src/HOL/Import/HOL/real.imp
author haftmann
Mon Jan 30 08:20:56 2006 +0100 (2006-01-30)
changeset 18851 9502ce541f01
parent 17644 bd59bfd4bf37
child 19233 77ca20b0ed77
permissions -rw-r--r--
adaptions to codegen_package
skalberg@14516
     1
import
skalberg@14516
     2
skalberg@14516
     3
import_segment "hol4"
skalberg@14516
     4
skalberg@14516
     5
def_maps
skalberg@14516
     6
  "sup" > "sup_def"
skalberg@14516
     7
  "sumc" > "sumc_def"
skalberg@14516
     8
  "sum" > "sum_def"
skalberg@14516
     9
skalberg@14516
    10
const_maps
skalberg@14516
    11
  "sup" > "HOL4Real.real.sup"
skalberg@14516
    12
  "sum" > "HOL4Real.real.sum"
skalberg@14516
    13
  "real_sub" > "op -" :: "real => real => real"
skalberg@14516
    14
  "real_of_num" > "RealDef.real" :: "nat => real"
skalberg@14516
    15
  "real_lte" > "op <=" :: "real => real => bool"
skalberg@14516
    16
  "real_gt" > "HOL4Compat.real_gt"
skalberg@14516
    17
  "real_ge" > "HOL4Compat.real_ge"
skalberg@14516
    18
  "pow" > "Nat.power" :: "real => nat => real"
skalberg@14516
    19
  "abs" > "HOL.abs" :: "real => real"
skalberg@14516
    20
  "/" > "HOL.divide" :: "real => real => real"
skalberg@14516
    21
skalberg@14516
    22
thm_maps
skalberg@14516
    23
  "sup_def" > "HOL4Real.real.sup_def"
skalberg@14516
    24
  "sup" > "HOL4Real.real.sup"
skalberg@14516
    25
  "sumc" > "HOL4Real.real.sumc"
skalberg@14516
    26
  "sum_def" > "HOL4Real.real.sum_def"
skalberg@14516
    27
  "sum" > "HOL4Real.real.sum"
wenzelm@14847
    28
  "real_sub" > "OrderedGroup.diff_def"
skalberg@14516
    29
  "real_of_num" > "HOL4Compat.real_of_num"
skalberg@14516
    30
  "real_lte" > "HOL4Compat.real_lte"
skalberg@15647
    31
  "real_lt" > "Orderings.linorder_not_le"
skalberg@14516
    32
  "real_gt" > "HOL4Compat.real_gt"
skalberg@14516
    33
  "real_ge" > "HOL4Compat.real_ge"
obua@17644
    34
  "real_div" > "Ring_and_Field.field_class.divide_inverse"
skalberg@14516
    35
  "pow" > "HOL4Compat.pow"
skalberg@14516
    36
  "abs" > "HOL4Compat.abs"
skalberg@14516
    37
  "SUP_LEMMA3" > "HOL4Real.real.SUP_LEMMA3"
skalberg@14516
    38
  "SUP_LEMMA2" > "HOL4Real.real.SUP_LEMMA2"
skalberg@14516
    39
  "SUP_LEMMA1" > "HOL4Real.real.SUP_LEMMA1"
skalberg@14516
    40
  "SUM_ZERO" > "HOL4Real.real.SUM_ZERO"
skalberg@14516
    41
  "SUM_TWO" > "HOL4Real.real.SUM_TWO"
skalberg@14516
    42
  "SUM_SUBST" > "HOL4Real.real.SUM_SUBST"
skalberg@14516
    43
  "SUM_SUB" > "HOL4Real.real.SUM_SUB"
skalberg@14516
    44
  "SUM_REINDEX" > "HOL4Real.real.SUM_REINDEX"
skalberg@14516
    45
  "SUM_POS_GEN" > "HOL4Real.real.SUM_POS_GEN"
skalberg@14516
    46
  "SUM_POS" > "HOL4Real.real.SUM_POS"
skalberg@14516
    47
  "SUM_PERMUTE_0" > "HOL4Real.real.SUM_PERMUTE_0"
skalberg@14516
    48
  "SUM_OFFSET" > "HOL4Real.real.SUM_OFFSET"
skalberg@14516
    49
  "SUM_NSUB" > "HOL4Real.real.SUM_NSUB"
skalberg@14516
    50
  "SUM_NEG" > "HOL4Real.real.SUM_NEG"
skalberg@14516
    51
  "SUM_LE" > "HOL4Real.real.SUM_LE"
skalberg@14516
    52
  "SUM_GROUP" > "HOL4Real.real.SUM_GROUP"
skalberg@14516
