arg2typ n arg;
wenzelm@23152
   175
      val (n2, t2) = args2typ n1 args
wenzelm@23152
   176
    in (n2, mk_sprodT (t1, t2)) end;
wenzelm@23152
   177
wenzelm@23152
   178
  fun cons2typ n [] = (n,oneT)
wenzelm@23152
   179
    | cons2typ n [con] = args2typ n (snd con)
wenzelm@23152
   180
    | cons2typ n (con::cons) =
wenzelm@23152
   181
    let
wenzelm@23152
   182
      val (n1, t1) = args2typ n (snd con);
wenzelm@23152
   183
      val (n2, t2) = cons2typ n1 cons
wenzelm@23152
   184
    in (n2, mk_ssumT (t1, t2)) end;
wenzelm@23152
   185
in
wenzelm@23152
   186
  fun cons2ctyp cons = ctyp_of thy (snd (cons2typ 1 cons));
wenzelm@23152
   187
end;
wenzelm@23152
   188
wenzelm@23152
   189
local 
wenzelm@23152
   190
  val iso_swap = iso_locale RS iso_iso_swap;
wenzelm@23152
   191
  fun one_con (con, args) =
wenzelm@23152
   192
    let
wenzelm@23152
   193
      val vns = map vname args;
wenzelm@23152
   194
      val eqn = %:x_name === con_app2 con %: vns;
wenzelm@23152
   195
      val conj = foldr1 mk_conj (eqn :: map (defined o %:) (nonlazy args));
wenzelm@23152
   196
    in Library.foldr mk_ex (vns, conj) end;
wenzelm@23152
   197
wenzelm@23152
   198
  val conj_assoc = thm "conj_assoc";
wenzelm@23152
   199
  val exh = foldr1 mk_disj ((%:x_name === UU) :: map one_con cons);
wenzelm@23152
   200
  val thm1 = instantiate' [SOME (cons2ctyp cons)] [] exh_start;
wenzelm@23152
   201
  val thm2 = rewrite_rule (map mk_meta_eq ex_defined_iffs) thm1;
wenzelm@23152
   202
  val thm3 = rewrite_rule [mk_meta_eq conj_assoc] thm2;
wenzelm@23152
   203
wenzelm@23152
   204
  (* first 3 rules replace "x = UU \/ P" with "rep$x = UU \/ P" *)
wenzelm@23152
   205
  val tacs = [
wenzelm@23152
   206
    rtac disjE 1,
wenzelm@23152
   207
    etac (rep_defin' RS disjI1) 2,
wenzelm@23152
   208
    etac disjI2 2,
wenzelm@23152
   209
    rewrite_goals_tac [mk_meta_eq iso_swap],
wenzelm@23152
   210
    rtac thm3 1];
wenzelm@23152
   211
in
wenzelm@23152
   212
  val exhaust = pg con_appls (mk_trp exh) tacs;
wenzelm@23152
   213
  val casedist =
wenzelm@23152
   214
    standard (rewrite_rule exh_casedists (exhaust RS exh_casedist0));
wenzelm@23152
   215
end;
wenzelm@23152
   216
wenzelm@23152
   217
local 
wenzelm@23152
   218
  fun bind_fun t = Library.foldr mk_All (when_funs cons, t);
wenzelm@23152
   219
  fun bound_fun i _ = Bound (length cons - i);
wenzelm@23152
   220
  val when_app = list_ccomb (%%:(dname^"_when"), mapn bound_fun 1 cons);
wenzelm@23152
   221
in
wenzelm@23152
   222
  val when_strict =
wenzelm@23152
   223
    let
wenzelm@23152
   224
      val axs = [when_appl, mk_meta_eq rep_strict];
wenzelm@23152
   225
      val goal = bind_fun (mk_trp (strict when_app));
wenzelm@23152
   226
      val tacs = [resolve_tac [sscase1, ssplit1, strictify1] 1];
wenzelm@23152
   227
    in pg axs goal tacs end;
wenzelm@23152
   228
wenzelm@23152
   229
  val when_apps =
wenzelm@23152
   230
    let
wenzelm@23152
   231
      fun one_when n (con,args) =
wenzelm@23152
   232
        let
wenzelm@23152
   233
          val axs = when_appl :: con_appls;
wenzelm@23152
   234
          val goal = bind_fun (lift_defined %: (nonlazy args, 
wenzelm@23152
   235
                mk_trp (when_app`(con_app con args) ===
wenzelm@23152
   236
                       list_ccomb (bound_fun n 0, map %# args))));
wenzelm@23152
   237
          val tacs = [asm_simp_tac (HOLCF_ss addsimps [ax_abs_iso]) 1];
wenzelm@23152
   238
        in pg axs goal tacs end;
wenzelm@23152
   239
    in mapn one_when 1 cons end;
wenzelm@23152
   240
end;
wenzelm@23152
   241
val when_rews = when_strict :: when_apps;
wenzelm@23152
   242
wenzelm@23152
   243
(* ----- theorems concerning the constructors, discriminators and selectors - *)
wenzelm@23152
   244
wenzelm@23152
   245
local
wenzelm@23152
   246
  fun dis_strict (con, _) =
wenzelm@23152
   247
    let
wenzelm@23152
   248
      val goal = mk_trp (strict (%%:(dis_name con)));
wenzelm@23152
   249
    in pg axs_dis_def goal [rtac when_strict 1] end;
wenzelm@23152
   250
wenzelm@23152
   251
  fun dis_app c (con, args) =
wenzelm@23152
   252
    let
wenzelm@23152
   253
      val lhs = %%:(dis_name c) ` con_app con args;
wenzelm@23152
   254
      val rhs = %%:(if con = c then TT_N else FF_N);
wenzelm@23152
   255
      val goal = lift_defined %: (nonlazy args, mk_trp (lhs === rhs));
wenzelm@23152
   256
      val tacs = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
wenzelm@23152
   257
    in pg axs_dis_def goal tacs end;
wenzelm@23152
   258
wenzelm@23152
   259
  val dis_apps = List.concat (map (fn (c,_) => map (dis_app c) cons) cons);
wenzelm@23152
   260
wenzelm@23152
   261
  fun dis_defin (con, args) =
wenzelm@23152
   262
    let
wenzelm@23152
   263
      val goal = defined (%:x_name) ==> defined (%%:(dis_name con) `% x_name);
wenzelm@23152
   264
      val tacs =
wenzelm@23152
   265
        [rtac casedist 1,
wenzelm@23152
   266
         contr_tac 1,
wenzelm@23152
   267
         DETERM_UNTIL_SOLVED (CHANGED
wenzelm@23152
   268
          (asm_simp_tac (HOLCF_ss addsimps dis_apps) 1))];
wenzelm@23152
   269
    in pg [] goal tacs end;
wenzelm@23152
   270
wenzelm@23152
   271
  val dis_stricts = map dis_strict cons;
wenzelm@23152
   272
  val dis_defins = map dis_defin cons;
wenzelm@23152
   273
in
wenzelm@23152
   274
  val dis_rews = dis_stricts @ dis_defins @ dis_apps;
wenzelm@23152
   275
end;
wenzelm@23152
   276
