src/HOL/Hyperreal/NthRoot.thy
author paulson
Tue Dec 23 18:24:16 2003 +0100 (2003-12-23)
changeset 14325 94ac3895822f
parent 14324 c9c6832f9b22
child 14334 6137d24eef79
permissions -rw-r--r--
removing real_of_posnat
paulson@12196
     1
(*  Title       : NthRoot.thy
paulson@12196
     2
    Author      : Jacques D. Fleuriot
paulson@12196
     3
    Copyright   : 1998  University of Cambridge
paulson@12196
     4
    Description : Existence of nth root. Adapted from
paulson@12196
     5
                   http://www.math.unl.edu/~webnotes
paulson@12196
     6
*)
paulson@12196
     7
paulson@14324
     8
header{*Existence of Nth Root*}
paulson@14324
     9
paulson@14324
    10
theory NthRoot = SEQ + HSeries:
paulson@14324
    11
paulson@14324
    12
text{*Various lemmas needed for this result. We follow the proof
paulson@14324
    13
   given by John Lindsay Orr (jorr@math.unl.edu) in his Analysis
paulson@14324
    14
   Webnotes available on the www at http://www.math.unl.edu/~webnotes
paulson@14324
    15
   Lemmas about sequences of reals are used to reach the result.*}
paulson@14324
    16
paulson@14324
    17
lemma lemma_nth_realpow_non_empty:
paulson@14324
    18
     "[| (0::real) < a; 0 < n |] ==> \<exists>s. s : {x. x ^ n <= a & 0 < x}"
paulson@14324
    19
apply (case_tac "1 <= a")
paulson@14324
    20
apply (rule_tac x = "1" in exI)
paulson@14324
    21
apply (drule_tac [2] not_real_leE)
paulson@14324
    22
apply (drule_tac [2] less_not_refl2 [THEN not0_implies_Suc])
paulson@14324
    23
apply (auto intro!: realpow_Suc_le_self simp add: real_zero_less_one)
paulson@14324
    24
done
paulson@14324
    25
paulson@14324
    26
lemma lemma_nth_realpow_isUb_ex:
paulson@14324
    27
     "[| (0::real) < a; 0 < n |]  
paulson@14324
    28
      ==> \<exists>u. isUb (UNIV::real set) {x. x ^ n <= a & 0 < x} u"
paulson@14324
    29
apply (case_tac "1 <= a")
paulson@14324
    30
apply (rule_tac x = "a" in exI)
paulson@14324
    31
apply (drule_tac [2] not_real_leE)
paulson@14324
    32
apply (rule_tac [2] x = "1" in exI)
paulson@14324
    33
apply (rule_tac [!] setleI [THEN isUbI])
paulson@14324
    34
apply safe
paulson@14324
    35
apply (simp_all (no_asm))
paulson@14324
    36
apply (rule_tac [!] ccontr)
paulson@14324
    37
apply (drule_tac [!] not_real_leE)
paulson@14324
    38
apply (drule realpow_ge_self2 , assumption)
paulson@14324
    39
apply (drule_tac n = "n" in realpow_less)
paulson@14324
    40
apply (assumption+)
paulson@14324
    41
apply (drule real_le_trans , assumption)
paulson@14324
    42
apply (drule_tac y = "y ^ n" in order_less_le_trans)
paulson@14324
    43
apply (assumption , erule real_less_irrefl)
paulson@14324
    44
apply (drule_tac n = "n" in real_zero_less_one [THEN realpow_less])
paulson@14324
    45
apply auto
paulson@14324
    46
done
paulson@14324
    47
paulson@14324
    48
lemma nth_realpow_isLub_ex:
paulson@14324
    49
     "[| (0::real) < a; 0 < n |]  
paulson@14324
    50
      ==> \<exists>u. isLub (UNIV::real set) {x. x ^ n <= a & 0 < x} u"
paulson@14324
    51
apply (blast intro: lemma_nth_realpow_isUb_ex lemma_nth_realpow_non_empty reals_complete)
paulson@14324
    52
done
paulson@14324
    53
 
paulson@14324
    54
subsection{*First Half -- Lemmas First*}
paulson@14324
    55
paulson@14324
    56
lemma lemma_nth_realpow_seq:
paulson@14324
    57
     "isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u  
paulson@14324
    58
           ==> u + inverse(real (Suc k)) ~: {x. x ^ n <= a & 0 < x}"
paulson@14324
    59
apply (safe , drule isLubD2 , blast)