    53
  "SUM_EQ" > "HOL4Real.real.SUM_EQ"
skalberg@14516
    54
  "SUM_DIFF" > "HOL4Real.real.SUM_DIFF"
skalberg@14516
    55
  "SUM_DEF" > "HOL4Real.real.SUM_DEF"
skalberg@14516
    56
  "SUM_CMUL" > "HOL4Real.real.SUM_CMUL"
skalberg@14516
    57
  "SUM_CANCEL" > "HOL4Real.real.SUM_CANCEL"
skalberg@14516
    58
  "SUM_BOUND" > "HOL4Real.real.SUM_BOUND"
skalberg@14516
    59
  "SUM_ADD" > "HOL4Real.real.SUM_ADD"
skalberg@14516
    60
  "SUM_ABS_LE" > "HOL4Real.real.SUM_ABS_LE"
skalberg@14516
    61
  "SUM_ABS" > "HOL4Real.real.SUM_ABS"
skalberg@14516
    62
  "SUM_2" > "HOL4Real.real.SUM_2"
skalberg@14516
    63
  "SUM_1" > "HOL4Real.real.SUM_1"
skalberg@14516
    64
  "SUM_0" > "HOL4Real.real.SUM_0"
skalberg@14516
    65
  "SETOK_LE_LT" > "HOL4Real.real.SETOK_LE_LT"
skalberg@14516
    66
  "REAL_SUP_UBOUND_LE" > "HOL4Real.real.REAL_SUP_UBOUND_LE"
skalberg@14516
    67
  "REAL_SUP_UBOUND" > "HOL4Real.real.REAL_SUP_UBOUND"
skalberg@14516
    68
  "REAL_SUP_SOMEPOS" > "HOL4Real.real.REAL_SUP_SOMEPOS"
skalberg@14516
    69
  "REAL_SUP_LE" > "HOL4Real.real.REAL_SUP_LE"
skalberg@14516
    70
  "REAL_SUP_EXISTS" > "HOL4Real.real.REAL_SUP_EXISTS"
skalberg@14516
    71
  "REAL_SUP_ALLPOS" > "HOL4Compat.REAL_SUP_ALLPOS"
skalberg@14516
    72
  "REAL_SUP" > "HOL4Real.real.REAL_SUP"
skalberg@14516
    73
  "REAL_SUMSQ" > "HOL4Real.real.REAL_SUMSQ"
skalberg@14516
    74
  "REAL_SUB_TRIANGLE" > "HOL4Real.real.REAL_SUB_TRIANGLE"
skalberg@14516
    75
  "REAL_SUB_SUB2" > "HOL4Real.real.REAL_SUB_SUB2"
skalberg@14516
    76
  "REAL_SUB_SUB" > "HOL4Real.real.REAL_SUB_SUB"
wenzelm@14796
    77
  "REAL_SUB_RZERO" > "OrderedGroup.diff_0_right"
wenzelm@14796
    78
  "REAL_SUB_RNEG" > "OrderedGroup.diff_minus_eq_add"
wenzelm@14796
    79
  "REAL_SUB_REFL" > "OrderedGroup.diff_self"
skalberg@15647
    80
  "REAL_SUB_RDISTRIB" > "Ring_and_Field.ring_eq_simps_3"
skalberg@14516
    81
  "REAL_SUB_NEG2" > "HOL4Real.real.REAL_SUB_NEG2"
wenzelm@14796
    82
  "REAL_SUB_LZERO" > "OrderedGroup.diff_0"
skalberg@15647
    83
  "REAL_SUB_LT" > "HOL4Real.real.REAL_SUB_LT"
skalberg@14516
    84
  "REAL_SUB_LNEG" > "HOL4Real.real.REAL_SUB_LNEG"
skalberg@15647
    85
  "REAL_SUB_LE" > "HOL4Real.real.REAL_SUB_LE"
skalberg@15647
    86
  "REAL_SUB_LDISTRIB" > "Ring_and_Field.ring_eq_simps_4"
skalberg@14516
    87
  "REAL_SUB_INV2" > "HOL4Real.real.REAL_SUB_INV2"
wenzelm@14796
    88
  "REAL_SUB_ADD2" > "HOL4Real.real.REAL_SUB_ADD2"
wenzelm@14796
    89
  "REAL_SUB_ADD" > "OrderedGroup.diff_add_cancel"
obua@17188
    90
  "REAL_SUB_ABS" > "OrderedGroup.abs_triangle_ineq2"
obua@17188
    91
  "REAL_SUB_0" > "OrderedGroup.diff_eq_0_iff_eq"
skalberg@14516
    92
  "REAL_RNEG_UNIQ" > "RealDef.real_add_eq_0_iff"
skalberg@15647
    93
  "REAL_RINV_UNIQ" > "Ring_and_Field.inverse_unique"
skalberg@15647
    94
  "REAL_RDISTRIB" > "Ring_and_Field.ring_eq_simps_1"
skalberg@14516
    95
  "REAL_POW_POW" > "Power.power_mult"
obua@17188
    96
  "REAL_POW_MONO_LT" > "HOL4Real.real.REAL_POW_MONO_LT"
skalberg@14516
    97
  "REAL_POW_LT2" > "HOL4Real.real.REAL_POW_LT2"
skalberg@14516
    98