wenzelm@23152
   277
local
wenzelm@23152
   278
  fun mat_strict (con, _) =
wenzelm@23152
   279
    let
wenzelm@23152
   280
      val goal = mk_trp (strict (%%:(mat_name con)));
wenzelm@23152
   281
      val tacs = [rtac when_strict 1];
wenzelm@23152
   282
    in pg axs_mat_def goal tacs end;
wenzelm@23152
   283
wenzelm@23152
   284
  val mat_stricts = map mat_strict cons;
wenzelm@23152
   285
wenzelm@23152
   286
  fun one_mat c (con, args) =
wenzelm@23152
   287
    let
wenzelm@23152
   288
      val lhs = %%:(mat_name c) ` con_app con args;
wenzelm@23152
   289
      val rhs =
wenzelm@23152
   290
        if con = c
wenzelm@23152
   291
        then %%:returnN ` mk_ctuple (map %# args)
wenzelm@23152
   292
        else %%:failN;
wenzelm@23152
   293
      val goal = lift_defined %: (nonlazy args, mk_trp (lhs === rhs));
wenzelm@23152
   294
      val tacs = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
wenzelm@23152
   295
    in pg axs_mat_def goal tacs end;
wenzelm@23152
   296
wenzelm@23152
   297
  val mat_apps =
wenzelm@23152
   298
    List.concat (map (fn (c,_) => map (one_mat c) cons) cons);
wenzelm@23152
   299
in
wenzelm@23152
   300
  val mat_rews = mat_stricts @ mat_apps;
wenzelm@23152
   301
end;
wenzelm@23152
   302
wenzelm@23152
   303
local
wenzelm@23152
   304
  fun ps args = mapn (fn n => fn _ => %:("pat" ^ string_of_int n)) 1 args;
wenzelm@23152
   305
wenzelm@23152
   306
  fun pat_lhs (con,args) = %%:branchN $ list_comb (%%:(pat_name con), ps args);
wenzelm@23152
   307
wenzelm@23152
   308
  fun pat_rhs (con,[]) = %%:returnN ` ((%:"rhs") ` HOLogic.unit)
wenzelm@23152
   309
    | pat_rhs (con,args) =
wenzelm@23152
   310
        (%%:branchN $ foldr1 cpair_pat (ps args))
wenzelm@23152
   311
          `(%:"rhs")`(mk_ctuple (map %# args));
wenzelm@23152
   312
wenzelm@23152
   313
  fun pat_strict c =
wenzelm@23152
   314
    let
wenzelm@23152
   315
      val axs = branch_def :: axs_pat_def;
wenzelm@23152
   316
      val goal = mk_trp (strict (pat_lhs c ` (%:"rhs")));
wenzelm@23152
   317
      val tacs = [simp_tac (HOLCF_ss addsimps [when_strict]) 1];
wenzelm@23152
   318
    in pg axs goal tacs end;
wenzelm@23152
   319
wenzelm@23152
   320
  fun pat_app c (con, args) =
wenzelm@23152
   321
    let
wenzelm@23152
   322
      val axs = branch_def :: axs_pat_def;
wenzelm@23152
   323
      val lhs = (pat_lhs c)`(%:"rhs")`(con_app con args);
wenzelm@23152
   324
      val rhs = if con = fst c then pat_rhs c else %%:failN;
wenzelm@23152
   325
      val goal = lift_defined %: (nonlazy args, mk_trp (lhs === rhs));
wenzelm@23152
   326
      val tacs = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
wenzelm@23152
   327
    in pg axs goal tacs end;
wenzelm@23152
   328
wenzelm@23152
   329
  val pat_stricts = map pat_strict cons;
wenzelm@23152
   330
  val pat_apps = List.concat (map (fn c => map (pat_app c) cons) cons);
wenzelm@23152
   331
in
wenzelm@23152
   332
  val pat_rews = pat_stricts @ pat_apps;
wenzelm@23152
   333
end;
wenzelm@23152
   334
wenzelm@23152
   335
local
wenzelm@23152
   336
  val rev_contrapos = thm "rev_contrapos";
wenzelm@23152
   337
  fun con_strict (con, args) = 
wenzelm@23152
   338
    let
wenzelm@23152
   339
      fun one_strict vn =
wenzelm@23152
   340
        let
wenzelm@23152
   341
          fun f arg = if vname arg = vn then UU else %# arg;
wenzelm@23152
   342
          val goal = mk_trp (con_app2 con f args === UU);
wenzelm@23152
   343
          val tacs = [asm_simp_tac (HOLCF_ss addsimps [abs_strict]) 1];
wenzelm@23152
   344
        in pg con_appls goal tacs end;
wenzelm@23152
   345
    in map one_strict (nonlazy args) end;
wenzelm@23152
   346
wenzelm@23152
   347
  fun con_defin (con, args) =
wenzelm@23152
   348
    let
wenzelm@23152
   349
      val concl = mk_trp (defined (con_app con args));
wenzelm@23152
   350
      val goal = lift_defined %: (nonlazy args, concl);
wenzelm@23152
   351
      val tacs = [
wenzelm@23152
   352
        rtac rev_contrapos 1,
wenzelm@23152
   353
        eres_inst_tac [("f",dis_name con)] cfun_arg_cong 1,
wenzelm@23152
   354
        asm_simp_tac (HOLCF_ss addsimps dis_rews) 1];
wenzelm@23152
   355
    in pg [] goal tacs end;
wenzelm@23152
   356
in
wenzelm@23152
   357
  val con_stricts = List.concat (map con_strict cons);
wenzelm@23152
   358
  val con_defins = map con_defin cons;
wenzelm@23152
   359
  val con_rews = con_stricts @ con_defins;
wenzelm@23152
   360
end;
wenzelm@23152
   361
wenzelm@23152
   362
local
wenzelm@23152
   363
  val rules =
wenzelm@23152
   364
    [compact_sinl, compact_sinr, compact_spair, compact_up, compact_ONE];
wenzelm@23152
   365
  fun con_compact (con, args) =
wenzelm@23152
   366
    let
wenzelm@23152
   367
      val concl = mk_trp (%%:compactN $ con_app con args);
wenzelm@23152
   368
      val goal = lift (fn x => %%:compactN $ %#x) (args, concl);
wenzelm@23152
   369
      val tacs = [
wenzelm@23152
   370
        rtac (iso_locale RS iso_compact_abs) 1,
wenzelm@23152
   371
        REPEAT (resolve_tac rules 1 ORELSE atac 1)];
wenzelm@23152
   372
    in pg con_appls goal tacs end;
wenzelm@23152
   373
in
wenzelm@23152
   374
  val con_compacts = map con_compact cons;
wenzelm@23152
   375
end;
wenzelm@23152
   376
wenzelm@23152
   377
local
wenzelm@23152
   378
  fun one_sel sel =
wenzelm@23152
   379
    pg axs_sel_def (mk_trp (strict (%%:sel)))
wenzelm@23152
   380
      [simp_tac (HOLCF_ss addsimps when_rews) 1];