paulson@14324
    60
apply (simp add: real_le_def)
paulson@14324
    61
done
paulson@14324
    62
paulson@14324
    63
lemma lemma_nth_realpow_isLub_gt_zero:
paulson@14324
    64
     "[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u;  
paulson@14324
    65
         0 < a; 0 < n |] ==> 0 < u"
paulson@14324
    66
apply (drule lemma_nth_realpow_non_empty , auto)
paulson@14324
    67
apply (drule_tac y = "s" in isLub_isUb [THEN isUbD])
paulson@14324
    68
apply (auto intro: order_less_le_trans)
paulson@14324
    69
done
paulson@14324
    70
paulson@14324
    71
lemma lemma_nth_realpow_isLub_ge:
paulson@14324
    72
     "[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u;  
paulson@14324
    73
         0 < a; 0 < n |] ==> ALL k. a <= (u + inverse(real (Suc k))) ^ n"
paulson@14324
    74
apply (safe)
paulson@14324
    75
apply (frule lemma_nth_realpow_seq , safe)
paulson@14324
    76
apply (auto elim: real_less_asym simp add: real_le_def)
paulson@14324
    77
apply (simp add: real_le_def [symmetric])
paulson@14324
    78
apply (rule order_less_trans [of _ 0])
paulson@14325
    79
apply (auto intro: lemma_nth_realpow_isLub_gt_zero)
paulson@14324
    80
done
paulson@14324
    81
paulson@14324
    82
text{*First result we want*}
paulson@14324
    83
lemma realpow_nth_ge:
paulson@14324
    84
     "[| (0::real) < a; 0 < n;  
paulson@14324
    85
     isLub (UNIV::real set)  
paulson@14324
    86
     {x. x ^ n <= a & 0 < x} u |] ==> a <= u ^ n"
paulson@14324
    87
apply (frule lemma_nth_realpow_isLub_ge , safe)
paulson@14324
    88
apply (rule LIMSEQ_inverse_real_of_nat_add [THEN LIMSEQ_pow, THEN LIMSEQ_le_const])
paulson@14324
    89
apply (auto simp add: real_of_nat_def real_of_posnat_Suc)
paulson@14324
    90
done
paulson@14324
    91
paulson@14324
    92
subsection{*Second Half*}
paulson@14324
    93
paulson@14324
    94
lemma less_isLub_not_isUb:
paulson@14324
    95
     "[| isLub (UNIV::real set) S u; x < u |]  
paulson@14324
    96
           ==> ~ isUb (UNIV::real set) S x"
paulson@14324
    97
apply (safe)
paulson@14324
    98
apply (drule isLub_le_isUb)
paulson@14324
    99
apply assumption
paulson@14324
   100
apply (drule order_less_le_trans)
paulson@14324
   101
apply (auto simp add: real_less_not_refl)
paulson@14324
   102
done
paulson@14324
   103
paulson@14324
   104
lemma not_isUb_less_ex:
paulson@14324
   105
     "~ isUb (UNIV::real set) S u ==> \<exists>x \<in> S. u < x"
paulson@14324
   106
apply (rule ccontr , erule swap)
paulson@14324
   107
apply (rule setleI [THEN isUbI])
paulson@14324
   108
apply (auto simp add: real_le_def)
paulson@14324
   109
done
paulson@14324
   110
paulson@14325
   111
lemma real_mult_less_self: "0 < r ==> r * (1 + -inverse(real (Suc n))) < r"
paulson@14325
   112
apply (simp (no_asm) add: real_add_mult_distrib2)
paulson@14325
   113
apply (rule_tac C = "-r" in real_less_add_left_cancel)
paulson@14325
   114
apply (auto intro: real_mult_order simp add: real_add_assoc [symmetric] real_minus_zero_less_iff2)
paulson@14325
   115
done
paulson@14325
   116
paulson@14325
   117
lemma real_mult_add_one_minus_ge_zero:
paulson@14325
   118
     "0 < r ==>  0 <= r*(1 + -inverse(real (Suc n)))"
paulson@14325
   119
apply (simp add: zero_le_mult_iff real_of_nat_inverse_le_iff) 
paulson@14325
   120
apply (simp add: RealOrd.real_of_nat_Suc) 
paulson@14325
   121
done
paulson@14325
   122
paulson@14324
   123
lemma lemma_nth_realpow_isLub_le:
paulson@14324
   124
     "[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u;  
paulson@14325
   125