  "REAL_POW_LT" > "Power.zero_less_power"
skalberg@14516
    99
  "REAL_POW_INV" > "Power.power_inverse"
skalberg@14516
   100
  "REAL_POW_DIV" > "Power.power_divide"
skalberg@14516
   101
  "REAL_POW_ADD" > "Power.power_add"
skalberg@14516
   102
  "REAL_POW2_ABS" > "NatBin.power2_abs"
skalberg@14516
   103
  "REAL_POS_NZ" > "HOL4Real.real.REAL_POS_NZ"
skalberg@14516
   104
  "REAL_POS" > "RealDef.real_of_nat_ge_zero"
skalberg@14516
   105
  "REAL_POASQ" > "HOL4Real.real.REAL_POASQ"
skalberg@14516
   106
  "REAL_OVER1" > "Ring_and_Field.divide_1"
skalberg@14516
   107
  "REAL_OF_NUM_SUC" > "RealDef.real_of_nat_Suc"
skalberg@14516
   108
  "REAL_OF_NUM_POW" > "RealPow.realpow_real_of_nat"
skalberg@14516
   109
  "REAL_OF_NUM_MUL" > "RealDef.real_of_nat_mult"
skalberg@14516
   110
  "REAL_OF_NUM_LE" > "RealDef.real_of_nat_le_iff"
skalberg@14516
   111
  "REAL_OF_NUM_EQ" > "RealDef.real_of_nat_inject"
skalberg@14516
   112
  "REAL_OF_NUM_ADD" > "RealDef.real_of_nat_add"
skalberg@14516
   113
  "REAL_NZ_IMP_LT" > "HOL4Real.real.REAL_NZ_IMP_LT"
skalberg@14516
   114
  "REAL_NOT_LT" > "HOL4Compat.real_lte"
skalberg@15647
   115
  "REAL_NOT_LE" > "Orderings.linorder_not_le"
wenzelm@14796
   116
  "REAL_NEG_SUB" > "OrderedGroup.minus_diff_eq"
obua@17188
   117
  "REAL_NEG_RMUL" > "Ring_and_Field.mult_minus_right"
wenzelm@14796
   118
  "REAL_NEG_NEG" > "OrderedGroup.minus_minus"
skalberg@14516
   119
  "REAL_NEG_MUL2" > "Ring_and_Field.minus_mult_minus"
skalberg@14516
   120
  "REAL_NEG_MINUS1" > "HOL4Real.real.REAL_NEG_MINUS1"
wenzelm@14796
   121
  "REAL_NEG_LT0" > "OrderedGroup.neg_less_0_iff_less"
obua@17188
   122
  "REAL_NEG_LMUL" > "Ring_and_Field.mult_minus_left"
wenzelm@14796
   123
  "REAL_NEG_LE0" > "OrderedGroup.neg_le_0_iff_le"
skalberg@14516
   124
  "REAL_NEG_INV" > "Ring_and_Field.nonzero_inverse_minus_eq"
wenzelm@14796
   125
  "REAL_NEG_GT0" > "OrderedGroup.neg_0_less_iff_less"
wenzelm@14796
   126
  "REAL_NEG_GE0" > "OrderedGroup.neg_0_le_iff_le"
wenzelm@14796
   127
  "REAL_NEG_EQ0" > "OrderedGroup.neg_equal_0_iff_equal"
skalberg@14516
   128
  "REAL_NEG_EQ" > "HOL4Real.real.REAL_NEG_EQ"
wenzelm@14796
   129
  "REAL_NEG_ADD" > "OrderedGroup.minus_add_distrib"
wenzelm@14796
   130
  "REAL_NEG_0" > "OrderedGroup.minus_zero"
wenzelm@14796
   131
  "REAL_NEGNEG" > "OrderedGroup.minus_minus"
obua@17188
   132
  "REAL_MUL_SYM" > "IntDef.zmult_ac_2"
skalberg@14516
   133
  "REAL_MUL_RZERO" > "Ring_and_Field.mult_zero_right"
obua@17188
   134
  "REAL_MUL_RNEG" > "Ring_and_Field.mult_minus_right"
skalberg@14516
   135
  "REAL_MUL_RINV" > "Ring_and_Field.right_inverse"
obua@17188
   136
  "REAL_MUL_RID" > "Finite_Set.AC_mult.f_e.ident"
skalberg@14516
   137
  "REAL_MUL_LZERO" > "Ring_and_Field.mult_zero_left"
obua@17188
   138
  "REAL_MUL_LNEG" > "Ring_and_Field.mult_minus_left"
skalberg@14516
   139
  "REAL_MUL_LINV" > "HOL4Compat.REAL_MUL_LINV"
obua@17188
   140
  "REAL_MUL_LID" > "Finite_Set.AC_mult.f_e.left_ident"
skalberg@14516
   141
  "REAL_MUL_ASSOC" > "HOL4Compat.REAL_MUL_ASSOC"
skalberg@14516
   142