wenzelm@23152
   381
wenzelm@23152
   382
  fun sel_strict (_, args) =
wenzelm@23152
   383
    List.mapPartial (Option.map one_sel o sel_of) args;
wenzelm@23152
   384
in
wenzelm@23152
   385
  val sel_stricts = List.concat (map sel_strict cons);
wenzelm@23152
   386
end;
wenzelm@23152
   387
wenzelm@23152
   388
local
wenzelm@23152
   389
  fun sel_app_same c n sel (con, args) =
wenzelm@23152
   390
    let
wenzelm@23152
   391
      val nlas = nonlazy args;
wenzelm@23152
   392
      val vns = map vname args;
wenzelm@23152
   393
      val vnn = List.nth (vns, n);
wenzelm@23152
   394
      val nlas' = List.filter (fn v => v <> vnn) nlas;
wenzelm@23152
   395
      val lhs = (%%:sel)`(con_app con args);
wenzelm@23152
   396
      val goal = lift_defined %: (nlas', mk_trp (lhs === %:vnn));
wenzelm@23152
   397
      val tacs1 =
wenzelm@23152
   398
        if vnn mem nlas
wenzelm@23152
   399
        then [case_UU_tac (when_rews @ con_stricts) 1 vnn]
wenzelm@23152
   400
        else [];
wenzelm@23152
   401
      val tacs2 = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
wenzelm@23152
   402
    in pg axs_sel_def goal (tacs1 @ tacs2) end;
wenzelm@23152
   403
wenzelm@23152
   404
  fun sel_app_diff c n sel (con, args) =
wenzelm@23152
   405
    let
wenzelm@23152
   406
      val nlas = nonlazy args;
wenzelm@23152
   407
      val goal = mk_trp (%%:sel ` con_app con args === UU);
wenzelm@23152
   408
      val tacs1 = map (case_UU_tac (when_rews @ con_stricts) 1) nlas;
wenzelm@23152
   409
      val tacs2 = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
wenzelm@23152
   410
    in pg axs_sel_def goal (tacs1 @ tacs2) end;
wenzelm@23152
   411
wenzelm@23152
   412
  fun sel_app c n sel (con, args) =
wenzelm@23152
   413
    if con = c
wenzelm@23152
   414
    then sel_app_same c n sel (con, args)
wenzelm@23152
   415
    else sel_app_diff c n sel (con, args);
wenzelm@23152
   416
wenzelm@23152
   417
  fun one_sel c n sel = map (sel_app c n sel) cons;
wenzelm@23152
   418
  fun one_sel' c n arg = Option.map (one_sel c n) (sel_of arg);
wenzelm@23152
   419
  fun one_con (c, args) =
wenzelm@23152
   420
    List.concat (List.mapPartial I (mapn (one_sel' c) 0 args));
wenzelm@23152
   421
in
wenzelm@23152
   422
  val sel_apps = List.concat (map one_con cons);
wenzelm@23152
   423
end;
wenzelm@23152
   424
wenzelm@23152
   425
local
wenzelm@23152
   426
  fun sel_defin sel =
wenzelm@23152
   427
    let
wenzelm@23152
   428
      val goal = defined (%:x_name) ==> defined (%%:sel`%x_name);
wenzelm@23152
   429
      val tacs = [
wenzelm@23152
   430
        rtac casedist 1,
wenzelm@23152
   431
        contr_tac 1,
wenzelm@23152
   432
        DETERM_UNTIL_SOLVED (CHANGED
wenzelm@23152
   433
          (asm_simp_tac (HOLCF_ss addsimps sel_apps) 1))];
wenzelm@23152
   434
    in pg [] goal tacs end;
wenzelm@23152
   435
in
wenzelm@23152
   436
  val sel_defins =
wenzelm@23152
   437
    if length cons = 1
wenzelm@23152
   438
    then List.mapPartial (fn arg => Option.map sel_defin (sel_of arg))
wenzelm@23152
   439
                 (filter_out is_lazy (snd (hd cons)))
wenzelm@23152
   440
    else [];
wenzelm@23152
   441
end;
wenzelm@23152
   442
wenzelm@23152
   443
val sel_rews = sel_stricts @ sel_defins @ sel_apps;
wenzelm@23152
   444
val rev_contrapos = thm "rev_contrapos";
wenzelm@23152
   445
wenzelm@23152
   446
val distincts_le =
wenzelm@23152
   447
  let
wenzelm@23152
   448
    fun dist (con1, args1) (con2, args2) =
wenzelm@23152
   449
      let
wenzelm@23152
   450
        val goal = lift_defined %: (nonlazy args1,
wenzelm@23152
   451
                        mk_trp (con_app con1 args1 ~<< con_app con2 args2));
wenzelm@23152
   452
        val tacs = [
wenzelm@23152
   453
          rtac rev_contrapos 1,
wenzelm@23152
   454
          eres_inst_tac [("f", dis_name con1)] monofun_cfun_arg 1]
wenzelm@23152
   455
          @ map (case_UU_tac (con_stricts @ dis_rews) 1) (nonlazy args2)
wenzelm@23152
   456
          @ [asm_simp_tac (HOLCF_ss addsimps dis_rews) 1];
wenzelm@23152
   457
      in pg [] goal tacs end;
wenzelm@23152
   458
wenzelm@23152
   459
    fun distinct (con1, args1) (con2, args2) =
wenzelm@23152
   460
        let
wenzelm@23152
   461
          val arg1 = (con1, args1);
wenzelm@23152
   462
          val arg2 =
wenzelm@23152
   463
            (con2, ListPair.map (fn (arg,vn) => upd_vname (K vn) arg)
wenzelm@23152
   464
              (args2, Name.variant_list (map vname args1) (map vname args2)));
wenzelm@23152
   465
        in [dist arg1 arg2, dist arg2 arg1] end;
wenzelm@23152
   466
    fun distincts []      = []
wenzelm@23152
   467
      | distincts (c::cs) = (map (distinct c) cs) :: distincts cs;
wenzelm@23152
   468
  in distincts cons end;
wenzelm@23152
   469
val dist_les = List.concat (List.concat distincts_le);
wenzelm@23152
   470
val dist_eqs =
wenzelm@23152
   471
  let
wenzelm@23152
   472
    fun distinct (_,args1) ((_,args2), leqs) =
wenzelm@23152
   473
      let
wenzelm@23152
   474
        val (le1,le2) = (hd leqs, hd(tl leqs));
wenzelm@23152
   475
        val (eq1,eq2) = (le1 RS dist_eqI, le2 RS dist_eqI)
wenzelm@23152
   476
      in
wenzelm@23152
   477
        if nonlazy args1 = [] then [eq1, eq1 RS not_sym] else
wenzelm@23152
   478
        if nonlazy args2 = [] then [eq2, eq2 RS not_sym] else
wenzelm@23152
   479
          [eq1, eq2]
wenzelm@23152
   480
      end;