       0 < a; 0 < n |] ==> ALL k. (u*(1 + -inverse(real (Suc k)))) ^ n <= a"
paulson@14324
   126
apply (safe)
paulson@14324
   127
apply (frule less_isLub_not_isUb [THEN not_isUb_less_ex])
paulson@14324
   128
apply (rule_tac n = "k" in real_mult_less_self)
paulson@14324
   129
apply (blast intro: lemma_nth_realpow_isLub_gt_zero)
paulson@14324
   130
apply (safe)
paulson@14324
   131
apply (drule_tac n = "k" in lemma_nth_realpow_isLub_gt_zero [THEN real_mult_add_one_minus_ge_zero])
paulson@14324
   132
apply (drule_tac [3] conjI [THEN realpow_le2])
paulson@14324
   133
apply (rule_tac [3] order_less_imp_le) 
paulson@14324
   134
apply (auto intro: order_trans)
paulson@14324
   135
done
paulson@14324
   136
paulson@14324
   137
text{*Second result we want*}
paulson@14324
   138
lemma realpow_nth_le:
paulson@14324
   139
     "[| (0::real) < a; 0 < n;  
paulson@14324
   140
     isLub (UNIV::real set)  
paulson@14324
   141
     {x. x ^ n <= a & 0 < x} u |] ==> u ^ n <= a"
paulson@14324
   142
apply (frule lemma_nth_realpow_isLub_le , safe)
paulson@14324
   143
apply (rule LIMSEQ_inverse_real_of_nat_add_minus_mult [THEN LIMSEQ_pow, THEN LIMSEQ_le_const2])
paulson@14324
   144
apply (auto simp add: real_of_nat_def real_of_posnat_Suc)
paulson@14324
   145
done
paulson@14324
   146
paulson@14324
   147
(*----------- The theorem at last! -----------*)
paulson@14324
   148
lemma realpow_nth: "[| (0::real) < a; 0 < n |] ==> \<exists>r. r ^ n = a"
paulson@14324
   149
apply (frule nth_realpow_isLub_ex , auto)
paulson@14324
   150
apply (auto intro: realpow_nth_le realpow_nth_ge real_le_anti_sym)
paulson@14324
   151
done
paulson@14324
   152
paulson@14324
   153
(* positive only *)
paulson@14324
   154
lemma realpow_pos_nth: "[| (0::real) < a; 0 < n |] ==> \<exists>r. 0 < r & r ^ n = a"
paulson@14324
   155
apply (frule nth_realpow_isLub_ex , auto)
paulson@14324
   156
apply (auto intro: realpow_nth_le realpow_nth_ge real_le_anti_sym lemma_nth_realpow_isLub_gt_zero)
paulson@14324
   157
done
paulson@14324
   158
paulson@14324
   159
lemma realpow_pos_nth2: "(0::real) < a  ==> \<exists>r. 0 < r & r ^ Suc n = a"
paulson@14324
   160
apply (blast intro: realpow_pos_nth)
paulson@14324
   161
done
paulson@14324
   162
paulson@14324
   163
(* uniqueness of nth positive root *)
paulson@14324
   164
lemma realpow_pos_nth_unique:
paulson@14324
   165
     "[| (0::real) < a; 0 < n |] ==> EX! r. 0 < r & r ^ n = a"
paulson@14324
   166
apply (auto intro!: realpow_pos_nth)
paulson@14324
   167
apply (cut_tac x = "r" and y = "y" in linorder_less_linear)
paulson@14324
   168
apply auto
paulson@14324
   169
apply (drule_tac x = "r" in realpow_less)
paulson@14324
   170
apply (drule_tac [4] x = "y" in realpow_less)
paulson@14324
   171
apply (auto simp add: real_less_not_refl)
paulson@14324
   172
done
paulson@14324
   173
paulson@14324
   174
ML
paulson@14324
   175
{*
paulson@14324
   176
val nth_realpow_isLub_ex = thm"nth_realpow_isLub_ex";
paulson@14324
   177
val realpow_nth_ge = thm"realpow_nth_ge";
paulson@14324
   178
val less_isLub_not_isUb = thm"less_isLub_not_isUb";
paulson@14324
   179
val not_isUb_less_ex = thm"not_isUb_less_ex";
paulson@14324
   180
val realpow_nth_le = thm"realpow_nth_le";
paulson@14324
   181
val realpow_nth = thm"realpow_nth";
paulson@14324
   182
val realpow_pos_nth = thm"realpow_pos_nth";
paulson@14324
   183
val realpow_pos_nth2 = thm"realpow_pos_nth2";
paulson@14324
   184
val realpow_pos_nth_unique = thm"realpow_pos_nth_unique";
paulson@14324
   185
*}
paulson@14324
   186
paulson@14324
   187
end