  "REAL_MUL" > "RealDef.real_of_nat_mult"
skalberg@14516
   143
  "REAL_MIDDLE2" > "HOL4Real.real.REAL_MIDDLE2"
skalberg@14516
   144
  "REAL_MIDDLE1" > "HOL4Real.real.REAL_MIDDLE1"
skalberg@14516
   145
  "REAL_MEAN" > "Ring_and_Field.dense"
skalberg@14516
   146
  "REAL_LT_TRANS" > "Set.basic_trans_rules_21"
skalberg@14516
   147
  "REAL_LT_TOTAL" > "HOL4Compat.REAL_LT_TOTAL"
wenzelm@14796
   148
  "REAL_LT_SUB_RADD" > "OrderedGroup.compare_rls_6"
wenzelm@14796
   149
  "REAL_LT_SUB_LADD" > "OrderedGroup.compare_rls_7"
obua@17644
   150
  "REAL_LT_RMUL_IMP" > "Ring_and_Field.ordered_semiring_strict_class.mult_strict_right_mono"
skalberg@14516
   151
  "REAL_LT_RMUL_0" > "HOL4Real.real.REAL_LT_RMUL_0"
skalberg@14516
   152
  "REAL_LT_RMUL" > "RealDef.real_mult_less_iff1"
skalberg@15647
   153
  "REAL_LT_REFL" > "Orderings.order_less_irrefl"
skalberg@14516
   154
  "REAL_LT_RDIV_EQ" > "Ring_and_Field.pos_less_divide_eq"
skalberg@14516
   155
  "REAL_LT_RDIV_0" > "HOL4Real.real.REAL_LT_RDIV_0"
skalberg@14516
   156
  "REAL_LT_RDIV" > "HOL4Real.real.REAL_LT_RDIV"
wenzelm@14796
   157
  "REAL_LT_RADD" > "OrderedGroup.add_less_cancel_right"
skalberg@14516
   158
  "REAL_LT_NZ" > "HOL4Real.real.REAL_LT_NZ"
skalberg@14516
   159
  "REAL_LT_NEGTOTAL" > "HOL4Real.real.REAL_LT_NEGTOTAL"
wenzelm@14796
   160
  "REAL_LT_NEG" > "OrderedGroup.neg_less_iff_less"
skalberg@14516
   161
  "REAL_LT_MULTIPLE" > "HOL4Real.real.REAL_LT_MULTIPLE"
skalberg@14516
   162
  "REAL_LT_MUL2" > "Ring_and_Field.mult_strict_mono'"
avigad@16775
   163
  "REAL_LT_MUL" > "Ring_and_Field.mult_pos_pos"
obua@17644
   164
  "REAL_LT_LMUL_IMP" > "Ring_and_Field.ordered_comm_semiring_strict_class.mult_strict_mono"
skalberg@14516
   165
  "REAL_LT_LMUL_0" > "HOL4Real.real.REAL_LT_LMUL_0"
skalberg@14516
   166
  "REAL_LT_LMUL" > "HOL4Real.real.REAL_LT_LMUL"
obua@17644
   167
  "REAL_LT_LE" > "Orderings.order_class.order_less_le"
skalberg@14516
   168
  "REAL_LT_LDIV_EQ" > "Ring_and_Field.pos_divide_less_eq"
wenzelm@14796
   169
  "REAL_LT_LADD" > "OrderedGroup.add_less_cancel_left"
skalberg@14516
   170
  "REAL_LT_INV_EQ" > "Ring_and_Field.inverse_positive_iff_positive"
skalberg@14516
   171
  "REAL_LT_INV" > "Ring_and_Field.less_imp_inverse_less"
skalberg@15647
   172
  "REAL_LT_IMP_NE" > "Orderings.less_imp_neq"
skalberg@15647
   173
  "REAL_LT_IMP_LE" > "Orderings.order_less_imp_le"
wenzelm@14796
   174
  "REAL_LT_IADD" > "OrderedGroup.add_strict_left_mono"
skalberg@14516
   175
  "REAL_LT_HALF2" > "HOL4Real.real.REAL_LT_HALF2"
skalberg@14516
   176
  "REAL_LT_HALF1" > "NatSimprocs.half_gt_zero_iff"
skalberg@15647
   177
  "REAL_LT_GT" > "Orderings.order_less_not_sym"
skalberg@14516
   178
  "REAL_LT_FRACTION_0" > "HOL4Real.real.REAL_LT_FRACTION_0"
skalberg@14516
   179
  "REAL_LT_FRACTION" > "HOL4Real.real.REAL_LT_FRACTION"
obua@17188
   180
  "REAL_LT_DIV" > "Ring_and_Field.divide_pos_pos"
skalberg@14516
   181
  "REAL_LT_ANTISYM" > "HOL4Real.real.REAL_LT_ANTISYM"
wenzelm@14796
   182
  "REAL_LT_ADD_SUB" > "OrderedGroup.compare_rls_7"
skalberg@14516
   183
  "REAL_LT_ADDR" > "HOL4Real.real.REAL_LT_ADDR"