wenzelm@23152
   481
    fun distincts []      = []
wenzelm@23152
   482
      | distincts ((c,leqs)::cs) = List.concat
wenzelm@23152
   483
	            (ListPair.map (distinct c) ((map #1 cs),leqs)) @
wenzelm@23152
   484
		    distincts cs;
wenzelm@23152
   485
  in map standard (distincts (cons ~~ distincts_le)) end;
wenzelm@23152
   486
wenzelm@23152
   487
local 
wenzelm@23152
   488
  fun pgterm rel con args =
wenzelm@23152
   489
    let
wenzelm@23152
   490
      fun append s = upd_vname (fn v => v^s);
wenzelm@23152
   491
      val (largs, rargs) = (args, map (append "'") args);
wenzelm@23152
   492
      val concl =
wenzelm@23152
   493
        foldr1 mk_conj (ListPair.map rel (map %# largs, map %# rargs));
wenzelm@23152
   494
      val prem = rel (con_app con largs, con_app con rargs);
wenzelm@23152
   495
      val sargs = case largs of [_] => [] | _ => nonlazy args;
wenzelm@23152
   496
      val prop = lift_defined %: (sargs, mk_trp (prem === concl));
wenzelm@23152
   497
    in pg con_appls prop end;
wenzelm@23152
   498
  val cons' = List.filter (fn (_,args) => args<>[]) cons;
wenzelm@23152
   499
in
wenzelm@23152
   500
  val inverts =
wenzelm@23152
   501
    let
wenzelm@23152
   502
      val abs_less = ax_abs_iso RS (allI RS injection_less);
wenzelm@23152
   503
      val tacs =
wenzelm@23152
   504
        [asm_full_simp_tac (HOLCF_ss addsimps [abs_less, spair_less]) 1];
wenzelm@23152
   505
    in map (fn (con, args) => pgterm (op <<) con args tacs) cons' end;
wenzelm@23152
   506
wenzelm@23152
   507
  val injects =
wenzelm@23152
   508
    let
wenzelm@23152
   509
      val abs_eq = ax_abs_iso RS (allI RS injection_eq);
wenzelm@23152
   510
      val tacs = [asm_full_simp_tac (HOLCF_ss addsimps [abs_eq, spair_eq]) 1];
wenzelm@23152
   511
    in map (fn (con, args) => pgterm (op ===) con args tacs) cons' end;
wenzelm@23152
   512
end;
wenzelm@23152
   513
wenzelm@23152
   514
(* ----- theorems concerning one induction step ----------------------------- *)
wenzelm@23152
   515
wenzelm@23152
   516
val copy_strict =
wenzelm@23152
   517
  let
wenzelm@23152
   518
    val goal = mk_trp (strict (dc_copy `% "f"));
wenzelm@23152
   519
    val tacs = [asm_simp_tac (HOLCF_ss addsimps [abs_strict, when_strict]) 1];
wenzelm@23152
   520
  in pg [ax_copy_def] goal tacs end;
wenzelm@23152
   521
wenzelm@23152
   522
local
wenzelm@23152
   523
  fun copy_app (con, args) =
wenzelm@23152
   524
    let
wenzelm@23152
   525
      val lhs = dc_copy`%"f"`(con_app con args);
wenzelm@23152
   526
      val rhs = con_app2 con (app_rec_arg (cproj (%:"f") eqs)) args;
wenzelm@23152
   527
      val goal = lift_defined %: (nonlazy_rec args, mk_trp (lhs === rhs));
wenzelm@23152
   528
      val args' = List.filter (fn a => not (is_rec a orelse is_lazy a)) args;
wenzelm@23152
   529
      val stricts = abs_strict::when_strict::con_stricts;
wenzelm@23152
   530
      val tacs1 = map (case_UU_tac stricts 1 o vname) args';
wenzelm@23152
   531
      val tacs2 = [asm_simp_tac (HOLCF_ss addsimps when_apps) 1];
wenzelm@23152
   532
    in pg [ax_copy_def] goal (tacs1 @ tacs2) end;
wenzelm@23152
   533
in
wenzelm@23152
   534
  val copy_apps = map copy_app cons;
wenzelm@23152
   535
end;
wenzelm@23152
   536
wenzelm@23152
   537
local
wenzelm@23152
   538
  fun one_strict (con, args) = 
wenzelm@23152
   539
    let
wenzelm@23152
   540
      val goal = mk_trp (dc_copy`UU`(con_app con args) === UU);
wenzelm@23152
   541
      val rews = copy_strict :: copy_apps @ con_rews;
wenzelm@23152
   542
      val tacs = map (case_UU_tac rews 1) (nonlazy args) @
wenzelm@23152
   543
        [asm_simp_tac (HOLCF_ss addsimps rews) 1];
wenzelm@23152
   544
    in pg [] goal tacs end;
wenzelm@23152
   545
wenzelm@23152
   546
  fun has_nonlazy_rec (_, args) = exists is_nonlazy_rec args;
wenzelm@23152
   547
in
wenzelm@23152
   548
  val copy_stricts = map one_strict (List.filter has_nonlazy_rec cons);
wenzelm@23152
   549
end;
wenzelm@23152
   550
wenzelm@23152
   551
val copy_rews = copy_strict :: copy_apps @ copy_stricts;
wenzelm@23152
   552
wenzelm@23152
   553
in
wenzelm@23152
   554
  thy
wenzelm@23152
   555
    |> Theory.add_path (Sign.base_name dname)
wenzelm@23152
   556
    |> (snd o (PureThy.add_thmss (map Thm.no_attributes [
wenzelm@23152
   557
        ("iso_rews" , iso_rews  ),
wenzelm@23152
   558
        ("exhaust"  , [exhaust] ),
wenzelm@23152
   559
        ("casedist" , [casedist]),
wenzelm@23152
   560
        ("when_rews", when_rews ),
wenzelm@23152
   561
        ("compacts", con_compacts),
wenzelm@23152
   562
        ("con_rews", con_rews),
wenzelm@23152
   563
        ("sel_rews", sel_rews),
wenzelm@23152
   564
        ("dis_rews", dis_rews),
wenzelm@23152
   565
        ("pat_rews", pat_rews),
wenzelm@23152
   566
        ("dist_les", dist_les),
wenzelm@23152
   567
        ("dist_eqs", dist_eqs),
wenzelm@23152
   568
        ("inverts" , inverts ),
wenzelm@23152
   569
        ("injects" , injects ),
wenzelm@23152
   570
        ("copy_rews", copy_rews)])))
wenzelm@23152
   571
    |> (snd o PureThy.add_thmss
wenzelm@23152
   572
        [(("match_rews", mat_rews), [Simplifier.simp_add])])
wenzelm@23152
   573
    |> Theory.parent_path
wenzelm@23152
   574
    |> rpair (iso_rews @ when_rews @ con_rews @ sel_rews @ dis_rews @
wenzelm@23152
   575
        pat_rews @ dist_les @ dist_eqs @ copy_rews)
wenzelm@23152
   576
end; (* let *)
wenzelm@23152
   577