skalberg@14516
   184
  "REAL_LT_ADDNEG2" > "HOL4Real.real.REAL_LT_ADDNEG2"
skalberg@14516
   185
  "REAL_LT_ADDNEG" > "HOL4Real.real.REAL_LT_ADDNEG"
skalberg@14516
   186
  "REAL_LT_ADDL" > "HOL4Real.real.REAL_LT_ADDL"
wenzelm@14796
   187
  "REAL_LT_ADD2" > "OrderedGroup.add_strict_mono"
skalberg@14516
   188
  "REAL_LT_ADD1" > "HOL4Real.real.REAL_LT_ADD1"
obua@17188
   189
  "REAL_LT_ADD" > "OrderedGroup.add_pos_pos"
skalberg@14516
   190
  "REAL_LT_1" > "HOL4Real.real.REAL_LT_1"
obua@17644
   191
  "REAL_LT_01" > "Ring_and_Field.ordered_semidom_class.zero_less_one"
skalberg@14516
   192
  "REAL_LTE_TRANS" > "Set.basic_trans_rules_24"
skalberg@14516
   193
  "REAL_LTE_TOTAL" > "HOL4Real.real.REAL_LTE_TOTAL"
skalberg@14516
   194
  "REAL_LTE_ANTSYM" > "HOL4Real.real.REAL_LTE_ANTSYM"
wenzelm@14796
   195
  "REAL_LTE_ADD2" > "OrderedGroup.add_less_le_mono"
obua@17188
   196
  "REAL_LTE_ADD" > "OrderedGroup.add_pos_nonneg"
skalberg@14516
   197
  "REAL_LT1_POW2" > "HOL4Real.real.REAL_LT1_POW2"
skalberg@14516
   198
  "REAL_LT" > "RealDef.real_of_nat_less_iff"
skalberg@14516
   199
  "REAL_LNEG_UNIQ" > "HOL4Real.real.REAL_LNEG_UNIQ"
skalberg@14516
   200
  "REAL_LINV_UNIQ" > "HOL4Real.real.REAL_LINV_UNIQ"
skalberg@14516
   201
  "REAL_LE_TRANS" > "Set.basic_trans_rules_25"
obua@17644
   202
  "REAL_LE_TOTAL" > "Orderings.linorder_class.linorder_linear"
wenzelm@14796
   203
  "REAL_LE_SUB_RADD" > "OrderedGroup.compare_rls_8"
wenzelm@14796
   204
  "REAL_LE_SUB_LADD" > "OrderedGroup.compare_rls_9"
skalberg@14516
   205
  "REAL_LE_SQUARE" > "Ring_and_Field.zero_le_square"
wenzelm@14796
   206
  "REAL_LE_RNEG" > "OrderedGroup.le_eq_neg"
obua@17644
   207
  "REAL_LE_RMUL_IMP" > "Ring_and_Field.pordered_semiring_class.mult_right_mono"
skalberg@14516
   208
  "REAL_LE_RMUL" > "RealDef.real_mult_le_cancel_iff1"
obua@17188
   209
  "REAL_LE_REFL" > "Finite_Set.max.f_below.below_refl"
skalberg@14516
   210
  "REAL_LE_RDIV_EQ" > "Ring_and_Field.pos_le_divide_eq"
obua@17188
   211
  "REAL_LE_RDIV" > "Ring_and_Field.mult_imp_le_div_pos"
wenzelm@14796
   212
  "REAL_LE_RADD" > "OrderedGroup.add_le_cancel_right"
skalberg@15647
   213
  "REAL_LE_POW2" > "NatBin.zero_compare_simps_12"
skalberg@14516
   214
  "REAL_LE_NEGTOTAL" > "HOL4Real.real.REAL_LE_NEGTOTAL"
wenzelm@14796
   215
  "REAL_LE_NEGR" > "OrderedGroup.le_minus_self_iff"
wenzelm@14796
   216
  "REAL_LE_NEGL" > "OrderedGroup.minus_le_self_iff"
wenzelm@14796
   217
  "REAL_LE_NEG2" > "OrderedGroup.neg_le_iff_le"
wenzelm@14796
   218
  "REAL_LE_NEG" > "OrderedGroup.neg_le_iff_le"
skalberg@14516
   219
  "REAL_LE_MUL2" > "HOL4Real.real.REAL_LE_MUL2"
avigad@16775
   220
  "REAL_LE_MUL" > "Ring_and_Field.mult_nonneg_nonneg"
skalberg@15647
   221
  "REAL_LE_LT" > "Orderings.order_le_less"
skalberg@14516
   222
  "REAL_LE_LNEG" > "RealDef.real_0_le_add_iff"
obua@17644
   223
  "REAL_LE_LMUL_IMP" > "Ring_and_Field.pordered_comm_semiring_class.mult_mono"
skalberg@14516
   224
  "REAL_LE_LMUL" > "RealDef.real_mult_le_cancel_iff2"
skalberg@14516
   225
  "REAL_LE_LDIV_EQ" > "Ring_and_Field.pos_divide_le_eq"