wenzelm@23152
   578
fun comp_theorems (comp_dnam, eqs: eq list) thy =
wenzelm@23152
   579
let
wenzelm@23152
   580
val dnames = map (fst o fst) eqs;
wenzelm@23152
   581
val conss  = map  snd        eqs;
wenzelm@23152
   582
val comp_dname = Sign.full_name thy comp_dnam;
wenzelm@23152
   583
wenzelm@23152
   584
val d = writeln("Proving induction properties of domain "^comp_dname^" ...");
wenzelm@23152
   585
val pg = pg' thy;
wenzelm@23152
   586
wenzelm@23152
   587
(* ----- getting the composite axiom and definitions ------------------------ *)
wenzelm@23152
   588
wenzelm@23152
   589
local
wenzelm@23152
   590
  fun ga s dn = get_thm thy (Name (dn ^ "." ^ s));
wenzelm@23152
   591
in
wenzelm@23152
   592
  val axs_reach      = map (ga "reach"     ) dnames;
wenzelm@23152
   593
  val axs_take_def   = map (ga "take_def"  ) dnames;
wenzelm@23152
   594
  val axs_finite_def = map (ga "finite_def") dnames;
wenzelm@23152
   595
  val ax_copy2_def   =      ga "copy_def"  comp_dnam;
wenzelm@23152
   596
  val ax_bisim_def   =      ga "bisim_def" comp_dnam;
wenzelm@23152
   597
end;
wenzelm@23152
   598
wenzelm@23152
   599
local
wenzelm@23152
   600
  fun gt  s dn = get_thm  thy (Name (dn ^ "." ^ s));
wenzelm@23152
   601
  fun gts s dn = get_thms thy (Name (dn ^ "." ^ s));
wenzelm@23152
   602
in
wenzelm@23152
   603
  val cases = map (gt  "casedist" ) dnames;
wenzelm@23152
   604
  val con_rews  = List.concat (map (gts "con_rews" ) dnames);
wenzelm@23152
   605
  val copy_rews = List.concat (map (gts "copy_rews") dnames);
wenzelm@23152
   606
end;
wenzelm@23152
   607
wenzelm@23152
   608
fun dc_take dn = %%:(dn^"_take");
wenzelm@23152
   609
val x_name = idx_name dnames "x"; 
wenzelm@23152
   610
val P_name = idx_name dnames "P";
wenzelm@23152
   611
val n_eqs = length eqs;
wenzelm@23152
   612
wenzelm@23152
   613
(* ----- theorems concerning finite approximation and finite induction ------ *)
wenzelm@23152
   614
wenzelm@23152
   615
local
wenzelm@23152
   616
  val iterate_Cprod_ss = simpset_of (theory "Fix");
wenzelm@23152
   617
  val copy_con_rews  = copy_rews @ con_rews;
wenzelm@23152
   618
  val copy_take_defs =
wenzelm@23152
   619
    (if n_eqs = 1 then [] else [ax_copy2_def]) @ axs_take_def;
wenzelm@23152
   620
  val take_stricts =
wenzelm@23152
   621
    let
wenzelm@23152
   622
      fun one_eq ((dn, args), _) = strict (dc_take dn $ %:"n");
wenzelm@23152
   623
      val goal = mk_trp (foldr1 mk_conj (map one_eq eqs));
wenzelm@23152
   624
      val tacs = [
wenzelm@23152
   625
        induct_tac "n" 1,
wenzelm@23152
   626
        simp_tac iterate_Cprod_ss 1,
wenzelm@23152
   627
        asm_simp_tac (iterate_Cprod_ss addsimps copy_rews) 1];
wenzelm@23152
   628
    in pg copy_take_defs goal tacs end;
wenzelm@23152
   629
wenzelm@23152
   630
  val take_stricts' = rewrite_rule copy_take_defs take_stricts;
wenzelm@23152
   631
  fun take_0 n dn =
wenzelm@23152
   632
    let
wenzelm@23152
   633
      val goal = mk_trp ((dc_take dn $ %%:"HOL.zero") `% x_name n === UU);
wenzelm@23152
   634
    in pg axs_take_def goal [simp_tac iterate_Cprod_ss 1] end;
wenzelm@23152
   635
  val take_0s = mapn take_0 1 dnames;
wenzelm@23152
   636
  val c_UU_tac = case_UU_tac (take_stricts'::copy_con_rews) 1;
wenzelm@23152
   637
  val take_apps =
wenzelm@23152
   638
    let
wenzelm@23152
   639
      fun mk_eqn dn (con, args) =
wenzelm@23152
   640
        let
wenzelm@23152
   641
          fun mk_take n = dc_take (List.nth (dnames, n)) $ %:"n";
wenzelm@23152
   642
          val lhs = (dc_take dn $ (%%:"Suc" $ %:"n"))`(con_app con args);
wenzelm@23152
   643
          val rhs = con_app2 con (app_rec_arg mk_take) args;
wenzelm@23152
   644
        in Library.foldr mk_all (map vname args, lhs === rhs) end;
wenzelm@23152
   645
      fun mk_eqns ((dn, _), cons) = map (mk_eqn dn) cons;
wenzelm@23152
   646
      val goal = mk_trp (foldr1 mk_conj (List.concat (map mk_eqns eqs)));
wenzelm@23152
   647
      val simps = List.filter (has_fewer_prems 1) copy_rews;
wenzelm@23152
   648
      fun con_tac (con, args) =
wenzelm@23152
   649
        if nonlazy_rec args = []
wenzelm@23152
   650
        then all_tac
wenzelm@23152
   651
        else EVERY (map c_UU_tac (nonlazy_rec args)) THEN
wenzelm@23152
   652
          asm_full_simp_tac (HOLCF_ss addsimps copy_rews) 1;
wenzelm@23152
   653
      fun eq_tacs ((dn, _), cons) = map con_tac cons;
wenzelm@23152
   654
      val tacs =
wenzelm@23152
   655
        simp_tac iterate_Cprod_ss 1 ::
wenzelm@23152
   656
        induct_tac "n" 1 ::
wenzelm@23152
   657
        simp_tac (iterate_Cprod_ss addsimps copy_con_rews) 1 ::
wenzelm@23152
   658
        asm_full_simp_tac (HOLCF_ss addsimps simps) 1 ::
wenzelm@23152
   659
        TRY (safe_tac HOL_cs) ::
wenzelm@23152
   660
        List.concat (map eq_tacs eqs);
wenzelm@23152
   661
    in pg copy_take_defs goal tacs end;
wenzelm@23152
   662
in
wenzelm@23152
   663
  val take_rews = map standard
wenzelm@23152
   664
    (atomize take_stricts @ take_0s @ atomize take_apps);
wenzelm@23152
   665
end; (* local *)
wenzelm@23152
   666
wenzelm@23152
   667
local
wenzelm@23152
   668
  fun one_con p (con,args) =
wenzelm@23152
   669
    let
wenzelm@23152
   670
      fun ind_hyp arg = %:(P_name (1 + rec_of arg)) $ bound_arg args arg;
wenzelm@23152
   671
      val t1 = mk_trp (%:p $ con_app2 con (bound_arg args) args);
wenzelm@23152
   672
      val t2 = lift ind_hyp (List.filter is_rec args, t1);