obua@17188
   226
  "REAL_LE_LDIV" > "Ring_and_Field.mult_imp_div_pos_le"
obua@17644
   227
  "REAL_LE_LADD_IMP" > "OrderedGroup.pordered_ab_semigroup_add_class.add_left_mono"
wenzelm@14796
   228
  "REAL_LE_LADD" > "OrderedGroup.add_le_cancel_left"
skalberg@14516
   229
  "REAL_LE_INV_EQ" > "Ring_and_Field.inverse_nonnegative_iff_nonnegative"
skalberg@14516
   230
  "REAL_LE_INV" > "HOL4Real.real.REAL_LE_INV"
wenzelm@14796
   231
  "REAL_LE_DOUBLE" > "OrderedGroup.zero_le_double_add_iff_zero_le_single_add"
skalberg@14516
   232
  "REAL_LE_DIV" > "HOL4Real.real.REAL_LE_DIV"
skalberg@15647
   233
  "REAL_LE_ANTISYM" > "Orderings.order_eq_iff"
skalberg@14516
   234
  "REAL_LE_ADDR" > "HOL4Real.real.REAL_LE_ADDR"
skalberg@14516
   235
  "REAL_LE_ADDL" > "HOL4Real.real.REAL_LE_ADDL"
wenzelm@14796
   236
  "REAL_LE_ADD2" > "OrderedGroup.add_mono"
obua@17188
   237
  "REAL_LE_ADD" > "OrderedGroup.add_nonneg_nonneg"
skalberg@14516
   238
  "REAL_LE_01" > "Ring_and_Field.zero_le_one"
skalberg@14516
   239
  "REAL_LET_TRANS" > "Set.basic_trans_rules_23"
skalberg@15647
   240
  "REAL_LET_TOTAL" > "Orderings.linorder_le_less_linear"
skalberg@14516
   241
  "REAL_LET_ANTISYM" > "HOL4Real.real.REAL_LET_ANTISYM"
wenzelm@14796
   242
  "REAL_LET_ADD2" > "OrderedGroup.add_le_less_mono"
obua@17188
   243
  "REAL_LET_ADD" > "OrderedGroup.add_nonneg_pos"
skalberg@14516
   244
  "REAL_LE1_POW2" > "HOL4Real.real.REAL_LE1_POW2"
skalberg@14516
   245
  "REAL_LE" > "RealDef.real_of_nat_le_iff"
skalberg@15647
   246
  "REAL_LDISTRIB" > "Ring_and_Field.ring_eq_simps_2"
skalberg@14516
   247
  "REAL_INV_POS" > "Ring_and_Field.positive_imp_inverse_positive"
skalberg@14516
   248
  "REAL_INV_NZ" > "Ring_and_Field.nonzero_imp_inverse_nonzero"
skalberg@14516
   249
  "REAL_INV_MUL" > "HOL4Real.real.REAL_INV_MUL"
skalberg@14516
   250
  "REAL_INV_LT1" > "RealDef.real_inverse_gt_one"
skalberg@14516
   251
  "REAL_INV_INV" > "Ring_and_Field.inverse_inverse_eq"
skalberg@14516
   252
  "REAL_INV_EQ_0" > "Ring_and_Field.inverse_nonzero_iff_nonzero"
skalberg@14516
   253
  "REAL_INV_1OVER" > "Ring_and_Field.inverse_eq_divide"
obua@17644
   254
  "REAL_INV_0" > "Ring_and_Field.division_by_zero_class.inverse_zero"
skalberg@14516
   255
  "REAL_INVINV" > "Ring_and_Field.nonzero_inverse_inverse_eq"
skalberg@14516
   256
  "REAL_INV1" > "Ring_and_Field.inverse_1"
skalberg@14516
   257
  "REAL_INJ" > "RealDef.real_of_nat_inject"
skalberg@14516
   258
  "REAL_HALF_DOUBLE" > "RComplete.real_sum_of_halves"
skalberg@14516
   259
  "REAL_FACT_NZ" > "HOL4Real.real.REAL_FACT_NZ"
skalberg@14620
   260
  "REAL_EQ_SUB_RADD" > "Ring_and_Field.ring_eq_simps_15"
skalberg@14620
   261
  "REAL_EQ_SUB_LADD" > "Ring_and_Field.ring_eq_simps_16"
skalberg@14516
   262
  "REAL_EQ_RMUL_IMP" > "Ring_and_Field.field_mult_cancel_right_lemma"
skalberg@14516
   263
  "REAL_EQ_RMUL" > "Ring_and_Field.field_mult_cancel_right"
skalberg@14516
   264
  "REAL_EQ_RDIV_EQ" > "HOL4Real.real.REAL_EQ_RDIV_EQ"
wenzelm@14796
   265
  "REAL_EQ_RADD" > "OrderedGroup.add_right_cancel"
wenzelm@14796