wenzelm@23152
   673
      val t3 = lift_defined (bound_arg (map vname args)) (nonlazy args, t2);
wenzelm@23152
   674
    in Library.foldr mk_All (map vname args, t3) end;
wenzelm@23152
   675
wenzelm@23152
   676
  fun one_eq ((p, cons), concl) =
wenzelm@23152
   677
    mk_trp (%:p $ UU) ===> Logic.list_implies (map (one_con p) cons, concl);
wenzelm@23152
   678
wenzelm@23152
   679
  fun ind_term concf = Library.foldr one_eq
wenzelm@23152
   680
    (mapn (fn n => fn x => (P_name n, x)) 1 conss,
wenzelm@23152
   681
     mk_trp (foldr1 mk_conj (mapn concf 1 dnames)));
wenzelm@23152
   682
  val take_ss = HOL_ss addsimps take_rews;
wenzelm@23152
   683
  fun quant_tac i = EVERY
wenzelm@23152
   684
    (mapn (fn n => fn _ => res_inst_tac [("x", x_name n)] spec i) 1 dnames);
wenzelm@23152
   685
wenzelm@23152
   686
  fun ind_prems_tac prems = EVERY
wenzelm@23152
   687
    (List.concat (map (fn cons =>
wenzelm@23152
   688
      (resolve_tac prems 1 ::
wenzelm@23152
   689
        List.concat (map (fn (_,args) => 
wenzelm@23152
   690
          resolve_tac prems 1 ::
wenzelm@23152
   691
          map (K(atac 1)) (nonlazy args) @
wenzelm@23152
   692
          map (K(atac 1)) (List.filter is_rec args))
wenzelm@23152
   693
        cons)))
wenzelm@23152
   694
      conss));
wenzelm@23152
   695
  local 
wenzelm@23152
   696
    (* check whether every/exists constructor of the n-th part of the equation:
wenzelm@23152
   697
       it has a possibly indirectly recursive argument that isn't/is possibly 
wenzelm@23152
   698
       indirectly lazy *)
wenzelm@23152
   699
    fun rec_to quant nfn rfn ns lazy_rec (n,cons) = quant (exists (fn arg => 
wenzelm@23152
   700
          is_rec arg andalso not(rec_of arg mem ns) andalso
wenzelm@23152
   701
          ((rec_of arg =  n andalso nfn(lazy_rec orelse is_lazy arg)) orelse 
wenzelm@23152
   702
            rec_of arg <> n andalso rec_to quant nfn rfn (rec_of arg::ns) 
wenzelm@23152
   703
              (lazy_rec orelse is_lazy arg) (n, (List.nth(conss,rec_of arg))))
wenzelm@23152
   704
          ) o snd) cons;
wenzelm@23152
   705
    fun all_rec_to ns  = rec_to forall not all_rec_to  ns;
wenzelm@23152
   706
    fun warn (n,cons) =
wenzelm@23152
   707
      if all_rec_to [] false (n,cons)
wenzelm@23152
   708
      then (warning ("domain "^List.nth(dnames,n)^" is empty!"); true)
wenzelm@23152
   709
      else false;
wenzelm@23152
   710
    fun lazy_rec_to ns = rec_to exists I  lazy_rec_to ns;
wenzelm@23152
   711
wenzelm@23152
   712
  in
wenzelm@23152
   713
    val n__eqs = mapn (fn n => fn (_,cons) => (n,cons)) 0 eqs;
wenzelm@23152
   714
    val is_emptys = map warn n__eqs;
wenzelm@23152
   715
    val is_finite = forall (not o lazy_rec_to [] false) n__eqs;
wenzelm@23152
   716
  end;
wenzelm@23152
   717
in (* local *)
wenzelm@23152
   718
  val finite_ind =
wenzelm@23152
   719
    let
wenzelm@23152
   720
      fun concf n dn = %:(P_name n) $ (dc_take dn $ %:"n" `%(x_name n));
wenzelm@23152
   721
      val goal = ind_term concf;
wenzelm@23152
   722
wenzelm@23152
   723
      fun tacf prems =
wenzelm@23152
   724
        let
wenzelm@23152
   725
          val tacs1 = [
wenzelm@23152
   726
            quant_tac 1,
wenzelm@23152
   727
            simp_tac HOL_ss 1,
wenzelm@23152
   728
            induct_tac "n" 1,
wenzelm@23152
   729
            simp_tac (take_ss addsimps prems) 1,
wenzelm@23152
   730
            TRY (safe_tac HOL_cs)];
wenzelm@23152
   731
          fun arg_tac arg =
wenzelm@23152
   732
            case_UU_tac (prems @ con_rews) 1
wenzelm@23152
   733
              (List.nth (dnames, rec_of arg) ^ "_take n$" ^ vname arg);
wenzelm@23152
   734
          fun con_tacs (con, args) = 
wenzelm@23152
   735
            asm_simp_tac take_ss 1 ::
wenzelm@23152
   736
            map arg_tac (List.filter is_nonlazy_rec args) @
wenzelm@23152
   737
            [resolve_tac prems 1] @
wenzelm@23152
   738
            map (K (atac 1))      (nonlazy args) @
wenzelm@23152
   739
            map (K (etac spec 1)) (List.filter is_rec args);
wenzelm@23152
   740
          fun cases_tacs (cons, cases) =
wenzelm@23152
   741
            res_inst_tac [("x","x")] cases 1 ::
wenzelm@23152
   742
            asm_simp_tac (take_ss addsimps prems) 1 ::
wenzelm@23152
   743
            List.concat (map con_tacs cons);
wenzelm@23152
   744
        in
wenzelm@23152
   745
          tacs1 @ List.concat (map cases_tacs (conss ~~ cases))
wenzelm@23152
   746
        end;
wenzelm@23152
   747
    in pg'' thy [] goal tacf end;
wenzelm@23152
   748
wenzelm@23152
   749
  val take_lemmas =
wenzelm@23152
   750
    let
wenzelm@23152
   751
      fun take_lemma n (dn, ax_reach) =
wenzelm@23152
   752
        let
wenzelm@23152
   753
          val lhs = dc_take dn $ Bound 0 `%(x_name n);
wenzelm@23152
   754
          val rhs = dc_take dn $ Bound 0 `%(x_name n^"'");
wenzelm@23152
   755
          val concl = mk_trp (%:(x_name n) === %:(x_name n^"'"));
wenzelm@23152
   756
          val goal = mk_All ("n", mk_trp (lhs === rhs)) ===> concl;
wenzelm@23152
   757
          fun tacf prems = [
wenzelm@23152
   758
            res_inst_tac [("t", x_name n    )] (ax_reach RS subst) 1,
wenzelm@23152
   759
            res_inst_tac [("t", x_name n^"'")] (ax_reach RS subst) 1,
wenzelm@23152
   760
            stac fix_def2 1,
wenzelm@23152
   761
            REPEAT (CHANGED
wenzelm@23152
   762