   266
  "REAL_EQ_NEG" > "OrderedGroup.neg_equal_iff_equal"
skalberg@14516
   267
  "REAL_EQ_MUL_LCANCEL" > "Ring_and_Field.field_mult_cancel_left"
skalberg@14516
   268
  "REAL_EQ_LMUL_IMP" > "HOL4Real.real.REAL_EQ_LMUL_IMP"
skalberg@14516
   269
  "REAL_EQ_LMUL2" > "RealDef.real_mult_left_cancel"
skalberg@14516
   270
  "REAL_EQ_LMUL" > "Ring_and_Field.field_mult_cancel_left"
skalberg@14516
   271
  "REAL_EQ_LDIV_EQ" > "HOL4Real.real.REAL_EQ_LDIV_EQ"
wenzelm@14796
   272
  "REAL_EQ_LADD" > "OrderedGroup.add_left_cancel"
skalberg@15647
   273
  "REAL_EQ_IMP_LE" > "Orderings.order_eq_refl"
skalberg@14516
   274
  "REAL_ENTIRE" > "Ring_and_Field.field_mult_eq_0_iff"
skalberg@14516
   275
  "REAL_DOWN2" > "RealDef.real_lbound_gt_zero"
skalberg@14516
   276
  "REAL_DOWN" > "HOL4Real.real.REAL_DOWN"
skalberg@14516
   277
  "REAL_DOUBLE" > "IntArith.mult_2"
skalberg@14516
   278
  "REAL_DIV_RMUL" > "HOL4Real.real.REAL_DIV_RMUL"
skalberg@14516
   279
  "REAL_DIV_REFL" > "Ring_and_Field.divide_self"
obua@17188
   280
  "REAL_DIV_MUL2" > "HOL4Real.real.REAL_DIV_MUL2"
skalberg@14516
   281
  "REAL_DIV_LZERO" > "Ring_and_Field.divide_zero_left"
skalberg@14516
   282
  "REAL_DIV_LMUL" > "HOL4Real.real.REAL_DIV_LMUL"
skalberg@14516
   283
  "REAL_DIFFSQ" > "HOL4Real.real.REAL_DIFFSQ"
skalberg@14516
   284
  "REAL_ARCH_LEAST" > "HOL4Real.real.REAL_ARCH_LEAST"
skalberg@14516
   285
  "REAL_ARCH" > "RComplete.reals_Archimedean3"
obua@17188
   286
  "REAL_ADD_SYM" > "Finite_Set.AC_add.f.AC_2"
skalberg@14516
   287
  "REAL_ADD_SUB2" > "HOL4Real.real.REAL_ADD_SUB2"
wenzelm@14796
   288
  "REAL_ADD_SUB" > "HOL4Real.real.REAL_ADD_SUB"
wenzelm@14796
   289
  "REAL_ADD_RINV" > "OrderedGroup.right_minus"
skalberg@14516
   290
  "REAL_ADD_RID_UNIQ" > "HOL4Real.real.REAL_ADD_RID_UNIQ"
obua@17188
   291
  "REAL_ADD_RID" > "Finite_Set.AC_add.f_e.ident"
skalberg@15647
   292
  "REAL_ADD_RDISTRIB" > "Ring_and_Field.ring_eq_simps_1"
skalberg@14516
   293
  "REAL_ADD_LINV" > "HOL4Compat.REAL_ADD_LINV"
skalberg@14516
   294
  "REAL_ADD_LID_UNIQ" > "HOL4Real.real.REAL_ADD_LID_UNIQ"
obua@17188
   295
  "REAL_ADD_LID" > "Finite_Set.AC_add.f_e.left_ident"
skalberg@15647
   296
  "REAL_ADD_LDISTRIB" > "Ring_and_Field.ring_eq_simps_2"
skalberg@14516
   297
  "REAL_ADD_ASSOC" > "HOL4Compat.REAL_ADD_ASSOC"
skalberg@14516
   298
  "REAL_ADD2_SUB2" > "HOL4Real.real.REAL_ADD2_SUB2"
skalberg@14516
   299
  "REAL_ADD" > "RealDef.real_of_nat_add"
wenzelm@14796
   300
  "REAL_ABS_TRIANGLE" > "OrderedGroup.abs_triangle_ineq"
wenzelm@14796
   301
  "REAL_ABS_POS" > "OrderedGroup.abs_ge_zero"
skalberg@14516
   302
  "REAL_ABS_MUL" > "Ring_and_Field.abs_mult"
obua@17188
   303
  "REAL_ABS_0" > "Numeral.bin_arith_simps_28"
skalberg@14516
   304
  "REAL_10" > "HOL4Compat.REAL_10"
skalberg@14516
   305
  "REAL_1" > "HOL4Real.real.REAL_1"
skalberg@14516
   306
  "REAL_0" > "HOL4Real.real.REAL_0"
skalberg@14516
   307
  "REAL" > "RealDef.real_of_nat_Suc"
skalberg@14516
   308
  "POW_ZERO_EQ" > "HOL4Real.real.POW_ZERO_EQ"
skalberg@14516
   309
  "POW_ZERO" > "RealPow.realpow_zero_zero"