              (rtac (contlub_cfun_arg RS ssubst) 1 THEN chain_tac 1)),
wenzelm@23152
   763
            stac contlub_cfun_fun 1,
wenzelm@23152
   764
            stac contlub_cfun_fun 2,
wenzelm@23152
   765
            rtac lub_equal 3,
wenzelm@23152
   766
            chain_tac 1,
wenzelm@23152
   767
            rtac allI 1,
wenzelm@23152
   768
            resolve_tac prems 1];
wenzelm@23152
   769
        in pg'' thy axs_take_def goal tacf end;
wenzelm@23152
   770
    in mapn take_lemma 1 (dnames ~~ axs_reach) end;
wenzelm@23152
   771
wenzelm@23152
   772
(* ----- theorems concerning finiteness and induction ----------------------- *)
wenzelm@23152
   773
wenzelm@23152
   774
  val (finites, ind) =
wenzelm@23152
   775
    if is_finite
wenzelm@23152
   776
    then (* finite case *)
wenzelm@23152
   777
      let 
wenzelm@23152
   778
        fun take_enough dn = mk_ex ("n",dc_take dn $ Bound 0 ` %:"x" === %:"x");
wenzelm@23152
   779
        fun dname_lemma dn =
wenzelm@23152
   780
          let
wenzelm@23152
   781
            val prem1 = mk_trp (defined (%:"x"));
wenzelm@23152
   782
            val disj1 = mk_all ("n", dc_take dn $ Bound 0 ` %:"x" === UU);
wenzelm@23152
   783
            val prem2 = mk_trp (mk_disj (disj1, take_enough dn));
wenzelm@23152
   784
            val concl = mk_trp (take_enough dn);
wenzelm@23152
   785
            val goal = prem1 ===> prem2 ===> concl;
wenzelm@23152
   786
            val tacs = [
wenzelm@23152
   787
              etac disjE 1,
wenzelm@23152
   788
              etac notE 1,
wenzelm@23152
   789
              resolve_tac take_lemmas 1,
wenzelm@23152
   790
              asm_simp_tac take_ss 1,
wenzelm@23152
   791
              atac 1];
wenzelm@23152
   792
          in pg [] goal tacs end;
wenzelm@23152
   793
        val finite_lemmas1a = map dname_lemma dnames;
wenzelm@23152
   794
 
wenzelm@23152
   795
        val finite_lemma1b =
wenzelm@23152
   796
          let
wenzelm@23152
   797
            fun mk_eqn n ((dn, args), _) =
wenzelm@23152
   798
              let
wenzelm@23152
   799
                val disj1 = dc_take dn $ Bound 1 ` Bound 0 === UU;
wenzelm@23152
   800
                val disj2 = dc_take dn $ Bound 1 ` Bound 0 === Bound 0;
wenzelm@23152
   801
              in
wenzelm@23152
   802
                mk_constrainall
wenzelm@23152
   803
                  (x_name n, Type (dn,args), mk_disj (disj1, disj2))
wenzelm@23152
   804
              end;
wenzelm@23152
   805
            val goal =
wenzelm@23152
   806
              mk_trp (mk_all ("n", foldr1 mk_conj (mapn mk_eqn 1 eqs)));
wenzelm@23152
   807
            fun arg_tacs vn = [
wenzelm@23152
   808
              eres_inst_tac [("x", vn)] all_dupE 1,
wenzelm@23152
   809
              etac disjE 1,
wenzelm@23152
   810
              asm_simp_tac (HOL_ss addsimps con_rews) 1,
wenzelm@23152
   811
              asm_simp_tac take_ss 1];
wenzelm@23152
   812
            fun con_tacs (con, args) =
wenzelm@23152
   813
              asm_simp_tac take_ss 1 ::
wenzelm@23152
   814
              List.concat (map arg_tacs (nonlazy_rec args));
wenzelm@23152
   815
            fun foo_tacs n (cons, cases) =
wenzelm@23152
   816
              simp_tac take_ss 1 ::
wenzelm@23152
   817
              rtac allI 1 ::
wenzelm@23152
   818
              res_inst_tac [("x",x_name n)] cases 1 ::
wenzelm@23152
   819
              asm_simp_tac take_ss 1 ::
wenzelm@23152
   820
              List.concat (map con_tacs cons);
wenzelm@23152
   821
            val tacs =
wenzelm@23152
   822
              rtac allI 1 ::
wenzelm@23152
   823
              induct_tac "n" 1 ::
wenzelm@23152
   824
              simp_tac take_ss 1 ::
wenzelm@23152
   825
              TRY (safe_tac (empty_cs addSEs [conjE] addSIs [conjI])) ::
wenzelm@23152
   826
              List.concat (mapn foo_tacs 1 (conss ~~ cases));
wenzelm@23152
   827
          in pg [] goal tacs end;
wenzelm@23152
   828
wenzelm@23152
   829
        fun one_finite (dn, l1b) =
wenzelm@23152
   830
          let
wenzelm@23152
   831
            val goal = mk_trp (%%:(dn^"_finite") $ %:"x");
wenzelm@23152
   832
            val tacs = [
wenzelm@23152
   833
              case_UU_tac take_rews 1 "x",
wenzelm@23152
   834
              eresolve_tac finite_lemmas1a 1,
wenzelm@23152
   835
              step_tac HOL_cs 1,
wenzelm@23152
   836
              step_tac HOL_cs 1,
wenzelm@23152
   837
              cut_facts_tac [l1b] 1,
wenzelm@23152
   838
              fast_tac HOL_cs 1];
wenzelm@23152
   839
          in pg axs_finite_def goal tacs end;
wenzelm@23152
   840
wenzelm@23152
   841
        val finites = map one_finite (dnames ~~ atomize finite_lemma1b);
wenzelm@23152
   842
        val ind =
wenzelm@23152
   843
          let
wenzelm@23152
   844
            fun concf n dn = %:(P_name n) $ %:(x_name n);
wenzelm@23152
   845
            fun tacf prems =
wenzelm@23152
   846
              let
wenzelm@23152
   847
                fun finite_tacs (finite, fin_ind) = [
wenzelm@23152
   848
                  rtac(rewrite_rule axs_finite_def finite RS exE)1,
wenzelm@23152
   849
                  etac subst 1,
wenzelm@23152
   850
                  rtac fin_ind 1,
wenzelm@23152
   851
                  ind_prems_tac prems];
wenzelm@23152
   852
              in
wenzelm@23152
   853
                TRY (safe_tac HOL_cs) ::
wenzelm@23152
   854
                List.concat (map finite_tacs (finites ~~ atomize finite_ind))
wenzelm@23152
   855
              end;
wenzelm@23152
   856
          in pg'' thy [] (ind_term concf) tacf end;
wenzelm@23152
   857
      in (finites, ind) end (* let *)
wenzelm@23152
   858
wenzelm@23152
   859
    else (* infinite case *)
wenzelm@23152
   860
      let
wenzelm@23152
   861
        fun one_finite n dn =
wenzelm@23152
   862
          read_instantiate_sg thy
wenzelm@23152
   863
            [("P",dn^"_finite "^x_name n)] excluded_middle;
wenzelm@23152
   864
        val finites = mapn one_finite 1 dnames;
wenzelm@23152
   865
wenzelm@23152
   866
        val goal =
wenzelm@23152
   867
          let
wenzelm@23152
   868
            fun one_adm n _ = mk_trp (%%:admN $ %:(P_name n));
wenzelm@23152
   869
            fun concf n dn = %:(P_name n) $ %:(x_name n);
wenzelm@23152
   870
          in Logic.list_implies (mapn one_adm 1 dnames, ind_term concf) end;
wenzelm@23152
   871
        fun tacf prems =
wenzelm@23152
   872
          map (fn ax_reach => rtac (ax_reach RS subst) 1) axs_reach @ [
wenzelm@23152
   873
          quant_tac 1,
wenzelm@23152
   874
          rtac (adm_impl_admw RS wfix_ind) 1,
wenzelm@23152
   875
          REPEAT_DETERM (rtac adm_all2 1),
wenzelm@23152
   876
          REPEAT_DETERM (
wenzelm@23152
   877
            TRY (rtac adm_conj 1) THEN 
wenzelm@23152
   878
            rtac adm_subst 1 THEN 
wenzelm@23152
   879
            cont_tacR 1 THEN resolve_tac prems 1),
wenzelm@23152
   880
          strip_tac 1,
wenzelm@23152
   881
          rtac (rewrite_rule axs_take_def finite_ind) 1,
wenzelm@23152
   882
          ind_prems_tac prems];
wenzelm@23152
   883
        val ind = (pg'' thy [] goal tacf
wenzelm@23152
   884
          handle ERROR _ =>
wenzelm@23152
   885
            (warning "Cannot prove infinite induction rule"; refl));
wenzelm@23152
   886
      in (finites, ind) end;
wenzelm@23152
   887
end; (* local *)
wenzelm@23152
   888
wenzelm@23152
   889
(* ----- theorem concerning coinduction ------------------------------------- *)
wenzelm@23152
   890
wenzelm@23152
   891
local
wenzelm@23152
   892
  val xs = mapn (fn n => K (x_name n)) 1 dnames;
wenzelm@23152
   893
  fun bnd_arg n i = Bound(2*(n_eqs - n)-i-1);
wenzelm@23152
   894
  val take_ss = HOL_ss addsimps take_rews;
wenzelm@23152
   895
  val sproj = prj (fn s => K("fst("^s^")")) (fn s => K("snd("^s^")"));
wenzelm@23152
   896
  val coind_lemma =
wenzelm@23152
   897
    let
wenzelm@23152
   898
      fun mk_prj n _ = proj (%:"R") eqs n $ bnd_arg n 0 $ bnd_arg n 1;
wenzelm@23152
   899
      fun mk_eqn n dn =
wenzelm@23152
   900
        (dc_take dn $ %:"n" ` bnd_arg n 0) ===
wenzelm@23152
   901
        (dc_take dn $ %:"n" ` bnd_arg n 1);
wenzelm@23152
   902
      fun mk_all2 (x,t) = mk_all (x, mk_all (x^"'", t));
wenzelm@23152
   903
      val goal =
wenzelm@23152
   904
        mk_trp (mk_imp (%%:(comp_dname^"_bisim") $ %:"R",
wenzelm@23152
   905
          Library.foldr mk_all2 (xs,
wenzelm@23152
   906
            Library.foldr mk_imp (mapn mk_prj 0 dnames,
wenzelm@23152
   907
              foldr1 mk_conj (mapn mk_eqn 0 dnames)))));
wenzelm@23152
   908
      fun x_tacs n x = [
wenzelm@23152
   909
        rotate_tac (n+1) 1,
wenzelm@23152
   910
        etac all2E 1,
wenzelm@23152
   911
        eres_inst_tac [("P1", sproj "R" eqs n^" "^x^" "^x^"'")] (mp RS disjE) 1,
wenzelm@23152
   912
        TRY (safe_tac HOL_cs),
wenzelm@23152
   913
        REPEAT (CHANGED (asm_simp_tac take_ss 1))];
wenzelm@23152
   914
      val tacs = [
wenzelm@23152
   915
        rtac impI 1,
wenzelm@23152
   916
        induct_tac "n" 1,
wenzelm@23152
   917
        simp_tac take_ss 1,
wenzelm@23152
   918
        safe_tac HOL_cs] @
wenzelm@23152
   919
        List.concat (mapn x_tacs 0 xs);
wenzelm@23152
   920
    in pg [ax_bisim_def] goal tacs end;
wenzelm@23152
   921
in
wenzelm@23152
   922
  val coind = 
wenzelm@23152
   923
    let
wenzelm@23152
   924
      fun mk_prj n x = mk_trp (proj (%:"R") eqs n $ %:x $ %:(x^"'"));
wenzelm@23152
   925
      fun mk_eqn x = %:x === %:(x^"'");
wenzelm@23152
   926
      val goal =
wenzelm@23152
   927
        mk_trp (%%:(comp_dname^"_bisim") $ %:"R") ===>
wenzelm@23152
   928
          Logic.list_implies (mapn mk_prj 0 xs,
wenzelm@23152
   929
            mk_trp (foldr1 mk_conj (map mk_eqn xs)));
wenzelm@23152
   930
      val tacs =
wenzelm@23152
   931
        TRY (safe_tac HOL_cs) ::
wenzelm@23152
   932
        List.concat (map (fn take_lemma => [
wenzelm@23152
   933
          rtac take_lemma 1,
wenzelm@23152
   934
          cut_facts_tac [coind_lemma] 1,
wenzelm@23152
   935
          fast_tac HOL_cs 1])
wenzelm@23152
   936
        take_lemmas);
wenzelm@23152
   937
    in pg [] goal tacs end;
wenzelm@23152
   938
end; (* local *)
wenzelm@23152
   939
wenzelm@23152
   940
in thy |> Theory.add_path comp_dnam
wenzelm@23152
   941
       |> (snd o (PureThy.add_thmss (map Thm.no_attributes [
wenzelm@23152
   942
		("take_rews"  , take_rews  ),
wenzelm@23152
   943
		("take_lemmas", take_lemmas),
wenzelm@23152
   944
		("finites"    , finites    ),
wenzelm@23152
   945
		("finite_ind", [finite_ind]),
wenzelm@23152
   946
		("ind"       , [ind       ]),
wenzelm@23152
   947
		("coind"     , [coind     ])])))
wenzelm@23152
   948
       |> Theory.parent_path |> rpair take_rews
wenzelm@23152
   949
end; (* let *)
wenzelm@23152
   950
end; (* local *)
wenzelm@23152
   951
end; (* struct *)