skalberg@14516
   310
  "POW_POS_LT" > "HOL4Real.real.POW_POS_LT"
skalberg@14516
   311
  "POW_POS" > "Power.zero_le_power"
skalberg@14516
   312
  "POW_PLUS1" > "HOL4Real.real.POW_PLUS1"
skalberg@14516
   313
  "POW_ONE" > "Power.power_one"
skalberg@14516
   314
  "POW_NZ" > "Power.field_power_not_zero"
skalberg@14516
   315
  "POW_MUL" > "Power.power_mult_distrib"
skalberg@14516
   316
  "POW_MINUS1" > "NatBin.power_minus1_even"
skalberg@14516
   317
  "POW_M1" > "HOL4Real.real.POW_M1"
skalberg@14516
   318
  "POW_LT" > "HOL4Real.real.POW_LT"
skalberg@14516
   319
  "POW_LE" > "Power.power_mono"
skalberg@14516
   320
  "POW_INV" > "Power.nonzero_power_inverse"
skalberg@14516
   321
  "POW_EQ" > "Power.power_inject_base"
skalberg@14516
   322
  "POW_ADD" > "Power.power_add"
skalberg@14516
   323
  "POW_ABS" > "Power.power_abs"
skalberg@14516
   324
  "POW_2_LT" > "RealPow.two_realpow_gt"
skalberg@14516
   325
  "POW_2_LE1" > "RealPow.two_realpow_ge_one"
skalberg@14516
   326
  "POW_2" > "NatBin.power2_eq_square"
skalberg@14516
   327
  "POW_1" > "Power.power_one_right"
skalberg@14516
   328
  "POW_0" > "Power.power_0_Suc"
wenzelm@14796
   329
  "ABS_ZERO" > "OrderedGroup.abs_eq_0"
wenzelm@14796
   330
  "ABS_TRIANGLE" > "OrderedGroup.abs_triangle_ineq"
skalberg@14516
   331
  "ABS_SUM" > "HOL4Real.real.ABS_SUM"
obua@17188
   332
  "ABS_SUB_ABS" > "OrderedGroup.abs_triangle_ineq3"
skalberg@15647
   333
  "ABS_SUB" > "OrderedGroup.abs_minus_commute"
skalberg@14516
   334
  "ABS_STILLNZ" > "HOL4Real.real.ABS_STILLNZ"
skalberg@14516
   335
  "ABS_SIGN2" > "HOL4Real.real.ABS_SIGN2"
skalberg@14516
   336
  "ABS_SIGN" > "HOL4Real.real.ABS_SIGN"
skalberg@14516
   337
  "ABS_REFL" > "HOL4Real.real.ABS_REFL"
skalberg@14516
   338
  "ABS_POW2" > "NatBin.abs_power2"
wenzelm@14796
   339
  "ABS_POS" > "OrderedGroup.abs_ge_zero"
wenzelm@14796
   340
  "ABS_NZ" > "OrderedGroup.zero_less_abs_iff"
wenzelm@14796
   341
  "ABS_NEG" > "OrderedGroup.abs_minus_cancel"
skalberg@14516
   342
  "ABS_N" > "RealDef.abs_real_of_nat_cancel"
skalberg@14516
   343
  "ABS_MUL" > "Ring_and_Field.abs_mult"
skalberg@14516
   344
  "ABS_LT_MUL2" > "HOL4Real.real.ABS_LT_MUL2"
wenzelm@14796
   345
  "ABS_LE" > "OrderedGroup.abs_ge_self"
skalberg@14516
   346
  "ABS_INV" > "Ring_and_Field.nonzero_abs_inverse"
skalberg@14516
   347
  "ABS_DIV" > "Ring_and_Field.nonzero_abs_divide"
skalberg@14516
   348
  "ABS_CIRCLE" > "HOL4Real.real.ABS_CIRCLE"
skalberg@14516
   349
  "ABS_CASES" > "HOL4Real.real.ABS_CASES"
skalberg@14516
   350
  "ABS_BOUNDS" > "RealDef.abs_le_interval_iff"
skalberg@14516
   351
  "ABS_BOUND" > "HOL4Real.real.ABS_BOUND"
skalberg@14516
   352
  "ABS_BETWEEN2" > "HOL4Real.real.ABS_BETWEEN2"
skalberg@14516
   353
  "ABS_BETWEEN1" > "HOL4Real.real.ABS_BETWEEN1"
skalberg@14516
   354
  "ABS_BETWEEN" > "HOL4Real.real.ABS_BETWEEN"
wenzelm@14796
   355
  "ABS_ABS" > "OrderedGroup.abs_idempotent"
obua@17188
   356
  "ABS_1" > "Numeral.bin_arith_simps_29"
obua@17188
   357
  "ABS_0" > "Numeral.bin_arith_simps_28"
skalberg@14516
   358
skalberg@14516
   359
end